
Text-to-SQL Generation for Question Answering
on Electronic Medical Records

Ping Wang
Dept. of Computer Science
Virginia Tech, Arlington, VA

ping@vt.edu

Tian Shi
Dept. of Computer Science
Virginia Tech, Arlington, VA

tshi@vt.edu

Chandan K. Reddy
Dept. of Computer Science
Virginia Tech, Arlington, VA

reddy@cs.vt.edu

ABSTRACT
Electronic medical records (EMR) contain comprehensive patient
information and are typically stored in a relational database with
multiple tables. Effective and efficient patient information retrieval
from EMR data is a challenging task for medical experts. Question-
to-SQL generation methods tackle this problem by first predicting
the SQL query for a given question about a database, and then,
executing the query on the database. However, most of the existing
approaches have not been adapted to the healthcare domain due to
a lack of healthcare Question-to-SQL dataset for learning models
specific to this domain. In addition, wide use of the abbreviation of
terminologies and possible typos in questions introduce additional
challenges for accurately generating the corresponding SQL queries.
In this paper, we tackle these challenges by developing a deep learn-
ing based TRanslate-Edit Model forQuestion-to-SQL (TREQS) gen-
eration, which adapts the widely used sequence-to-sequence model
to directly generate the SQL query for a given question, and further
performs the required edits using an attentive-copying mechanism
and task-specific look-up tables. Based on the widely used publicly
available electronic medical database, we create a new large-scale
Question-SQL pair dataset, named MIMICSQL, in order to perform
the Question-to-SQL generation task in healthcare domain. An
extensive set of experiments are conducted to evaluate the perfor-
mance of our proposed model on MIMICSQL. Both quantitative
and qualitative experimental results indicate the flexibility and effi-
ciency of our proposed method in predicting condition values and
its robustness to random questions with abbreviations and typos.

CCS CONCEPTS
• Information systems→ Question answering; • Computing
methodologies→ Information extraction; Neural networks;
• Applied computing→ Health informatics.

KEYWORDS
Sequence-to-sequencemodel, attentionmechanism, pointer-generator
network, electronic medical records, SQL query.

ACM Reference Format:
Ping Wang, Tian Shi, and Chandan K. Reddy. 2020. Text-to-SQL Generation
for Question Answering on Electronic Medical Records. In Proceedings of

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380120

TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380120

1 INTRODUCTION
Due to recent advances of data collection and storing techniques,
a large amount of healthcare related data, typically in the form
of electronic medical records (EMR), are accumulated everyday in
clinics and hospitals. EMR data contain a comprehensive set of
longitudinal information about patients and are usually stored in
structured databases with multiple relational tables, such as demo-
graphics, diagnosis, procedures, prescriptions, and laboratory tests.
One important mechanism of assisting doctors’ clinical decision
making is to directly retrieve patient information from EMR data,
including patient-specific information (e.g., individual demographic
and diagnosis information) and cohort-based statistics (e.g., mortal-
ity rate and prevalence rate). Typically, doctors interact with EMR
data using searching and filtering functions available in rule-based
systems that first turn any predefined-rule (front-end) to a SQL
query (back-end), and then, return an answer. These systems are
complicated and require special training before being used. They
are also difficult to manage and extend. For example, the front-end
needs to be adapted for newer functionalities. Therefore, doctors
who depend on these systems cannot fully and freely explore EMR
data. Another challenge for these systems is that the users have
to first transform their questions to a combination of rules in the
front-end, which is not convenient and efficient. For instance, if a
doctor wants to know the number of patients who are under the age
of 40 and suffering from diabetes, then, he/she may have to create
two filters, one for disease and the other for age. An alternate way
to solve this problem is to build a model that can translate this ques-
tion directly to its SQL query, so that the doctor only needs to type
his/her question as: “Give me the number of patients whose age is
below 40 and have diabetes", in the search box to get the answer.
Motivated by this intuition, we propose a new deep learning based
model that can translate textual questions on EMR data to SQL
queries (Text-to-SQL generation) without any assistance from a data-
base expert. As a result, these systems can assist doctors with their
clinical decisions more efficiently. Since the textual input in our
task is a clinical question, we will refer to Text-to-SQL generation
as Question-to-SQL generation from now onwards.

Recently, Question-to-SQL generation task has gained significant
attention and found applications in a variety of domains, including
WikiSQL [5, 36, 46] for Wikipedia, ATIS [12] about flight-booking,
GeoQuery [6] about US geography, and Spider [44] for general
purpose cross-domain applications. There are also few works in
this line of research in healthcare domain [2, 26]. Broadly speaking,
various approaches for Question-to-SQL generation task belong

https://doi.org/10.1145/3366423.3380120
https://doi.org/10.1145/3366423.3380120

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

Figure 1: An example from MIMICSQL. The two tables,
namely, Demographics and Diagnoses, are used to answer
the question. Different colors are used to show the corre-
spondence between various components in source question,
targeted SQL query, and SQL template.

to one of the following two categories: (1) Semantic parsing or
slot-filling methods [5, 9, 36, 38, 42, 43]: These models make use
of semantic and syntactic information in a question and a table
schema to generate a SQL logic form (parsing tree), which can be
easily converted to the corresponding executable query. However,
they strongly depend on pre-defined templates, which limits their
applications in generating complex SQL queries. (2) Language gen-
eration methods [35, 45, 46]: These models leverage the power of
language generation models and can directly generate SQL queries
without building pre-defined SQL templates [20]. Therefore, they
can be easily applied to produce complex SQL queries, regardless of
the number of tables and columns involved. However, the predicted
SQL queries may not be executable due to limited and inaccurate
information from questions (e.g., a random question with typos and
missing keywords). Moreover, it is difficult to interpret language
generation models and their outputs.

Many recent Question-to-SQLmodels have been primarily bench-
marked onWikiSQL [5, 36, 46] and Spider [3, 9, 43] datasets. InWik-
iSQL, questions are asked against databases with a single table, and
every SQL query is composed of a “SELECT” (column/aggregation)
clause along with a “WHERE” (condition) clause that consists of
one or multiple conditions. Different from WikiSQL, the Spider
dataset contains lots of complex and nested queries (e.g., “GROUP
BY” and “HAVING”) which may involve multiple tables [44]. Some
recent studies have shown that several models which perform well
on WikiSQL achieve poor results on Spider [9, 45]. It indicates that
models for Question-to-SQL generation on single-table databases
cannot be simply adapted to database with multiple relational ta-
bles. For Spider dataset, the current Question-to-SQL generation
task focuses on generating SQL queries without actual values for
“WHERE” conditions, which means models are only required to
predict SQL structures and parse corresponding table and column
names. However, even if a model can produce high quality SQL
structures and columns, condition value generation may still be the
bottleneck in producing correct and executable SQL queries [38].

