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Stochastic Collocation With Non-Gaussian
Correlated Process Variations: Theory,

Algorithms, and Applications
Chunfeng Cui and Zheng Zhang , Member, IEEE

Abstract— Stochastic spectral methods have achieved a great
success in the uncertainty quantification of many engineering
problems, including variation-aware electronic and photonic
design automation. State-of-the-art techniques employ gener-
alized polynomial-chaos expansions and assume that all ran-
dom parameters are independent or Gaussian correlated. This
assumption is rarely true in real applications. How to handle
non-Gaussian correlated random parameters is a long-standing
and fundamental challenge: It is not clear how to choose basis
functions and to perform a projection step in a correlated
uncertain parameter space. This paper first presents a new set
of basis functions to well capture the impact of non-Gaussian
correlated parameters and then proposes an automatic and
optimization-based quadrature method to perform projection-
based stochastic collocation with a few simulation samples in the
correlated parameter space. We further provide some theoretical
proofs for the complexity and error bound of our proposed
method. The numerical experiments on several synthetic, elec-
tronic, and photonic integrated circuit examples show the nearly
exponential convergence rate of our approach and its significant
(700×–6000×) speedup than Monte Carlo. Many other open
problems with non-Gaussian correlated uncertainties can be
further solved based on this paper.

Index Terms— Design automation algorithm, integrated
circuits (ICs), integrated photonics, non-Gaussian correlation,
process variation, uncertainty quantification.

I. INTRODUCTION

PROCESS variation (e.g., random-doping fluctuations and
line edge roughness) is a major concern in nanoscale

fabrications [2]: Even a random difference on the atomic
scale can have a large impact on the electrical properties
of electronic integrated circuits (ICs) [3], causing significant
performance degradation and yield reduction. This issue is
more severe in photonic IC [4]–[6], as photonic IC is much
more sensitive to geometric variations such as surface rough-
ness due to its large device dimension compared with the
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small operation wavelength [7]. In order to address this long-
standing and increasingly important issue, efficient uncertainty
quantification tools should be developed to predict and control
the uncertainties of chip performance under various process
variations. Due to its ease of implementation, Monte Carlo
(MC) [7], [8] has been used in many commercial design
automation tools. However, an MC method often requires a
huge number of device- or circuit-level simulation samples
to achieve acceptable accuracy, and thus, it is very time-
consuming. As an alternative, stochastic spectral methods [9]
may achieve orders-of-magnitude speedup over MC methods
in many application domains.

A stochastic spectral method approximates an unknown
uncertain quantity (e.g., the nodal voltage, branch cur-
rent, or power dissipation of a circuit) as a linear combination
of some specialized basis functions, such as the general-
ized polynomial chaos [10]. Both intrusive (i.e., nonsam-
pling) solvers (e.g., stochastic Galerkin [11] and stochastic
testing [12]) and nonintrusive (i.e., sampling) solvers (e.g.,
stochastic collocation [13]) have been developed to compute
the unknown weights of these predefined basis functions.
These techniques have been successfully applied in elec-
tronic IC [14]–[23], microelectromechanical systems [24],
[25], and photonic IC [26], [27] applications, achieving
orders-of-magnitude speedup than MC when the number of
random parameters is small or medium. In the past few
years, there has been a rapid progress in developing high-
dimensional uncertainty quantification solvers. Representative
results include tensor recovery [28], compressive sensing [29],
analysis of variance or high-dimensional model representa-
tion [24], [30], [31], matrix low-rank approximation [32],
stochastic model order reduction [33], and hierarchical uncer-
tainty quantification [24], [25].

The above-mentioned existing techniques use generalized
polynomial chaos [10] as their basis functions, and they
assume that all process variations can be described by inde-
pendent random parameters. Unfortunately, this assumption is
not true in many practical cases. For instance, the geomet-
ric or electrical parameters influenced by the same fabrication
step are often highly correlated. In a system-level analysis,
the performance parameters from circuit-level simulations are
used as the inputs of a system-level simulator, and these
circuit-level performance quantities usually depend on each
other due to the network coupling and feedback. In the
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photonic IC, spatial correlations may have to be considered
for almost all components due to the small wavelength [34].
All these correlations are not guaranteed to be Gaussian,
and they cannot be handled by preprocessing techniques
such as principal component analysis [35]. Karhunen–Loev̀e
theorem [36], [37] and Rosenblatt transformation [38] may
transform correlated parameters into uncorrelated ones, but
they are error-prone and not scalable.

This paper develops new theory and algorithms of uncer-
tainty quantification with non-Gaussian correlated process
variations. Two main challenges arise when we quantify the
impact of correlated non-Gaussian process variations. First,
we need to develop a new set of stochastic basis functions to
capture the effects of non-Gaussian correlated process varia-
tions. Soize and Ghanem [39] suggested to modify the general-
ized polynomial chaos, but the resulting nonpolynomial basis
functions are nonsmooth and numerically unstable. Second,
we need to develop a spectral method (either stochastic collo-
cation or stochastic Galerkin) to compute the weights of the
new basis functions. This requires performing a projection step
by an accurate numerical integration in a multidimensional
correlated parameter space. While the numerical integration in
a 1-D space [40] or a 2-D correlated square space [41] is well-
studied, accurate numerical integration in a higher dimensional
correlated parameter space remains a challenge. During the
preparation of this paper, we noticed some recent results
on stochastic Galerkin [42], [43] and sensitivity analysis for
dependent random parameters [44]. However, the theoretical
analysis and numerical implementation of stochastic colloca-
tion have not been investigated for systems with non-Gaussian
correlated parameters.

Main Contributions: This paper presents a novel stochastic
collocation approach for systems with correlated non-Gaussian
uncertain parameters. Our main contributions include the
following.

1) The development of a set of basis functions that can
capture the impact of non-Gaussian correlated process
variations. Some numerical implementation techniques
are also presented to speed up the computation.

2) An optimization-based quadrature rule to perform pro-
jection in a multidimensional correlated parameter
space. The previous stochastic spectral methods use
id [45] or Gauss quadrature [40], which is not applicable
for non-Gaussian correlated cases. We reformulate the
numerical quadrature problem as a nonlinear optimiza-
tion problem and apply a block coordinate descent
method to solve it. Our approach can automatically
determinate the number of quadrature samples. We also
provide a theoretical analysis for the upper and lower
bounds of the number of quadrature samples required in
our framework.

3) Theoretical error bound of our algorithm. We show that
the following holds.

a) We can obtain the exact solution under some
mild conditions when the stochastic solution is a
polynomial function.

TABLE I

NOTATIONS IN THIS PAPER

b) For a general smooth stochastic solution, an upper
error bound exists for our stochastic collocation
algorithm, and it depends on the distance of the
unknown solution to a polynomial set as well
as the numerical error of our optimization-based
quadrature rule.

4) A set of numerical experiments on synthetic and realistic
electronic and photonic IC examples. The results show
the fast convergence rate of our method and its orders-
of-magnitude (700×–6000×) speedup than MC.

Before discussing about the technical details, we summarize
some of the frequently used notations in Table I.

