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Abstract
This study evaluates the influences of air pollution in China 
using a recently proposed model—multi‐scale geographi‐
cally weighted regression (MGWR). First, we review previ‐
ous research on the determinants of air quality. Then, we 
explain the MGWR model, together with two global models: 
ordinary least squares (OLS) and OLS containing a spatial 
lag variable (OLSL) and a commonly used local model: geo‐
graphically weighted regression (GWR). To detect and ac‐
count for any variation of the spatial autocorrelation of air 
pollution over space, we construct two extra local models 
which we call GWR with lagged dependent variable (GWRL) 
and MGWR with lagged dependent variable (MGWRL) by 
including the lagged form of the dependent variable in the 
GWR model and the MGWR model, respectively. The per‐
formances of these six models are comprehensively exam‐
ined and the MGWR and MGWRL models outperform the 
two global models as well as the GWR and GWRL models. 
MGWRL is the most accurate model in terms of replicat‐
ing the observed air quality index (AQI) values and removing 
residual dependency. The superiority of the MGWR frame‐
work over the GWR framework is demonstrated—GWR can 
only produce a single optimized bandwidth, while MGWR 
provides covariate‐specific optimized bandwidths which in‐
dicate the different spatial scales that different processes 
operate.
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1  | INTRODUC TION

China became the world's second largest economy in 2010 after only 30 years of rapid economic evolution since 
the reform of its economy in 1978. However, this rapid urbanization and industrial process has triggered a series 
of environmental problems, among which air pollution is one of the most serious (Fang, Liu, Li, Sun, & Miao, 2015). 
Air pollution not only inflicts damage on ecosystems and affects climate change, but also impacts human health 
by triggering various medical problems, such as lung cancer, asthma, cardiovascular disease, and respiratory in‐
fections (Brauer et al., 2012; Pope III, 2000). Ambient air pollution has become the fourth greatest risk factor in 
all deaths in China (Matus et al., 2012). Air quality degradation in China has also led to enormous financial losses 
(Crane & Mao, 2015). Consequently, it is important to study the distribution patterns and driving forces of ambient 
air pollution in China in order to propose prevention and control measures (Hao & Liu, 2016; Zhou, Chen, & Wang, 
2018).

1.1 | Variables affecting air quality

Air pollution is formed by a complex set of mechanisms, and various factors have been demonstrated to have 
an impact on it. One important category of factors covers meteorological conditions. For example, a study in 
Guangzhou, China reported a negative relationship between air pollutant level and precipitation, because during 
precipitation events the accumulated air pollutants absorb more water and fall to the ground (Li et al., 2014). A 
significant negative relationship between air pollution level and daily amount of precipitation was also observed 
in Birmingham, UK (Vardoulakis & Kassomenos, 2008). Wind velocity also affects air quality, because high winds 
increase horizontal mixing and are helpful in dispersing and diluting air pollutants (Dawson, Adams, & Pandis, 
2007; Hu et al., 2013; Kleeman, 2007; Li et al., 2014). However, under certain circumstances, wind may blow soil 
and road dust into the air, which will increase air pollution levels (Vardoulakis & Kassomenos, 2008).

Socio‐demographic characteristics are another critical type of impact factor. Previous research suggests the 
existence of a positive relationship between population density and air pollution, which is obvious because people 
need to consume energy to support their life and production, and greater energy consumption implies more waste 
gas (Zhou et al., 2018). China is in the process of rapid urbanization, which has raised environmental problems 
(Wang, Fang, & Wang, 2016). In addition to population density, economic development also has an impact on air 
quality. However, the relationship between air quality and economic development is not clear. Some researchers 
have suggested an inverted U‐shaped relationship between economic development and air quality (Hao & Liu, 
2016), with cities having higher per capita gross regional product (GRP) experiencing better air quality because a 
high degree of affluence improves awareness and the ability to pay for environmental protection (Wang & Fang, 
2016; Zhou et al., 2018). Equally, cities with low GRP might experience a low level of air pollution because of little 
industrial development. The industrial structure of a city is usually measured by the contribution of secondary 
industries to GRP, which in China cover traditional manufacturing, construction industry manufacturing, and the 
production and supply of electric power, gas, and water. These are all high energy‐consuming sectors and a high 
share of secondary industries has been widely demonstrated to cause worse ambient air quality (Wang & Fang, 
2016; Wang, Zhou, Wang, Feng, & Hubacek, 2017). Electric energy in China is mainly generated by burning coal, 
which results in carbon emissions and dust pollution, and a larger amount of electricity consumption is then cor‐
related with more adverse air quality (Yu, 2017). Industrial soot or dust emitted from factories to the air during fuel 
combustion will also aggravate pollution (Remoundaki et al., 2012; Wang & Fang, 2016).

Built environment factors also affect air quality. It is commonly recognized that the density of traffic vehicles 
will increase air pollution as automobile exhausts contain various pollutant chemicals such as sulfur dioxide, ni‐
trogen oxides, and carbon compounds. High road density normally indicates intense transportation, so density of 
roads has been shown to be correlated with high levels of air pollution (Shao, Li, Cao, & Yang, 2016; Zhou et al., 
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2018). Conversely, a high density of green spaces is thought to be negatively correlated with air pollution. Trees 
can improve ambient air quality in three respects: first, they can capture atmospheric pollutants such as partic‐
ulate matter onto leaf surfaces or absorb them into the tree directly; second, trees can dilute the concentration 
of air pollutants by changing air temperatures and releasing volatile organic compounds; and third, trees can 
reduce power consumption and consequent pollutant emissions from power plants (Nowak, Hirabayashi, Bodine, 
& Hoehn, 2013).