Another issue with WikiSQL and Spider dataset is that most words
(78% for WikiSQL and 65% for Spider) in database schema in devel-
opment/testing sets have appeared in the training set [9]. Therefore,
it is not feasible to apply the models trained on the Spider dataset
to some other domains like chemistry, biology, and healthcare. Spe-
cific to healthcare domain, Question-to-SQL generation for EMR
data is still under-explored. There are three primary challenges:
(1) Medical terminology abbreviations. Due to the wide use of
abbreviation of medical terminology (sometimes typos), it is diffi-
cult to match keywords in questions to those in database schema
and table content. (2) Condition value parsing and recovery. It
is still a challenging task to extract condition values from questions
and recover them based on table content, especially in the appear-
ance of medical abbreviations. (3) Lack of large-scale healthcare
Question-to-SQL dataset. Currently, there is no dataset available
for the Question-to-SQL task in the healthcare domain.

To tackle these challenges, we first generated a large-scale health-
care Question-to-SQL dataset, namely MIMICSQL, that consists
of 10, 000 Question-SQL pairs, by using the publicly available real-
world Medical Information Mart for Intensive Care III (MIMIC III)
dataset [8, 13] and leveraging the power of crowd-sourcing. An illus-
trative example in MIMICSQL is provided in Figure 1 to illustrate
various components of the dataset. Based on MIMICSQL data, we
further propose a language generation based Translate-Edit model,
which can first translate a question to the corresponding SQL query,
and then, retrieve condition values based on the question and table
content. The editing meta-algorithms make our model more robust
to randomly asked questions with insufficient information and ty-
pos, and make it practical to retrieve and recover condition values
effectively. The major contributions of this paper are as follows:

• Propose a two-stage TRanslate-Edit Model for Question-to-SQL
(TREQS) generation model, which consists of three main com-
ponents: (1) Translating an input question to a SQL query using
a Seq2Seq based model, (2) Editing the generated query with
attentive-copying mechanism, and (3) Further editing it with
task-specific look-up tables.
• Create a large-scale dataset for Question-to-SQL task in health-
care domain. MIMICSQL has two subsets, in which the first set is
composed of template questions (machine generated), while the
second consists of natural language questions (human annotated).
To the best of our knowledge, it is the first dataset for healthcare
question answering on EMR data with multi-relational tables.
• Conduct an extensive set of experiments on MIMICSQL dataset
for both template questions and natural language questions to
demonstrate the effectiveness of the proposed model. Both quali-
tative and quantitative results indicate that it outperforms several
baseline methods.

The rest of this paper is organized as follows. Section 2 describes
some prior work related to Question-to-SQL generation, and differ-
entiate our work from other existing works. Section 3 provides a
comprehensive description of the MIMICSQL data generation pro-
cess. Section 4 provides the details of the proposed translate-edit
model. Section 5 shows the comparison of our proposed model with
the state-of-the-art methods by analyzing both quantitative and
qualitative results. Finally, we conclude the paper in Section 6.

Text-to-SQL Generation for Question Answering on Electronic Medical Records WWW ’20, April 20–24, 2020, Taipei, Taiwan

2 RELATED WORK
Question-to-SQL generation is a sub-task of semantic parsing,
which aims at translating a natural language text to a correspond-
ing formal semantic representation, including SQL queries, logic
forms and code generation [4, 37]. It has attracted significant at-
tention in various applications, including WikiSQL [36, 46] for
Wikipedia, ATIS [12] about flight-booking, GeoQuery [6] about
US geography and Spider [44] about cross-domain. In the litera-
ture of Question-to-SQL generation, a common way is to utilize
a SQL structure-based sketch with multiple slots and formulate
the problem as a slot filling task [5, 29, 36, 42, 46] by incorpo-
rating some form of pointing/copying mechanism [33]. Seq2SQL
method [46] is an augmented pointer network based framework
and mainly prunes the output space of the target query by leverag-
ing the unique structures of SQL commands. SQLNet method [36]
is proposed to avoid the “order-matter” problem in the condition
part by using a sketch-based approach instead of the sequence-to-
sequence (Seq2Seq) based method. By further improving SQLNet,
TYPESQL method [42] captures the rare entities and numbers in
natural language questions by utilizing the type information. The
two-stage semantic parsing method named Coarse2Fine [5] first
generates a sketch of a given question and then fills in missing de-
tails based on both input question and the sketch. Recently, several
semantic parsing methods [3, 9, 43] are also proposed on Spider to
tackle the problem across different domains. One limitation of these
methods is that they are highly dependent on the SQL structure and
the lexicons, and thus cannot efficiently retrieve the condition val-
ues. Therefore, compared to other components, the performance of
most semantic parsing methods in predicting condition values tend
to be relatively low and these methods primarily focus on predicting
correct SQL structures and columns, especially for the cross-domain
problem present in the recently released Spider data [44].

To overcome the disadvantage of slot filling methods, Seq2Seq
based methods [4, 20, 32, 34] are proposed to tackle this challenge
by directly generating the targeted SQL queries. More specifically,
Seq2Seq based methods first encode input questions into vector rep-
resentations and then decode the corresponding SQL conditioned
on the encoded vectors. A type system of SQL expressions is applied
in the deep Seq2Seq model in [34] to guide the decoder to either
directly generate a token from the vocabulary or copy it from the
input question. The table schema and the input question are en-
coded and concatenated as the model input. In contrast, the column
names are encoded independently from the encoding of questions
in [18], which extended the pointer-generator in SQL generation
when the order of conditions in SQL query does not matter. In [20],
a unified question-answering framework was proposed to handle
ten different natural language processing tasks, including WikiSQL
semantic parsing task. To perform question answering on databases
with multiple relational tables, there are some other works that
aim at guiding the SQL generation indirectly using the answers
obtained by query execution [23, 39, 40] or accomplish the goal
by directly identifying the correct table cells corresponding to the
question answers [10, 31].

Both semantic parsing and language generation approaches show
great efficiency in the existing application domains. However, the

Question-to-SQL generation task in healthcare domain is still under-
explored. There are some efforts in directly seeking answers from
unstructured clinical notes to assist doctors with their clinical de-
cision making [16, 41]. However, these problems are significantly
different from our task of answering natural language questions on
structured EMR data since in our task, the answers to the questions
may not be directly included in the structured data. For example,
instead of directly retrieving answers, a certain extent of reasoning
is required to answer the counting questions starting with “how
many". There are a few research efforts in solving the Question-to-
SQL generation tasks in healthcare domain using semantic parsing
and named entity extraction [2, 26]. Due to the domain-specific
challenges and the lack of large-scale datasets for model training,
there are still several challenges for the Question-to-SQL generation
in healthcare. For example, due to the commonly occurring abbre-
viations of healthcare terminology in EMR data and potential typos
in questions, it is possible that the keywords provided in questions
are not exactly the same ones used in the EMR data. Therefore,
besides predicting the SQL structure and columns, one important
task in healthcare is correctly predicting condition values in order
to ensure the accuracy of query results for input questions. These
challenges motivate us to develop a model that can tackle these
issues specifically in healthcare. To train and test our model, we
also create the MIMICSQL dataset, which consists of Question-SQL
pairs based on MIMIC III dataset. This is the first work that focuses
on the Question-to-SQL generation on the healthcare databases
with multiple relational tables.