II. PRELIMINARIES

A. Review of Stochastic Collocation

Stochastic collocation [13], [45]–[47] is the most popu-
lar nonintrusive stochastic spectral method. The key idea is
to approximate the unknown stochastic solution as a lin-
ear combination of some specialized basis functions and
to compute the weights of all basis functions based on a
postprocessing step such as projection. In order to implement
the projection, one needs to do some device- or circuit-level
simulations repeatedly for some parameter samples selected
by a quadrature rule. Given a good set of basis functions
and an accurate quadrature rule, stochastic collocation may
obtain a highly accurate result with only a few repeated
simulations and can achieve orders-of-magnitude speedup than
MC when the number of random parameters is small or
medium.

Specifically, let ξ = [ξ1, · · · , ξd ]T ∈ R
d denote a set of ran-

dom parameters that describe some process variations. We aim
to estimate the uncertainty of y(ξ), which is a parameter-
dependent output of interest such as the power dissipation of
a memory cell, the 3-dB bandwidth of an amplifier, or the
frequency of an oscillator. In almost all chip design cases,
we do not have a closed-form expression of y(ξ), and we
have to call a time-consuming device- or circuit-level simulator
(which involves solving large-scale differential equations) to
obtain the numerical value of y(ξ) for each specified sample

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 28,2020 at 23:52:02 UTC from IEEE Xplore.  Restrictions apply. 



1364 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 9, NO. 7, JULY 2019

of ξ . Stochastic spectral methods aim to approximate y(ξ) via

y(ξ) ≈
p∑

|α|=0

cα�α(ξ ), with E[�α(ξ)�β(ξ )] = δα,β (1)

where E denotes the expectation operator, δ denotes a Delta
function, and the basis functions {�α(ξ )} are some orthonor-
mal basis functions indexed by a vector α = [α1, . . . , αd ] ∈
N

d . The total order of the basis function |α| = α1 +· · ·+αd is
bounded by p, and thus, the total number of basis functions is

Np =
(

p + d

d

)
= (p + d)!/(p!d!). (2)

The coefficient cα can be obtained by a projection

cα = E[y(ξ)�α(ξ )] =
∫

Rd
y(ξ)�α(ξ )ρ(ξ )dξ (3)

where ρ(ξ) is the joint probability density function. The
integral in (3) needs to be evaluated with numerical integration

cα ≈
M∑

k=1

y(ξk)�α(ξ k)wk (4)

where {ξk}M
k=1 are the quadrature nodes and {wk}M

k=1 are
the corresponding quadrature weights. The key of stochastic
collocation is to choose proper basis functions and an excellent
quadrature rule, such that M is as small as possible in (4).

B. Existing Solutions for Independent Cases

Most existing stochastic spectral methods assume that
ξ = [ξ1, . . . , ξd ]T are mutually independent. In this case,
given the marginal density function ρk(ξk) of each parameter,
the joint density function is ρ(ξ ) = �d

k=1ρk(ξk). Conse-
quently, an excellent choice of basis functions is the gener-
alized polynomial chaos [10]: The multivariate basis function
is obtained as the product of some univariate polynomial basis
functions

�α(ξ) = φ1,α1(ξ1) . . . φd,αd (ξd). (5)

Here, each univariate basis function φk,αk (ξk) can be con-
structed via the well-known three-term recurrence rela-
tion [48], and the univariate basis functions of the same
parameter ξk are mutually orthonormal with respect to the
marginal density function ρk(ξk).

When ξ are mutually independent, the quadrature points and
weights in (4) are often constructed via the tensor product of
1-D quadrature points and weights. Specifically, let {ξik , wik }
be the quadrature nodes and weights for a parameter ξk (for
instance, via Gaussian quadrature rule [40]) and ξ i1...id =
[ξi1 , . . . , ξid ]T and wi1...id = wi1 . . . wid be the quadrature
points and weights for a d-dimensional problem. Another
popular approach is the sparse grid technique [45], [49]–[51],
which can significantly reduce the number of quadrature points
by exploiting the nested structure of the quadrature points of
different accuracy levels.

C. Non-Gaussian Correlated Cases

In general, ξ can be non-Gaussian correlated, and the joint
density ρ(ξ) cannot be written as the product of the individual
marginal density functions. As a result, the multivariate basis
function cannot be obtained as in (5). It is also hard to choose
a small number of quadrature nodes {ξ k} and weights {wk}
that can produce highly accurate integration results.

In order to quantify the impact of non-Gaussian correlated
uncertainties, Soize and Ghanem [39] suggested a set of non-
smooth orthonormal basis functions by modifying the general-
ized polynomial chaos [10]. The modified basis functions were
employed in [26] for the variability analysis of silicon photonic
devices. However, the algorithm does not converge well due to
the numerical instability of the basis functions, and designers
cannot easily extract statistical information (e.g., mean value
and variance) from the obtained solution. In the applied math
community, multivariate orthogonal polynomials may be con-
structed via the multivariate three-term recurrence [52], [53].
However, the theories in [54] and [55] either are hard to
implement or can only guarantee weak orthogonality.

III. PROPOSED ORTHONORMAL BASIS FUNCTIONS

This section presents a set of smooth orthonormal basis
functions that can capture the impact of non-Gaussian corre-
lated random parameters. The proposed basis functions allow
us to approximate a smooth y(ξ) with a high accuracy and to
extract its statistical moments analytically or semianalytically.

A. Generating Multivariate Orthonormal Polynomials

We adopt a Gram–Schmidt approach to calculate the basis
functions recursively. The Gram–Schmidt method was used
for vector orthogonalization in the Euclidean space [54]. It can
also be generalized to construct some orthogonal polynomial
functions. The key difference here is to replace the vector inner
product with the functional expectations.

Specifically, we first reorder the monomials ξα =
ξ

α1
1 . . . ξ

αd
d in the graded lexicographic order and denote them

as {p j (ξ )}Np
j=1. For instance, when d = 2 and p = 2, there is

{p j (ξ1, ξ2)}6
j=1 = {

1, ξ1, ξ2, ξ
2
1 , ξ1ξ2, ξ

2
2

}
.

Then, we set �1(ξ ) = 1 and generate orthonormal polyno-
mials {� j (ξ )}Np

j=1 in the correlated parameter space recur-
sively by

�̂ j (ξ) = p j (ξ ) −
j−1∑

i=1

E[p j (ξ )�i (ξ )]�i(ξ ) (6)

� j (ξ) = �̂ j (ξ )√
E[�̂2

j (ξ )]
, j = 2, . . . , Np . (7)

The basis functions defined by this approach are unique under
the specific order of monomials. If the ordering of monomials
is changed, one can get another set of basis functions. Since
the basis functions are orthonormal polynomials, we can
easily extract the mean value and statistical moment of an
approximated stochastic solution.
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Fig. 1. Several joint density functions. (a) Independent Gaussian. (b) Correlated Gaussian. (c) Correlated non-Gaussian (e.g., a Gaussian mixture distribution).

Recently, we have also proposed the basis function con-
struction method via a Cholesky decomposition [55], which is
easy to implement and suitable for high-dimensional cases.
However, the resulting basis functions can be occasionally
inaccurate due to the numerical instability of the Cholesky
factorization on large ill-conditioned covariance matrices. This
paper focuses on the fundamental theory of stochastic col-
location for correlated cases, and therefore, we employ the
Gram–Schmidt method.

