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1 Introduction

Linear programming (LP) is a fundamental algorithmic primitive, and is the method of

choice for a huge number of optimization and approximation problems. Still, there are some

very basic tasks where it performs poorly. A classic example is the simplest of all constraint

satisfaction problems (CSPs), the max-cut problem: Given a graph G = (V,E), partition

V into two parts so as to maximize the fraction of “cut” (crossing) edges. The standard LP

relaxation for this problem [5, 38] involves optimizing over the metric polytope. Using “±1

notation”, we have a variable Yuv for each pair of vertices {u, v} (with Yuv supposed to be

−1 if the edge is cut, +1 otherwise); the LP is:

max-cut(G) ≤ max
1

2
− 1

2
· 1

|E|
∑

uv∈E

Yuv

−1 ≤ Yuv ≤ 1 (for all u, v ∈ V )

s.t. − Yuv − Yvw − Ywu ≤ 1 (for all u, v, w ∈ V )

−Yuv + Yvw + Ywu ≤ 1 (for all u, v, w ∈ V )

While this LP gives the optimal bound for some graphs (precisely, all graphs not contractible

to K5 [5]), it can give a very poor bound in general. Indeed, although there are graphs

with maximum cut arbitrarily close to 1/2 (e.g., Kn), the above LP bound is at least 2/3

for every graph, since Yuv ≡ −1/3 is always a valid solution. Worse, there are graphs

G with max-cut(G) arbitrarily close to 1/2 but with LP value arbitrarily close to 1 –

i.e., graphs where the integrality ratio is 2 − o(1). For example, this is true [39] of an

Erdős–Rényi G(n,∆/n) random graph with high probability (whp) when ∆ = ∆(n) satisfies

ω(1) < ∆ < no(1).

There have been two main strategies employed for overcoming this deficiency: strengthened

LPs, and eigenvalue methods.

Strengthened LPs

One way to try to improve the performance of LPs on max-cut is to add more valid

inequalities to the LP relaxation, beyond just the “triangle inequalities”. Innumerable valid

inequalities have been considered: (2k+1)-gonal, hypermetric, negative type, gap, clique-web,

suspended tree, as well as inequalities from the Lovász–Schrijver hierarchy; see Deza and

Laurent [20, Ch. 28–30] for a review.

It is now known that the most principled and general form of this strategy is the Sherali–

Adams LP hierarchy [45], reviewed in Section 2.4. At a high level, the Sherali–Adams LP

hierarchy gives a standardized way to tighten LP relaxations of Boolean integer programs, by

adding variables and constraints. The number of new variables/constraints is parameterized

by a positive integer R, called the number of “rounds”. Given a Boolean optimization problem

with n variables, the R-round Sherali–Adams LP has variables and constraints corresponding

to monomials of degree up to R, and thus has size O(n)R. A remarkable recent line of

work [13, 35] has shown that for any CSP (such as max-cut), the R-round Sherali–Adams

LP relaxation achieves essentially the tightest integrality ratio among all LPs of its size.

Nevertheless, even this most powerful of LPs arguably struggles to certify good bounds

for max-cut. In a line of work [18, 44] concluding in a result of Charikar–Makarychev–

Makarychev [15], it was demonstrated that for any constant ε > 0, there are graphs (random

∆-regular ones, ∆ = O(1)) for which the nΩ(1)-round Sherali–Adams LP has a max-cut

integrality gap of 2 − ε. As a consequence, every max-cut LP relaxation of size up to 2nΩ(1)

has such an integrality gap.
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Eigenvalue and SDP methods

But for max-cut, there is a simple, non-LP, algorithm that works very well to certify that

random graphs have maximum cut close to 1/2: eigenvalue bounds. There are two slight

variants here (that coincide in the case of regular graphs): Given graph G = (V,E) with

adjacency matrix A and diagonal degree matrix D, the eigenvalue bounds are

max-cut(G) ≤ |V |
4|E|λmax(D −A) (1)

max-cut(G) ≤ 1

2
+

1

2
λmax(−D−1A). (2)

Here D −A and D−1A are the Laplacian matrix and the random walk matrix, respectively.

The use of eigenvalues to bound various cut values in graphs (problems like max-cut,

min-bisection, 2-xor, expansion, etc.) has a long history dating back to Fieldler and

Donath–Hoffman [25, 21] among others (Inequality (1) is specifically from Mohar–Poljak [37]).

It was recognized early on that eigenvalue methods work particularly well for solving planted-

random instances (e.g., of 2-xor [32] and min-bisection [11]) and for certifying max-cut

values near 1/2 for truly random instances. Indeed, as soon as one knows (as we now

do [46, 24]) that D−1A has all nontrivial eigenvalues bounded in magnitude by O(1/
√

∆)

(whp) for a random ∆-regular graph (or an Erdős–Rényi G(n,∆/n) graph with ∆ & logn),

the eigenvalue bound Inequality (2) certifies that max-cut(G) ≤ 1/2 + O(1/
√

∆). This

implies an integrality ratio tending to 1; indeed, max-cut(G) = 1/2 + Θ(1/
√

∆) in such

random graphs (whp).

Furthermore, if one extends the eigenvalue bound Inequality (1) above to

max-cut(G) ≤ min
U diagonal

tr(U)=0

|V |
4|E|λmax(D −A+ U) (3)

(as suggested by Delorme and Poljak [19], following [21, 11]), one obtains the polynomial-

time computable semidefinite programming (SDP) bound. Goemans and Williamson [29]

showed this bound has integrality ratio less than 1.14 ≈ 1/.88 for worst-case G, and it was

subsequently shown [50, 23, 14] that the SDP bound is 1/2 + o(1) whenever max-cut(G) ≤
1/2 + o(1).

LPs cannot compete with eigenvalues/SDPs?

This seemingly striking separation between the performance of LPs and SDPs in the context

of random max-cut instances is now taken as a matter of course. To quote, e.g., [47],

[E]xcept for semidefinite programming, we know of no technique that can provide,

for every graph of max cut optimum ≤ .501, a certificate that its optimum is ≤ .99. In-

deed, the results of [18, 44]1 show that large classes of Linear Programming relaxations

of max cut are unable to distinguish such instances.

Specifically, the last statement here is true for ∆-regular random graphs when ∆ is a certain

large constant. The conventional wisdom is that for such graphs, linear programs cannot

compete with semidefinite programs, and cannot certify even the eigenvalue bound.

Our main result challenges this conception.

1 One would also add the subsequently written[15] here.
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1.1 Our results

We show that whenever the eigenvalue bound Inequality (2) certifies the bound

max-cut(G) ≤ 1/2 + o(1), then no(1)-round Sherali–Adams can certify this as well.2

I Theorem 1 (Simplified version of Theorem 30 and Corollary 31). Let G be a simple n-vertex

graph and assume that |λ| < ρ for all eigenvalues λ of G’s random walk matrix D−1A

(excluding the trivial eigenvalue of 1). Then for any 1 ≤ c ≤ Ω(log(1/ρ)), Sherali–Adams

with nO(c/ log(1/ρ)) rounds certifies that max-cut(G) ≤ 1/2 + 2−c.

For example, if G’s random walk matrix has its nontrivial eigenvalues bounded in

magnitude by n−.001, as is the case (whp) for random graphs with about n1.002 edges, then

Sherali–Adams can certify max-cut(G) ≤ 50.1% with constantly many rounds. We find this

result surprising, and in defiance of the common belief that polynomial-sized LPs cannot

take advantage of spectral properties of the underlying graph.

I Remark 2. We wish to emphasize that it is not the resulting nO(1) running time that is

surprising; one can (and should) already achieve this with the eigenvalue bound. What is

surprising is the inherent power of the Sherali–Adams relaxation itself.

I Remark 3. One might ask whether Theorem 1 even requires the assumption of small

eigenvalues. That is, perhaps no(1)-round Sherali–Adams can certify max-cut ≤ 1/2 + o(1)

whenever this is true. We speculate that this may in fact be the case. As mentioned earlier,

the basic SDP relaxation Inequality (3) has this property [50, 23, 14], meaning that whenever

graph G has max-cut(G) ≤ 1/2 + o(1), there is a traceless diagonal matrix U such that the

eigenvalue bound applied to A− U certifies the maxcut bound. It seems possible that our

proof might be adapted to work with this A−U rather than A, in which case Sherali–Adams

would also have the property.

We add that the plain eigenvalue bound does not have this property: there exist graphs

with large (nontrivial) eigenvalues even though the maximum cut is close to 1/2.3

1.1.1 Subexponential-sized LPs for max-cut in sparse random graphs

One setting in which the spectral radius ρ is understood concretely is in random regular

graphs. Building upon [27, 12, 17], the following was recently shown:

I Theorem ([46]). There is a fixed constant C such that for all 3 ≤ ∆ ≤ n/2 with ∆n even,

it holds that a uniformly random n-vertex ∆-regular simple graph G satisfies the following

with high probability: all eigenvalues of G’s normalized adjacency matrix, other than 1, are

at most C/
√

∆ in magnitude.

Combining the above with Theorem 1, we have the following consequence for max-cut on

random regular graphs:

I Corollary 4. Let n, 3 ≤ ∆ ≤ n/2, and 1 ≤ c ≤ Ω(log ∆) be positive integers. Then if G is

a random ∆-regular n-vertex graph, with high probability nO(c/ log ∆)-round Sherali–Adams

can certify that max-cut(G) ≤ 1
2 + 2−c.

2 Actually, there is a slight mismatch between our result and Inequality (2): in Theorem 1 we need the
maximum eigenvalue in magnitude to be small; i.e., we need λmin(−D−1A) to be not too negative. This
may well just be an artifact of our proof.