3 MIMICSQL DATASET CREATION
To the best of our knowledge, there is no existing dataset for
Question-to-SQL generation task in the healthcare domain. In this
section, we provide a detailed illustration of Question-SQL pair
generation for Question-to-SQL tasks on EMR data.
3.1 MIMIC III Dataset
To ensure both the public availability of the dataset and the re-
producibility of the results for Question-to-SQL generation meth-
ods, the widely used Medical Information Mart for Intensive Care
III (MIMIC III) dataset [8, 13] is used in this paper to create the
Question-SQL pairs. Typically, the healthcare related patient in-
formation is grouped into five categories in healthcare literature,
including demographics (Demo), laboratory tests (Lab), diagnosis
(Diag), procedures (Pro), and prescriptions (Pres). We extracted
patient information and prepared a specific table for each cate-
gory separately. These tables compose a relational patient database
where tables are linked through patient ID and admission ID as
shown on the top of Figure 1.
3.2 MIMICSQL Generation
Based on the aforementioned five tables, we create the MIMICSQL
dataset, including the Question-SQL pairs along with the logical for-
mat for slot filling methods, specifically for such Question-to-SQL
generation task. Figure 1 provides an overview of basic compo-
nents used for MIMICSQL generation. Due to the large amount of
information included in EMR database, it is challenging and time-
consuming for domain experts to manually generate the Question-
SQL pairs. It should be noted that, for machine generated questions,
there exists some drawbacks, including not being natural compared

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

to questions provided by humans and usually are not grammat-
ically accurate. In this paper, we take advantage of both human
and machine generation to collect the Question-SQL pairs for the
MIMICSQL dataset in the following two steps.

3.2.1 Machine Generation of Questions. Following the question
types used in [14], there are two types of questions in MIMICSQL,
including retrieval questions and reasoning questions. Following
the generation of question templates in [22], we first identify the
questions that are possibly asked on the EMR data and then normal-
ize them by identifying and replacing the entities regarding table
headers, operations, and condition values with generic placehold-
ers. The question templates for retrieval and reasoning questions
are finally integrated into two generic templates. These question
templates provide a guidance regarding the question topics or per-
spectives for the machine generated questions.
(1) Retrieval questions are designed to directly retrieve specific

patient information from tables. The two generic templates
mainly used for retrieval questions include:
• What is the H1 and H2 of Patient Pat (or Disease D, or Pro-
cedure Pro, or Prescription Pre , or Lab test L)?
• List all the Patients (or Disease, or Procedures, or medications,
or lab tests) whose H1 O1 V1 and H2 O2 V2.

(2) Reasoning questions are designed to indirectly collect patient
information by combining different components of five tables.
The templates mainly used for reasoning questions include:
• How many patients whose H1 O1 V1 and H2 O2 V2?
• What is the maximum (or minimum, or average)H1 of patient
whose H2 O2 V2 and H3 O3 V3?

Here, Hi ,Oi ,Vi represent placeholders for the ith table column
used in the question, its corresponding operation and condition
value, respectively. In order to avoid complicated query structure,
the number of conditions in each question cannot exceed a pre-
defined threshold, which is set to be 2 in this work.

During question generation, the corresponding SQL query for
each question is also generated simultaneously. In order to respond
to all questions without changing the query structure and facilitate
the prediction of SQL for Question-to-SQL models, we adopt a gen-
eral SQL template SELECT $AGG_OP ($AGG_COLUMN)+ FROM
$TABLE WHERE ($COND_COLUMN $COND_OP $COND_VAL)+.
Here, the superscript “+” indicates that it allows one or more items.
AGG_OP is the operation used for the selected AGG_COLUMN
and takes one of the five values, including “NULL” (representing
no aggregation operation), “COUNT”, “MAX”, “MIN” and “AVG”.
AGG_COLUMN is the question topic that we are interested in each
question and is stored as the column header in tables. Since it is
possible for a given question to be related to more than one table,
TABLE used here can be either a single table or a new table obtained
by joining different tables. The part after WHERE represents the
various conditions present in the question and each condition takes
the form of ($COND_COLUMN $COND_OP $COND_VAL). Dur-
ing query generation, we mainly consider five different condition
operations, including “=”, “>”, “<”, “>=” and “<=”.

3.2.2 Natural LanguageQuestion Collection. These machine gener-
ation criteria make it practical to effectively obtain a set of Question-
SQL pairs, however, there are two main drawbacks for the machine

Table 1: Statistics ofMIMICSQL dataset. The tables are in the
order of Demographics, Diagnosis, Procedure, Prescriptions,
and Laboratory tests.

Data Value
of patients 46,520
of tables 5
of columns in tables 23/5/5/7/9
of Question-SQL pairs 10,000
Average template question length (in words) 18.39
Average NL question length (in words) 16.45
Average SQL query length 21.14
Average aggregation columns 1.10
Average conditions 1.76

generated template questions. On the one hand, the questions may
not be realistic in the clinical practice. For example, the unreason-
able question “How many patients whose primary disease is newborn
and marital status is married?" will also be generated. On the other
hand, the template questions tend to be not as natural as questions
asked by doctors since they follow a fixed structure provided in
the question templates. In order to overcome these drawbacks, we
recruited eight Freelancers with medical domain knowledge on a
crowd-sourcing platform named Freelancer1 to filter and paraphrase
the template questions in three steps: (1) To ensure that the gener-
ated questions are realistic in the healthcare domain, each machine
generated question is validated to ignore the unreasonable template
questions. (2) Each selected template question is rephrased as its
corresponding natural language (NL) question. (3) The rephrased
questions are further validated to ensure that they share the same
meaning as the original template questions.

3.3 MIMICSQL Statistics
MIMICSQL dataset is publicly available at2. We include 10, 000
Question-SQL pairs in MIMICSQL whose basic statistics are pro-
vided in Figure 2 and Table 1. Figure 2(a) and Figure 2(b) shows
the distributions of the question length for template questions and
natural language questions, respectively. The distribution of the
SQL length is given in Figure 2(c). Figure 2(d) shows the distribution
of number of questions over five tables. Note that the total number
of questions in Figure 2(d) is more than 10, 000 since some questions
are related to more than one table.

4 A TRANSLATE-EDIT MODEL FOR
QUESTION-TO-SQL QUERY GENERATION

In this section, we will first formulate the Question-to-SQL query
generation problem. Then, we present our TREQS model in detail.

4.1 Problem Formulation
In this paper, we aim to translate healthcare related questions asked
by doctors to database queries and then retrieve the answer from
health records. We adapt the language generation approach in our
model, since questions may be related to a single table or multiple
tables, and keywords in the questions may not be accurate due to
the healthcare terminology involved. To tackle the challenges for
general applications, we propose a translate-edit model that first

1www.freelancer.com
2https://github.com/wangpinggl/TREQS

Text-to-SQL Generation for Question Answering on Electronic Medical Records WWW ’20, April 20–24, 2020, Taipei, Taiwan

(a) Dist. of length of template questions. (b) Dist. of length of NL questions. (c) Dist. of length of SQL queries. (d) Dist. of No. of Questions.

Figure 2: Distribution of questions and queries in MIMICSQL dataset. “Dist." is used as an acronym for “Distribution".

(a) (b)
Figure 3: (a) The overall framework of the proposed TREQS model. [PH] represents the out of vocabulary words in condition
values. (b) Illustration of dynamic and temporal attention mechanisms used in TREQS.

generates a query draft using a language generation model and
then edits based on the table schema.