B. Numerical Implementation Issues

The main challenge in the basis function generation is to
compute the expectations in a correlated parameter space,
which involves evaluating the moments E[ξα] up to order 2 p.
Some techniques can be used to speed up the computation.

In practice, the process variations are generally described
by a set of measurement data from testing chips, and their
joint density function ρ(ξ ) is fit using some density estimators.
A widely used model is the Gaussian mixture

ρ(ξ ) =
n∑

i=1

riN (ξ |μi ,	i ), with ri > 0,

n∑

i=1

ri = 1 (8)

where N (ξ |μi ,	i ) denotes a multivariate Gaussian distrib-
ution with mean μi ∈ R

d and a covariance matrix 	i ∈
R

d×d . Fig. 1 compares the Gaussian mixture model with
independent and correlated Gaussian distributions. With a
Gaussian mixture, the moments can be computed accurately
using a functional tensor-train approach (see [57, Sec. III-C]).

For general cases, one may estimate the moments by chang-
ing the variables and density function

E[ξα] =
∫

Rd
gα(η)ρ̂(η)dη, with gα(η) = ηαρ(η)

ρ̂(η)
(9)

where ρ̂(η) denotes the joint density function of indepen-
dent random parameters η ∈ R

d . Then, standard quadrature
methods, such as sparse grid [45] or tensor-product Gauss
quadrature, can be used to evaluate the integration. The
tensor-train-based method in [25] can be used to reduce the
integration cost when d is large. The potential limitation is that
it may be nontrivial to obtain highly accurate results if gα(η)
is highly nonlinear or even nonsmooth. Note that we only
need to use a high-order quadrature rule in an independent

parameter space and repeatedly evaluate some cheap closed-
form functions here, and we do not need to perform expensive
device or circuit simulations when we compute the basis
functions.

In this paper, we use Gaussian mixture models to describe
non-Gaussian correlated uncertainties and employ the func-
tional tensor-train method [55] for moment computation.

IV. OPTIMIZATION-BASED QUADRATURE

After constructing the basis functions, we still need to
choose a small number of the quadrature nodes and weights
in order to calculate cα by (4) with a small number of device-
or circuit-level simulations. Motivated by [58] and [59],
we present an optimization model to decide a proper quadra-
ture rule. Our method differs from [58] and [59] in both
algorithm framework and theoretical analysis. First, while [56]
only updates the quadrature weights by linear programing,
we optimize the quadrature samples and weights by nonlinear
optimization. Second, our optimization setup differs from that
in [57]: We minimize the integration error of our proposed
multivariate orthonormal basis functions, such that the result-
ing quadrature rule is suitable for quantifying the impact of
non-Gaussian correlated uncertainties. Third, we handle the
nonnegative constraint of the weight w and the nonlinear
objective function of ξ̄ separately via a block coordinate
descent approach. Fourth, we propose a novel initializing
method via weighted complete-linkage clustering. Finally,
we present the theoretical results regarding the algorithm
complexity and error bound. Our method is summarized in
Algorithm 1, and we elaborate the key ideas in the following.

A. Optimization Model of Our Quadrature Rule

Our idea is to compute a set of quadrature points and
weights that can accurately estimate the numerical integration
of some testing functions. Given a joint density function ρ(ξ),
we seek for the quadrature nodes and weights {ξk, wk}M

k=1 by
matching the integration of basis functions up to order 2p

E[� j (ξ )] =
∫

Rd
� j (ξ)ρ(ξ )dξ =

M∑

k=1

� j (ξ k)wk,

∀ j = 1, . . . , N2p (10)
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Algorithm 1 Proposed Stochastic Collocation Method
Step 1 Initialize the quadrature nodes and weights via

Algorithm 3.
Step 2 Increase phase. Update the quadrature nodes and

weights by solving (11). If Alg. 2 fails to converge,
increase the node number and go back to Step 1.

Step 3 Decrease phase. Decrease the number of nodes, and
update them by solving (11). Repeat Step 3 until no
points can be deleted [in other words, the objective
function of (11) fails to reduce below a prescribed
threshold]. Return the nodes and weights.

Step 4 Call a deterministic simulator to compute {y(ξk)}M
k=1.

Then compute the coefficients {cα} via (4).

Output: The coefficients {cα} in (1).

where N2p = (2p+d
d

)
denotes the total number of basis

functions with their total order bounded by 2 p.
We choose the above-mentioned testing functions based

on two reasons. First, it is easy to show that E[� j (ξ )] =
E[� j (ξ )�1(ξ )] = δ1 j . Second, we can show that for any
polynomial function f (ξ ) bounded by order 2 p, the inte-
gration of f (ξ ) weighted by the density function ρ(ξ ) (i.e.,
E

[
f (ξ)

]
) can be written as the weighted sum of E[� j (ξ)]’s,

and therefore, one can get the exact integration result if (10)
holds. In stochastic collocation, if y(ξ) is a polynomial func-
tion bounded by order p, then cα = E

[
y(ξ)�α(ξ)

]
can be

accurately computed for every basis function with |α| ≤ p
if (10) holds. The detailed derivations are given in Theorem 2
(see Section V).

In practice, we propose to rewrite (10) as the following
nonlinear least-square problem:

min
ξ̄ ,w≥0

‖
(ξ̄ )w − e1‖2
2 (11)

where ξ̄ = [ξT
1 , . . . , ξT

M ]T ∈ R
Md , w = [w1, . . . , wM ]T ∈

R
M , e1 = [1, 0, . . . , 0]T ∈ R

N2p , 
(ξ̄ ) is a matrix of size
N2p × M with the ( j, k)th element being (
(ξ̄ )) j k = � j (ξk),
and ‖ · ‖2 denotes the Euclidean norm. Here, we also require
the quadrature weights to be nonnegative. This requirement is
a natural extension of the 1-D Gauss quadrature rule [40], and
it can help our theoretical analysis in Section V.

B. Block Coordinate Descent Solver for (11)

The total number of unknowns in (11) is M(d + 1), which
becomes large as d increases. In order to improve the scala-
bility of our algorithm, we solve (11) by a block coordinate
descent method. The idea is to update the parameters block-
by-block: At the tth iteration, we first fix ξ̄

t−1
and solve

a w-subproblem to update wt , and then fix wt and solve a
ξ -subproblem to update ξ̄

t
.

1) w-Subproblem: If ξ̄
t−1 = [ξ t−1

1 ; . . . ; ξ t−1
M ] is

fixed, then (11) reduces to a convex linear least-square
problem

wt = arg min
w≥0

‖
(ξ̄
t−1

)w − e1‖2
2. (12)

Algorithm 2 Block Coordinate Descent Solver for (11)
Input: Initial quadrature nodes ξ1, . . . , ξ M , the maximal

iteration nmax, and the tolerance ε.
for t = 1, . . . , nmax do

Update the weights wt via solving (12);
Update the nodes ξ̄

t
via solving (13);

if ‖
(ξ̄
t
)wt − e1‖1 ≤ ε is satisfied then

break;

Output: Optimal nodes and weights {ξk, wk}M
k=1.