3 Consider, for example, a graph given by the union of a ∆-regular random graph on n vertices and a
∆-regular bipartite graph on

√
n vertices. This will have max-cut value close to 1/2, but will also have

large negative eigenvalues coming from the bipartite component.
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For example, if ∆ ≥ C ·106 (for C the constant in the bound on λ(G)), then n1/3-rounds of

Sherali–Adams can certify max-cut(G) ≤ .51. This result serves as a partial converse to [15]:

I Theorem ([15, Theorem 5.3]). For every fixed integer ∆ ≥ 3, with high probability over

the choice of an n-vertex ∆-regular random graph G,4 the nΘ(1/f(∆))-round Sherali–Adams

relaxation for max-cut has value at least max-cut(G) ≥ 0.99, where f(∆) is a function

that grows with ∆.

While [15] show that ∆-regular random graphs require Sherali–Adams (and by [35], any

LP) relaxations of at least subexponential size, our result implies that subexponential LPs are

sufficient. Further, though the function f(∆) is not specified in [15], by tracing back through

citations (e.g. [3, 4, 16]) to extract a dependence, it appears we may take f(∆) = log ∆. So

our upper bound is tight as a function of ∆, up to constant factors.

Prior to our result, it was unclear whether even (n/polylogn)-round Sherali–Adams could

certify that the max-cut value was bounded by .99 for sparse random regular graphs. Indeed,

it was equally if not more conceivable that Charikar et al.’s result was not tight, and could

be extended to Ω̃(n)-rounds. In light of our result, we are left to wonder whether there are

instances of max-cut which have truly exponential extension complexity.

1.1.2 Refuting Random CSPs with linear programs

With minor modifications, our argument extends as well to 2-xor. Then, following the

framework in [2], we have the following consequence for certifying bounds on the value of

random k-CSPs:

I Theorem 5 (Simplified version of Theorem 38). Suppose that P : {±1}k → {0, 1} is a k-ary

Boolean predicate, and that δ, ε > 0. Let E[P ] be the probability that a random x ∈ {±1}k

satisfies P . Then for a random instance I of P on n variables with m ≥ ndk/2e+δ expected

clauses, with high probability Sherali–Adams can certify that OBJI(x) ≤ E[P ] + ε using

R = Oε,δ,k(1) rounds.

This almost matches the comparable performance of Sum-of-Squares (SOS) and spectral

algorithms [2], which are known to require m ≥ nk/2 clauses to certify comparable bounds in

polynomial time [31, 43, 34].5 Prior to our work it was known that Sherali–Adams admits

weak refutations (i.e. a certificate that OBJ ≤ 1−o(1)) when m ≥ nk/2, but it was conceivable

(and even conjectured) that O(1)-rounds could not certify OBJ ≤ 1 − δ for constant δ at

m = o(nk).

The result above also extends to t-wise independent predicates as in [2] (see Section 5).

Also, one may extract the dependence on the parameters ε, δ to give nontrivial results when

these parameters depend on n.6

4 In [15], the graph is actually a pruned random graph, in which o(n) edges are removed; this does not
affect compatibility with our results, as the LP value is Lipschitz and so the pruning changes the LP
value by o(1).

5 The expert may notice that we require the number of clauses m � ndk/2e, whereas the best Sum-of-

Squares and spectral algorithms require only m � nk/2. This is because we do not know how to relate
the Sherali–Adams value of the objective function to its square (local versions of the Cauchy-Schwarz
argument result in a loss). Such a relation would allow us to apply our techniques immediately to prove
that Sherali–Adams matches the SOS and spectral performance for odd as well as even k.

6 Though for 2-xor and max-cut we have done this explicitly, for higher-arity random CSPs we have
left this for the interested reader.

CCC 2019
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1.2 Prior work

It is a folklore result that in random graphs with average degree nδ, 3-round Sherali–Adams

certifies a max-cut value of at most max(1 − Ω(δ), 2
3 ) (observed for the special case of δ > 1

2

in [6, 39]); this is simply because of concentration phenomena, since most edges participate

in roughly the same number of odd cycles of length O( 1
δ ) ≥ 3, after which one can apply

the triangle inequality. However this observation does not allow one to take the refutation

strength independent of the average degree.

There are some prior works examining the performance of Sherali–Adams hierarchies on

random (and otherwise “locally dense”) CSPs. Building on works showing a PTAS for fully

dense max-cut [28], the work of de la Vega and Mathieu [18] shows that in graphs with

average degree Ω(n), Sherali–Adams with O(1) rounds certifies tight bounds on max-cut.

Subsequent works extended this to give a density/rounds tradeoff [49, 6]; the best of these

shows that Sherali–Adams accurately estimates the max-cut in graphs of average degree ∆

using O(n/∆) rounds. One may compare this to our theorem, which uses nO(1/ log ∆) rounds

for random graphs of average degree ∆.

Another relevant line of work is a series of LP hierarchy lower bounds (both for Sherali–

Adams and for the weaker Lovász-Schrijver hierarchy) for problems such as max-cut,

Vertex-Cover, and Sparsest-Cut, including [1, 3, 18, 44], and culminating in the already

mentioned result of Charikar, Makarychev and Makarychev; in [15], they give subexponential

lower bounds on the number of rounds of Sherali–Adams required to strongly refute max-cut

in random regular graphs. Initially, one might expect that this result could be strengthened

to prove that sparse random graphs require almost-exponential-sized LPs to refute max-cut;

our result demonstrates instead that [15] is almost tight.

We also mention the technique of global correlation rounding in the Sum-of-Squares

hierarchy, which was used to give subexponential time algorithms for Unique-Games [8]

and polynomial-time approximations to Max-Bisection [42]. One philosophical similarity

between these algorithms and ours is that both relate local properties (correlation among

edges) to global properties (correlation of uniformly random pairs). But [8, 42] use the

fact that the relaxation is an SDP (whereas our result is interesting because it is in the

LP-only setting), and the “conditioning” steps that drive their algorithm are a fundamentally

different approach.

There are many prior works concerned with certifying bounds on random CSPs, and

we survey only some of them here, referring the interested reader to the discussion in [2].

The sequence of works [31, 43, 34] establishes Sum-of-Squares lower bounds for refuting any

random constraint satisfaction problem, and these results are tight via the SOS algorithms

of [2, 40]. The upshot is that for k-sat and k-xor,7 ω(1) rounds of SOS are necessary to

strongly refute an instance with m = o(nk/2) clauses, and O(1) rounds of SOS suffice when

m = Ω̃(nk/2). Because SOS is a tighter relaxation than Sherali–Adams, the lower bounds

[31, 43, 34] apply; our work can be seen to demonstrate that Sherali–Adams does not lag far

behind SOS, strongly refuting with O(1) rounds as soon as m = Ω(ndk/2e+δ) for any δ > 0.

In a way, our result is part of a trend in anti-separation results for SDPs and simpler

methods for pseudorandom and structured instances. For example, we have for planted clique

that the SOS hierarchy performs no better than the Lovász-Schrijver+ hierarchy [22, 7], and

also no better than a more primitive class of estimation methods based on local statistics (see

7 This is more generally true for any CSP that supports a k-wise independent distribution over satisfying
assignments.
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e.g. [41] for a discussion). Similar results hold for problems relating to estimating the norms

of random tensors [33]. Further, in [33] an equivalence is shown between SOS and spectral

algorithms for a large class of average-case problems. Our result shows that for random

CSPs, the guarantees of linear programs are surprisingly not far from the guarantees of SOS.

Finally, we mention related works in extended formulations. The sequence of works

[13, 35] show that Sherali–Adams lower bounds for CSPs imply lower bounds for any LP

relaxation; the stronger (and later) statement is due to [35], who show that subexponential-

round integrality gaps for CSPs in the Sherali–Adams hierarchy imply subexponential-size

lower bounds for any LP. These works are then applied in conjunction with [31, 43, 15] to

give subexponential lower bounds against CSPs for any LP; our results give an upper limit

to the mileage one can get from these lower bounds in the case of max-cut, as we show

that the specific construction of [15] cannot be strengthened much further.

1.3 Techniques

Our primary insight is that while Sherali–Adams is unable to reason about spectral properties

globally, it does enforce that every set of R variables behave locally according to the marginals

of a valid distribution, which induces local spectral constraints on every subset of up

to R variables.

At first, it is unclear how one harnesses such local spectral constraints. But now suppose

that we are in a graph whose adjacency matrix has a small spectral radius (excluding

the trivial eeigenvalue). This implies that random walks mix rapidly, in say t steps, to a

close-to-uniform distribution. Because a typical pair of vertices at distance t is distributed

roughly as a uniformly random pair of vertices, any subset of R vertices which contains a

path of length t already allows us to relate global and local graph properties.

To see why this helps, we take for a moment the “pseudoexpectation” view, in which we

think of the R-round Sherali–Adams as providing a proxy for the degree-R moments of a

distribution over max-cut solutions x ∈ {±1}n, with max-cut value

max-cut(G) = 1
2 − 1

2 E
(u,v)∈E(G)

Ẽ[xuxv], (4)

where Ẽ[xuxv] is the “pseudo-correlation” of variables xu, xv. Because there is no globally

consistent assignment, the pseudo-correlation Ẽ[xuxv] for vertices u, v sampled uniformly at

random will be close to 0.8 But in any fixed subgraph of size Ω(t), enforcing Ẽ[xuxv] ≈ 0 for

pairs u, v at distance t has consequences, and limits the magnitude of correlation between

pairs of adjacent vertices as well. In particular, because the pseudo-second moment matrix

Ẽ[xSx
>
S ] for xS the restriction of x to a set S of up to R vertices must be PSD, forcing some

entries to 0 gives a constraint on the magnitude of edge correlations.