1.2 | Methods used to investigate the determinates of air quality

As with many other geographical phenomena, ambient air pollution exhibits an autocorrelated and nonstationary 
distribution over space (Lu, Xu, Yang, & Zhao, 2017; Wang, Zhou et al., 2017; Zhou et al., 2018). Apart from air pol‐
lution itself, the processes which generate air quality may also be heterogeneous, that is to say, air quality is in part 
a function of location. For example, an impact factor of air quality, such as wind velocity, may not contribute to air 
pollution to the same extent in all cities. In some places high wind velocity can mitigate pollution by dispersing air 
pollutants; in places near deserts, however, high wind velocity will exacerbate pollution by carrying dust into air. 
Such subtle disparities create challenges for modeling air quality.

Various methods have been proposed to examine the underlying mechanisms of air quality. Wang, Zhou, et 
al. (2017) used cross‐sectional linear regression models to estimate the impacts of urban population, urban area, 
urban second industry share, population density, and GDP per capita on PM2.5 concentrations. Wang, Liu, Zhou, 
Hu, and Ou (2017) used a two‐stage least‐squares method to estimate the impacts of socioeconomic factors, 
urban form, and transportation networks on pollutant emissions in China's four megacities. Hao and Liu (2016) 
and Zhang, Wang, and Zhang (2016) used non‐spatial models (ordinary least squares, OLS) and spatial models (spa‐
tial error regression, SER and spatial lag regression, SLR) to determine the directions and strength of the impacts 
of a range of socioeconomic factors on PM2.5 concentrations in China. They found that non‐spatial models were 
ineffective because they failed to take the spatial effects into account. However, all these models ignored the 
potential spatial heterogeneity of the relationships between air quality and impact factors. To account for spatial 
nonstationarity in the determinants of air pollution, geographically weighted regression (GWR) has been used by 
several researchers. For example, Hu et al. (2013), and Wang and Fang (2016) used GWR to estimate the determi‐
nants of the concentration of air pollutants in North America, China, and the Bohai Rim Urban Agglomeration in 
China, respectively. All their results show that GWR outperforms global regression models, and can detect spatial 
nonstationarity within the processes.

However, the GWR methods used in previous studies have two major limitations. Firstly, even when potential 
spatial heterogeneity of the processes generating air pollution is taken into consideration by using GWR, re‐
searchers have usually ignored the multiple testing issue so that the significance of the local parameter estimates 
produced by GWR is questionable (da Silva & Fotheringham, 2016). Secondly, the GWR models produce a single 
optimized bandwidth for all variables which assumes that all the factors affect air quality at the same spatial scale. 
This is a questionable assumption given that different processes may affect air quality at different spatial scales.

This study addresses all the issues identified from previous research on air quality. Firstly, we use a recently 
proposed local model—multi‐scale geographically weighted regression (MGWR)—to obtain a set of optimal covari‐
ate‐specific bandwidths in which each bandwidth indicates the spatial scale at which a particular factor impacts air 
quality (Fotheringham, Yang, & Kang, 2017). Secondly, we use a newly developed correction method for inference 
in GWR/MGWR to solve the multiple testing issues, so as to obtain reliable local parameter estimates (da Silva & 
Fotheringham, 2016; Yu et al., 2019). And thirdly, we include a spatial lag variable in the framework to allow for 
spatial dependency in the distribution of air quality. We compare the results of calibrating the new model with 
results from both GWR and OLS models.

The objective of this article is to identify various factors of air quality in China and examine if these impacts are 
stable over space, and if they are not stable, at what spatial scale do they vary? The empirical case study involves 
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cities in China, a country faced with severe air pollution. One year of air quality data, as well as a set of meteoro‐
logical data, socio‐demographic data, and built environment data, are used.

2  | DATA PREPAR ATION

2.1 | The study area and definition of air quality

The Chinese government uses the air quality index (AQI), a dimensionless composite index, to measure atmos‐
pheric pollution levels (Ministry of Ecology & Environment of the People's Republic of China, 2012). AQI integrates 
a range of air pollutant measures which are recorded by monitoring stations installed in each city. A higher AQI 
means a higher level of air pollution and worse air quality (Fang et al., 2015). Air quality is divided into six cat‐
egories based on the AQI values, as shown in Table 1. Each day the government releases the AQI of each city to 
provide guidance for citizens' outside activity and whether protective measures are warranted. In this study, we 
derive the annual mean air quality of each city by averaging its daily AQI recorded by all the monitoring stations 
that are located in this city across a whole year. Data are available for 231 cities in 2016. The dependent variable is 
then the annual mean AQI in each city and the variation of average air quality across cities is the subject of inter‐
est—why are average AQIs larger in some cities than others?