2) ξ -Subproblem: When wt is fixed, we apply the
Gaussian–Newton method to update the quadrature samples

ξ t
k = ξ t−1

k + dt
k, with

{
dt

k

} = arg min{dk }

∥∥∥∥∥

M∑

k=1

Gt
kdk + rt

∥∥∥∥∥

2

2
(13)

where rt = 
(ξ̄
t−1

)wt − e1 ∈ R
N2p denotes the residual and

Gt
k ∈ R

N2p×d is the Jacobian matrix of rt with respect to
ξ t−1

k . In practice, we run the step in (13) once and go back
to the w-step. This is actually the inexact block coordinate
approach [58]. The pseudocodes of our block coordinate
descent solver are summarized in Algorithm 2. Here, we use
an �1-norm in the stopping criteria since it enables us to bound
the error of our whole framework in Section V.

We note that some other approaches can also solve the
nonconvex optimization problem (11). When the number of
unknown variables is small, we can obtain a globally opti-
mal solution via the polynomial optimization solver based
on a semidefinite positive relaxation [59]. The Levenberg–
Marquardt approach or the trust region algorithm [60] can also
be used to solve the ξ -subproblem, but they are more expensive
than our solver. Our optimization solver converges very well
in practice. As will be shown in Section V, our stochastic
collocation framework actually does not necessarily require
a locally or globally optimal solution of (11) at all. Instead,
it only requires the objective function to be sufficiently small
at the obtained quadrature samples and weights.

C. Initializing Quadrature Nodes and Weights

The nonlinear least-square problem (11) is nonconvex, and
generally, it is hard to obtain the global optimal solution.
In practice, accurate results can be obtained once we can use
good initial guesses for the quadrature nodes and weights.

In Step 3 of Algorithm 1, we need to find a quadrature
rule with fewer nodes after some pairs of quadrature samples
and weights have already been calculated. In this case, we can
simply delete one node with the smallest weigh and choose
all other samples and their corresponding weights as the initial
condition for the subsequent optimization problem.

In Step 1 of Algorithm 1, we need to generate some initial
nodes from scratch. We first generate M0 � M nodes via
MC. In MC sampling, all samples have the same weights
1/M0. In order to improve the convergence, we keep all
samples unchanged, but refine their weights by solving the
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w-subproblem in (12). These M0 initial nodes are then grouped
into M clusters, and the resulting cluster centers are set as the
initial samples for whole nonlinear least-square optimization
problem. This choice of initial guess proves to work very
well in practice because MC itself is an integration rule with
statistical accuracy guarantees.

Clustering is a classical technique in pattern recognition and
data mining [61], and it gathers data with a similar pattern into
one group. A widely used algorithm is hierarchical clustering.
At the beginning, each single data point is a cluster by its own,
and then two clusters with “the minimal distance” are merged
into one single cluster sequentially. Consequently, the number
of clusters is decreased by one in each iteration until the
prescribed number of clusters is reached. The widely used
hierarchical approaches include single linkage, complete link-
age, and average linkage. They mainly differ in the criterion
of choosing “the distance.” The complete-linkage clustering
chooses the distance between two clusters Ci and C j as

D0
i j = max

ξ1∈Ci ,ξ2∈C j

d(ξ1, ξ2)

where d(ξ1, ξ2) = ‖ξ 1 − ξ2‖2. In our problem, the sample
points are equipped with some weight parameters, and there-
fore, we modify the complete-linkage clustering and consider
a weighted clustering problem.

1) Weighted Complete-Linkage Clustering: We define the
weighted distance as

Dij = (wi + w j )

(
max

ξ 1∈Ci ,ξ 2∈C j

d(ξ1, ξ j )

)
(14)

where wi = ∑
ξ k∈Ci

w(ξ k) is the weight of the i th cluster.
The above-mentioned distance considers both the geometric
distance and the weights of different clusters. The intuition
behind (14) is that we do not want a sample with a very
small weight to form a cluster by itself. This algorithm tends
to group a sample with a very small weight with its nearest
cluster.

Once the number of clusters reduces to M , we stop the
iterations and return the weight and cluster center as

wi =
∑

ξ k∈Ci

w(ξ k), ξ i =
∑

ξ k∈Ci

w(ξ k)

wi
ξ k ∀ i = 1, . . . , M.

(15)

Algorithm 3 has summarized the pseudocodes of our clus-
tering method used to initialize Algorithm 1.

D. Number of Quadrature Points

A fundamental question is: How many quadrature samples
are necessary in order to achieve a desired level of accuracy?
This question is well answered in the 1-D Gauss quadrature
rule: p quadrature points provide an exact result for the
numerical integration of any polynomial function bounded by
order 2 p − 1 [40]. However, there is no similar result for
general multidimensional correlated cases.

Let S2p denote all polynomial functions of ξ with their
total orders bounded by 2 p. The integration rule {ξk, wk}M

k=1

Algorithm 3 Weighted Complete-Linkage Clustering
Input: The number of cluster M , and M0 = 3M initial

nodes ξ1, . . . , ξ M0
.

Calculate the weights for ξ1, . . . , ξ M0
by solving (12).

for m = M0, . . . , M + 1 do
Update the distance matrix by (14).
Find two clusters with the minimal distance, and
merge them into one single cluster.

Calculate the cluster centers and weights via (15).
Output: Clustered nodes and weights {ξk, wk}M

k=1.

has a 2 pth-order accuracy if (10) is satisfied. Here, the 2 pth-

order accuracy means that
M∑

k=1
f (ξ k)wk = E[ f (ξ )] for any

f (ξ ) ∈ S2p . We have the following result on the number of
quadrature samples in order to ensure the 2 pth-order accuracy.

Theorem 1: Assuming that M pairs of quadrature samples
and weights are obtained from (10) to ensure the 2 pth-order
integration accuracy, then the number of quadrature points
satisfies Np ≤ M ≤ N2p .

Proof: See Appendix A for the details. �
While there exists at least one M in [Np, N2p ] such that

the 2 pth-order integration accuracy can be achieved, we can
have multiple choices of M and may even have multiple
choices of quadrature samples and weights for each M . In our
stochastic collocation framework, we only require one (among
possibly multiple) set of quadrature samples and weights with
a sufficiently small M .

In practice, we try to get a better solution by generating
a better initial guess. We do this by first generating 6Np

random samples via MC and grouping them into 2Np clusters.
These M = 2Np samples are used as the initial quadrature
points. Then, we increase or decrease M via Algorithm 1.
This process is illustrated via a 2-D example in Fig. 2. The
practical number of quadrature nodes used by our stochastic
collocation framework is very close to the theoretical lower
bound, which is experimentally shown in Section VI-E.

V. THEORETICAL ERROR BOUNDS

In this section, we provide several theoretical results regard-
ing the numerical accuracy of our proposed stochastic collo-
cation algorithm for non-Gaussian correlated cases.

A. Conditions for Exact Results

Theorem 2 shows that our quadrature rule (10) can provide
the exact results if y(ξ) satisfies certain conditions.