For example, suppose for a moment that we are in a graph G with t = 2, and that S is a

star graph in G, given by one “root” vertex r with k ≤ R− 1 children U = {u1, . . . , uk}, and

call X = Ẽ[xSx
>
S ] � 0. Notice that pairs of distinct children ui, uj are at distance t = 2 in S.

If we then require Ẽ[xuixuj ] = 0 for every ui 6= uj , the only nonzero entries of X are the

diagonals (which are all Ẽ[x2
i ] = 1), and the entries corresponding to edges from the root to

its children, (r, ui), which are Ẽ[xrxui
]. Now defining the vector c ∈ R

S with a 1 at the root

r, cr = 1 and α on each child u ∈ U , cu = α, we have from the PSDness of X that

0 ≤ c>Xc = ‖c‖2
2 +

∑

u∈U

2crcu · Ẽ[xrxu] = (1 + α2k) + 2αk E
(u,v)∈E(S)

Ẽ[xuxv].

8 This is implicit in our proof, but intuitively it should be true because e.g. u, v should be connected by
equally many even- and odd-length paths.
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Choosing α = k−1/2, this implies that within S, the average edge correlation is lower

bounded by E(u,v)∈E[S] Ẽ[xuxv] ≥ −k−1/2. Of course, for a given star S we cannot know

that Ẽ[xuixuj ] = 0, but if we take a well-chosen weighted average over all stars, this will

(approximately) hold on average.

Our strategy is to take a carefully-chosen average over specific subgraphs S of G with |S| =

Ω(t). By our choice of distribution and subgraph, the fact that the subgraphs locally have

PSD pseudocorrelation matrices has consequences for the global average pseudocorrelation

across edges, which in turn gives a bound on the objective value Equation (4). This allows

us to show that Sherali–Adams certifies much better bounds than we previously thought

possible, by aggregating local spectral information across many small subgraphs.

Organization

We begin with technical preliminaries in Section 2. In Section 3 we prove our main result.

Section 4 establishes a mild lower bound for arbitrary graphs. Finally, Section 5 applies

Theorem 1 to the refutation of arbitrary Boolean CSPs.

2 Setup and preliminaries

We begin by recalling preliminaries and introducing definitions that we will rely upon later.

2.1 Random walks on undirected graphs

Here, we recall some properties of random walks in undirected graphs that will be of use to us.

I Definition 6. Let G = (V,E) be an undirected finite graph, with parallel edges and self-loops

allowed9, and with no isolated vertices. The standard random walk on G is the Markov chain

on V in which at each step one follows a uniformly random edge out of the current vertex.

For u ∈ V , we use the notation v ∼ u to denote that v is the result of taking one random

step from u.

I Definition 7. We write K for the transition operator of the standard random walk on G.

That is, K is obtained from the adjacency matrix of G by normalizing the uth row by a factor

of 1/deg(u).

I Definition 8. We write π for the probability distribution on V defined by π(v) = deg(v)
2|E| .

As is well known, this is an invariant distribution for the standard random walk on G, and

this Markov chain is reversible with respect to π. For u ∼ π and v ∼ u, the distribution of

(u,v) is that of a uniformly random (directed) edge from E. We will also use the notation

π∗ = minv∈V {π(v)}.

I Definition 9. For f, g : V → R we use the notation 〈f, g〉π for Eu∼π[f(u)g(u)]. This is

an inner product on the vector space R
V ; in case G is regular and hence π is the uniform

distribution, it is the usual inner product scaled by a factor of 1/|V |. It holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[f(u)g(v)]. (5)

9 Self-loops count as “half an edge”, and contribute 1 to a vertex’s degree.
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I Definition 10. A stationary d-step walk is defined to be a sequence (u0,u1, . . . ,ud) formed

by choosing an initial vertex u0 ∼ π, and then taking a standard random walk, with ut ∼ ut−1.

Generalizing Equation (5), it holds in this case that

E[f(u0)g(ud)] = 〈f,Kdg〉π.

2.2 Tree-indexed random walks

To prove our main theorem we define a class of homomorphisms we call tree-indexed random

walks.

I Definition 11. Suppose we have a finite undirected tree with vertex set T . A stationary

T -indexed random walk in G is a random homomorphism φ : T → V defined as follows:

First, root the tree at an arbitrary vertex i0 ∈ T . Next, define φ(i0) ∼ π. Then, independently

for each “child” j of i0 in the tree, define φ(j) ∼ φ(i0); that is, define φ(j) ∈ V to be the

result of taking a random walk step from φ(i0). Recursively repeat this process for all children

of i0’s children, etc., until each vertex k ∈ T has been assigned a vertex φ(k) ∈ V .

We note that the homomorphism φ defining the T -indexed random walk need not be injective.

Consequently, if T is a tree with maximum degree D, we can still have a T -indexed random

walk in a d-regular graph with d < D.

The following fact is simple to prove; see, e.g., [36].

I Fact 12. The definition of φ does not depend on the initially selected root i0 ∈ T . Further,

for any two vertices i, j ∈ T at tree-distance d, if i = i0, i1, . . . , id = j is the unique path in

the tree between them, then the sequence (φ(i0),φ(i1), . . . ,φ(id)) is distributed as a stationary

d-step walk in G.

2.3 2XOR and signed random walks

The 2-xor constraint satisfaction problem is defined by instances of linear equations in F
n
2 .

For us it will be convenient to associate with these instances a graph with signed edges, and

on such graphs we perform a slightly modified random walk.

I Definition 13. We assume that for each vertex pair (u, v) where G has edge, there

is an associated sign ξuv = ξvu ∈ {±1}.10 We arrange these signs into a symmetric

matrix Ξ = (ξuv)uv. If G has no (u, v) edge then the entry Ξuv will not matter; we can take

it to be 0.

I Definition 14. We write K = Ξ ◦K for the signed transition operator. The operator K

is self-adjoint with respect to 〈·, ·〉π, and hence has real eigenvalues. It also holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[ξuvf(u)g(v)]. (6)

I Definition 15. We may think of G and Ξ as defining a 2-xor constraint satisfaction

problem (CSP), in which the task is to find a labeling f : V → {±1} so as to maximize the

fraction of edges (u, v) ∈ E for which the constraint f(u)f(v) = ξuv is satisfied. The fraction

of satisfied constraints is

E
(u,v)∼E

[
1
2 + 1

2ξuvf(u)f(v)
]

= 1
2 + 1

2 〈f,Kf〉π. (7)

We will typically ignore the 1
2 ’s and think of the 2-xor CSP as maximizing the quadratic form

〈f,Kf〉π. When all signs in the matrix Ξ are −1, we refer to this as the max-cut CSP.

10 If G has multiple (u, v) edges, we think of them as all having the same sign.
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I Definition 16. We say that a signed stationary d-step walk is a sequence of pairs (ut,σt) ∈
{±1} × V for 0 ≤ t ≤ d, chosen as follows: first, we choose a stationary d-step walk

(u0,u1, . . . ,ud) in G; second, we choose σ0 ∈ {±1} uniformly at random; finally, we define

σt = σt−1ξσt−1σt . Generalizing Equation (6), it holds in this case that

E[σ0f(u0)σdg(ud)] = 〈f,Kd
g〉π.

I Definition 17. We extend the notion from Definition 11 to that of a signed stationary

T -indexed random walk in G. Together with the random homomorphism φ : T → V , we also

choose a random signing σ : T → {±1} as follows: for the root i0, the sign σ(i0) ∈ {±1} is

chosen uniformly at random; then, all other signs are deterministically chosen – for each

j of i0 we set σ(j) = ξi0jσ(i0), and in general σ(k) = ξk′kσ(k) where k′ is the parent

of k. Again, it is not hard to show that the definition of (φ,σ) does not depend on the

choice of root i0, and that for any path i0, i1, . . . , id of vertices in the tree, the distribution of

(φ(i0),σ(i0)), (φ(i1),σ(i1)), . . . (φ(id),σ(id)) is that of a signed stationary d-step walk in G.

2.4 Proof systems

Our central object of study is the Sherali–Adams proof system, although our results also

apply to a weaker proof system (see Remark 24). We first define Sherali–Adams in this

“proof system” format (as opposed to the original optimization format); see, e.g., [9] for some

commentary on this perspective.

I Definition 18. Let X1, . . . ,Xn be indeterminates that are supposed to stand for real num-

bers ±1. The R-round Sherali–Adams proof system [45] may be defined as follows: The

“lines” of the proof are real polynomial inequalities in X1, . . . ,Xn (where the polynomials

may as well be multilinear). The allowed “axioms” are any real inequalities of the form

q(Xu1
, . . . ,XuR

) ≥ 0, where the inequality is true for every ±1 assignment to the indetermin-

ates Xui
. The “deduction rules” allow one to derive any nonnegative linear combination of

previous lines. This is a sound proof system for inequalities about ±1 numbers X1, . . . ,Xn.

I Fact 19. There is a poly(nR, L)-time algorithm based on Linear Programming for de-

termining whether a given polynomial inequality p(X) ≥ 0 of degree at most R (and rational

coefficients of total bit-complexity L) is derivable in the R-round Sherali–Adams proof system.

As mentioned earlier, it will helpful for us to take a “Sum-of-Squares” perspective on

Sherali–Adams. The well-known fact here is that a multilinear polynomial q(Xu1
, . . . ,XuR

) is

nonnegative for all ±1 assignments if and only if it can be represented as the (multilinearization

of) a squared polynomial p2 on R indeterminates. (This p will be the unique “Fourier

expansion” for the function
√
q : {±1}R → R; again, see [9] for some discussion.) Let us now

define a proof system that can encapsulate both Sherali–Adams and SOS:

I Definition 20. We define the R-local, degree-D (static) Sum-of-Squares (SOS) proof

system over indeterminates X1, . . . ,Xn as follows. The “lines” of the proof are real polynomial

inequalities in X = (X1, . . . ,Xn). The default “axioms” are any real inequalities of the form

p(Xu1 , . . . ,XuR
)2 ≥ 0, where p is a polynomial in at most R variables and of degree at most

D/2. The “deduction rules” allow one to derive any nonnegative linear combination of

previous lines. This is a sound proof system for inequalities about n real numbers X1, . . . ,Xn.