Let us denote a given question by x = (x1,x2, ...,x J), the table
schema context information as z and the corresponding query as
y = (y1,y2, ...,yT), where J and T represents the length of the
input and output, respectively. x j and yt denote the one-hot rep-
resentations of the tokens in the question and query, respectively.
Then, the goal of our model is to infer y from x based on z with
probability P(y |x , z). In our approach, we assume that the table
schema information z is implicitly included in the input questions
as semantic information. Therefore, during the translation, we only
need to deal with inferring y from x . However, since the exact table
schema has not appeared at this stage, the generated query can
only roughly capture this information. At the second stage, we edit
the query draft based on the table schema and look-up tables of
content keywords to recover the exact information. This two-stage
strategy allows us to easily adapt our model to other general pur-
pose tasks. In the following sections, we will introduce our model
layer-by-layer in more detail.

4.2 The Proposed TREQS Model
Now we introduce the details of the three components in the pro-
posed TRanslate-Edit Model for Question-to-SQL (TREQS) gener-
ation. Figure 3(a) shows the framework of the proposed model.
4.2.1 Sequence-to-Sequence Framework. Weadopt a RNN sequence-
to-sequence (Seq2Seq) framework for the Question-to-SQL gen-
eration task. Our Seq2Seq framework is composed of a question
encoder (a single-layer bidirectional LSTM [11]) and a SQL decoder

(a single-layer unidirectional LSTM). The encoder reads a sequence
of word embeddings of input tokens and turns them into a sequence
of encoder hidden states (features) he = (he1 ,h

e
2 , . . . ,h

e
J), where the

superscript e indicates that the hidden states are obtained from the
encoder, and hej =

−→
hej ⊕

←−
h e
J−j+1 is the concatenation of the hidden

states of forward and backward LSTM. At each decoding step t , the
decoder takes the encoder hidden states and word embedding of
the previous token as an input and produce a decoder hidden state
hdt . Both word embeddings in the encoder and decoder are taken
from the same matrixWemb. The decoder LSTM hidden and cell
states are initialized with

hd0 = tanh
(
We2dh

(−→
h e
J ⊕
←−
h e
1
)
+ be2dh

)
cd0 = tanh

(
We2dc

(−→c e
J ⊕
←−c e

1
)
+ be2dc

) (1)

where the weight matricesWe2dh,We2dc, and vectors be2dh, be2dc
are learnable parameters.

4.2.2 Temporal Attention on Question. At each decoding step t ,
the decoder not only takes its internal hidden state and previously
generated token as input, but also selectively focuses on parts of the
question that are relevant to the current generation. However, the
standard attention models proposed in the literature [1, 19] cannot
prevent the decoder from repetitively attending on the same part of
the question, therefore, we adopt a temporal attention strategy [21]
that was demonstrated to be effective in tackling such problem.

To achieve this goal, we first define an alignment score function
between the current decoder hidden state and each of the encoder

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

hidden states as follows:
set j = (h

e
j)
⊤Walignh

d
t (2)

whereWalign are parameters. As shown in the left-hand side of
Figure 3(b), to avoid repetitive attention, we penalize the tokens
that have obtained high attention scores in the previous decoding
steps with the following normalization rule:

s
temp
t j =

exp (set j) if t = 1

exp (set j)∑t−1
k=1 exp (s

e
k j)

if t > 1
, αt j =

s
temp
t j∑J

k=1 s
temp
tk

(3)

where stemp
t j is the new alignment score with temporal dependency,

and αt j is an attention weight at current decoding step. With the
temporal attention mechanism, we finally obtain a context vector
for the input question as follows:

zet =

J∑
j=1

αt jh
e
j . (4)

4.2.3 Dynamic Attention on SQL. In our Question-to-SQL genera-
tion task, different parts of a query may not strictly have sequential
dependency. For example, switching two conditions in a query will
yield the same query. However, when generating the condition
values, the decoder may need to not only take the previously gen-
erated token, its own hidden states and encoder context vector into
consideration, but also places more attention on the previously
generated table names and headers as shown in the right-hand
side of Figure 3(b). Therefore, we introduce a dynamic attention
mechanism to the decoder [28, 30], which allows it to dynamically
attend on the previous generated tokens.

More formally, for t > 1, the alignment scores (denoted by sdtτ ,
τ ∈ {1, ..., t − 1}) on previously generated tokens can be calculated
in the same manner as the alignment scores for the encoder. Then,
the attention weight for each token is calculated as follows:

αdtτ =
exp(sdtτ)∑t−1
k=1 exp(s

d
tk)

(5)

With the attention distribution and the decoder hidden states, we
can calculate the decoder-side context vector as follows:

zdt =
t−1∑
τ=1

αdtτh
d
τ (6)

4.2.4 Controlled Generation and Copying. A Question-to-SQL gen-
eration task is very different from the general purpose language
generation tasks. First, there are strict templates for SQL queries. For
example, SELECT $AGG_OP ($AGG_COLUMN)+ FROM $TABLE
WHERE ($COND_COLUMN $COND_OP $COND_VAL)+ is the tem-
plate we used. Second, the aggregation and condition columns in
queries are table headers, which usually do not exactly appear in the
questions. For instance, for a given question: “How many patients
who have bowel obstruction and stay in hospital for more than 10
days?”, its corresponding query looks like “SELECT COUNT (PA-
TIENT_ID) FROM DEMOGRAPHIC WHERE PRIMARY_DISEASE
= bowel obstruction AND DAYS_OF_STAY > 10”. Obviously, we
cannot find words, like PATIENT_ID, PRIMARY_DISEASE, and
DAYS_OF_STAY, in the question. Third, the values of conditions
should be best possibly retrieved from questions, such as “bowel
obstruction" and “10" in the above example, since the questions
may contain terms that are out-of-vocabulary (OOV).

Because of these characteristics, our decoder combines a genera-
tion network and a pointer network [33] for the token generation.
The pointer network has been widely used in language modeling
and generation tasks, such as abstractive text summarization [27]
and question-answering [20], due to its ability of copying OOV
tokens in the source and context sequences to the target sequences.
However, in our model, it is primarily used for generating the words
in-vocabulary and putting placeholders, denoted as [PH], for OOV
words. Intrinsically, it is only used in generating condition values
in SQL queries. Formally, to generate a token at step t , we first
calculate the probability distribution on a vocabularyV as follows:

h̃dt =Wz
(
zet ⊕ z

d
t ⊕ h

d
t
)
+ bz

PV,t = softmax
(
Wemb(Wd2vh̃

d
t + bd2v)

) (7)

whereWz ,Wd2v,bz , andbd2v are parameters. We reuse the syntactic
and semantic information contained in the word embedding matrix
in token generation. Then, combining with the pointer mechanism,
the probability of generating a token yt is calculated by

P(yt) = pgen,tPgen(yt) + (1 − pgen,t)Pptr(yt) (8)

where the probability Pgen(yt) given by the generation network is
calculated as follows:

Pgen(yt) =

{
PV,t (yt) yt ∈ V

0 otherwise
(9)

The probability Pptr(yt) by the pointer network is obtained with
the following attention distribution

Pptr(yt) =

{∑
j :x j=yt α

e
t j yt ∈ X ∩V

0 otherwise
(10)

whereX is a set with all tokens in a question.pgen,t is a ‘soft-switch’
(probability) of using a generation network for token generation

pgen,t = σ (Wgenz
e
t ⊕ h

d
t ⊕ Eyt−1 + bgen) (11)

where Eyt−1 is the word embedding of the previous token yt−1.
Wgen and bgen are model parameters. Note that all OOV words in
the question have been replaced with the placeholder [PH] for the
condition values. In our model, the vocabulary is a union of two
sets, i.e., vocabulary of regular tokens and a vocabulary of template
keywords as well as table names and headers, denoted asVschema.
Since X ∩Vschema = ∅, the template, table names and headers in
a SQL rely only on the generation network. On the other hand,
keywords of the condition values and placeholder are obtained
from both generation and pointer networks. Note that we always
switch the option of [PH] in Figure 3(a) to“No" during training.