Theorem 2: Suppose that y(ξ) ∈ Sp is a polynomial func-
tion bounded by order p, i.e., there exist some coefficients {cα}
such that y(ξ ) = ∑p

|α|=0 cα�α(ξ ). Denote the approximated
expansion obtained via our numerical integration as

ỹ(ξ ) =
p∑

|α|=0

c̃α�α(ξ ), with c̃α =
M∑

k=1

y(ξk)�α(ξ k)wk . (16)

Then, y(ξ) can be recovered exactly, i.e., y(ξ) = ỹ(ξ ),
if {ξk, wk} satisfies (10) strictly for all j = 1, . . . , N2p .
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Proof: The detailed proof is provided in Appendix B. �
In practice, we may not be able to get an exact solution

because of two reasons: 1) y(ξ) is not a polynomial in Sp;
and 2) the quadrature points and weights obtained by our
numerical nonlinear optimization solver cause a small residual
in (10). In this case, we can provide an error bound for our
solution when y(ξ ) is smooth enough and when the nonlinear
optimization problem (11) is solved with certain accuracy (i.e.,
when the resulting objective function is below a threshold).

B. Three Weak Assumptions

In order to provide a theoretical analysis for the numerical
error caused by y(ξ) and the nonlinear optimization solver,
we make the following weak assumptions.

Assumption 1: y(ξ) is squared integrable. In other words,
there exists a positive scalar L such that

‖y(ξ )‖2 =
√

E[y2(ξ)] ≤ L . (17)

Let yp(ξ ) = arg min ŷ(ξ)∈Sp ‖y(ξ) − ŷ(ξ)‖2 be the projection
of y(ξ) onto S p , and assume that there exists δ such that

0 ≤ ‖y(ξ ) − yp(ξ )‖2 ≤ δ. (18)

Actually, yp(ξ) can be written as yp(ξ ) = ∑p
|α|=0 cα�α(ξ),

where cα = E[y(ξ)�α(ξ )].
Assumption 2: Define the numerical integration operator

I[y(ξ)] =
M∑

k=1

y(ξk)wk . (19)

We assume that the operator I[y(ξ)] is bounded, i.e., there
exists W ≥ 0 such that

|I[y(ξ)]| ≤ W‖y(ξ )‖1, where ‖y(ξ )‖1 = E[|y(ξ)|]. (20)

Assumption 3: The nonlinear least-square problem (11) is
solved with an error threshold ε ≥ 0, i.e.,

‖
(ξ̄ )w − e1‖1 ≤ ε (21)

where ‖·‖1 denotes the �1 norm in the Euclidean space. Here,
the j th element in the vector 
(ξ̄ )w − e1 actually can be
written as I[� j (ξ )] − E[� j (ξ )].

C. Error Bound of the Proposed Stochastic Collocation

Theorem 3: Suppose that Assumptions 1–3 hold, and then
numerical integration error satisfies

|E[y(ξ)] − I[y(ξ )]| ≤ Lε + Wδ (22)

where L is the upper bound of ‖y(ξ)‖2 in (17), W is the upper
bound of the numerical integration I[y(ξ)] in (20), ε is the
numerical error of our nonlinear optimization solver defined
in (21), and δ is the distance from y(ξ) to S p in (18).

Proof: See Appendix C. �
Based on Theorem 3, we can further derive an upper bound

for the following approximation error.
Theorem 4: With Assumptions 1–3, the numerical error of

our stochastic collocation algorithm satisfies

‖y(ξ ) − ỹ(ξ )‖2 ≤ δ + Np(LT ε + Wδ) (23)

where T = max j,l=1,...,N2p ‖� j (ξ )�l(ξ )‖2.

Proof: See Appendix D for the details. �
Remarks: Theorem 4 indicates the following intuitions.

1) If the nonlinear optimization solver is accurate enough
and ε is very small, the error of our stochastic colloca-
tion is dominated by the approximation error δ.

2) As we increase the order of basis functions, δ decreases
and the result becomes more and more accurate.

3) If the total order of the basis function is very high
and δ becomes extremely small, the optimization error
ε will dominate the overall numerical error, and the
convergence will slow down.

Once (10) holds, we should have the following result:

I[�i (ξ)� j (ξ )] =
M∑

k=1

�i (ξ k)� j (ξ k)wk = δi, j .

In practice, there are numerical errors caused by quadra-
ture points and weights obtained by the optimization
solver. In Lemma 1, we show that the error is bounded.

Lemma 1: Suppose that Assumptions 1–3 hold, and define
a matrix V ∈ R

Np×Np with each element Vi j = I[�i (ξ )� j (ξ)]
being a numerical evaluation of E[�i (ξ )� j (ξ )] using the
quadrature points and weights from solving (11). We have

‖V − INp ‖F ≤ Np T ε. (24)

Proof: See Appendix E. �

VI. NUMERICAL RESULTS

In order to show the efficiency of our proposed method,
we conduct numerical experiments on a synthetic exam-
ple, a three-stage CMOS electronic ring oscillator, and
an optical filter. The stopping criterion in (11) is set as
ε = 10−8 unless stated otherwise. In all examples, we use
some Gaussian mixture models to describe the joint density
functions of correlated non-Gaussian random parameters. The
MATLAB codes and a demo example are provided online at
https://web.ece.ucsb.edu/~zhengzhang/codes_dataFiles/uq_ng.

A. Synthetic Example

First, we consider a synthetic example and use it to show
the accuracy and convergence rate of our proposed stochastic
collocation algorithm. Specifically, we consider the following
smooth function of two correlated parameters:

y(ξ ) = exp(ξ1) + 0.1 cos(ξ1) sin(ξ2). (25)

We assume that the random parameters follow a Gaussian
mixture distribution

ξ = ξ0 + 1

10

ξ , where 
ξ ∼ 1

2
N (μ1,�1) + 1

2
N (μ2,�2).

Here, the mean values μ1 = 1, μ2 = −1; the positive-
definite covariance matrices �1 and �2 are randomly gen-
erated. We use 1 to denote a vector of a compatible size with
all elements being one. We will also use this notation in other
examples.

We first illustrate how to generate the quadrature sam-
ples and weights by our optimization-based quadrature rule.
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Fig. 2. Process of generating quadrature samples and weights for the synthetic example. The quadrature weights are shown by the color bar. (a) Initial
candidate points generated via MC. (b) Clustered samples via the weighted complete-linkage method in Algorithm 3. (c) Optimized quadrature nodes by
Algorithm 1. This process only depends on the probability density function and the basis functions and is independent of y(ξ).

Fig. 3. Convergence rate for the synthetic example. Here, ε is the
numerical error of optimization defined in (21). This figure demonstrates the
error estimated in (23): The stochastic collocation algorithm shows a nearly
exponential convergence rate as p increases and before ε dominates the error.

TABLE II

ACCURACY COMPARISON ON THE SYNTHETIC EXPERIMENTS.
THE UNDERSCORES INDICATE PRECISION

Assume that we want to approximate y(ξ) by a fourth-order
expansion. First, 90 random samples are generated via MC.
Second, these points are grouped into 30 clusters via our
proposed weighted linkage clustering approach, and they are
used as the initial samples and weights of Algorithm 1. Finally,
the number of quadrature nodes is reduced to 17 automatically
by Algorithm 1, whereas the lower bound for the number of
quadrature nodes is 15. The process of generating quadrature
samples and weights is shown in Fig. 2.

Theorem 4 shows that the error depends on two parts: the
numerical error ε of the optimization solver of our quadrature
rule and the approximation error δ by order-p basis functions.
When p is small, ‖y(ξ ) − yp(ξ )‖2 ≤ δ dominates the error.