In addition to the default axioms, one may also sometimes include problem-specific

“equalities” of the form q(X) = 0. In this case, one is allowed additional axioms of the form

q(X)s(X) R 0 the polynomial q(X)s(X) depends on at most R indeterminates and has degree

at most D.
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I Fact 21. The case of R = ∞ (equivalently, R = n) corresponds to the well-known degree-D

SOS proof system.

I Definition 22. Suppose one includes the Boolean equalities, meaning X
2
u − 1 = 0 for all

1 ≤ i ≤ n.11 In this case D = ∞ is equivalent to D = R, and the corresponding proof system

is equivalent to R-round Sherali–Adams.

I Fact 23. We will often be concerned with the R-local, degree-2 SOS proof system, where

all lines are quadratic inequalities. In this case, we could equivalently state that the default

axioms are all those inequalities of the form

x
>P x ≥ 0, (8)

where x = (Xu1
, . . . ,XuR

) is a length-R subvector of X, and P is an R×R positive semidefinite

(PSD) matrix.

I Remark 24. In fact, we will often be concerned with the R-round, degree-2 Sherali–Adams

proof system, which is strictly weaker than the general R-round Sherali–Adams proof system.

Despite this restriction to D = 2, we only know the poly(nR, L)-time algorithm for deciding

derivability of a given quadratic polynomial p(X) ≥ 0 (of bit-complexity L).

3 Proof of Main Theorem (2XOR certifications from “spider walks”)

In this section, we prove our main theorem: given a 2-xor or max-cut instance on a graph

G with small spectral radius, we will show that the R-local degree-2 SOS proof system gives

nontrivial refutations with R not too large.

Our strategy is as follows: we select a specific tree T of size ∝ R, and we consider the

distribution over copies of T in our graph given by the T -indexed stationary random walk.

We will use this distribution to define the coefficients for a degree-2, R-local proof that

bounds the objective value of the CSP. We will do this by exploiting the uniformity of the

graph guaranteed by the small spectral radius, and the fact that degree-2 R-local SOS proofs

can certify positivity of quadratic forms c>
X|SX|>S c, where X|S is the restriction of X to a

set S of variables with |S| ≤ R and c ∈ R
|S|.

Intuitively, in the “pseudoexpectation” view, the idea of our proof is as follows. When

there is no globally consistent assignment, a uniformly random pair of vertices u, v ∈ V will

have pseudocorrelation close to zero. On the other hand, if t-step random walks mix to a

roughly uniform distribution over vertices in the graph, then pairs of vertices at distance t

will also have pseudocorrelation close to zero. But also, in our proof system the degree-2

pseudomoments of up to R variables obey a positive-semidefiniteness constraint. By choosing

the tree T with diameter at least t, while also choosing T to propagate the effect of the

low-pseudocorrelation at the diameter to give low-pseudocorrelation on signed edges, we

show that the proof system can certify that the objective value is small. Specifically, we will

choose T to be a spider graph:

I Definition 25. For integers k, ` ∈ N
+, we define a (k, `)-spider graph to be the tree formed

by gluing together k paths of length ` at a common endpoint called the root. This spider has

k`+ 1 vertices and diameter 2`.

11 Or alternatively, X
2

u − Xu = 0 for all i.
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While we were not able to formally prove that the spider is the optimal choice of tree,

intuitively, we want to choose a tree that maximizes the ratio of the number of pairs at

maximum distance (since such pairs relate the local properties to the global structure) to

the number of vertices in the tree (because we need to take our number of rounds R to be at

least the size of the tree). Among trees, the spider is the graph that maximizes this ratio.

Let us henceforth fix a (k, `)-spider graph, where the parameters k and ` will be chosen

later. We write S for the vertex set of this tree (and sometimes identify S with the tree itself).

I Definition 26. For 0 ≤ d ≤ 2`, we define the matrix A(d) ∈ R
S×S to be the “distance-d”

adjacency matrix of the spider; i.e., A
(d)
ij is 1 if distS(i, j) = d and is 0 otherwise. (We

remark that A(0) is the identity matrix.)

The following key technical theorem establishes the existence of a matrix Ψ which will allow

us to define the coefficients in our R-local degree-2 SOS proof. It will be proven in Section 3.2:

I Theorem 27. For any parameter α ∈ R, there is a PSD matrix Ψ = Ψα ∈ R
S×S with the

following properties:

〈Ψ, A(0)〉 = 1 +
1

2k
α2` +

1

k − 1

α2` − α2

α2 − 1
,

〈Ψ, A(1)〉 = α,

〈Ψ, A(d)〉 = 0 for 1 < d < 2`,

〈Ψ, A(2`)〉 =
1 − 1/k

2
α2`.

Here we are using the notation 〈B,C〉 for the “matrix (Frobenius) inner product” Tr(B>C).

I Corollary 28. Assuming that k ≥ 3` and taking α = k1/(2`), the PSD matrix Ψ satisfies

the following four statements:

3/2 ≤ 〈Ψ, A(0)〉 ≤ 2, 〈Ψ, A(1)〉 = k1/(2`),

〈Ψ, A(d)〉 = 0 for 1 < d < 2`, 〈Ψ, A(2`)〉 = 1
2 (k − 1).

We will also use the following small technical lemma:

I Lemma 29. Let M ∈ R
V ×V and recall π∗ = minv∈V {π(v)} > 0. Then the 2-local, degree-2

SOS proof system can derive

E
u∼π

∑

v∈V

MuvXuXv ≤ π
−1/2
∗ ‖M‖2 E

u∼π
X

2
u.

Proof. The proof system can derive the following inequality for any γ > 0, since the difference

of the two sides is a perfect square:

MuvXuXv ≤ M2
uv

2γπ(v)
X

2
u +

γπ(v)

2
X

2
v.

Thus it can derive

E
u∼π

∑

v∈V

MuvXuXv ≤ E
u∼π

X
2
u

∑

v∈V

M2
uv

2γπ(v)
+
γ

2
E

v∼π
X

2
v. (9)

We’ll take γ = π
−1/2
∗ ‖M‖2. Since we can certainly derive aX

2
u ≤ bX2

u whenever a ≤ b, we see

that it suffices to establish

∑

v∈V

M2
uv

2γπ(v)
≤ γ

2
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for every outcome of u. But this is implied by
∑

v M
2
uv ≤ (π(v)/π∗)‖M‖2

2 for all v ∈ V ,

which is indeed true. J

We can now prove the following main theorem:

I Theorem 30. Given parameters k ≥ 3`, let R = k`+ 1 and define

β =
kπ

−1/2
∗

2k1/(2`)
ρ(K)2` +

2

k1/(2`)
,

where ρ(K) denotes the spectral radius of the signed transition matrix K. Then R-local,

degree-2 SOS can deduce the bound “ρ(K) ≤ β”; more precisely, it can deduce the two

inequalities

−β〈X,X〉π ≤ 〈X,KX〉π ≤ β〈X,X〉π.

Before proving this theorem, let us simplify the parameters. For any ε > 0, we can choose

` to be the smallest integer so that ( 1
ερ(K))2`π

−1/2
∗ ≤ ε, and k = d( 1

ε )2`e. This gives the

corollary:

I Corollary 31. Suppose we have a graph G = (V,E) with signed transition operator K

and π∗ = minv∈V
deg(v)
2|E| . Given ε > min(π

−1/2
∗ , ρ(K)), take ` =

⌈
1
4

log(ε2π∗)

log(ρ(K)/ε)

⌉
, and take

k = d( 1
ε )2`e. Then for R = k`+ 1, it holds that R-local degree-2 SOS can deduce the bound

ρ(K) ≤ 5
2ε. In particular, if we think of G,Ξ as a 2-xor CSP, it holds that R-round

Sherali–Adams can deduce the bound OBJ ≤ 1
2 + 5

4ε.

Proof. Taking the parameters as above, and using that the constraints X
2
u = 1 imply that

R-round Sherali–Adams can deduce that 〈X,X〉π = 1 whenever R ≥ 2, and that as noted in

Equation (7), OBJ(X) = 1
2 + 1

2 〈X,KX〉π, so Theorem 30 gives the result. J

Corollary 31 implies the 2-xor version of Theorem 1 since in simple graphs, log 1
π∗ =

Θ(logn).

Proof of Theorem 30. For our (k, `)-spider graph on S, let (φ,σ) be a signed stationary

S-indexed random walk in G. Define x to be the S-indexed vector with xi = σ(i)Xφ(i). Then

letting Ψ be the PSD matrix from Corollary 28, the R-local, degree-2 SOS proof system can

derive

〈Ψ, xx
>〉 = x

>Ψx ≥ 0.