A map of the spatial distribution of annual mean AQIs in 2016 is shown in Figure 1. Among 231 cities, only 
22 cities (9.52%) have good ambient air quality (annual mean AQI ≤ 50), most of which are located in the south‐
east coastal areas, such as Haikou, Shenzhen, and Fuzhou. 169 cities (73.16%) have moderate ambient air quality 
(50 < annual mean AQI ≤ 100). The remaining 40 cities (17.32%) have lightly polluted ambient air quality (100 < an‐
nual mean AQI ≤ 150), most of which are located in the north, especially the core cities in the Beijing–Tianjin–
Hebei (BTH) region, such as Beijing, Tianjin, and Shijiazhuang. The map clearly demonstrates the concentration 
patterns and spatial heterogeneity of the air quality in China.

2.2 | Independent variables

Ambient air quality has been demonstrated to be affected by various factors. Considering previous research and 
data availability, we selected 11 factors which could be divided into three categories based on their similarities, 
as shown in Table 2. The meteorological data are provided by the National Meteorological Information Center 
(http://data.cma.cn). There are 824 national meteorological stations throughout the country, each recording a 

TA B L E  1   Six levels of air quality indicated by AQI

AQI values Air quality condition Potential impacts on health

AQI ≤ 50 Good Air quality is satisfactory and there is little to no pollution

51 ≤ AQI ≤ 100 Moderate Air quality is acceptable, but some pollutants may have a weak 
impact on a few very sensitive people

101 ≤ AQI ≤ 150 Lightly polluted The air is unhealthy for sensitive groups and slight irritations may 
occur

151 ≤ AQI ≤ 200 Moderately polluted The symptoms of susceptible people are further aggravated, 
and the heart and respiratory system of healthy people may be 
affected

201 ≤ AQI ≤ 300 Heavily polluted Symptoms of patients with heart disease and lung disease are 
significantly increased, their exercise tolerance is reduced, and 
symptoms are common in healthy people

AQI ≥ 301 Severely polluted Exercise tolerance in healthy people is reduced, there are obvious 
strong symptoms, and some diseases may appear

http://data.cma.cn
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range of daily meteorological information. We obtained the annual mean meteorological data for each city by 
averaging the daily meteorological information recorded by those stations located in that city. The socio‐demo‐
graphic factors and the built environment factors of each city are derived from the China City Statistical Yearbook 
(National Bureau of Statistics of China, 2017). Multicollinearity does not pose a problem, because all the variance 
inflation factors (VIFs) reported in relation to the variables are below 6.

3  | METHODOLOGIES

We compare the performance of three types of model: classic OLS; the commonly used GWR; and the recently 
proposed MSGWR. In all three model types we also investigated the effect of adding a spatial lag term to the 
model to account for spatial dependency in the AQI data.

As the covariates have different units of measurement (e.g., mm, m/s) and large disparities in magnitude (e.g., 
.01, 14,055,500), we took their logged forms and standardized these logged forms to have mean of 0 and variance 
of 1, so as to make the parameter estimates independent of units and easy to compare. Logging covariates can also 
reduce nonlinearities in the original relationships (Fotheringham & Park, 2018).

3.1 | Ordinary least squares

The classic OLS model can be formulated in terms of air quality as

where i denotes a city, Yi denotes the annual mean AQI of city i, Xij is the jth explanatory variable of city i, β* are 
unknown parameters to be estimated which measure the association between air quality and covariates ceteris 
paribus, and �i is a random error component.

Spatial data are almost always distributed with some degree of positive spatial dependency such that observa‐
tions near each other tend to be more similar than observations further apart (Anselin & Bera, 1998). This spatial 
dependency violates the assumption of common regression models that observations are independent of each 
other, and failing to consider this effect will lead to an overestimation of the significance of estimates (Clifford & 
Richardson, 1985). One common method to address this issue is to include a lagged form of the dependent vari‐
able in the regression model as another independent variable. The model is then termed “spatial lag regression” 
(Anselin & Bera, 1998). The spatially lagged term for the dependent variable is calculated as:

where lag(Yi) is the spatially lagged value of Yi for city i, k is one of the other cities, n is the number of all the cities, 
and dik is the distance between city i and city k, which is limited to a threshold t (500 km in our study). Adding the 
variable to the OLS model give us an OLS model with spatially lagged dependent variable (OLSL).

3.2 | Geographically weighted regression

GWR extends global regression modeling by allowing local rather than global parameters to be estimated 
(Fotheringham, Brunsdon, & Charlton, 2002), and is formulated as:

(1)logYi=�0+
∑
j

�j logXij+�i

(2)lag(Yi)=

n∑
k=1, k≠i

Yk

dik

(3)logYi=�0(ui,vi)+
∑
j

�j(ui,vi)logXij+�i
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where (ui,vi) represents the centroid coordinates of city i. The location‐specific parameter estimates allow the 
relationship between covariates and air quality to vary between cities. The estimation is realized through “bor‐
rowing” data from nearby locations using specific distance‐weighting functions such that data near the regression 
point are assigned larger weights than data farther away (Fotheringham et al., 2002). In this study we used the 
commonly used adaptive bi‐square kernel function as the distance‐weighting function:

where wij is the weight between city i and city j, dij is the distance between city i and city j, and b is a critical dis‐
tance from regression location i to its Mth nearest neighbor. M is the optimal number of nearest neighbors, deter‐
mined by minimizing the corrected Akaike information criterion (Fotheringham et al., 2002).

