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a b s t r a c t 

In this paper, we develop a Finite Volume solver for a 3D incompressible Oldroyd-B model 

with infinity relaxation time. The Finite Volume solver is implemented by using a lead- 

ing open-source computational mechanics software OpenFOAM. We have imposed the di- 

vergence free condition as a constraint on the momentum equation to derive a pressure 

equation and a predictor-corrector procedure is applied when solving the velocity field. 

Both stability analysis and numerical experiments are given to show the robustness and 

accuracy of our algorithm. Two concrete examples on a cubical domain and a dumbbell 

are computed and illustrated. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Viscoelastic states can be viewed as an intermediate state between fluid and solid. Viscoelastic fluid flows exhibit both 

elastic behavior and fluid properties [2,5,7,9] . Typically, the flow motion of viscoelastic fluids is described by using the 

Oldroyd-B model [7–9,11,14,18] . This model can be regarded as an extension of the Upper Convected Maxwell model and is 

also equivalent to a fluid filled with elastic bead and spring dumbbells [18] . A general form of a viscoelastic model for an 

Oldroyd-B fluid may be given as follows: 
{ 

ρu t + ρu · ∇ u − 2 ηs div D = −∇p + div ( τ) , 

τt + u · ∇ τ = τ∇ u + ( ∇ u ) 
T τ + 

1 
λ ( 2 ηp D − τ) , 

div u = 0 . 

(1.1) 

Here, ρ is the density, u the velocity, p the pressure, ηs the solvent viscosity, D denotes the rate of deformation tensor, ηp 

the polymer viscosity, λ the relaxation time, and τ = F F T with F being the deformation tensor. In (1.1) , by taking ρ = 1 and 

letting the relaxation time λ go to infinity, we obtain: 
{ 
u t + ( u · ∇ ) u − ν�u + ∇p = div 

(

F F T 
)

, 

F t − ( ∇ u ) F + ( u · ∇ ) F = 0 , 
div u = 0 . 

(1.2) 
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In the above system of equations, all the variables are defined on �× (0, T ) with � ⊂ R 3 and T > 0 , u = (u, v , w ) is the 

unknown fluid velocity, and ν = 1 /Re with Re being the Reynolds number. Associated with the PDE system, there are also 

the boundary and initial conditions: 
{

u (x, y, z, t) = u 0 (x, y, z, t) , F (x, y, z, t) = F 0 (x, y, z, t) , (x, y, z, t) ∈ ∂� × (0 , T ) , 

u (x, y, z, 0) = u 0 (x, y, z) , F (x, y, z, 0) = F 0 (x, y, z) , (x, y, z) ∈ �. 
(1.3) 

Here u 0 = (u 0 , v 0 , w 0 ) and u 
0 = (u 0 , v 0 , w 0 ) . F 0 ( x, y, z ), u 0 ( x, y, z ), v 0 ( x, y, z ), w 0 ( x, y, z ), and F 0 ( x, y, z, t ), u 0 ( x, y, z, t ), v 0 ( x, 

y, z, t ), w 0 ( x, y, z, t ) are all given sufficiently smooth functions. In addition, we have: 

det 
(

F 0 ( x, y, z ) 
)

= 1 , 

and 

div 
(

u 0 , v 0 , w 
0 
)

= div ( u 0 , v 0 , w 0 ) = 0 . 

The incompressible viscoelastic fluid system (1.2) is one of the basic macroscopic models for viscoelastic flows. It de- 

scribes many important physical models, for example, some complicated hydrodynamic and rheological behaviors of fluids 

and the electromagnetic behaviors of the materials [2,7,9,16] . This system contains a linear momentum equation (force bal- 

ance law), the incompressibility constraint, and a microscopic transport equation specifying the special transport of the 

elastic tensor F [10] . The presence of the viscosity term ν�u prevents the system from possessing the scaling invariant 

properties. Moreover, any distortion of microstructures, patterns or configurations in the dynamical flow involves the de- 

formation tensor F [10] . Theoretical analysis of the incompressible viscoelastic fluid (1.1) is intricate because the system is 

nonlinear and contains not only the velocity vector field and the pressure field but also the deformation tensor matrix. Here 

we briefly mention some recent progress on the theoretical analysis aspect. In [18] , by using a perturbation argument, Zhao 

and Du studied the local well-posedness of the system (1.2) . Lin and Zhang [12] proved that the local solutions of (1.2) can 

be extended globally and the global solutions decay exponentially fast as time goes to infinity provided that the initial data 

are sufficiently close to the equilibrium state. In [5] , Chen and Zhang presented results for the global existence of small 

solutions of (1.2) . 