(This is in the form of Inequality (8) if we take P = diag(σ)Ψ diag(σ).) Furthermore, the

proof system can deduce this inequality in expectation; namely,

〈Ψ,Y〉 ≥ 0, where Y = E[xx
>]. (10)

Now by the discussion in Definitions 16 and 17,

Yij = E[σ(i)Xφ(i)σ(j)Xφ(j)] = 〈X,KdistS(i,j)
X〉π. (11)

Thus recalling the notation A(d) from Definition 26,

Y =
2∑̀

d=0

〈X,Kd
X〉πA

(d), (12)
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8:14 Sherali–Adams Strikes Back

and hence from Inequality (10) we get that R-local, degree-2 SOS can deduce

0 ≤
2∑̀

d=0

〈Ψ, A(d)〉〈X,Kd
X〉π = c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2 (k − 1)〈X,K2`
X〉π, (13)

for some constant 3/2 ≤ c0 ≤ 2 (here we used Corollary 28). Regarding the last term,

we have:

〈X,K2`
X〉π = E

u∼π

∑

v∈V

(K
2`

)uvXuXv. (14)

If we cared only about the Sherali–Adams proof system with Boolean equalities, we would

simply now deduce

E
u∼π

∑

v∈V

(K
2`

)uvXuXv ≤ E
u∼π

∑

v∈V

∣∣∣(K2`
)uv

∣∣∣

≤
√

|V | E
u∼π

‖K2`

u,·‖2 ≤
√

|V |ρ(K
2`

) =
√

|V |ρ(K)2`,

and later combine this with c0〈X,X〉π = c0. But proceeding more generally, we instead use

Lemma 29 to show that our proof system can derive

E
u∼π

∑

v∈V

(K
2`

)uvXuXv ≤ π
−1/2
∗ ρ(K)2`〈X,X〉π.

Putting this into Equation (14) and Inequality (13) we get

〈X,KX〉π ≥ −c0 + 1
2 (k − 1)π

−1/2
∗ ρ(K)2`

k1/(2`)
〈X,X〉π ≥ −β〈X,X〉π.

Repeating the derivation with −K in place of K completes the proof. J

3.1 Max-Cut

The following theorem is quite similar to Theorem 30. In it, we allow K to have the large

eigenvalue 1, and only certify that it has no large-magnitude negative eigenvalue. The

subsequent corollary is deduced identically to Corollary 31.

I Theorem 32. Given transition operator K for the standard random walk on G, let

K ′ = K − J , where J is the all-1’s matrix. For parameters k ≥ 3`, let R = k`+ 1 and define

β =
kπ

−1/2
∗

2k1/(2`)
ρ(K ′)2` +

2

k1/(2`)
.

(Note that ρ(K ′) is equal to maximum-magnitude eigenvalue of K when the trivial 1 eigenvalue

is excluded.) Then 2R-local, degree-2 SOS can deduce the bound “λmin(K) ≥ −β”; more

precisely, it can deduce the inequality

〈X,KX〉π ≥ −β〈X,X〉π.

I Corollary 33. Suppose we have a graph G = (V,E) with transition operator K and centered

transition operator K ′ = K − J , and π∗ = minv∈V
deg(v)
2|E| . Given ε > min(π

−1/2
∗ , ρ(K ′)), take

` =
⌈

1
4

log(ε2π∗)

log(ρ(K)/ε)

⌉
, and take k = d( 1

ε )2`e. Then for R = k`+1, it holds that 2R-local degree-2

SOS can deduce the bound ρ(K ′) ≤ 5
2ε. In particular, if we think of G as a max-cut CSP,

it holds that R-round Sherali–Adams can deduce the bound OBJ ≤ 1
2 + 5

4ε.
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Again, Corollary 33 implies Theorem 1 since in simple graphs, log 1
π∗ = Θ(logn).

Proof of Theorem 32. The proof is a modification of the proof of Theorem 30. Letting S

be the (k, `)-spider vertices, instead of taking a signed stationary S-indexed random walk

in G, we take two independent unsigned stationary S-indexed random walks, φ1 and φ2.

For j ∈ {1, 2}, define xj to be the S-indexed vector with ith coordinate equal to Xφj(i), and

write ẋ for the concatenated vector (x1, x2). Also, for 0 < θ < 1 a parameter12 slightly less

than 1, let Ψ be the PSD matrix from Corollary 28, and define the PSD block-matrix

Ψ̇ = 1
2

(
1
θ Ψ −Ψ

−Ψ θΨ

)
.

Then as before, the 2R-local, degree-2 SOS proof system can derive

0 ≤ 〈Ψ̇,E ẋẋ
>〉 = ι〈Ψ,Y〉 − 〈Ψ,Z〉, where ι = 1/θ+θ

2 , Y = E[xx
>], Z = E[x1x

>
2 ], (15)

and x (which will play the role of x) denotes the common distribution of x1 and x2. Similar

to Equations (11) and (12), we now have

Y =

2∑̀

d=0

〈X,Kd
X〉πA

(d),

and by independence of x1 and x2 we have

Z = 〈1, X〉2
π · J = 〈1, X〉2

π ·
2∑̀

d=0

A(d).

Thus applying Corollary 28 to Inequality (15), our proof system can derive

0 ≤ ι ·
(
c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2 (k − 1)〈X,K2`
X〉π

)

− E
u∼π

[Xu]2 ·
(
c0 + k1/(2`) + 1

2 (k − 1)
)
. (16)

By selecting θ appropriately, we can arrange for the factor c0 + k1/(2`) + 1
2 (k− 1) on the right

to equal ι · 1
2 (k − 1). Inserting this choice into Inequality (16) and then dividing through

by ι, we conclude that the proof system can derive

0 ≤ c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1
2 (k − 1)

(
〈X,K2`

X〉π − 〈1, X〉2
π

)
,

cf. Inequality (13). Recalling now that K has the constantly-1 function as an eigenvector,

with eigenvalue 1, we have the identity

〈X,K2`
X〉π − 〈1, X〉2

π = 〈X, (K − J)2`
X〉π.

Now the remainder of the proof is just as in Theorem 27, with K − J in place of K, except

we do not have the step of repeating the derivation with −K in place of K. J

12 This parameter is introduced to fix a small annoyance; the reader might like to imagine θ = 1 at first.
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3.2 A technical construction of coefficients on the spider

Proof of Theorem 27. We are considering the (k, `)-spider graph on vertex set S. We write

Vt for the set of all vertices at distance t from the root (so |V0| = 1 and |Vt| = k for 1 ≤ t ≤ `).

We will be considering vectors in R
S , with coordinates indexed by the vertex set S. For

0 ≤ t ≤ ` define the vector

µt = avg
i∈Vt

{αtei},

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector with the 1 in the ith position. Further define

vectors

χ = µ0 + µ1,

ψt = µt − µt+2 for 0 ≤ t < `,

with the understanding that µ`+1 = 0. Next, define the PSD matrix

Ψ̃ = χχ> +

`−1∑

t=0

ψtψ
>
t .

This will almost be our desired final matrix Ψ. Let us now compute

〈Ψ̃, A(d)〉 = χ>A(d)χ+

`−1∑

t=0

ψ>
t A

(d)ψt.

To do this, we observe that

µ>
s A

(d)µt = αs+t
Pr

i∼Vs, j∼Vt

[distS(i, j) = d],

and

µ>
0 A

(d)µt = µ>
t A

(d)µ0 =

{
αt if d = t,

0 else;

and for s, t > 0, µ>
s A

(d)µt =





(1/k)αs+t if d = |s− t|,
(1 − 1/k)αs+t if d = s+ t,

0 else.

From this we can compute the following (with a bit of effort):

〈Ψ̃, A(0)〉 = 2 + (2/k)α2 + (2/k)α4 + · · · + (2/k)α2`−2 + (1/k)α2`

〈Ψ̃, A(1)〉 = 2α

〈Ψ̃, A(2)〉 = −(2/k)α2 − (2/k)α4 − (2/k)α6 − · · · − (2/k)α2`−2

〈Ψ̃, A(2t+1)〉 = 0, 1 ≤ t < `

〈Ψ̃, A(2t)〉 = 0, 1 < t < `

〈Ψ̃, A(2`)〉 = (1 − 1/k)α2`

Now, for a parameter η > 0 to be chosen shortly, we finally define the PSD matrix

Ψ =
1

2
Ψ̃ + ηµ1µ

>
1 .
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We have

〈ηµ1µ
>
1 , A

(d)〉 =

{
η(1/k)α2 if d = 0,

η(1 − 1/k)α2 if d = 2.

Therefore by carefully choosing

η =
1

k − 1

(
α2`−2 − 1

α2 − 1

)
,

we get all of the desired inner products in the theorem statement. J

4 Lower Bounds

In this section, we show that degree-R Sherali–Adams cannot refute a random 2-xor or

max-cut instance better than 1
2 + Ω( 1

R ). This is a straightforward application of the

framework of Charikar, Makarychev and Makarychev [15]. In that work, the authors show

that if every subset of r points in a metric can be locally embedded into the unit sphere, then

Goemans-Williamson rounding can be used to give a Θ(r)-round Sherali–Adams feasible

point. The upshot is the following theorem appearing in [15] (where it is stated in slightly

more generality, for the 0/1 version of the cut polytope):

I Theorem 34 (Theorem 3.1 in [15]). Let (X, ρ) be a metric space, and assume that every

r = 2R+ 3 points of (X, ρ) isometrically embed in the Euclidean sphere of radius 1. Then the

following point is feasible for R-rounds of the Sherali–Adams relaxation for the cut polytope:

Ẽ[xixj ] = 1 − 2

π
arccos

(
1 − 1

2
ρ(i, j)2

)
.

I Proposition 35. In any 2-xor or max-cut instance, R-rounds of Sherali–Adams cannot

certify that

OBJ(x) <
1

2
+

1

πR
− 1

2R2

Proof. Suppose that we are given a 2-xor (equivalently, max-cut) instance on the graph G,

so that on each edge (i, j) ∈ E(G) we have the constraint xixjbij = 1 for some bij ∈ {±1}.

Define the metric space on (X, ρ) as follows: let X = {x1, . . . , xn} have a point for each

vertex of G, and set ρ(xi, xj) =
√

2
(
1 − bij

1
R

)
.

We claim that any r = 2R+ 3 points of X embed isometrically into the Euclidean sphere

of radius 1. To see this, fix a set S ⊂ X, and define the |S| × |S| matrix BS so that

(BS)ij =

{
bij

r if (i, j) ∈ E(G),

0 otherwise.