(4)wij=

⎧
⎪⎨⎪⎩

�
1−

�
dij

b

�2
�2

0 otherwise

if dij<b

F I G U R E  1   Spatial distribution of annual mean AQI in eastern China in 2016
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A second GWR model is formulated by adding the same spatial lag variable defined in Equation (2) to the mod‐
el's covariates. This model is termed geographically weighted regression with lagged dependent variable (GWRL).

3.3 | Multi‐scale geographically weighted regression

Although GWR captures any spatial heterogeneity in relationships, it does so under the assumption that all such 
relationships vary at the same spatial scale across all covariates. MGWR is a significant improvement on GWR 
because it relaxes the “same spatial scale” assumption and allows covariate‐specific bandwidths to be optimized. 
It is formulated as (Fotheringham et al., 2017):

where bw* is the specific optimal bandwidth used in the calibration of the *th conditional relationship. MGWR thus 
allows different processes to operate at different spatial scales by deriving separate bandwidths for the condi‐
tional relationships between the response variable and different predictor variables.

MGWR is calibrated using a back‐fitting algorithm as described in Fotheringham et al. (2017). The back‐fitting 
process is initialized with GWR parameter estimates. Based on these initial values, the calibration process works in 
an iterative manner and during each iteration, all local parameter estimates and optimal bandwidths are evaluated. 
Iteration terminates when the difference between the parameter estimates from successive iterations converges 
to a specified threshold (we selected 1e‐5 in this study). The details of the process can be found in Fotheringham 
et al. (2017) and Oshan, Li, Kang, Wolf, and Fotheringham (2019).

Again, we created a separate MGWR model by adding the spatial lag term in Equation (2) to the covariates and 
term this model multiscale GWR with lagged dependent variable (MGWRL). We used the MGWR1.0 software to 
undertake all calibrations (https​://sgsup.asu.edu/sparc/​mgwr).

4  | RESULTS AND DISCUSSION

We compare the performance of six models of air quality across Chinese cities based on several criteria. These 
models are:

1.	 OLS
2.	 OLS with spatially lagged dependent variable (OLSL)
3.	 GWR
4.	 GWR with spatially lagged dependent variable (GWRL)
5.	 MGWR
6.	 MGWR with spatially lagged dependent variable (MGWRL).

4.1 | Model comparison regarding goodness‐of‐fit

The six models were compared in terms of their ability to replicate the observed air quality indices using four 
metrics: residual sum of squares (RSS); mean absolute error (MAE); corrected Akaike information criterion (AICc); 
and adjusted R‐squared value (R2). The results are shown in Table 3. For RSS, MAE, and AICc, lower values indicate 
better replication of the known air quality indices across the 231 locations; for R2, higher values indicate better 
model fit. All four goodness‐of‐fit measures suggest the following.

(5)logYi=�bw0(ui,vi)+
∑
j

�bwj(ui,vi)logXij+�i

https://sgsup.asu.edu/sparc/mgwr
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1.	 MGWR outperforms GWR and GWR outperforms OLS, even accounting for the extra parameters in the 
local models. At least some of the relationships being modeled vary spatially and this nonstationarity is 
modeled by both GWR and MGWR but not by OLS. The MGWR models outperform their equivalent 
GWR versions by allowing covariate‐specific bandwidths to be optimized rather than producing a single 
average bandwidth applied to all relationships.

2.	 Adding the spatial lag variable increases the goodness‐of‐fit of all three models although the differences are 
very small for MGWR, indicating that this model form appears to account for any spatial dependency in the 
error terms better than GWR or OLS.

3.	 MGWR without a spatial lag outperforms both the OLS and GWR models with spatial lag terms, again suggest‐
ing that MGWR alone without a spatial lag can account for spatial error dependencies. We return to this point 
below.

4.2 | Model comparison regarding residuals

The aspatial distributions of the residuals for the six models are displayed using a box‐and‐whisker plot in Figure 2 
and confirm the conclusions drawn from the discussion of goodness‐of‐fit measures above. The MGWR models 
produce the lowest residuals and the two global models produce the highest residuals. The addition of the spatial 
lag variable reduces error variance considerably in the global model but less obviously in the two local models.

However, a more important criterion of the residuals from each of the six models is the degree to which they 
are spatially autocorrelated. A tenet of regression is that the residuals should be independent of each other and 
therefore randomly distributed in space. The spatial autocorrelations of the six sets of residuals—as measured 
by Moran's I—are shown in Table 4, where it can be seen that only the MGWR models produce residuals which 
exhibit no spatial autocorrelation. Both OLS models exhibit the strongest levels of positive autocorrelation and 
although this level is severely reduced in both equivalent GWR models, the level of spatial autocorrelation is still 
significant. Consequently, although GWR does reduce the problem of spatially autocorrelated residuals found in 
OLS models, the restriction of a single bandwidth does not remove the problem completely. Only the residuals 
from the two MGWR models have no significant spatial pattern. Interestingly, although the addition of the spatial 
lag term reduces the problem of spatially autocorrelated residuals in both OLS and GWR, it does not eliminate it 
completely, as happens in MGWR. The spatial patterning of the residuals from all six models is shown in Figure 3.