Although some theoretical advances as mentioned above have been made, a thorough understanding of this model is 

far from complete. When the initial and boundary conditions are non-smooth functions or if the domain is irregular, the 

assumptions made in theoretical analysis are often not satisfied, and one has to resort to numerical investigations. Neverthe- 

less, developing numerical solution methods for the system (1.2) is a challenging task, particularly when the spatial dimension 

is three . We comment here that there are already plenty of studies for the viscoelastic fluid flow model, but most of these 

works are either based on the formulation (1.1) [4] or for the 2D case of system (1.2) [13] . The difficulties in numerics for 

solving (1.2) are: on the one hand, numerically solving (1.2) is more difficult than solving system (1.1) because the larger 

the relaxation time is, the more instabilities the system may evolve to have; on the other hand, as the spatial dimension 

increases, so do the complexities of coding and computing cost, significantly . In this paper, we develop a 3D solver for system 

(1.2) . 

The prevalent numerical methods for (1.2) are based on finite element or finite difference discretizations. The presence of 

the nonlinear term in both the momentum equation and the elastic transport equation then engenders the use of nonlinear 

iterations. Consequently, one often has to use fixed point theorem to prove the existence, uniqueness, and convergence of 

the numerical solutions. Moreover, the stability and error analysis of these methods rely on the discrete inf-sup condition, 

which may not hold for some commonly used Finite Elements [1] and Finite Differences. Most existing numerical studies 

seem to be based on mixed Finite Element Methods. However, constructing inf-sup stable Finite Elements for them are 

complicated and numerical tests are usually for 2D cases only. 

In this paper, we choose to use the Finite Volume method (FVM) to solve the system (1.2) . We first rewrite the system 

into a conservative form, then we discretize the conservative system in a coupled way, in which the nonlinear terms and 

their discretized approximations are treated as flux terms . By doing this, no nonlinear iterations are needed. In addition, we 

need to take into account of the hyperbolic character of the constitutive equation. In the Finite Element community, people 

usually introduce stabilizations to deal with the numerical instabilities for (1.2) . In our FVM, we apply an upwind technique 

for the convective terms, whose implementation is quite standard and natural. Furthermore, under some assumptions on 

the time step and the Reynolds number (if the time step is small enough and the Reynolds number is small), we prove that 

our FVM is locally stable . The analysis is based on the discrete Gronwall inequality and some estimates on flux terms under 

the L ∞ - norm. 

Our paper is motivated by the FVM developed in the widely acclaimed, open-source computational mechanics software 

OpenFOAM [3,6,15] . OpenFOAM is a free, open-source software used by thousands of people worldwide in both academic 

and industrial communities [3] . There are various advantages of this software, chief among them are the following: 

(i) It is open-source. All the codes are open to the users to adapt and customize for their special purposes. (In contrast, 

commercial softwares do not allow access to their source codes.) 

(ii) It has user-friendly syntax for Partial Differential Equations. The codes are written in an object-oriented C ++ lan- 

guage, which is a general-purpose advanced programming language. It offers a unified point of view to a collection 

of numerical methods or a simplified interface for various Partial Differential Equations. 
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(iii) It has wide range of applications and models ready to use. In particular, its library of numerical packages is compre- 

hensive, containing linear elasticity, CFD with turbulence modeling, combustion, multiphase flows, etcetera. 

(iv) It is easy to automate the model and the solution procedure. By pushing buttons of selection, one can easily set up a 

fully automated solution based on the platform. 

(v) The preprocessing and postprocessing tools are user-friendly. The preprocessing mesh generations are based on 

blockMesh or snappyHexMesh , which can deal with unstructured meshes. For the postprocessing, one can work with 

ParaView , or one can use other third-party commercial products such as Gambit, EnSight , etcetera. 

We have successfully used OpenFOAM to compute the 3D model problem (1.2) in this paper and totally appreciated the 

many advantages offered by OpenFOAM as described above. 

We came back and asked ourselves the important question: “Can theoretical error estimates be analyzed, based on the FVM 

numerical scheme as afforded by OpenFOAM?”

The answer is affirmative. Our study here has demonstrated that theoretical error analysis and practical numerical com- 

putation (based on an open-source software) can be successfully fused together in the problem solving of this concrete 

viscoelastic flow model, even for a relatively complex (dumbell-shaped domain with cavity) geometry, without adding an 

excessive extra burden of coding work. 