So long as |S| ≤ r, the matrix MS = 1 +BS is diagonally dominant, and therefore positive

semidefinite, so from the Cholesky decomposition of MS we assign to each xi ∈ S a vector vi

so that ‖vi‖2 = 1, and so that for every pair xi, xj ∈ S, ‖vi − vj‖2 = 2 − 2bij
1
r = ρ(i, j)2.

Applying Theorem 34, we have that the solution

Ẽ[xixj ] = 1 − 2

π
arccos

(
1 − 1

2
· 2

(
1 − bij

1

r

))
= 1 − 2

π
arccos

(
bij

1

r

)

is feasible. For convenience, let f(z) = 1 − 2
π arccos(z). We use the following properties of f :
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B Claim 36. The function f(z) = 1 − 2
π arccos(z) exhibits the rotational symmetry f(z) =

−f(−z), and further f(z) ≥ 2
π z for z ∈ [0, 1].

We give the proof of the claim (using straightforward calculus) below. Now, because

f(z) = −f(−z), we have that

bij · Ẽ[xixj ] = bij · f
(
bij

1

r

)
= f

(
1

r

)
,

and using that for z ∈ [0, 1], f(z) ≥ 2
π z ≥ 0,

≥ 2

π
· 1

r
.

We conclude that R = 1
2 (r − 3) rounds of Sherali–Adams are unable to certify that

OBJ < 1
2 + 2

π
1

2R+3 , as desired. J

Proof of Claim 36. The rotational symmetry follows from simple manipulations:

f(z) − (−f(−z)) = 2 − 2

π
(arccos(z) + arccos(−z)) = 2 − 2

π
arccos(−1) = 0.

For the second claim, we use that the derivative of f(z) − 2
π z is positive in the interval [0, 1

2 ]:

∂

∂z
f(z) − 2

π
z =

2

π

1√
1 − z2

− 1

2
> 0 for |z| < 1,

and that at z = 0, f(z) − 2
π z = 0. C

5 Refutation for any Boolean CSP

In this section, we argue that R-round Sherali–Adams can also refute any non-trivial Boolean

CSP. First, for any predicate P : {±1}k → {0, 1} we define a parameterized distribution over

the CSP with constraints from P :

I Definition 37. Let P : {±1}k → {0, 1} be a predicate. Then we define a random instance

of P on n vertices with m expected clauses to be an instance sampled as follows: define

p = m
nk , and for each ordered multiset S ⊂ [n] with |S| = k, independently with probability p

we sample a uniformly random string ζS ∈ {±1}k and add the constraint that P (xS �ζS) = 1,

where � denotes the entry-wise (or Hadamard) product.

This is one of several popular models, and in our case it is the most convenient to work with.

By employing some manipulations, results from this model transfer readily to the others (see

for example Appendix D of [2] for details).

Our result is as follows:

I Theorem 38. Suppose that P : {±1}k → {0, 1} and that δ, ε > 0 are fixed constants. Let

E[P ] be the probability that a random x ∈ {±1}k satisfies P . Then with high probability, for

a random instance I of P on n variables with m ≥ ndk/2e+δ expected clauses, the R-round

Sherali–Adams proof system can certify that OBJI(x) ≤ E[P ] + ε when R = Oε,δ,k(1) rounds.

More specifically, R = k`
(

3·2k/2−1

ε

)2`

+ k for ` = dd k
2 e 1

2δ e.

We can also prove a more fine-grained result, to obtain strong refutation at lower clause

densities when the predicate has certain properties.
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I Definition 39. We say that a predicate P : {±1}k → {0, 1} is η-far from t-wise supporting

if every t-wise uniform distribution has probability mass at least η on the set of unsatisfying

assignments P−1(0).

I Theorem 40. Suppose that P : {±1}k → {0, 1} is η-far from t-wise supporting, and that

δ, ε > 0. Then with high probability, for a random instance I of P on n variables and

m ≥ ndt/2e+δ expected clauses, the R-round Sherali–Adams proof system can certify that

OBJI(x) ≤ 1 − η + ε with R = Oε,δ,t(1) rounds. More specifically, R = t`
(

3·2t/2−1

ε

)2`

+ t

for ` = dd t
2 e 1

2δ e.

Following the strategy introduced in [2], we will do this by first refuting weighted random

instances of k-xor for k ≥ 1. After this, any predicate P : {±1}k → {0, 1} can be decomposed

according to its Fourier decomposition, which will yield a weighted sum of t-xor instances

for t ≤ k, and our proof system will refute each individually.

5.1 Higher-arity XOR

Ultimately, we will reduce each k-CSP to a sum over weighted t-xor instances with t ≤ k:

I Definition 41. Let W be a distribution over signed integers. We say that I is a random

k-xor instance weighted according to W if it is sampled as follows: for each ordered multiset

S ⊂ [n] with |S| = k, we take a bS to be equal to a uniformly random sample from W, and

finally set the objective function to be
∑

S bS · xS.

Following the standard strategy introduced by [30, 26] and subsequently honed in many

works, we will reduce refuting these t-xor instances to refuting 2-xor instances.

5.1.1 Even k-XOR

In this case, we perform a standard transformation to view the k-xor instance as a 2-xor

instance on super-vertices given by subsets of vertices of size k/2.

I Definition 42. Suppose k > 1 is an integer and I is a 2k-xor instance on n variables

x1, . . . , xn, with objective
∑

U∈[n]2k bU · xU where the sum is over ordered multisets U ⊂
[n], |U | = 2k. Then we let its flattening, Iflat, be the 2-xor instance on nk variables given

by associating a new variable yS for each ordered multiset S ⊂ [n], |S| = k, and for each

U ⊂ [n] with |U | = 2k, choosing the partition of U into the ordered multisets S, T with S

containing the first k elements and T containing the last k, taking the objective function∑
S,T bU · ySyT .

I Lemma 43. Suppose that I is a 2k-xor instance, and let Iflat be the 2-xor instance

given by its flattening. Then if the R-round Sherali–Adams proof system can certify that

OBJIflat
(x) ≤ c, then the k ·R-round Sherali–Adams proof system can certify that OBJI(x) ≤

c.

Proof. Every degree-R Sherali–Adams proof for Iflat can be transformed into a Sherali–

Adams proof of degree at most kR for I by applying the transformation yS =
∏

i∈S xi = xS .

Further, this transformation exactly relates the objective functions of Iflat and I. This

proves the claim. J

If the 2k-xor instances that we start with are random weighted instances, then their

flattenings are also random weighted 2-xor instances.

CCC 2019
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B Claim 44. Suppose that I is a random 2k-xor instance on n vertices weighted according to

W. Then the flattening Iflat is a random 2-xor instance on nk vertices weighted according

to W.

Proof. This fact is immediate, since the ordered multisets U ⊂ [n], |U | = 2k are in bijection

with ordered pairs of multisets S, T ⊂ [n], |S| = |T | = k. C

We will require the following proposition, which applies our main theorem in the context

of random k-xor instances with random weights from well-behaved distributions.

I Proposition 45. Suppose that W is a distribution over integers which is symmetric about

the origin, and let n, k ≥ 1 be positive integers. Let E denote the expectation under the

measure W, and let σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

The expected absolute value is at least E |w| � σ
√

log n
nk ,

With high probability over n2k i.i.d. samples w1, . . . , wn2k ∼ W, maxi∈[n2k] |wi| ≤ M �
σ2nk.

Now, define

ρ = O

(
σ logN

E |w|
√
nk

· max(1, M√
nk

)

)
.

Then if I is a random 2k-xor instance on n variables weighted according to W, with high

probability I has E |w| · n2k ± O(σnk
√

logn) constraints. Further, choosing ` ∈ N+ large

enough so that nk/4`ρ ≤ 1
2ε

2` and setting R = 2k · ` ·
(

1
ε

)2`
, R rounds of Sherali–Adams can

deduce the bound OBJI(x) ≤ 1
2 + 3

2ε.

To prove the above, we require the following standard matrix Bernstein inequality:

I Theorem 46 (Theorem 6.6.1 in [48]). Let A1, . . . , Am ∈ R
N×N be independent random

matrices, with E Ai = 0 for all i ∈ [m] and ‖Ai‖ ≤ M for all i ∈ [m]. Let A =
∑

i∈[m] Ai

denote their sum, and suppose that ‖ E AA>‖, ‖EA>A‖ ≤ σ2. Then

Pr (‖A‖ ≥ t) ≤ N · exp

(
1

2

−t2
σ2 + 1

3Mt

)
.

Proof of Proposition 45. Given a weighted 2k-xor instance on n variables with weights from

W , we consider its flattening Iflat with objective function OBJ(x) = 1
m

∑
i,j∈[N ]

1
2 (1+bijxixj)

for m the absolute sum of weights, we construct its signed adjacency matrix as follows: first

take the matrix W defined so that Wi,j = bij , and obtain a new matrix B = 1
2 (W +W>).

For any x, applying Lemma 43 we have that 1
2 + 1

2mx
>Bx = OBJI(x).

Since W is a distribution over integers, 2B has signed integer entries. We think of 2B

as defining a multigraph G on nk vertices with signed edges, so that there are 2 · |Bij |
multiedges between i, j ∈ [nk], each with sign sgn(Bij). Let 2 ·D be the degree matrix of G,

let A = |2B| be the adjacency matrix of G, let Ξ = sgn(B) be the matrix of signs of B, and

let K = (2D−1)A = D−1B ⊗ Ξ be the transition matrix for the random walk on G.