As can be seen from Figure 3, the spatial clustering patterns of the residuals of both OLS and OLSL are obvi‐
ous: positive residuals are clustered in center areas while negative residuals are mostly found in peripheral areas. 
The residuals from GWR and GWRL are relatively scattered, but some clusters can also be found, such as clusters 
of positive residuals in the BTH region and clusters of negative residuals in the Shandong Peninsula. The residuals 
from MGWR and MGWRL, however, show random patterns and there are no obvious clusters. Consequently, we 
conclude that global models are not effective at reducing residual dependency in this case, even when a spatial 

TA B L E  3   Performance of six models

  RSS MAE AICc R2

OLS 79.85 .46 438.85 .65

OLSL 48.50 .37 325.97 .79

GWR 23.45 .26 340.40 .89

GWRL 21.79 .25 273.71 .91

MGWR 18.35 .22 237.99 .92

MGWRL 18.15 .22 198.09 .93
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lag is included. GWR can reduce but cannot eliminate residual dependency; only MGWR effectively eliminates 
residual dependency.

4.3 | Model comparison regarding optimized bandwidths and scale

The most significant improvement of MGWR models is that they not only allow the parameter estimates to vary 
over space, but also produce individual optimal bandwidths for the conditional relationships between the re‐
sponse variable and each predictor variable, which allows the spatial variation of different processes to be mod‐
eled at different spatial scales. As all the variables are standardized to have mean = 0 and standard deviation = 1, 
the optimal bandwidths deduced by GWR and MGWR models are direct indicators of the spatial scale at which the 
individual conditional relationship between AQI and each covariate varies (Fotheringham et al., 2017).

The blue histograms in Figure 4 indicate the optimal bandwidths for each covariate generated by the MGWR 
model; orange histograms indicate the standard deviations of parameter estimates. The solid and dotted black 
horizontal lines, respectively, denote the single optimal bandwidth obtained by GWR and the average of the 12 
bandwidths obtained by MGWR. It is obvious that processes modeled by MGWR operate at different spatial 
scales. A variable with a large bandwidth affects the dependent variable at a large scale; in other words, the 
influence is similar across space with small heterogeneity, so the standard deviation of parameter estimates is 
small. In contrast, a variable with a small bandwidth affects the dependent variable at a local scale, so the stan‐
dard deviation of the local parameter estimates is large. From this point of view, with the optimal bandwidth of 
PRE (precipitation), intercept, POPD (population density), and GREEN (green‐covered area) being 44, 44, 48, and 

F I G U R E  2   Box plots of residuals

TA B L E  4   Spatial autocorrelation of residuals

  Moran's I index Expected index Z score p Value Pattern

OLS 0.286 −0.004 16.377 <.001 Clustered

OLSL 0.136 −0.004 8.184 <.001 Clustered

GWR 0.059 −0.004 3.763 <.001 Clustered

GWRL 0.034 −0.004 2.233 .026 Clustered

MGWR −0.007 −0.004 −0.178 .859 Random

MGWRL −0.014 −0.004 −0.554 .580 Random
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F I G U R E  3   Spatial distribution of residuals (cities with no data are not shown)



     |  1455FOTHERINGHAM et al.

50 nearest neighbors, respectively, these three variables affect air quality at relatively local scales, and their pa‐
rameter estimates have relatively large differences over space. The relationships between WIND (wind velocity), 
PCGRP (per capita GRP), DUST (dust emission), and air quality exhibit spatial nonstationarity but the processes 
vary at broad regional scales, with the optimal bandwidth being 93, 95, and 110 nearest neighbors, respectively. 
The other variables affect air quality at global scales, as their optimal bandwidths are close to the maximum pos‐
sible number of neighbors which is 230.

GWR, however, generates a single optimal bandwidth of 86 nearest neighbors for all the variables, which ap‐
proximates the average of the 11 optimal bandwidths obtained by MGWR (131.91). This single bandwidth assumes 
that all the variables affect air quality at the same regional scale, which seems highly restrictive. The bandwidth 
produced by GWR can be understood as a weighted average of the different degrees of spatial heterogeneity of 
the 11 separate processes, with the weighting being a function of the explanatory ability of each relationship in 
the local model (Fotheringham et al., 2017).

4.4 | Model comparison regarding parameter estimates

Global models generate only one parameter estimate for each covariate at all locations, assuming the relationship 
between this covariate and the dependent variable is stationary over space. In order to acquire a comprehensive 
understanding of the influences of various factors on AQI, we list the parameter estimates associated with each 
covariate in OLS and OLSL. However, local models generate individual parameter estimates for each variable at 
each location. The abundant information generated by local models presents a challenge for displaying the results. 
As MGWR models are more effective than GWR models and MGWR achieves similar performance to MGWRL, we 
only focus on the local estimates of MGWR. Summary statistics for the parameter estimates from GWR, GWRL, 
and MGWRL are listed in the Appendix.

4.4.1 | Results from OLS and OLSL

The parameter estimates generated by OLS and OLSL are listed in Table 5. The coefficients of the meteorological 
variables indicate that PRE (precipitation) and WIND (wind velocity) are significantly negatively associated with 

F I G U R E  4   Optimal bandwidths generated by MGWR and GWR and standard deviations of parameter 
estimates of MGWR
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AQI. Both models generate positive but nonsignificant coefficients for three population variables—POPT (total 
population), POPD (population density), and POPU (urban population). One exception is that the OLS parameter 
estimate for POPD (population density) is statistically significant. PCGRP (per capita GRP) and ELEC (electricity 
consumption) have negative but nonsignificant influences on AQI. OLS generates a significant positive coefficient 
for SEGRP (secondary industry), while the coefficient of SEGRP (secondary industry) generated by OLSL is not 
significant. DUST (dust emission) appears to have a positive effect on AQI, as indicated by both the OLS and OLSL 
calibrations. The results of OLS and OLSL suggest the positive influence of ROAD (ratio of roads) on AQI, although 
this influence is not significant in OLS. Both models generate positive but nonsignificant parameter estimates for 
GREEN (green‐covered area). The significant positive coefficient of LAG generated by OLSL indicates the exist‐
ence of spatial dependency—a city's air quality is not independent of the air quality in nearby cities.