Fig. 4. Schematic of a three-stage CMOS ring oscillator.

Fig. 5. Numerical results of the CMOS ring oscillator. (a) Obtained
coefficients/weights of our basis functions. (b) Probability density functions
of the oscillator frequency obtained by our proposed method and MC.

TABLE III

ACCURACY COMPARISON ON THE CMOS RING OSCILLATOR. THE

UNDERSCORES INDICATE PRECISION

When p is large, δ becomes small and ε dominates the error,
and therefore, smaller ε will produce more accurate results.
In order to verify this theoretical result, we perform stochastic
collocation by using different orders of basis functions (i.e.,
p = 1–5) and by setting different error thresholds (i.e., ε =
10−4, 10−6, and 10−8) in the optimization-based quadrature
rule. As shown in Fig. 3, our stochastic collocation has a nearly
exponential convergence rate before ε dominates the error.

We further compare our method with MC in Table II. Our
method provides a closed-form expression for the mean value
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Fig. 6. (a) Schematic of a three-stage parallel-coupled ring resonator optical filter. L12, L21, L23, and L32 are the connecting waveguides, and R1, R2,
and R3 denote the rings. (b) Black line shows the nominal transmission function, and the thin gray lines show the effect of fabrication uncertainties on the
waveguide lengths of L12, L21, L23, and L32.

Fig. 7. Simulation results with respect to the geometric uncertainties in the
waveguide length of L12, L21, L23, and L32. (a) Obtained mean value of the
power transmission rate. (b) Standard deviation of the transmission rate.

of y(ξ), and a second-order expansion using six quadrature
points is sufficient to achieve a precision of four fractional
digits. In contrast, MC requires 105 random samples to achieve
a similar level of accuracy.

B. Three-Stage CMOS Electronic Ring Oscillator

We continue to verify our algorithm by the three-stage
CMOS ring oscillator in Fig. 4. We model the relative thresh-
old voltage variations of six transistors via

ξ = ξ0 + D
ξ , with 
ξ ∼ 2

3
N (μ1,�1) + 1

3
N (μ2,�2)

where D is a diagonal scaling matrix, μ1 = 1, μ2 = −1, and
�1 and �2 are randomly generated positive-definite matrices.

We aim to approximate the frequency by a second-
order expansion of our multivariate basis functions. Our
optimization-based quadrature rule generates 33 pairs of
quadrature samples and weights, and then a deterministic
periodic steady-state simulator is called repeatedly to simulate
the oscillator at all parameter samples. Fig. 5 shows the
obtained weights of all basis functions and the probability
density function.

We compare the computed mean value from our methods
with that from MC in Table III. The MC method converges
very slowly and requires 3030× more simulation samples
to achieve the similar level of accuracy (with two accurate
fractional digits).

Fig. 8. Simulation results with respect to the geometric uncertainties in
the waveguide length of L12, L21, L23, L32, R1, R2, and R3, and the
uncertainties in effective index for L12, L21, L23, and L32. (a) Obtained
mean value of the power transmission rate. (b) Standard deviation of the
transmission rate.

C. Parallel-Coupled Ring Resonator Optical Filter

In this section, we consider the three-stage parallel-coupled
ring resonator optical filter1 in Fig. 6(a). This optical filter is
a versatile component for wavelength filtering, multiplexing,
switching, and modulation in photonic ICs. This circuit has
a nominal 3-dB bandwidth of 12 GHz, and the coupling
coefficients for the three rings are K1 = K3 = 0.198836
and K2 = 0.356423. In the nominal design, the waveguide
lengths L12, L21, L23, and L32 are all 30.6624 μm, and the
circumference of all rings is R1 = R2 = R3 = 2997.92 μm.
In practice, there exist non-Gaussian correlated uncertainties in
the waveguide geometric parameters. The effect of fabrication
uncertainties is shown in Fig. 6(b).

Our goal is to build a second-order stochastic model to
approximate the power transmission curve at different fre-
quency points y( f, ξ ) = ∑p

|α|=0 cα( f )�α(ξ ). We use a
Gaussian mixture model to describe the uncertainties

ξ = ξ0 + 
ξ , where 
ξ ∼ 1

2
N (μ1,�1) + 1

2
N (μ2,�2).

For the waveguide length parameters, we use

μ1 = −μ2 = 25 × 1nm, �1 = �2 = 6.25(I + 0.5E).

1The details of this benchmark can be found at https://kb.lumerical.
com/en/pic_circuits_coupled_ring_resonator_filters.html.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 28,2020 at 23:52:02 UTC from IEEE Xplore.  Restrictions apply. 



CUI AND ZHANG: STOCHASTIC COLLOCATION WITH NON-GAUSSIAN CORRELATED PROCESS VARIATIONS 1371

Fig. 9. (a) Schematic of an AWG with nine waveguide arrays. (b) Nominal transmission rate from the input to output Port 1. Black curve: result without
any uncertainties. Gray lines: effects caused by the fabrication uncertainties of radius R1 and R2 and waveguide lengths L1, . . . , L9.

Fig. 10. Numerical results of the AWG with non-Gaussian correlated
uncertainties in radius R1 and R2 and the waveguide array lengths of
L1, . . . , L9. (a) Mean value of the transmission rate. (b) Standard deviation
of the transmission rate obtained by our proposed method and MC.

The uncertainties of the effective index follow a Gaussian
mixture distribution with

μ1 = −μ2 = 10−3 × 1, �1 = �2 = 10−6(I + 0.5E).

We perform two experiments for the optical filter. The first
experiment only considers the uncertainties of the waveguide
lengths L12, L21, L23, and L32. The second experiments
consider the uncertainties of the waveguide lengths L12, L21,
and L23, ring geometry L32, R1, R2, and R3, as well as the
effective index of L12, L21, L23, and L32. The mean value
and the standard derivation of the output response are shown
in Figs. 7 and 8, respectively. Although our method only uses
16 or 139 samples, it is able to achieve the similar accuracy
with MC that consumes 105 simulation samples.

D. Arrayed Waveguide Grating

Finally, we consider an arrayed waveguide grating
(AWG) [62]. The AWG is essential for wavelength division
and multiplexing in photonic systems. In our experiment,
we use an AWG with nine waveguide arrays and two star
couplers, as shown in Fig. 9(a). In the nominal design,
the radius of each star coupler is R1 = R2 = 2.985 mm, and
the waveguide lengths L1, . . . , L9 range from 46 to 420 μm.
In practice, there exist non-Gaussian correlated uncertainties
in the device geometric parameters, and the resulting perfor-
mance uncertainties are shown in Fig. 9(b).

Fig. 11. Probability density functions of the transmission rates at two
frequency points f = 191.9478 THz and f = 192.3494 THz obtained by
our proposed method and MC.

We aim to build a second-order stochastic model to approxi-
mate the transmission rates. A Gaussian mixture model is used
to describe the geometric uncertainties

ξ = ξ0 + 
ξ , where 
ξ ∼ 1

2
N (μ1,�1) + 1

2
N (μ2,�2).

For the radius of the star couplers, we set the mean values as
μ1 = −μ2 = 29.8 × 1 μm. For the waveguide array lengths,
we set μ1 = −μ2 = 0.05 × 1 μm. The covariance matrices
are block-diagonal positive definite.