The rest of our paper is organized as follows. In Section 2 , we introduce an FVM-OpenFOAM scheme for the system (1.2) . 

In Section 3 , we conduct stability analysis of our scheme. In Section 4 , we test the stability of our algorithm by offering 

two concrete computed examples. Concluding remarks are given the in the Section 5 . We provide essential parts of our 

OpenFOAM codes at the end of the paper. 

2. Finite-volume discretization 

To present our FVM for discretizing (1.2) , we first rewrite it into a conservative form and then discuss how to approximate 

each equation in the system. Because of the incompressible condition div u = 0 , we first cast the system (1.2) into the 

following conservative form: 

u t + div ( u � u ) − div ( ν∇ u − pI ) = div 
(

F F T 
)

, (2.1) 

F t + div ( u F ) = ( ∇ u ) F , (2.2) 

div u = 0 . (2.3) 

Again, the boundary and initial conditions are provided by (1.3) . Among the three commonly used methods for spatial 

discretization [17] : Finite Element, Finite Difference and Finite Volume methods, the FVM is advantageous in that it is flux 

conservative and therefore mimics physical laws. In this work, we adopt the Finite Volume method to solve the system 

numerically. 

The 3D domain � is subdivided by using cells. Each cell is a cube called “control volume”, with volume V . As shown 

Fig. 1 , we have four control volumes (with two of them centered at N and P ), and we denote S f as the surface area. To show 

the Finite Volume discretization of Eq. (2.2) , we integrate (2.2) over a control volume V : 

∫ 

V 
F t d V + 

∫ 

V 
div ( u F ) d V = 

∫ 

V 
( ∇ u ) F d V. (2.4) 

Fig. 1. An illustration of the control volume. 
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Then, we approximate (2.4) term by term. The first term is: 

∫ 

V 
F t dV ≈ V 

F n +1 
P − F n P 

�t 
. 

Here and thereafter, we denote �t as the time step. In the above equation, F n +1 
P and F n P represent, respectively, the value 

of F at the cell center P at the ( n + 1 ) -th and n -th time steps. For the second term on the left hand side of (2.4) , we apply 

the divergence theorem and obtain: 
∫ 

V 
div ( u F ) d V = 

∫ 

S 
d S · ( u F ) ≈

∑ 

f 

S f · u f F f = 

∑ 

f 

φF f , 

where S f denotes the face area vector of the face f . So S f = S f n f , where S f and n f are the surface area and the unit outward 

normal vector of the face f , respectively. We denote φ = S f · u f and apply the upwind scheme to obtain F f , i.e., 

F f = 

{

F P for φ ≥ 0 , 

F N for φ ≤ 0 . 

The term on the right hand side of (2.4) is approximated as follows: 
∫ 

V 
( ∇ u ) F dV ≈

∑ 

f 

(

S f n f · u f 

)

F . 

Here, u f = 0 . 5 ( u P + u N ) . 

Consequently, the discretization form of equation F t + div ( u F ) = ( ∇ u ) F is: 

V 
F n +1 
P − F n P 

�t 
+ 

∑ 

f 

φ
n 
F n f = 

∑ 

f 

(

S f n f · u 
n 
f 

)

F n . (2.5) 

Next, we will illustrate how to discretize Eq. (2.1) . By integrating every term over a control volume V , we have: 
∫ 

V 
u t d V + 

∫ 

V 
div ( u � u ) d V + 

∫ 

V 
∇pd V = 

∫ 

V 
ν�u d V + 

∫ 

V 
div 

(

F F T 
)

d V. 

Similarly, we approximate the above equation term by term: 

∫ 

V 
u t dV ≈ V 

u 
n +1 
P − u n P 

�t 
, 

∫ 

V 
div ( u � u ) dV ≈

∫ 

V 
div 

(

u 
n 

� u 
n +1 

)

d V = 

∫ 

S 
d S ·

(

u 
n 

� u 
n +1 

)

= 

∑ 

f 

S f · u 
n 
f u 

n +1 
f 

= 

∑ 

f 

φ
n 
u 
n +1 
f 

, (2.6) 

where u f is approximated by using the upwind scheme: 

u f = 

{

u P for φ
n 

≥ 0 , 

u N for φ
n 

≤ 0 . 