To apply Corollary 31, we must upper bound the spectral radius of Ξ◦K = D−1B, as well

as bound the minimum degree of G and the total number of edges. We will use the bound

‖D−1B‖op ≤ ‖D−1‖op · ‖B‖op ≤ 1

π∗ ‖B‖op.
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First, we bound ‖B‖op. Take B′ to be the truncated version of B, so that B′
i,j = sgn(Bi,j) ·

max(|Bi,j |,M). Thinking of the matrix B′ as the sum of
(

nk

2

)
+ nk symmetric matrices,

one for each pair i, j ∈ [nk], satisfies the requirements of Theorem 46. We have that

E[B′B′>] � nkσ2 · 1, so applying Theorem 46 with t = Omax(
√
σ2nk logn,M logn) we get

that with high probability,

‖B‖op ≤ O
(

max
(√

σ2nk logn,M logn
))

,

where we have also used that with high probability B = B′ by the properties of W.

Now, we bound the sum of degrees 2m and the minimum degree dmin. We have that

the total sum of the degrees is given by 2m =
∑

i,j∈[nk] |bij | with bij ∼ W. By a Bernstein

inequality,

Pr
(∣∣2m− n2k

E |w|
∣∣ ≥ s

)
≤ 2 exp

(
−1

2

s2

n2k · Ew2 + 1
3Ms

)
,

so since by assumption σ2n2k � M , setting s = O(σnk
√

logn) we have that with high

probability

2m = n2k
E |w| ±O(σnk

√
logn). (17)

By our assumptions on W we have that for every i ∈ [nk], E degG(i) = nk
E |w|. Applying

a Bernstein inequality gives that

Pr[degG(i) ≤ nk
E |w| − t] ≤ exp

(
−1

2
· t2

nkσ2 + 1
3Mt

)
,

so using that M ≤ nkσ2 and taking t = O
(√

nkσ2 logn
)

we get that dmin = nk · E |w| ±
O(
√
nkσ2 logn) with high probability. This gives that with high probability,

π∗ =
dmin

2m
≥ nk · E |w| −O(σ

√
nk logn)

n2k · E |w| +O(σnk
√

logn)
≥ 1

nk
· (1 − o(1))

‖Ξ ◦K‖op ≤ ‖B‖op

dmin
≤
O(σ

√
nk logn) · max(1, M√

nk
)

nk · E |w| −O(σ
√
nk logn)

≤ O

(
σ logn

E |w|
√
nk

)
· max(1, M√

nk
)

where we have used that σ
√

logn �
√
nk E |w|.

Now, the result follows by applying Corollary 31 and Lemma 43. J

5.1.2 Odd k-XOR

For odd integers k, k-xor instances do not have the same natural, symmetric flattenings.

Instead, we define what we call a lift:

I Definition 47. Suppose k ≥ 1 is an integer and I is a (2k+1)-xor instance on n variables

x1, . . . , xn, with objective
∑

U∈[n]2k+1 bU ·xU . Then we let its lift, Ilift, be the bipartite 2-xor

instance on parts each containing nk+1 variables created as follows:

Create new variables w1, . . . , wn

For each U ∈ [n]2k+1, choose a random index iU ∈ [n] and add modify the objective to∑
U∈[n]2k+1 bU · xU · wiU

CCC 2019



8:22 Sherali–Adams Strikes Back

For each ordered multiset S associate a new variable yS, and for each ordered multiset

T ∈ [n]k and index i ∈ [n] associate a new variable zT,i We understand yS =
∏

i∈S xi,

and zT,i =
(∏

j∈T xj

)
· wi.

For each U ∈ [n]2k+1, we take the ordered multiset V = (U, iU ) and assign it a new

coefficient b′
V = bU . For the remaining b′

V , we set b′
V = 0.

Finally, Ilift is the instance with the objective function
∑

S∈[n]k+1,T ∈[n]k,i∈[n] b
′
S∪T ∪i · ySzT,i.

We obtain a statement analogous to Lemma 43 for odd k-xor:

I Lemma 48. Suppose that I is a weighted (2k + 1)-xor instance, and let Iflat be the

bipartite 2-xor instance given by its flattening. Then if the R-round Sherali–Adams proof

system can certify that OBJIflat
(x) ≤ c, then the (k + 1) · R-round Sherali–Adams proof

system can certify that OBJI(x) ≤ c.

Proof. The only modification to the proof of Lemma 48 is that for zT,i we substitute

zT,i = xT (where we have implicitly substituted wi = 1 for all i ∈ [n]). J

However, the lifting procedure does not preserve the weighting distribution W, because

of the step in which a random index iU is chosen to lift U . For this reason, we prove an

analog of Proposition 45:

I Proposition 49. Suppose that W is a distribution over integers which is symmetric about

the origin, and let n, k ≥ 1 be integers. Let E denote the expectation under the measure W,

and let σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

The expected absolute value is at least E |w| � σ
√

log n
nk ,

With high probability over n2k+1 i.i.d. samples w1, . . . , wn2k+1 ∼ W, maxi∈[n2k+1] |wi| ≤
M � σ2nk.

Now, define

ρ = O

(
σ logn

E |w|
√
nk

· max(1, M√
nk

)

)
.

Then if I is a random (2k + 1)-xor instance on n variables weighted according to W, with

high probability it has E |w| · n2k+1 ± O(σnk
√

logn) constraints. Furthermore, choosing

` ∈ N+ large enough so that n(k+1)/4`ρ ≤ 1
2ε

2` and setting R = (2k + 2)` ·
(

1
ε

)2`
, R rounds

of Sherali–Adams can deduce the bound OBJI(x) ≤ 1
2 + 3

2ε.

Proof. The thread of the proof is the same as that of Proposition 45. We will refute Ilift,

since by Lemma 48 this is sufficient. We begin by associating with Ilift a multigraph G

(which we may do because W is a distribution over integers). The multigraph G is a bipartite

graph, with one bipartition corresponding to variables yS for S ∈ [n]k+1, and one bipartition

corresponding to variables zT,i for T ∈ [n]k and i ∈ [n]. We let the block matrix B be (the
1
2 -scaled) signed adjacency matrix of G, let Ξ be the matrix of signs, D be the diagonal

degree matrix, and K ◦ Ξ = D−1B be the signed transition matrix of the random walk on G.

In order to apply Corollary 31 we must bound ‖K ◦ Ξ‖ and π∗ = dmin(G)/2m.

First, we bound the vertex degrees. For a vertex of the form (T, i), the expected value of

the incident edge (S, T ∪ i) is bS,T · 1
n , where bS,T . The degree of T ∪ i is simply the sum

degG(T ∪ i) =
∑

S∈[n]k+1

|bS,T ∪i|,
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a sum of independent random variables with expectation 1
n E |w| and variances 1

nσ
2. Applying

a Bernstein inequality, we have that

Pr

(∣∣∣∣degG(T ∪ i) − 1

n
· nk+1

E[|w|]
∣∣∣∣ ≥ t

)
≤ 2 exp

(
1

2

−t2
nkσ2 + 1

3Mt

)
,

so taking t = O(
√
σ2nk logn) (and using that M � nkσ2), we have that the degree of T ∪ i

vertices is degG(T ∪ i) = nk
E |w| ±O(

√
σ2nk logn) with high probability.

A similar argument applies to the S vertices; the total degree of such a vertex is

degG(S) =
∑

T ∈[n]k

|
∑

i∈[n]

bS,T ∪i|,

since only one of the bS,T ∪i will be nonzero. The inner sums are independent random

variables with mean E |w| and variance σ2, therefore

Pr
(∣∣degG(S) − nk

E |w|
∣∣ ≥ t

)
≤ 2 exp

(
1

2

−t2
nkσ2 + 1

3Mt

)
,

so taking t = O(
√
σ2nk logn) (and using that M � nkσ2), we have that the degree of S

vertices is also degG(S) = nk
E |w| ±O(

√
σ2nk logn) with high probability.

We finally bound ‖K ◦Ξ‖ ≤ ‖D−1‖·‖B‖. As before, B is a sum of independent symmetric

matrices, one for each coefficient bU from I. That is, we can define matrices BU for each

U ∈ [n]2k+1 with U = S, T for S ∈ [n]k+1, T ∈ [n]k where BU has a number bU ∼ W in one

off-diagonal block entry (S, T ∪ i) and the other off-diagonal block entry (T ∪ i, S) for a

randomly chosen i ∈ [n]. Thus, EBUB
>
U is a diagonal matrix with 1

nσ
2 on each diagonal of

the form (T ∪ i, T ∪ i) and σ2 on each block diagonal of the form (S, S). We then have that

EBB> � nkσ2
1, since for each S there is a sum over nk matrices BU and for each T ∪ i

there is a sum over nk+1 matrices BU . Applying Theorem 46 by using the same truncation

trick again, we have that

‖B‖ ≤ O
(

max
(√

σ2nk logn,M logn
))

,

and from this we have that with high probability,

‖K ◦ Ξ‖ ≤ 1

degmin(G)
≤ O

(
σ logn

E |w|
√
nk

)
· max(1, M√

nk
), (18)

π∗ =
degmin(G)

2m
=

1

nk+1
· (1 ± o(1)) (19)

After which we can apply Corollary 31. J

5.2 From Boolean CSPs to k-XOR

Following [2], we prove Theorem 38 via reduction to XOR.

Proof of Theorem 38. Given a random instance of the CSP defined by the predicate P ,

and p = n−bk/2c+δ, a Bernstein inequality gives us that the number of constraints m is with

high probability given by m = ndk/2e+δ ± 10
√
ndk/2e+δ logn. Set ` = d 1

2δ e.

Since P is a Boolean predicate, we can write P in its Fourier expansion:

P (z) =
∑

α⊆[k]

P̂ (α)
∏

i∈α

zi.