We compare the computed mean value and standard devi-
ation of our method with that from MC in Fig. 10. Using
only 127 simulation samples, our method is able to achieve
the similar accuracy with 105 MC samples. Fig. 11 further
shows the probability density functions of the transmission
rates at two frequency points f = 191.9478 THz and
f = 192.3494 THz.

E. Practical Number of Quadrature Samples

Finally, Table IV shows the number of quadrature samples
used by our approach in all numerical experiments. The
lower and upper bounds of the number of samples from
Theorem 1 are listed in the last two columns. Clearly, in most
cases, the practical number of samples is very close to the
lower bound. When the order of basis function is very high,
the obtained number of quadrature samples may occasionally
become close to the upper bound. This is because the following
reason: When p is very large, the objective function in (11)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 28,2020 at 23:52:02 UTC from IEEE Xplore.  Restrictions apply. 



1372 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 9, NO. 7, JULY 2019

TABLE IV

NUMBER OF QUADRATURE SAMPLES USED IN ALL EXPERIMENTS. HERE,
p DENOTES THE MAXIMAL ORDER OF BASIS FUNCTIONS AND d IS THE

NUMBER OF RANDOM PARAMETERS

is a polynomial function of extremely high order (i.e., 4p),
and the coordinate descent solver becomes hard to converge.
We expect that the number of quadrature samples will also be
close to the theoretical lower bound even for very large p, if a
better nonlinear optimization solver is developed in the future.

VII. CONCLUSION

This paper has investigated a long-standing research chal-
lenge: How can we handle non-Gaussian correlated uncer-
tainties by stochastic spectral methods? We have proposed
several theories and algorithms to overcome this challenge
and have tested them by various benchmarks. Specifically,
we have proposed a set of orthonormal basis functions that
work extremely well for non-Gaussian correlated process
variations, which are beyond the capability of the existing
well-known generalized polynomial-chaos theory. We have
presented an optimization approach to calculate the quadrature
nodes and weights required in the projection step. We have
also provided some rigorous theoretical results regarding the
required number of quadrature samples and the error bound
of our framework. Our method has demonstrated a nearly
exponential convergence rate on a smooth synthetic example.
It has also achieved 700×–6000× speedup than MC on several
practical design benchmarks, including a CMOS electronic
ring oscillator, an optical filter built with three-stage photonic
ring resonators, and an AWG.

We have two final remarks in the following.
1) Based on our theoretical analysis, we conclude that as

long as the stochastic unknown output is smooth enough,
and if the optimization solver in our quadrature rule has
a small error, both the numerical integration and the
approximation error will be very small, leading to highly
accurate results in our stochastic collocation framework.

2) It remains an open problem to determinate the required
minimum number of quadrature nodes. Our numerical
experiments show an excellent heuristic result: The prac-
tical number of quadrature nodes used in our framework
is almost always close to the theoretical lower bound.

APPENDIX A
PROOF OF THEOREM 1

We show the lower bound and upper bounds of the number
of quadrature points required to achieve 2pth-order accuracy
are Np and N2p , respectively.

First, according to Appendix B, (29) holds if the quadrature
points and weights satisfy (10). As a result, we have

Qdiag(w)QT = INp (26)

where Q ∈ R
Np×M with each element Qi j = �i (ξ j ) and INp

is an Np × Np identity matrix. Because the right-hand side
is full rank, Q has a full row rank and, thus, M ≥ Np .

We further notice that the first row of (10) is
∑M

k=1 wk = 1,
and therefore, (10) can be rewritten as

Q1w = 0N2p−1,

M∑

k=1

wk = 1, w ≥ 0 (27)

where Q1 ∈ R
(N2p−1)×M consists of the last N2p − 1 rows

of Q and 0N2p−1 ∈ R
N2p−1 is a zero vector. According to

Carathéodory’s theorem [63], because 0N2p lies in the convex
hull formed by the column vectors of Q1, it can be written as
the convex combination of not more than N2p column vectors.
In other words, there exists a matrix Q̂1 formed by only
N2p columns of Q1, such that (27) still holds if we replace
Q1 with Q̂1 and change the length of w accordingly. Vector
0N2p−1 being in the convex hull of Q1 is a natural result of
our numerical quadrature rule defined on the selected basis
functions, and therefore, there exists M ≤ N2p .

Remark: In the above-mentioned proof, we show that by
Carathéodory’s theorem, there exist N2p quadrature nodes and
weights, such that (27) is true. In general, we do not know
how to choose the N2p sample nodes and weights a priori.
However, our optimization solver can automatically calculate
these quadrature nodes and weights. On the contrary, the linear
programing approach in [56] needs to prescribe the sampling
nodes and only calculate the weights, and it cannot guarantee
the conditions in (27).

APPENDIX B
PROOF OF THEOREM 2

In order to show the exact recovery of y(ξ) ∈ S p , we need
to prove that

cα = c̃α ∀ |α| ≤ p. (28)

Here, c̃α is obtained by the following numerical scheme:

c̃α =
M∑

k=1

y(ξk)�α(ξ k)wk =
M∑

k=1

p∑

|β|=0

cβ�β(ξ k)�α(ξ k)wk

=
p∑

|β|=0

cβ

(
M∑

k=1

�β(ξk)�α(ξ k)wk

)
.

A sufficient condition of (28) is

M∑

k=1

�β(ξk)�α(ξ k)wk = δα,β . (29)

In fact, the left-hand side of (29) is the numerical approxima-
tion for the integral E[�β(ξ)�α(ξ)], which is guaranteed to
be exact if we have a quadrature rule that can exactly evaluate
the integration of every basis function bounded by order 2 p.
In other words, (10) is a sufficient condition for (29).
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APPENDIX C
PROOF OF THEOREM 3

Before the detailed proof, we first introduce Hölder’s
inequality [64] that will be used in our theoretical analysis.

1) Hölder’s Inequality for the Euclidean Vector Space:
For all vectors x, y ∈ R

n and q1, q2 ∈ [1,+∞] with
(1/q1) + (1/q2) = 1

∣∣∣∣∣

n∑

i=1

xi yi | ≤
n∑

i=1

∣∣∣∣∣ xi yi | ≤ ‖x‖q1‖y‖q2 . (30)

For the special case q1 = 1 and q2 = +∞, there is
∣∣∣∣∣

n∑

i=1

xi yi

∣∣∣∣∣ ≤
n∑

i=1

|xi yi | ≤ ‖x‖1‖y‖∞. (31)

2) Hölder’s Inequality in the Probability Space: For all
measurable functions f (ξ ) and g(ξ) and q1, q2 ∈
[1,+∞] with (1/q1) + (1/q2) = 1

E[| f (ξ )g(ξ)|] ≤ ‖ f (ξ )‖q1‖g(ξ)‖q2 . (32)

For the special case g(ξ) ≡ 1 and q1 = q2 = 2, there is

‖ f (ξ)‖1 = E[| f (ξ)|]≤ (E[| f (ξ )|2]) 1
2 =‖ f (ξ)‖2. (33)

Now, we start to prove Theorem 3. According to the
definition yp(ξ ) = ∑p

|α|=0 cα�α(ξ ) and cα = E[y(ξ)�α(ξ )],
we have

E[y(ξ)� j (ξ)] = E[yp(ξ )� j (ξ )] = c j ∀ j = 1, . . . , Np .