We comment here that in approximating div( u � u ), an explicit technique is applied, i.e. div ( u � u ) ≈ div 
(

u n � u n +1 
)

. We 

also have: 
∫ 

V 
∇pdV ≈

∑ 

f 

S f p f = 

∑ 

f 

S f n f p f , 

where p f = 0 . 5 ( P P + P N ) . The Laplacian term is discretized as follows: 

∫ 

V 
div ( ν∇ u ) d V = 

∫ 

S 
d S · ( ν∇ u ) ≈

∑ 

f 

νS f · ( ∇ u ) f = 

∑ 

f 

νS f 
u 
n +1 
N − u 

n +1 
P 

| d | 
, 

where d is the length vector pointing from the cell center P to the cell center N ; For the term containing F , we approximate 

it by: 
∫ 

V 
div 

(

F F T 
)

d V = 

∫ 

S 
d S ·

(

F f F 
T 
f 

)

≈
∑ 

f 

S f n f ·
(

F f F 
T 
f 

)

, 

where F f = 0 . 5 ( F P + F N ) . 
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Therefore, the approximation of (2.1) reads follows: 

V 
u 
n +1 
P − u n P 

�t 
+ 

∑ 

f 

φ
n 
u 
n +1 
f 

+ 

∑ 

f 

S f n f p 
n 
f = 

∑ 

f 

νS f 
u 
n +1 
N − u 

n +1 
P 

| d | 
+ 

∑ 

f 

S f n f ·
(

F f F 
T 
f 

)n 
. (2.7) 

There is no pressure equation, but we can impose the divergence free condition as a constraint on the momentum 

equation in order to derive a pressure equation. To see this more clearly, we first rewrite (2.1) as: 

u t + div ( u � u ) − ν�u − div 
(

F F T 
)

= ∇p. 

Then, we discretizate just as how we obtain (2.7) , but keeping the pressure gradient in its original form. Denoting the 

diagonal matrix on the left hand side by A (the coefficients corresponding to terms of u P ) and the off-diagonal matrix on the 

left hand side by H ( u ) (the coefficients corresponding to terms of u N ), we have A · u − H ( u ) = −∇p. Taking the divergence 

on both sides, and applying div u = 0 , we derive an equation for p : 

div 
(

A 
−1 

· ∇p 
)

= div 
(

A 
−1 

· H ( u ) 
)

. 

Integrating over the control volume V and applying discrete approximations on faces, we obtain the following discretized 

equation for p : 

∑ 

f 

A 
−1 S f 

p n +1 
N − p n +1 

P 

| d | 
= 

∑ 

f 

S f n f 

(

A 
−1 
f H f ( u ) 

)n 
. (2.8) 

In summary, the discretized form of the system (2.1) –(2.3) reads as follows: 

V 
u 
n +1 
P − u n P 

�t 
+ 

∑ 

f 

φ
n 
u 
n +1 
f 

+ 

∑ 

f 

S f n f p 
n 
f = 

∑ 

f 

νS f 
u 
n +1 
N − u 

n +1 
P 

| d | 
+ 

∑ 

f 

S f n f ·
(

F f F 
T 
f 

)n 
, (2.9) 

V 
F n +1 
P − F n P 

�t 
+ 

∑ 

f 

φ
n 
F n f = 

∑ 

f 

(

S f n f · u 
n 
f 

)

F n , (2.10) 

∑ 

f 

A 
−1 S f 

p n +1 
N − p n +1 

P 

| d | 
= 

∑ 

f 

S f n f 

(

A 
−1 
f H f ( u ) 

)n 
. (2.11) 

A predictor-corrector procedure is employed to solve this discretized system. The solution steps of the procedure are: 

Step 1: using the initial condition and the momentum Eq. (2.9) to solve for u ; the obtained solution is denoted as a 

predictor u 1 . 

Step 2: using u 1 to supplement the right hand side of (2.11) , and applying the pressure Eq. (2.11) to solve for p . Then, 

using the p to correct the velocity field by solving the momentum Eq. (2.9) again. The new velocity field is denoted as a 

corrector u 2 . By this way, u 2 satisfies the divergence free condition. 

Step 3: using the u 2 to solve the tensor Eq. (2.10) for F . 

Step 4: repeating Steps 1–3 for the next time step. End. 