CCC 2019



8:24 Sherali–Adams Strikes Back

Using this expansion, we re-write the objective function. Recall that [n]k is the set of all

ordered multisets of k elements of [n]. For each S ∈ [n]k, let bS be the 0/1 indicator that

there is a constraint on S. Then, if the total number of constraints is m,

OBJI(x) =
1

m

∑

S∈[n]k

bS · P (xS � ζS)

=
1

m

∑

S={i1,...,ik}∈[n]k

∑

α⊆[k]

bS · P̂ (α)
∏

a∈α

xia
(ζS)ia

=
1

m

∑

α⊆[k]

P̂ (α) ·
∑

T ∈[n]|α|


 ∑

S∈[n]k,S|α=T

bS ·
∏

a∈α

(ζS)ia


 · xT . (20)

Now, define for each α ⊆ [k] with |α| = t > 0 the t-xor instance

Iα(x) =
1

m

∑

T ∈[n]t


 ∑

S∈[n]k,S|α=T

bS ·
∏

a∈α

(ζS)ia


 · xT =

1

m

∑

T ∈[n]t

wT · xT ,

where we have taken wT =
∑

S∈[n]k,S|α=T bS ·∏a∈α(ζS)ia . So that from Equation (20),

OBJI(x) =
∑

α⊆[k]

P̂ (α) · Iα(x). (21)

Let Wnk−t be the distribution defined so that w ∼ Wt is a sum of nk−t independent

variables taking value {±1} with probability p and value 0 otherwise. Since for each S ⊇ T ,

the quantity
∏

a∈α(ζS)ia
is an independent uniform sign in {±1} and bS is an independent

Bernoulli-p variable, we have that the coefficients wT in Iα are i.i.d. from Wnk−t . The

following lemma establishes some properties of WN (we will prove the lemma in Appendix A):

I Lemma 50. Let WN (p) be the distribution defined so that X ∼ WN is given by X =∑N
t=1 Yt · Zt, where the {Yt}t, {Zt}t are i.i.d with Yt ∼ Ber(p) and Zt ∼ {±1}. Then for

X ∼ WN (p), E X = 0 and E X2 = pN . Further, so long as pN ≥ 1, E |X| ≥ 2
e3/2

√
pN ,

and Pr(|X| > 2t
√
pN) ≤ 2 exp

(
−t2

)
. Otherwise, if pN ≤ 1, E |X| ≥ 1

2e log 1
1−pN , and

Pr(|X| ≥ 1 + t) ≤ exp
(
− 1

2 t
)
.

From Lemma 50, we have that Ew2
T = pnk−t, and by Cauchy-Schwarz E |wT | ≤

√
Ew2

T .

Let mα be the total absolute weight of constraints in Iα,

mα =
∑

T

|wT |.

Notice that in all cases, mα ≤ m.

Now, we show that SA can certify upper bounds on |Iα(x)| for every α. First, consider α

with |α| = t = 1. In this case, Sherali–Adams with R = 1 can certify that

Iα(x) =
1

m

∑

i∈[n]

wi · xi ≤ 1

m

∑

i∈[n]

|wi| =
mα

m
,

From an application of Bernstein’s inequality (the same as in the proof of Proposition 45),

mα ≤ n ·
√

Ew2
T +

√
pnk logn with high probability whenever pnk �

√
pnk−1, and applying

our bound on m we conclude that with high probability SA will certify that

Iα(x) ≤ n ·
√
pnk−1(1 + o(1))

pnk(1 ± o(1))
≤ 2√

pnk−1
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The lower bound on Iα(x) follows from identical reasoning with its negation, so we can

conclude that with high probability SA can certify that

|Iα(x)| ≤ 2√
pnk−1

= o(1).

Now, we tackle α with |α| = t for 2 ≤ t ≤ k. We will verify that the conditions of

Propositions 45 and 49 hold. First, consider the α with |α| = t for pnk−t ≥ 1. From

Lemma 50, in this case we have that E |wT | ≥ 2
e3/2

√
pnk−t, and with high probability,

|wT | ≤ O(
√
tpnk−t logn) for all T ∈ [n]t. Letting M = O(

√
tpnk−t logn), and σ2 = pnk−t,

we meet the conditions for Proposition 45:

M ≤ O(
√
pnk−t) � pnk−t · nbt/2c = σ2nbt/2c

E |wT | ≥ 2

e3/2

√
pnk−t �

√
pnk−t logn

nbt/2c =

√
σ2 logn

nbt/2c

so long as pnk−t ≥ 1, which we have assumed. So applying Propositions 45 and 49 to both
m

mα
Iα and − m

mα
Iα, we have

ρ = O

(
σ logn

E |wT |
√
nbt/2c

)
· max(1, M√

nbt/2c
) ≤ O

(
logn√
nbt/2c

)
· max

(
1,

√
pnk−t

nbt/2c

)

and so long as mα

m · ndt/2e/4`ρ ≤ 1
2ε

2`, with high probability over Iα, t(`r + 1) rounds of

Sherali–Adams certify that |Iα(x)| ≤ 3
2ε. We confirm that

mα

m
· ndt/2e/4` · ρ =

√
pnk−t · nt

pnk
· ndt/2e/4` · ρ � o(1),

whenever t ≥ 1 and ` ≥ 1.

Finally, we handle α with |α| = t for 2 ≤ t and pnk−t < 1. From Lemma 50 we have

E |wT | ≥ 1
e log 1

1−pnk−t , and with high probability, |wT | ≤ 4 logn for all T ∈ [n]t. Taking

M = 4 logn, we have that we meet the conditions of Propositions 45 and 49

M ≤ 4 logn � ndk/2e−dt/2e+δ = pnk−tnbt/2c = σ2nbt/2c,

E |wT | ≥ 1

e
log

1

1 − pnk−t
≥ 1

e
pnk−t �

√
pnk−t logn

nbt/2c =

√
σ2 logn

nbt/2c ,

where the last inequality is true whenever pnk−t+bt/2c = ndk/2e−dt/2e+δ � logn, which we

have by assumption. So applying Propositions 45 and 49 to both m
mα

Iα and − m
mα

Iα, we

have that for

ρ = O

(√
pnk−t logn

pnk−t
√
nbt/2c

)
= O(logn) ·

√
1

pnk−dt/2e = O

(
logn√

ndk/2e−dt/2e+δ

)
,

so long as mα

m ndt/2e/4`ρ ≤ 1
2ε

2`, R = t(`r+1) rounds of Sherali–Adams certify that |Iα(x)| ≤
3
2ε with high probability. Verifying,

mα

m
· ndt/2e/4` ·O

(
logn√

ndk/2e−dt/2e+δ

)
=

1√
pnk−t

· ndt/2e/4` ·O
(

logn√
ndk/2e−dt/2e+δ

)
,

which is maximized at t = k. By our choice of `, the condition holds.
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We therefore have (using Parseval’s identity and ‖x‖1 ≤
√
k‖x‖2 for x ∈ R

k to simplify

Equation (21)) that the same number of rounds certifies that

OBJI(x) ≤
∑

α⊂[k]

P̂ (α) · Iα(x) ≤ P̂ (∅) +
√

2k
3

2
ε,

as desired. J

Using arguments analogous to the above along with the reasoning outlined in Theorem

4.9, proof 2 and Claim 6.7 from [2], we can also prove Theorem 40.
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A Characteristics of distributions of XOR-subformula coefficients

We now prove Lemma 50. We will use the following estimate for the mean absolte deviation

of a binomial random variable.

I Lemma 51 (e.g. [10]). If X is distributed according to the binomial distribution X ∼
Bin(n, p), then E |X − E X| =

√
2
πnp(1 − p) +O( 1√

n
).

Proof of Lemma 50. We calculate the absolute value directly. Given that there are exactly

k nonzero Yt, the absolute value of X is distributed according to |Bin(k, 1
2 ) − 1

2k|. Using the

method of conditional expectations,

E |X| =

N∑

k=0

Pr I[k nonzero Yt’s] · E |Bin(k, t
2 ) − 1

2k| ≥
N∑

k=0

(
N

k

)
pk(1 − p)N−k ·

√
1

2π
k,

where we have applied the estimate from Lemma 51. Letting D(a‖b) = a ln a
b + (1 −a) ln 1−a

1−b
be the relative entropy, we then have from Stirling’s inequality that

E |X| ≥
N∑

k=1

√
2π

e2

N

k(N − k)
· exp

(
−N · D

(
k
N

‖p
))

·
√

1

2π
k ≥ 1

e

N∑

k=1

exp
(
−N · D

(
k
N

‖p
))

, (22)

Now, if pN < 1, we take

Equation (22) ≥ 1

e

N∑

k=1

exp
(

k log
(

pN

k

))
=

1

e

N∑

k=1

(
pN

k

)k

≥ −1

e
log(1 − pN) − O(pN ) (23)

as desired.

If pN ≥ 1, applying the change of variables ` = k − bpNc and δ = `
N ,

Equation (22) ≥ 1

e

b(1−p)Nc∑

`=1−bpNc
δ= `

N

exp (−N ·D (p+ δ‖p)) (24)
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Now using the Taylor expansion for log(1 − x) to simplify and restricting the sum over the

range ` = [−b√
pNc, b√

pNc], we get the bound

Equation (24) ≥ 1

e

b
√

pNc∑

`=−b
√

pNc
δ= `

N

exp

(
−N δ2

2

)
≥ 1

e
· 2
√
pN · exp(− p

2 ) ≥ 2

e3/2

√
pN, (25)

as desired.

The first and second moment we can also obtain by calculation; the Zt ensure that the

summands have mean 0, and the Yt give that the variance of the summands is p, which gives

the result.

The tail bound Pr(|X| ≥ (1 + 2t)
√
pN) ≤ 2 exp(−t2) comes from an application of

Bernstein’s inequality if pN ≥ 1; when pN < 1, we again apply Bernstein’s inequality, in

which case we have

Pr (|X| − E |X| ≥ s) ≤ exp

(
−1

2

s2

pN + 1
3s

)
,

and choosing s = 1 + t gives the result. J
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