With the final probability of generating a token yt , we are ready
to define our loss function. In this paper, we adopt the cross-entropy
loss which tries to maximize the log-likelihood of observed se-
quences (ground-truth), i.e.,

L = − log Pθ (ŷ |x) =
T∑
t=1

log Pθ (ŷt |ŷ<t ,x) (12)

where θ denotes all the model parameters, including weight matri-
cesW and biases b. ŷ = (ŷ1, ŷ2, ..., ŷT) represents a ground-truth
SQL sequence in the training data and ŷ<t = (ŷ1, ŷ2, ..., ŷt−1).

Text-to-SQL Generation for Question Answering on Electronic Medical Records WWW ’20, April 20–24, 2020, Taipei, Taiwan

4.2.5 Placeholder Replacement. After a query has been generated,
we replace each [PH] with a token in the source question. For a
[PH] at time step t ′, the replacement probability is calculated by

Prps(yt ′) =

{∑
j :x j=yt ′ α

e
t ′j yt ′ ∈ X −V

0 otherwise
(13)

Here, we implement this technique by applying a mask (0 or 1) on
the attentionweights (named asmasked attentionmechanism). This
replacement technique can make use of the semantic relationships
(captured by attention and decoder LSTM) between previously
generated words and their neighboring OOV words. Intuitively, if
the model attends word x j at the step t − 1, it has a high chance of
attending the neighboringwords ofx j at step t . Thismeta-algorithm
can be used for any attention-based Seq2Seq model.

4.2.6 Recover Condition Values with Table Content. So far, we have
used our translate-edit model to translate given questions on a table
to the SQL queries without explicitly using any table content and
schema. However, we cannot guarantee that all these queries are
executable, since the condition values in the questions may not
be accurate. In the aforementioned example, the doctor may ask
“Howmany patients who have bowel obstruct and stay in hospital
for more than 10 days?", then, one of the conditions in the SQL is
“PRIMARY_DISEASE = bowel obstruct". Obviously, we will get
a different answer since bowel obstruct does not appear in the
database. To alleviate this problem, we propose a condition value
recover technique to retrieve the exact condition values based on the
predicted ones. This approach makes use of string matching metric
ROUGE-L [17] (L denotes the longest common sub-sequence) to
find the most similar condition value from the look-up table for
each predicted one, and then replaces it. In our implementation, we
calculate both word- and character-level similarities, i.e., ROUGE-L
scores, between two sequences.

5 EXPERIMENTS
In this section, we first introduce the datasets used in our experi-
ments, and then briefly describe the baseline comparison methods,
implementation details, and evaluation metrics. Finally, different
sets of qualitative and quantitative results are provided to analyze
the query generation performance of the proposed model.

5.1 Experimental Settings
5.1.1 Dataset Description. We use both template and natural lan-
guage (NL) questions in MIMICSQL dataset (described in Section 3)
for evaluation. We first tokenize both source questions and tar-
get SQL queries using Spacy package3. Then, they are randomly
split into training, development and testing sets in the ratio of
0.8/0.1/0.1. To recover the condition values, we also created a
look-up table that contains table schema and keywords, i.e., table
name, header and keywords of each column. Finally, for template
questions in the testing set, we also generated a dataset that has
missing information and typos (testing with noise) to demonstrate
the effectiveness of our condition value recover technique.

5.1.2 Comparison Methods. We demonstrate the superior perfor-
mance of our TREQS model by comparing it with the following

3https://spacy.io/

methods. The first two are slot filling methods and generate logic
format of queries, while the others produce SQL queries directly.
• Coarse2Fine model [5]: It is a two-stage structure-aware neu-
ral architecture for semantic parsing. For a given question, a
rough sketch of the logical form is first generated by omitting
low-level information, such as the arguments and name entities,
which will be filled in the second step by considering both the
natural language input and the generated sketch.
• Multi-table SQLNET (M-SQLNET) [36]: For SQL with mul-
tiple conditions, it may have multiple equivalent variants by
varying the order of conditions. SQLNET mainly focuses on tack-
ling the unordered property by leveraging the structure-based
dependencies in SQL. However, it can only handle questions on a
single table under the table-aware assumption. In this paper, we
implemented a multi-table version of SQLNET for comparison.
• Sequence-to-Sequence (Seq2Seq) model [19]: In this model,
there is a bidirectional LSTM encoder and a LSTM decoder. To be
consistent with this paper, we adopt the “general” global atten-
tion mechanism described in [19]. The placeholder replacement
algorithm is also used in the query generation step to tackle the
OOV words problem in this model.
• Pointer-GeneratorNetwork (PtrGen) [27]:The pointingmech-
anism is primarily used to deal with the OOV words. Therefore,
an extended vocabulary of all OOV words in a batch is built at
each training step to encourage the copying of low-frequency
words in the source questions, which is different from our model.
In our pointer network, we encourage the model to either copy
tokens related to the condition values or put placeholders.
Note that the proposed condition value recover mechanism can

be combined with different models that directly generate SQL
queries, therefore, we also apply it to the results obtained from
Seq2Seq and PtrGen to boost their performance. However, it is not
applicable to Coarse2Fine and M-SQLNET since their predicted
condition values have already been in the look-up table.

5.1.3 ImplementationDetails. We implemented the proposed TREQS
model and M-SQLNET with Pytorch [24]. For all language gener-
ation models, the dimension of word embeddings and the size of
hidden states (both encoder and decoder hidden states) are set to
be 128 and 256, respectively. Instead of using pre-trained word em-
beddings [25], we learn them from scratch. ADAM optimizer [15]
with hyper-parameter β1 = 0.9, β2 = 0.999 and ϵ = 10−8 is adopted
to train the model parameters. The learning rate is set to be 0.0005
with a decay for every 2 epochs and gradient clipping is used with
a maximum gradient norm of 2.0. During the training, we set the
mini-batch size to be 16 in all our experiments and run all models
for 20 epochs. The development set is used to determine the best
model parameters. During the testing, we implement a beam search
algorithm for the SQL generation and the beam size is set to be
5. To build the vocabulary, we keep the words with a minimum
frequency of 5 in the training set. Thus, the vocabulary size is 2353
and it is shared between the source question and target SQL. In
our experiments, both the source questions and SQL queries are
truncated to 30 tokens. The implementation of our proposed TREQS
method is made publicly available at4.