3. Stability of the scheme 

In this section, we focus on the stability analysis of our numerical scheme. To study the stability of our FVM, we will 

treat it as a finite difference scheme (based on a Finite Volume technique). For simplicity, we only present the details for 

the first component of each equation in (2.9) –(2.11) . First, we see that the equation corresponding to the first component of 

(2.9) is: 

V 
u n +1 
i, j,k 

− u n 
i, j,k 

�t 
= νS x 

u n +1 
i +1 , j,k 

− 2 u n +1 
i, j,k 

+ u n +1 
i −1 , j,k 

�x 
+ νS y 

u n +1 
i, j+1 ,k 

− 2 u n +1 
i, j,k 

+ u n +1 
i, j−1 ,k 

�y 

+ νS z 
u n +1 
i, j,k +1 

− 2 u n +1 
i, j,k 

+ u n +1 
i, j,k −1 

�z 
−

[ 

( φn ) 
+ 
u 

(

u n +1 
i, j,k 

)−

x 
+ ( φn ) 

−

u 

(

u n +1 
i, j,k 

)+ 

x 

] 

−

[ 

( φn ) 
+ 
v 

(

u n +1 
i, j,k 

)−

y 
+ ( φn ) 

−

v 

(

u n +1 
i, j,k 

)+ 

y 

] 

−

[ 

( φn ) 
+ 
w 

(

u n +1 
i, j,k 

)−

z 
+ ( φn ) 

−

w 

(

u n +1 
i, j,k 

)+ 

z 

] 

−
S x 

2 

(

p n i +1 , j,k − p n i −1 , j,k 

)

+ 
S x 

2 

[ 

(F 2 1 , 1 + F 2 1 , 2 + F 2 1 , 3 ) 
n 
i +1 , j,k −

(

F 2 1 , 1 + F 2 1 , 2 + F 2 1 , 3 

)n 

i −1 , j,k 

] 

+ 
S y 

2 

[

( F 1 , 1 F 2 , 1 + F 1 , 2 F 2 , 2 + F 1 , 3 F 2 , 3 ) 
n 
i, j+1 ,k − ( F 1 , 1 F 2 , 1 + F 1 , 2 F 2 , 2 + F 1 , 3 F 2 , 3 ) 

n 
i, j−1 ,k 

]

+ 
S z 

2 

[

( F 1 , 1 F 3 , 1 + F 1 , 2 F 3 , 2 + F 1 , 3 F 3 , 3 ) 
n 
i, j,k +1 − ( F 1 , 1 F 3 , 1 + F 1 , 2 F 3 , 2 + F 1 , 3 F 3 , 3 ) 

n 
i, j,k −1 

]

. (3.1) 
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Here, V = �x �y �z, S x = �y �z, S y = �x �z, S z = �x �y, ( φn ) u , ( φn ) v , ( φn ) w are the surface values of u 
n , v n , w n respec- 

tively, (φn ) + = max { φn , 0 } , (φn ) − = min { φn , 0 } and (u n 
i, j,k 

) + x = u n 
i +1 , j,k 

− u n 
i, j,k 

, (u n 
i, j,k 

) −x = u n 
i, j,k 

− u n 
i −1 , j,k 

, (u n 
i, j,k 

) + y = u n 
i, j+1 ,k 

−

u n 
i, j,k 

, (u n 
i, j,k 

) −y = u i, j,k − u i, j−1 ,k , (u 
n 
i, j,k 

) + z = u i, j,k +1 − u i, j,k , (u 
n 
i, j,k 

) −z = u n 
i, j,k 

− u n 
i, j,k −1 

. 

Second, the equation corresponding to the first component of (2.10) is: 

V 
F n +1 
1 , 1 ,i, j,k 

− F n 
1 , 1 ,i, j,k 

�t 
= −

[ 

( φn ) 
+ 
u 

(

F n 1 , 1 ,i, j,k 

)−

x 
+ ( φn ) 

−

u 

(

F n 1 , 1 ,i, j,k 

)+ 

x 

] 

−

[ 

( φn ) 
+ 
v 

(

F n 1 , 1 ,i, j,k 

)−

y 
+ ( φn ) 

−

v 

(

F n 1 , 1 ,i, j,k 

)+ 

y 

] 

−

[ 

( φn ) 
+ 
w 

(

F n 1 , 1 ,i, j,k 

)−

z 
+ ( φn ) 

−

w 

(

F n 1 , 1 ,i, j,k 

)+ 

z 

] 

+ 
S x 

2 
F n 1 , 1 ,i, j,k 

(

u n i +1 , j,k − u n i −1 , j,k 

)

+ 
S y 

2 
F n 2 , 1 ,i, j,k 

(

u n i, j+1 ,k − u n i, j−1 ,k 

)

+ 
S z 

2 
F n 3 , 1 ,i, j,k 

(

u n i, j,k +1 − u n i, j,k −1 

)

. 