4.4.2 | Results from MGWR

Unlike global models, MGWR generates local parameter estimates which reflect possible spatial heterogeneity in 
the processes affecting air quality. Table 6 lists summary statistics of the local parameter estimates generated by 
MGWR and they are displayed in full in Figure 5. The second column of Table 6 shows the minimum (min), maxi‐
mum (max), and mean (mean) values of the local parameter estimates for each covariate; the third column indicates 
a classification of coefficients based on t tests, adjusted for multiple hypothesis testing (da Silva & Fotheringham, 
2016), including the proportion of significant coefficients (p ≤  .05), the proportion of significant positive coef‐
ficients to significant coefficients (+), and the proportion of significant negative coefficients to significant coef‐
ficients (−).

The results show that the local intercepts are significantly different from zero for 65.8% of cities and that 
98.03% of these are positive while 1.97% are negative. The former indicates an elevated rate of air pollution even 
accounting for the variables in the model, while the latter indicates a reduced level of air pollution given the condi‐
tions existing in these cities. The local parameter estimates from PRE (precipitation) are significant for two‐thirds 
of the cities and in each case higher precipitation levels are associated with low air pollution. The local parameter 
estimates for WIND (wind velocity) are significant in just over 20% of the cities and in each case WIND (wind 

TA B L E  5   Parameter estimates for the regression of air quality generated by OLS and OLSL

Variables OLS OLSL

Intercept .000 .000

PRE −.702***  −.681*** 

WIND −.112*  −.071* 

POPT .098 .076

POPD .471***  .100

POPU .002 .071

PCGRP −.035 −.040

SEGRP .140**  .055

ELEC −.148 −.062

DUST .219***  .143*** 

ROAD .128 .141** 

GREEN .058 .011

LAG – .541*** 

Note: Significant at
*.05; **.01; ***.001 level. 
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velocity) associates negatively with the air pollution index. The local parameter estimates from POPD (population 
density) are significant for half of the cities and in each case higher population densities are associated with high air 
pollution. The local estimates for SEGRP (secondary industry) are significantly positive for every city, indicating a 
robust and relatively uniform relationship between a city’s secondary industry development and air pollution lev‐
els. The local parameter estimates for POPT (total population), POPU (urban population), PCGRP (per capita GRP), 
ELEC (electricity consumption), and ROAD (ratio of roads) are all insignificant, presenting fairly strong evidence 
that these variables have little impact on air quality. Two other variables, DUST (dust emission) and GREEN (green‐
covered area), have very limited impact in a handful of cities. Where they are significant, increasing values of DUST 
(dust emission) generate poorer air quality whereas increasing levels of GREEN (green‐covered area) generate 
better levels of air quality. The spatial patterns of the locally significant parameter estimates are discussed below.

Local estimates of the intercept

We can see from Figure 5a that the parameter estimates for the intercept are significantly positive in the north 
of the country focused on the BTH region and a very small number of cities in the southwest have significant 
negative parameter estimates. The estimates of the local intercepts are of interest because they indicate elevated 
levels of pollution (significantly positive) or lower levels of pollution (significantly negative), given the covariates in 
these cities. Elevated levels of air pollution in the BTH region may be caused by the people living in northern China 
using more dirty fuels such as coal for heating than people in southern cities, where the climate is not as harsh. 
In addition, in rural areas surrounding some developed regions such as Beijing, the use of household biofuel (e.g., 
crop residuals and wood) for heating and cooking, plus straw burning by farmers to increase the productivity of 
fields, all might increase ambient air pollutants (Zhang & Cao, 2015).

Local estimates of the parameters associated with SEGRP (secondary industry)

The local parameter estimates of SEGRP in Figure 5b are significantly positive across the whole study area and are 
very uniform, ranging from .123 to .155 with a standard deviation of .007. The optimized bandwidth of SEGRP is 
229 (see Figure 4), indicating that SEGRP affects air quality at a global scale; in other words, SEGRP has a similar 
influence on air quality in all cities.

TA B L E  6   Parameter estimates for the regression of air quality using MGWR

Variables

MGWR coefficients
Percentage of cities by significance (95% 
level) of t test

Min Max Mean p ≤ .05 (%) + (%) − (%)

Intercept −.293 .846 .353 65.80 98.03 1.97

PRE −.999 .088 −.438 66.67 .00 100.00

WIND −.249 .109 −.053 20.78 .00 100.00

POPT −.008 .054 .010 .00 .00 .00

POPD −.109 .799 .264 49.78 100.00 .00

POPU −.018 −.002 −.009 .00 .00 .00

PCGRP −.131 .084 −.045 .00 .00 .00

SEGRP .124 .155 .136 100.00 100.00 .00

ELEC .049 .058 .053 .00 .00 .00

DUST −.048 .151 .048 6.06 100.00 .00

ROAD .041 .086 .065 .00 .00 .00

GREEN −.521 .406 .002 5.63 .00 100.00
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As a frequently used proxy for industrial structure, the contribution of secondary industry to GRP in China in 
2016 was 39.8%, which is much larger than that of developed economies such as America (18.88%), the European 
Union (24.5%), and Japan (26.8%) (National Bureau of Statistics of China, 2017). Secondary industries such as steel 