(34)

We consider j = 1 and �1(ξ) = 1, and then (34) indicates
E[y(ξ)] = E[yp(ξ)] = c0. Based on this observation, we can
estimate the difference between E[y(ξ )] and I[y(ξ)]

|E[y(ξ)] − I[y(ξ)]|
= ∣∣E[yp(ξ )] − I[y(ξ )]∣∣
≤ ∣∣E[yp(ξ )] − I[yp(ξ )]∣∣

︸ ︷︷ ︸
(a)

+ ∣∣I[yp(ξ )] − I[y(ξ)]∣∣
︸ ︷︷ ︸

(b)

. (35)

Item (a) arises from the error of our numerical quadrature

(a) = ∣∣E[yp(ξ )]−I[yp(ξ)]∣∣=
∣∣∣∣∣∣

Np∑

j=1

c j
(
E[� j (ξ )] − I[� j (ξ)])

∣∣∣∣∣∣

≤ ‖c‖∞‖
(ξ̄ )w − e1‖1 ≤ Lε. (36)

The first inequality results from Hölder’s inequality (31).
The second inequality follows from ‖
(ξ̄ )w − e1‖1 ≤ ε
in (21), and we have ‖c‖∞ ≤ L because

|c j |=|E[y(ξ)� j (ξ)]| ≤ ‖y(ξ )‖2‖� j (ξ)‖2 ≤ L‖� j (ξ )‖2 = L .

Item (b) is due to the projection error

(b) = ∣∣I[yp(ξ )] − I[y(ξ)]∣∣
≤ W‖y(ξ ) − yp(ξ )‖1 ≤ W‖y(ξ ) − yp(ξ )‖2 ≤ Wδ. (37)

The first inequality follows from that the operator I is bounded
by W in (20). The second inequality results from Hölder’s

inequality (33). The last inequality follows from our assump-
tion ‖y(ξ ) − yp(ξ)‖2 ≤ δ in (18).

Combining (35)–(37), we have

|E[y(ξ)] − I[y(ξ)]| ≤ Lε + Wδ. (38)

The proof of Theorem 3 is complete.

APPENDIX D
PROOF OF THEOREM 4

The total error of our stochastic collocation algorithm can
be bounded by two terms

‖y(ξ) − ỹ(ξ)‖2 ≤ ‖y(ξ ) − yp(ξ )‖2 + ‖yp(ξ ) − ỹ(ξ )‖2.

Based on Assumption 2, the first item is upper bounded by δ.
We only need to estimate the second term. In fact

‖yp(ξ) − ỹ(ξ )‖2 =‖
Np∑

j=1

(c j − c̃ j )� j (ξ )‖2 =

√√√√√
Np∑

j=1

(c j − c̃ j )2

where the last equality follows the fact that the chosen basis
functions are orthogonal and normalized. Furthermore

|c j − c̃ j | = |E[yp(ξ )� j (ξ)] − I[y(ξ)� j (ξ)]|
≤ |E[yp(ξ )� j (ξ)] − I[yp(ξ )� j (ξ)]|

︸ ︷︷ ︸
(a)

(39)

+ |I[(yp(ξ ) − y(ξ))� j (ξ )]|
︸ ︷︷ ︸

(b)

. (40)

Both yp(ξ) and � j (ξ ) are polynomials bounded by
order p, so their product is a polynomial bounded by order
2 p, i.e., yp(ξ )� j (ξ) ∈ S2p . There exists an expansion

yp(ξ )� j (ξ ) = ∑N2p
l=1 al�l(ξ ) and an upper bound for term (a)

(a) = |E[yp(ξ )� j (ξ)] − I[yp(ξ )� j (ξ )]|

=
∣∣∣∣∣∣

N2p∑

l=1

al (E[�l(ξ)] − I[�l(ξ )])
∣∣∣∣∣∣

≤ ‖a‖∞‖
(ξ̄ )w − e1‖1 ≤ LT ε. (41)

The first inequality is due to (31), and the last inequality
follows from

al =E[yp(ξ )� j (ξ)�l(ξ )] ≤ ‖yp(ξ)‖2‖� j (ξ )�l(ξ )‖2 ≤ LT

(42)

where T = max j,l=1,...,N2p ‖� j (ξ)�l(ξ )‖2.
We can also find an upper bound for term (b) in (40)

(b) = |I[(yp(ξ ) − y(ξ))� j (ξ )]|
≤ W‖(yp(ξ ) − y(ξ))� j (ξ)‖1

≤ W‖yp(ξ ) − y(ξ)‖2‖� j (ξ )‖2

= W‖yp(ξ ) − y(ξ)‖2 ≤ Wδ. (43)

Combining (39)–(41) and (43), we have |c j −c̃ j | ≤ LT ε+Wδ,
and thus, ‖yp(ξ ) − ỹ(ξ )‖2 ≤ Np(LT ε + Wδ). Noting that
‖y(ξ) − yp(ξ )‖2 ≤ δ, we finally have

‖y(ξ) − ỹ(ξ )‖2 ≤ δ + Np(LT ε + Wδ). (44)

This completes the proof of Theorem 4.
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Remark: The boundness of al in (42) is equivalent to the
completeness of S2p under the Minkowski sum, i.e.,

S p ⊕ S p ⊂ S2p. (45)

In other words, if p1(ξ ), p2(ξ ) ∈ S p , then p1(ξ )p2(ξ ) ∈ S2p.
Intuitively, this is true because the product of two pth-order
polynomials is a polynomial bounded by order 2 p. A suffi-
cient condition for (45) is that ‖� j (ξ)�l(ξ )‖2 is bounded.
In real applications, most widely used distributions, including
Gaussian, Gaussian mixture distribution, or a distribution on a
bounded domain, can guarantee that the high-order moments
are bounded. As a result, (45) holds in most cases. However,
there exists some rare density functions whose high-order
moments are not necessarily bounded, such as the lognormal
distribution. In this rare case, the error analysis in Theorem 4
may not hold.

APPENDIX E
PROOF FOR LEMMA 1

In order to upper-bound ‖V − INp ‖F , we consider the error
for each element E[�i (ξ )� j (ξ)] − I[�i (ξ )� j (ξ )]. We can

have an expansion �i (ξ )� j (ξ ) = ∑N2p
l=1 al�l(ξ ), and then

|E[�i (ξ)� j (ξ )] − I[�i (ξ )� j (ξ)]|

=
∣∣∣∣∣∣

N2p∑

l=1

al (E[�l(ξ )] − I[�l(ξ )])
∣∣∣∣∣∣

≤ ‖a‖2‖
(ξ̄ )w − e1‖2.

Because ‖a‖2
2 = ‖�i (ξ)� j (ξ )‖2

2 ≤ T 2 and

‖
(ξ̄ )w − e1‖2 ≤ ‖
(ξ̄ )w − e1‖1 ≤ ε

we have
∣∣E[�i (ξ )� j (ξ )] − I[�i (ξ )� j (ξ)]∣∣ ≤ T ε

and further obtain ‖V − INp ‖F ≤ Np T ε.
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