(3.2) 

Third, the equation corresponding to the first component of (2.11) is: 

A 
−1 S x 

p n +1 
i +1 , j,k 

− 2 p n +1 
i, j,k 

+ p n +1 
i −1 , j,k 

�x 
+ A 

−1 S y 
p n +1 
i, j+1 ,k 

− 2 p n +1 
i, j,k 

+ p n +1 
i, j−1 ,k 

�y 

+ A 
−1 S z 

p n +1 
i, j,k +1 

− 2 p n +1 
i, j,k 

− p n +1 
i, j,k −1 

�z 
= 

∑ 

f 

S f n f 

(

A 
−1 
f H f 

)n 
. (3.3) 

Simplifying (3.1) –(3.3) and by using Taylor’s expansion at a reference point ( x i , y j , z k , t n ), we obtain: 

(

∂u 

∂t 

)n 

i, j,k 

= 

u n +1 
i, j,k 

− u n 
i, j,k 

�t 
+ O ( �t ) , 

(

∂u 

∂x 

)n 

i, j,k 

= 

u n 
i +1 , j,k 

− u n 
i −1 , j,k 

2�x 
+ O 

(

�x 2 
)

, 

(

∂u 

∂y 

)n 

i, j,k 

= 

u n 
i, j+1 ,k 

− u n 
i, j−1 ,k 

2�y 
+ O 

(

�y 2 
)

, 

(

∂u 

∂z 

)n 

i, j,k 

= 
u n 
i, j,k +1 

− u n 
i, j,k −1 

2�z 
+ O 

(

�z 2 
)

, 

(

∂ p 

∂x 

)n 

i, j,k 

= 
p n 
i +1 , j,k 

− p n 
i −1 , j,k 

2�x 
+ O 

(

�x 2 
)

, 

(

∂F 1 , 1 
∂t 

)n 

i, j,k 

= 

F n +1 
1 , 1 ,i, j,k 

− F n 
1 , 1 ,i, j,k 

�t 
+ O ( �t ) , 

(

∂ 2 u 

∂x 2 

)n 

x, j,k 

= 

u n +1 
i +1 , j,k 

− 2 u n +1 
i, j,k 

+ u n +1 
i −1 , j,k 

�x 2 
+ O 

(

�x 2 
)

, 

(

∂ 2 u 

∂y 2 

)n 

i, j,k 

= 

u n +1 
i, j+1 ,k 

− 2 u n +1 
i, j,k 

+ u n +1 
i, j−1 ,k 

�y 2 
+ O 

(

�y 2 
)

, 

(

∂ 2 u 

∂z 2 

)n 

i, j,k 

= 

u n +1 
i, j,k +1 

− 2 u n +1 
i, j,k 

+ u n +1 
i, j,k −1 

�z 2 
+ O 

(

�z 2 
)

, 

(

∂ 2 p 

∂x 2 

)n 

i, j,k 

= 

p n +1 
i +1 , j,k 

− 2 p n +1 
i, j,k 

+ p n +1 
i −1 , j,k 

�x 2 
+ O 

(

�x 2 
)

, 

(

∂ 2 p 

∂y 2 

)n 

i, j,k 

= 

p n +1 
i, j+1 ,k 

− 2 p n +1 
i, j,k 

+ p n +1 
i, j−1 ,k 

�y 2 
+ O 

(

�y 2 
)

, 

(

∂ 2 p 

∂z 2 

)n 

i, j,k 

= 

p n +1 
i, j,k +1 

− 2 p n +1 
i, j,k 

+ p n +1 
i, j,k −1 

2�z 
+ O 

(

�z 2 
)

, 

( 

∂ 
(

F 2 1 , 1 + F 2 1 , 2 + F 2 1 , 3 

)

∂x 

) n 

i, j,k 

= 

(

F 2 1 , 1 + F 2 1 , 2 + F 2 1 , 3 

)n 

i +1 , j,k 
−

(

F 2 1 , 1 + F 2 1 , 2 + F 2 1 , 3 

)n 

i −1 , j,k 

2�x 
+ O 

(

�x 2 
)

, 
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(

∂ ( F 1 , 1 F 2 , 1 + F 1 , 2 F 2 , 2 + F 1 , 3 F 2 , 3 ) 

∂y 

)n 

i, j,k 

= 
( F 1 , 1 F 2 , 1 + F 1 , 2 F 2 , 2 + F 1 , 3 F 2 , 3 ) 

n 
i, j+1 ,k 

2�y 

−
( F 1 , 1 F 2 , 1 + F 1 , 2 F 2 , 2 + F 1 , 3 F 2 , 3 ) 

n 
i, j−1 ,k 

2�y 
+ O 

(

�y 2 
)

, 

(

∂ ( F 1 , 1 F 3 , 1 + F 1 , 2 F 3 , 2 + F 1 , 3 F 3 , 3 ) 

∂z 

)n 

i, j,k 

= 
( F 1 , 1 F 3 , 1 + F 1 , 2 F 3 , 2 + F 1 , 3 F 3 , 3 ) 

n 
i, j,k +1 

2�z 

−
( F 1 , 1 F 3 , 1 + F 1 , 2 F 3 , 2 + F 1 , 3 F 3 , 3 ) 

n 
i, j,k −1 

2�z 
+ O 

(

�z 2 
)

. 