F I G U R E  5   The spatial distribution of MGWR local coefficients (cities with no data are not shown)
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production, automobile manufacturing, and chemical production are typically heavy polluters of the atmosphere 
and where these industries are concentrated, air pollution is generally worse. The northeast region contains the 
heavy industry base of China and economic development here depends heavily on the consumption of coal and 
crude oil. Vast quantities of energy consumption lead to emissions of air pollutants such as sulfur dioxide and car‐
bon compounds, which explains why SEGRP is significantly positively related to AQI in every city, but especially 
so in northeast China. The negative impact of secondary industry on air quality in China has been widely demon‐
strated in previous studies (Cheng, Li, & Liu, 2017; Lu et al., 2017; Wang, Zhou et al., 2017; Zhou et al., 2018).

Local estimates of the parameter estimates associated with POPD (population density)

Figure 5c shows the spatial variation of the local parameter estimates associated with the variable POPD. The 
standard deviation of POPD's coefficients is .228, which is large; the optimized bandwidth of POPD is 48, which 
is small (see Figure 4). Both indicate that POPD affects air quality at a very local scale.

Previous studies have suggested a negative relationship between population density and air quality (Zhou 
et al., 2018). Here we support these findings but only in the northwestern part of the study region; there is no 
significant association between population density and air quality in the southeast part of the country. These dif‐
ferences can be understood from two perspectives. First, cities in the north and northeast have rich coal reserves 
and residents of these areas are more dependent on coal because it is much cheaper than cleaner energies such 
as natural gas (Hao, Liu, Weng, & Gao, 2016). In addition, the north and west regions are colder so that people 
need to burn coal for heat, especially in the winter. Coal is a dirty energy because various air pollutants (such as 
sulfur dioxide, nitrogen oxides, and fine particles) are directly emitted into the atmosphere during the process 
of burning (Song et al., 2007). Cities which experience cold winters and have large populations burn more coal 
and air quality suffers. Second, cities in east and south China are more developed than cities in the west. These 
cities with advanced economies demonstrate no obvious relationship between population density and air quality, 
which agrees with the ecological modernization theory and environmental Kuznets curve theory. Both theories 
advocate that environment problems first increase from low to medium development stages, then decrease with 
further development (Stern, 2004). A similar pattern was found in a recent study: increased population density 
promotes CO2 emissions in less developed areas but reduces CO2 emissions in more developed areas (Liu, Gao, 
& Lu, 2017). People in developed areas are more environmentally conscious and the governments have a greater 
ability to pay for environment protection (Wang & Fang, 2016; Zhou et al., 2018).

Local estimates of the parameters associated with WIND (wind velocity)

The spatial distribution of the local parameter estimates associated with WIND is presented in Figure 5d. The op‐
timized bandwidth of these local estimates suggests that WIND affects air quality at a regional scale and is clearly 
only of importance in affecting air quality levels in the northeastern part of the region, and particularly in coastal 
cities. High winds are thought to benefit air quality because they disperse and dilute air pollutants (Dawson et 
al., 2007; Han, Zhou, & Li, 2016; Hu et al., 2013; Kleeman, 2007; Li et al., 2014; Lu et al., 2017). We confirm the 
negative relationship between wind speeds and air pollution levels in the northeastern and eastern coastal areas 
but elsewhere the relationship is not significant. Cities with stronger winds are mostly found in north and north‐
east China, as well as eastern coastal districts (He & Kammen, 2014). In the northwest, the beneficial effects of 
wind dispersion may be offset by sand and dust particles being mixed into the atmosphere from the Gobi Desert 
(Vardoulakis & Kassomenos, 2008).

Local estimates of the parameter estimates associated with PRE (precipitation)

Figure 5e presents the spatial distribution of parameter estimates of PRE. The optimized bandwidth of PRE is 
small (44), suggesting that PRE has a local effect on air quality. PRE is significantly negatively associated with 
AQI, primarily in the southeast. This pattern shares some similarities with the typical spatial distribution of rainfall 
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amounts in China: some parts of south China are located in tropical and subtropical zones, weather in these places 
is wet and humid because the frequent southeastern winds carry moisture from the Pacific Ocean. These districts 
receive the greatest amount of rainfall in China. Previous studies have demonstrated that rain can “wash off” 
the air pollutants and purify ambient air (Buchholz, Junk, Krein, Heinemann, & Hoffmann, 2010; Li et al., 2014; 
Vardoulakis & Kassomenos, 2008). This explains the strong negative relationship between precipitation and AQI 
in these areas, especially in the coastal cities. The influence of precipitation weakens towards the northwest 
inland because the amount of moisture in the air reduces gradually and rainfall becomes less. Other cities demon‐
strate no significant relationship between precipitation and AQI, probably because rainfall amounts are much less. 
It would appear that rainfall amounts have to be quite large to have a major impact on reducing air pollution levels.