4https://github.com/wangpinggl/TREQS

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

Table 2: The SQL prediction performance results using logic
form accuracy (AccLF) and execution accuracy (AccEX).

Template Questions NL Questions
Method Development Testing Development Testing

AccLF AccEX AccLF AccEX AccLF AccEX AccLF AccEX
Coarse2Fine 0.298 0.321 0.518 0.526 0.217 0.309 0.378 0.496
M-SQLNET 0.258 0.588 0.382 0.603 0.086 0.225 0.142 0.260
Seq2Seq 0.098 0.372 0.160 0.323 0.076 0.112 0.091 0.131
Seq2Seq + recover 0.138 0.429 0.231 0.397 0.092 0.195 0.103 0.173
PtrGen 0.312 0.536 0.372 0.506 0.126 0.174 0.160 0.222
PtrGen + recover 0.442 0.645 0.426 0.554 0.181 0.325 0.180 0.292
TREQS (ours) 0.712 0.803 0.802 0.825 0.451 0.511 0.486 0.556
TREQS + recover 0.853 0.924 0.912 0.940 0.562 0.675 0.556 0.654

5.1.4 Evaluation Metrics. To evaluate the performance of different
Question-to-SQL generation models, we mainly adopt the follow-
ing two commonly used evaluation metrics [46]. (1) Execution
accuracy is defined as AccEX = NEX /N , where N denotes the
number of Question-SQL pairs in MIMICSQL, and NEX represents
the number of generated SQL queries that can result in the correct
answers [46]. Note that execution accuracy may include questions
that are generated with incorrect SQL queries which lead to correct
query results. (2) In order to overcome the disadvantage of execution
accuracy, logic form accuracy [46], defined as AccLF = NLF /N ,
is commonly used to analyze the string match between the gener-
ated SQL query and the ground truth query. Here, NLF denotes the
number of queries that match exactly with the ground truth query.

5.2 Experimental Results
5.2.1 Query Generation Performance. Table 2 provides the quan-
titative results on both template questions and NL questions for
different methods. The best performing methods are highlighted
in bold and the second best performing methods are underlined. It
can be observed from Table 2 that the Seq2Seq model is the worst
performer among all the compared methods due to its poor generat-
ing behavior, including factual errors, repetitions and OOV words.
PtrGen performs significantly better than Seq2Seq model since it
is able to copy words from the input sequence to the target SQL.
As seen from the results, it can capture the factual information
and handle OOV words more efficiently. It works well when most
words in the target sequence are copied from the source sequence,
which is similar to other problems such as abstractive text sum-
marization task [7, 27]. However, in Question-to-SQL task, most
tokens (template, table names and headers) are obtained from gen-
eration and only condition values are copied from questions to
queries. Therefore, the task discourages copying in general, which
causes PtrGen model to produce the condition values by gener-
ation instead of copying, thus increasing the chances of making
mistakes. Coarse2Fine achieves outstanding performance for the
questions on a single table. The limitation of Coarse2Fine is that it
cannot handle complex SQL generation, such as queries including
multiple tables. However, it still outperforms both Seq2Seq and
PtrGen in most of the cases. Compared to Coarse2Fine, the M-
SQLNET method considers the dependencies between slots using
a dependency graph determined by the intrinsic structure of SQL.
It performs significantly better than Seq2Seq and PtrGen on both
testing and testing with noise set (in Table 3). It also significantly

Table 3: The SQL prediction performance results and their
break-down on template testing questions with noise.

Method Overall Break-down

AccLF AccEX Aддop Aддcol Table Concol+op Conval Average
Coarse2Fine 0.444 0.526 0.528 0.528 0.528 0.520 0.444 0.510
M-SQLNET 0.356 0.606 1.000 0.953 0.998 0.875 0.376 0.840
Seq2Seq 0.157 0.320 0.997 0.862 0.967 0.817 0.206 0.770
Seq2Seq + recover 0.225 0.389 0.999 0.862 0.967 0.817 0.290 0.787
PtrGen 0.301 0.451 0.999 0.988 0.991 0.970 0.309 0.851
PtrGen + recover 0.353 0.498 0.999 0.988 0.991 0.970 0.360 0.862
TREQS (ours) 0.699 0.756 1.000 0.996 0.995 0.976 0.706 0.935
TREQS + recover 0.872 0.907 1.000 0.996 0.995 0.976 0.877 0.969

outperforms Coarse2Fine based on the execution accuracy. Com-
pared to all the aforementioned baseline methods, our proposed
TREQS model gains a significant performance improvement on
both development and testing dataset and 30 percent, on average,
more accurate than others.

We have also applied the proposed condition value recover tech-
nique to three language generation models. It can be observed that
such a heuristic approach can significantly boost the performance
of these models. From our experiments, we found that language
models fail in many cases because they cannot capture all keywords
of condition values. As a result, they are not executable or may
yield different answers. Hence, the recover mechanism can correct
these errors in the conditions of SQL by making the best use of
the look-up table. Moreover, as shown in Table 3, after applying
some noise to the template testing questions by removing partial
condition values or using abbreviations of words, the performance
of different models drops. Our TREQS model is affected signifi-
cantly because it strongly relies on the pointing mechanism to copy
keywords of condition values from questions to queries. However,
as we can see, the recover mechanism can still correct most of the
errors, thus improving the accuracy by more than 20%, which is
13% for the testing set without introducing noise.

5.2.2 Break-down Generation Performance. In order to further eval-
uate the performance on each component of SQL query, in Ta-
bles 3, 4 and 5, we provide the break-down accuracy results based
on SQL query structure, including aggregation operation (Aддop),
aggregation column (Aддcol), table (Table), condition column along
with its operation (Concol+op), and condition value (Conval). The
results of Coarse2Fine are not provided due to its table-aware as-
sumption and its inability in handling multi-table questions. We
can observe that there is no significant difference between these
methods on predictions of both aggregation operation and table.
Seq2Seq model performs relatively worse on aggregation column
and condition column and its operation.

It is easy to observe from Tables 2 to 5 that the performance of
condition value dominates the overall SQL generation performance.
Seq2Seq is not able to capture the correct condition values due
to its limitation in handling the OOV words. PtrGen performs
slightly better since it is able to copy OOV words directly from
the input questions, however, it still cannot capture the condition
values as accurately as our proposed TREQS model. We believe
that this is due to the fact that we consider temporal attention on
questions, dynamic attention on SQL and the controlled generation

Text-to-SQL Generation for Question Answering on Electronic Medical Records WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 4: Accuracy of break-down matching on template questions in MIMICSQL dataset.