For the other two components of (2.9) –(2.11) , similar results can be obtained by using the same kind of arguments. 

The upwind scheme will result in an O ( �x , �y , �z ) or O ( �t , �x , �y , �z ) order accuracy. Therefore, the following error 

estimates can be obtained: 
∣

∣p 
(

x i , y j , z k , t n 
)

− p n i, j,k | + | u 
(

x i , y j , z k , t n 
)

− u n i, j,k 

∣

∣ + 

∣

∣v 
(

x i , y j , z k , t n 
)

− v 
n 
i, j,k 

∣

∣

+ 

∣

∣w 
(

x i , y j , z k , t n 
)

− w 
n 
i, j,k 

∣

∣ + 

∣

∣F l.m 

(

x i , y j , z k , t n 
)

− F n l,m,i, j,k 

∣

∣

= O ( �t, �x, �y, �z ) , 1 ≤ n ≤ N, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K, m, l = 1 , 2 , 3 , (3.4) 

where I = 
1 

�x 
max 

( x 1 ,y,z ) , ( x 2 ,y,z ) ∈ �
| x 1 − x 2 | , J = 

1 

�y 
max 

( x,y 1 ,z ) , ( x,y 2 ,z ) ∈ �
| y 1 − y 2 | , K = 

1 

�z 
max 

( x,y,z 1 ) , ( x,y,z 2 ) ∈ �
| z 1 − z 2 | . 

In order to prove the stability of the FVM scheme, it is necessary to introduce the following discrete Gronwall lemma. 

Lemma 3.1. (Gronwall’s Lemma) Let λ> 0, if { a n }, { b n }, and { c n } are three positive sequences, and { c n } is monotone, that 

satisfy: 

a n + b n ≤ c n + λ
n −1 
∑ 

i =0 

a i , a 0 + b 0 ≤ c 0 , 

then 

a n + b n ≤ c n exp ( nλ) , n = 0 , 1 , 2 , · · · . 

Theorem 3.1. Under the conditions �t · ( | u | + | v | + | w | ) ≤ ν and �t ν ≤min { �x , �y , �z }, the FVM scheme (2.9) - (2.11) is lo- 

cally stable. 

Proof. If it holds that �t | u |/ �x ≤1/3, �t | v |/ �y ≤1/3 and �t | w |/ �z ≤1/3 as well as �t ( | u | + | v | + | w | ) ≤ ν, which implies 

�t ( ‖ u ‖ ∞ + ‖ v ‖ ∞ + ‖ w ‖ ∞ ) ≤ ν, by (3.2) , then we have: 

∣

∣F n +1 
1 , 1 ,i, j,k 

∣

∣ ≤

(

1 −
�t | u | 

�x 
−

�t | v | 

�y 
−

�t | w | 

�z 

)

∣

∣F n 1 , 1 ,i, j,k 

∣

∣

+ 
�t| u | 

�x 

∣

∣F n 1 , 1 ,i +1 , j,k 

∣

∣ + 
�t| v | 

�y 

∣

∣F n 1 , 1 ,i, j+1 ,k 

∣

∣ + 
�t| w | 

�z 

∣

∣F n 1 , 1 ,i, j,k +1 

∣

∣

+ 
�t 

2�x 

(
∣

∣u n i +1 , j,k 

∣

∣ + 

∣

∣u n i −1 , j,k 

∣

∣

)
∣

∣F n 1 , 1 ,i, j,k 

∣

∣

+ 
�t 

2�y 

(
∣

∣u n i, j+1 ,k 

∣

∣ + 

∣

∣u n i, j−1 ,k 

∣

∣

)
∣

∣F n 2 , 1 ,i, j,k 

∣

∣

+ 
�t 

2�z 

(
∣

∣u n i, j,k +1 

∣

∣ + 

∣

∣u n i, j,k −1 

∣

∣

)
∣

∣F n 3 , 1 ,i, j,k 

∣

∣

≤

(

1 + 
�t 

�x 
‖ u ‖ ∞ 

)