5  | CONCLUSIONS

Spatial data may result for spatially nonstationary processes (i.e., the processes generating the associations be‐
tween variables may not be constant over space, as is traditionally assumed). Additionally, the scale at which 
each covariate impacts a dependent variable may vary across covariates: some variation in relationships might 
vary at a very local scale whilst others may vary at a more regional scale and some may be invariant to location. 
Therefore, to improve our understanding of geographical processes, both spatial heterogeneity and scale differ‐
ences regarding processes should be taken into consideration when conducting spatial analysis and modeling. This 
study considers both these issues in evaluating the influences on air quality in China using a recently proposed 
model—MGWR. The results suggest that MGWR provides more reliable information on the processes affecting 
air quality than either OLS or GWR: the model not only achieves higher goodness‐of‐fit but also performs better 
at alleviating residual autocorrelation.

The most significant contribution of this study is the determination of respective bandwidths for each covari‐
ate, which indicates the scale at which the association between that covariate and air quality varies over space. 
This is achieved in MGWR by relaxing the single‐bandwidth assumption of the traditional GWR model, allowing 
covariate‐specific bandwidths to be optimized. The results suggest the existence of scale differences between the 
processes affecting air quality. For example, secondary industries as a contributor to GRP affect the air quality at 
a global scale (i.e., the local parameter estimates associated with this variable are similar across space, whereas 
the effect of precipitation on air quality varies locally). Traditional GWR models, which fail to distinguish between 
such scale differences, should be replaced by MGWR as demonstrated in Figure 4.

Finally, MGWR seems to account for spatial dependency in the error terms better than GWR and OLS. 
Comparing OLS, GWR, and MGWR with and without a spatial lag term suggests that while both OLS and GWR 
benefit from the addition of the lag variable, MGWR is probably preferred to MGWR with a lag because the re‐
sidual autocorrelation is virtually the same and the former does not suffer from the lag variable producing bias in 
the remaining parameter estimates.

In summary, increasing attention is being given to air quality problems in China because air pollution levels are 
causing problems to human health. Spatial statistical models provide useful methods for understanding the de‐
terminants of air pollution by taking spatial dependency and spatial heterogeneity into consideration. This study 
demonstrates the superiority of a new approach—MGWR—in accounting for these two spatial effects, as well as 
the scale differences between the impacts of various covariates.
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APPENDIX 

TA B L E  A 1   Parameter estimates for the regression of air quality using GWR

Variables

GWR coefficients
Percentage of cities by significance (95% 
level) of t test

Min Max Mean p ≤ .05 (%) + (%) − (%)

Intercept −.727 1.150 .414 73.16 89.94 10.06

PRE −1.565 −.059 −.559 74.03 .00 100.00

WIND −.360 .201 −.078 30.30 18.57 81.43

POPT −.267 .382 −.002 8.66 100.00 .00

POPD −.269 .681 .303 59.74 100.00 .00

POPU −.295 .319 −.002 7.79 100.00 .00

PCGRP −.478 .365 −.069 13.42 6.45 93.55

SEGRP −.047 .297 .134 17.32 100.00 .00

ELEC −.432 .638 .033 9.52 50.00 50.00

DUST −.183 .377 .083 11.69 100.00 .00

ROAD −.154 .386 .096 18.61 100.00 .00

GREEN −.426 .504 −.006 5.63 7.69 92.31

TA B L E  A 2   Parameter estimates for the regression of air quality using GWRL

Variables

MGWR coefficients
Percentage of cities by significance (95% 
level) of t test

Min Max Mean p ≤ .05 (%) + (%) − (%)

Intercept −.676 .538 .082 50.65 71.79 28.21

PRE −1.094 −.141 −.593 93.94 .00 100.00

WIND −.221 .105 −.029 6.06 .00 100.00

POPT −.188 .265 −.006 3.03 100.00 .00

POPD −.233 .436 .125 14.72 100.00 .00

POPU −.278 .229 −.020 9.52 .00 100.00

PCGRP −.298 .327 −.021 9.96 8.70 91.30

SEGRP −.076 .232 .075 .00 .00 .00

ELEC −.249 .442 .089 14.72 100.00 .00

DUST −.073 .166 .058 .87 100.00 .00

ROAD −.108 .304 .070 14.72 100.00 .00

GREEN −.253 .159 −.087 12.12 .00 100.00

LAG .229 1.076 .691 95.67 100.00 .00
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TA B L E  A 3   Parameter estimates for the regression of air quality using MGWRL

Variables

MGWR coefficients
Percentage of cities by significance (95% 
level) of t test

Min Max Mean p ≤ .05 (%) + (%) − (%)

Intercept −.048 .131 .058 .00 .00 .00

PRE −.996 .079 −.535 83.12 .00 100.00

WIND −.091 .057 −.030 .00 .00 .00

POPT .013 .044 .034 .00 .00 .00

POPD −.216 .420 .118 25.97 100.00 .00

POPU −.005 .022 .003 .00 .00 .00

PCGRP −.016 .012 −.005 .00 .00 .00

SEGRP .061 .080 .071 79.65 100.00 .00

ELEC .041 .059 .048 .00 .00 .00

DUST .053 .066 .059 .00 .00 .00

ROAD −.044 .141 .052 10.82 100.00 .00

GREEN −.174 .058 −.038 .00 .00 .00

LAG .257 1.070 .628 96.54 100.00 .00