Method Development Testing
Aддop Aддcol Table Concol+op Conval Average Aддop Aддcol Table Concol+op Conval Average

Coarse2Fine 0.321 0.321 0.321 0.321 0.298 0.316 0.528 0.528 0.528 0.520 0.518 0.524
M-SQLNet 1.000 0.978 0.994 0.876 0.274 0.824 1.000 0.956 0.996 0.881 0.401 0.847
Seq2Seq 0.999 0.950 0.972 0.761 0.119 0.760 0.999 0.865 0.963 0.818 0.210 0.771
Seq2Seq + recover 0.999 0.950 0.972 0.761 0.163 0.769 0.999 0.865 0.963 0.818 0.296 0.788
PtrGen 0.999 0.991 0.992 0.979 0.325 0.857 1.000 0.988 0.992 0.985 0.381 0.869
PtrGen + recover 0.999 0.991 0.992 0.979 0.449 0.882 1.000 0.988 0.992 0.985 0.433 0.880
TREQS (ours) 1.000 0.999 0.995 0.924 0.719 0.927 1.000 0.995 0.996 0.980 0.810 0.956
TREQS + recover 1.000 0.999 0.995 0.924 0.859 0.955 1.000 0.996 0.996 0.984 0.918 0.979

Table 5: Accuracy of break-down matching on NL questions in MIMICSQL dataset.

Method Development Testing
Aддop Aддcol Table Concol+op Conval Average Aддop Aддcol Table Concol+op Conval Average

Coarse2Fine 0.319 0.313 0.321 0.260 0.214 0.285 0.524 0.490 0.528 0.448 0.413 0.481
M-SQLNet 0.994 0.939 0.933 0.722 0.080 0.734 0.989 0.873 0.941 0.749 0.140 0.738
Seq2Seq 0.978 0.872 0.926 0.466 0.137 0.676 0.970 0.696 0.892 0.563 0.239 0.672
Seq2Seq + recover 0.978 0.872 0.926 0.471 0.174 0.684 0.970 0.696 0.892 0.565 0.296 0.684
PtrGen 0.987 0.917 0.944 0.795 0.172 0.766 0.987 0.830 0.926 0.824 0.214 0.757
PtrGen + recover 0.987 0.917 0.944 0.795 0.236 0.776 0.987 0.830 0.926 0.824 0.235 0.760
TREQS (ours) 0.990 0.912 0.942 0.834 0.574 0.850 0.993 0.827 0.941 0.841 0.679 0.856
TREQS + recover 0.990 0.912 0.942 0.834 0.694 0.873 0.993 0.827 0.941 0.844 0.763 0.874

Table 6: SQL Queries generated by different models on two NL questions in testing set. The incorrectly predicted words are
highlighted in red color.

Method Example 1 Example 2

Question how many female patients underwent the procedure of abdomen
artery incision? how many patients admitted in emergency were tested for ferritin?

Ground truth

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."short_title" = "abdomen artery incision"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_idwhere demo-
graphic."admission_type" = "emergency" and lab."label" = "ferritin"

M-SQLNET

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."short_title" = "parent infus nutrit sub"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_id where de-
mographic."admission_type" = "emergency" and lab."label" = "po2"

Seq2Seq

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "m" and proce-
dures."long_title" = "other abdomen"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_id where de-
mographic."admission_location" = "phys referral/normal deli" and
lab."itemid" = "ferritin"

Seq2Seq+recover

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "m" and proce-
dures."long_title" = "other bronchoscopy"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_id where de-
mographic."admission_location" = "phys referral/normal deli" and
lab."itemid" = "51200"

PtrGen

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."long_title" = "spinal abdomen artery"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_idwhere demo-
graphic."admission_type" = "emergency" and lab."label" = "troponin
i"

PtrGen+recover

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."long_title" = "spinal tap"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_idwhere demo-
graphic."admission_type" = "emergency" and lab."label" = "troponin
i"

TREQS

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."short_title" = "abdomen artery abdomen"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_idwhere demo-
graphic."admission_type" = "emergency" and lab."label" = "ferritin"

TREQS + recover

select count (distinct demographic."subject_id") from demo-
graphic inner join procedures on demographic.hadm_id = pro-
cedures.hadm_id where demographic."gender" = "f" and proce-
dures."short_title" = "abdomen artery incision"

select count (distinct demographic."subject_id") from demographic
inner join lab on demographic.hadm_id = lab.hadm_idwhere demo-
graphic."admission_type" = "emergency" and lab."label" = "ferritin"

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

Table 7: Visualization of the accumulated attention on conditions that are used in the proposed TREQS approach on NL ques-
tions. Different conditions are labeled with different colors. An intense shade on a word indicates a higher attention weight.

and copying techniques in the proposed model. We can also observe
that the proposed recover technique on the condition values can
also improve the model performance significantly on both template
questions and NL questions. As shown in Table 3, the condition
values can also be recovered effectively even if only partial condition
value information is provided in the input questions. More analysis
about the recover technique will be provided.

5.2.3 Analysis of the Generated SQLQuery. In addition to the quan-
titative evaluations, we have also conducted an extensive set of
qualitative case studies to compare the SQL queries produced by
various models. Two examples on NL questions are provided in
Table 6. For both examples, different comparison models have given
correct answers for the template, table name, and columns. Note
that the Coarse2Fine model cannot handle questions on two tables.
For example 1, M-SQLNET provides a wrong procedure short title
“parent infus nutrit sub” due to the mis-classification error. Seq2Seq
and Ptr generate a partially correct procedure short title “other
abdomen” and “spinal abdomen artery”, respectively. In addition to
their inability to obtain the correct condition values, these base-
line methods do not even have the ability to correctly predict the
condition column “procedures.short_title” in example 1. Similarly,
in example 2, the generated SQL query by Seq2Seq model is not
executable even if it correctly predicts the value “ferritin” for the
second condition, since it predicts an incorrect condition column
“lab.itemid”. In this case, the recover technique can only recover the
condition value “51200” for “lab.itemid” instead of keeping the con-
dition value “ferritin” that is correctly generated. These predicted
results indicate that successfully recovering the condition values
still requires the language generation models to produce correct
condition columns and sufficiently relevant keywords. Note that
it is unable to recover the condition values for M-SQLNET since
its predicted values are already in the look-up table. Different from
these baseline methods, our proposed TREQS model is able to gen-
erate totally correct SQL queries for both examples even without

applying the recover technique. This shows the efficiency of our
TREQS method in predicting the correct condition values without
affecting the performance of other components in the SQL query.

5.2.4 Accumulated Attention Visualization. Visualization of atten-
tion weights can help in interpreting the model and explaining
experimental results by providing an intuitive view about the rela-
tionships between generated tokens and source context, i.e., input
questions. In Table 7, we show seven natural language examples
with reasoning questions and SQL queries that are generated us-
ing the proposed TREQS method. The goal here is to investigate
if TREQS is able to successfully detect important keywords in a
question when generating conditions in its corresponding SQL
query. Therefore, we choose to visualize the accumulated attention
weights instead of the weights for each of the generated tokens. For
example, for the question “get me the number of elective hospital ad-
mission patients who had coronary artery primary disease”, the model
mainly focuses on “elective” and “admission” when generating con-
dition “demographic.admission_type = elective”, and on “coronary
artery” when generating “demographic.diagnosis = coronary artery
disease”. In this example, the condition values are mainly obtained
by directly copying from the input question since they are explic-
itly included. On the other hand, the condition value “f ” in the
SQL query for question “among patients treated with amitriptyline,
calculate the number of female patients” is mainly obtained through
the controlled generation and copying technique since “f ” is not
explicitly provided in the input question. Similarly, TREQS model
is able to capture relevant keywords for each condition in other
examples.

6 CONCLUSION
Large amounts of EMR data are collected and stored in relational
databases at many clinical centers. Effective usage of the EMR
data, such as retrieving patient information, can assist doctors in
making future clinical decisions. Recently, the Question-to-SQL

Text-to-SQL Generation for Question Answering on Electronic Medical Records WWW ’20, April 20–24, 2020, Taipei, Taiwan

generation methods have received a great deal of attention due
to their ability to predict SQL query for a given question about a
database. Such an automated query generation from a natural lan-
guage question is a challenging problem in the healthcare domain.
In this paper, based on the publicly available MIMIC III dataset, a
Question-SQL pair dataset (MIMICSQL) is first created specifically
for the Question-to-SQL generation task in healthcare. We further
proposed a TRanslate-Edit Model for Question-to-SQL (TREQS)
generation task on MIMICSQL by first generating the targeted SQL
directly and then editing with both attentive-copying mechanism
and a recover technique. The proposed model is able to handle the
unique challenges in healthcare and is robust to randomly asked
questions. Both the qualitative and quantitative results demonstrate
the effectiveness of our proposed method.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foun-
dation grants IIS-1619028, IIS-1707498 and IIS-1838730.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In Proceedings of the 4th
International Conference on Learning Representations.

[2] Asma Ben Abacha and Pierre Zweigenbaum. 2012. Medical question answering:
translating medical questions into sparql queries. In Proceedings of the 2nd ACM
SIGHIT International Health Informatics Symposium. ACM, 41–50.

[3] Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. 4560–
4565.

[4] Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics. 33–43.

[5] Li Dong and Mirella Lapata. 2018. Coarse-to-Fine Decoding for Neural Semantic
Parsing. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics. 731–742.

[6] Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, 351–360.

[7] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. 2018. Bottom-Up
Abstractive Summarization. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing. 4098–4109.

[8] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. Physiobank, physiotoolkit, and physionet. Circulation
101, 23 (2000), e215–e220.

[9] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In ACL.

[10] Tong Guo and Huilin Gao. 2019. Table2answer: Read the database and answer
without SQL. arXiv preprint arXiv:1902.04260 (2019).

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[12] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the ACL. 963–973.

[13] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3 (2016).

[14] Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. 2018. DVQA:
Understanding Data Visualizations via Question Answering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 5648–5656.

[15] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. International Conference on Learning Representations (2015).

[16] Minsuk Lee, James Cimino, Hai Ran Zhu, Carl Sable, Vijay Shanker, John Ely, and
Hong Yu. 2006. Beyond information retrieval—medical question answering. In
AMIA annual symposium proceedings, Vol. 2006. American Medical Informatics
Association, 469.

[17] Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[18] Denis Lukovnikov, Nilesh Chakraborty, Jens Lehmann, and Asja Fischer. 2018.
Translating Natural Language to SQL using Pointer-Generator Networks and
How Decoding Order Matters. arXiv preprint arXiv:1811.05303 (2018).

[19] Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[20] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018.
The natural language decathlon: Multitask learning as question answering. arXiv
preprint arXiv:1806.08730 (2018).

[21] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Ça glar Gulçehre, and Bing
Xiang. 2016. Abstractive Text Summarization using Sequence-to-sequence RNNs
and Beyond. Proceedings of the 20th SIGNLL Conference on Computational Natural
Language Learning (2016), 280–290.

[22] Anusri Pampari, Preethi Raghavan, Jennifer Liang, and Jian Peng. 2018. emrQA:
A Large Corpus for Question Answering on Electronic Medical Records. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 2357–2368.

[23] Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on
semi-structured tables. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics. 1470–1480.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. Proceedings of the 31st Conference on
Neural Information Processing Systems (2017), 1–43.

[25] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing. 1532–1543.

[26] Kirk Roberts and Braja Gopal Patra. 2017. A Semantic Parsing Method for Map-
ping Clinical Questions to Logical Forms. InAMIAAnnual Symposium Proceedings,
Vol. 2017. American Medical Informatics Association, 1478–1487.

[27] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics. 1073–1083.

[28] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. 2018.
Neural Abstractive Text Summarization with Sequence-to-Sequence Models.
arXiv preprint arXiv:1812.02303 (2018).

[29] Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti, Yi Mao, Oleksandr Polozov,
and Weizhu Chen. 2018. IncSQL: Training Incremental Text-to-SQL Parsers with
Non-Deterministic Oracles. arXiv preprint arXiv:1809.05054 (2018).

[30] Tian Shi, Ping Wang, and Chandan K Reddy. 2019. LeafNATS: An Open-Source
Toolkit and Live Demo System for Neural Abstractive Text Summarization. In
Proceedings of NAACL. 66–71.

[31] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016.
Table cell search for question answering. In Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 771–782.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[33] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in Neural Information Processing Systems. 2692–2700.

[34] Chenglong Wang, Marc Brockschmidt, and Rishabh Singh. 2018. Pointing Out
SQL Queries From Text. Technical report. (2018).

[35] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh. 2018. Robust text-to-sql generation with
execution-guided decoding. arXiv preprint arXiv:1807.03100 (2018).

[36] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured
queries from natural language without reinforcement learning. arXiv preprint
arXiv:1711.04436 (2017).

[37] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
query synthesis from natural language. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–26.

[38] Semih Yavuz, Izzeddin Gur, Yu Su, and Xifeng Yan. 2018. What It Takes to
Achieve 100 Percent Condition Accuracy on WikiSQL. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 1702–1711.

[39] Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015.
Semantic parsing via staged query graph generation: Question answering with
knowledge base. Proceedings of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (2015),
1321–1331.

[40] Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. 2016. Neural enquirer:
Learning to query tables with natural language. Proceedings of 2016 NAACL
Human-Computer Question Answering Workshop (2016), 29–35.

[41] Hong Yu, Minsuk Lee, David Kaufman, John Ely, Jerome A Osheroff, George
Hripcsak, and James Cimino. 2007. Development, implementation, and a cognitive
evaluation of a definitional question answering system for physicians. Journal of
biomedical informatics 40, 3 (2007), 236–251.

WWW ’20, April 20–24, 2020, Taipei, Taiwan P. Wang, et al.

[42] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. TypeSQL:
Knowledge-based Type-Aware Neural Text-to-SQL Generation. In Proceedings of
NAACL-HLT 2018. 588–594.

[43] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. 2018. Syntaxsqlnet: Syntax tree networks for complex and
cross-domaintext-to-sql task. In EMNLP.

[44] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. In Proceedings of EMNLP. 3911—-3921.

[45] Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze
Shi, Caiming Xiong, Richard Socher, and Dragomir Radev. 2019. Editing-Based
SQL Query Generation for Cross-Domain Context-Dependent Questions. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 5341–5352.

[46] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. arXiv
preprint arXiv:1709.00103 (2017).

	Abstract
	1 Introduction
	2 Related Work
	3 MIMICSQL Dataset Creation
	3.1 MIMIC III Dataset
	3.2 MIMICSQL Generation
	3.3 MIMICSQL Statistics

	4 A Translate-Edit Model for Question-to-SQL query generation
	4.1 Problem Formulation
	4.2 The Proposed TREQS Model

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	Acknowledgments
	References