‖ F n 1 , 1 ‖ ∞ + 
�t 

�y 
‖ u ‖ ∞ ‖ F n 2 , 1 ‖ ∞ + 

�t 

�z 
‖ u ‖ ∞ ‖ F n 3 , 1 ‖ ∞ , (3.5) 

where ‖ ·‖ ∞ is the L ∞ ( �) norm. Similarly, we have: 

| F n 2 , 1 ,i, j,k | ≤

(

1 + 
�t 

�y 
‖ v ‖ ∞ 

)

‖ F n 2 , 1 ‖ ∞ + 
�t 

�x 
‖ v ‖ ∞ ‖ F n 1 , 1 ‖ ∞ + 

�t 

�z 
‖ w ‖ ∞ ‖ F 3 , 1 ‖ ∞ , (3.6) 

| F n 3 , 1 ,i, j,k | ≤

(

1 + 
�t 

�z 
‖ w ‖ ∞ 

)

‖ F n 3 , 1 ‖ ∞ + 
�t 

�x 
‖ w ‖ ∞ ‖ F n 1 , 1 ‖ ∞ + 

�t 

�y 
‖ w ‖ ∞ ‖ F 2 , 1 ‖ ∞ . (3.7) 

Thus, from the assumption, we obtain: 

‖ F n +1 
1 , 1 ‖ ∞ ≤

(

1 + 
ν

�x 

)

‖ F n 1 , 1 ‖ ∞ , n = 0 , 1 , 2 , · · · , N. (3.8) 
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Summing (3.8) from 0 to n , we obtain: 

‖ F n +1 
1 , 1 ‖ ∞ ≤ ‖ F 0 1 , 1 ‖ ∞ + 

ν

�x 

n 
∑ 

j=0 

‖ F j 1 , 1 ‖ ∞ , n = 0 , 1 , 2 , · · · , N. (3.9) 

Applying the discrete Gronwall Lemma to (3.9) , we obtain: 

‖ F n +1 
1 , 1 ‖ ∞ ≤ ‖ F 0 1 , 1 ‖ ∞ exp 

(

nν

�x 

)

, n = 0 , 1 , 2 , . . . , N. (3.10) 

Therefore, the series { F n +1 
1 , 1 } is locally stable provided that the time interval [0, T ] is finite. Following a similar procedure, 

one can prove that the series of the other components of F are also locally stable. In summary, we conclude that { F n +1 } is 

locally stable. 

Similarly to (3.5) , we can obtain: 

‖ u n +1 ‖ ∞ ≤ ‖ u n ‖ ∞ + 
�t 

�x 

(

‖ F n 1 , 1 ‖ 
2 
∞ + ‖ F n 1 , 2 ‖ 

2 
∞ + ‖ F n 1 , 3 ‖ 

2 
∞ 

)

+ 
�t 

�y 

(

‖ F n 1 , 1 ‖ ∞ ‖ F n 2 , 1 ‖ ∞ + ‖ F n 1 , 2 ‖ ∞ ‖ F n 2 , 2 ‖ ∞ + ‖ F n 1 , 2 ‖ ∞ ‖ F n 2 , 3 ‖ ∞ 

)

+ 
�t 

�z 

(

‖ F n 1 , 1 ‖ ∞ ‖ F n 3 , 1 ‖ ∞ + ‖ F n 1 , 2 ‖ ∞ ‖ F n 3 , 2 ‖ ∞ + ‖ F n 1 , 3 ‖ ∞ ‖ F n 3 , 3 ‖ ∞ 

)

. (3.11) 

Denoting by τ = min { �x, �y, �z} , we have: 

‖ u n +1 ‖ ∞ ≤ ‖ u 0 ‖ ∞ + 
9 n �t 

τ
‖ F 0 ‖ 

2 
∞ exp 

(

2 nν

τ

)

, n = 0 , 1 , 2 , · · · , N. (3.12) 

This shows that the series { u n +1 } is locally stable if the time interval [0, T ] is finite. Following a similar procedure, one 

can prove that the series of the other components of u are also locally stable, i.e., { u n +1 } is locally stable. Thus, we conclude 

that the scheme (2.9) –(2.11) is locally stable. �

Remark 1. Our Finite Volume scheme here is only first-order accurate in space because we employ a first-order upwind 

technique. Higher order spatial accuracy can be obtained by changing the first-order upwind scheme to a second-order up- 

wind scheme. For example, 
(

u n 
i, j,k 

)−

x 
= 

(

3 u n 
i, j,k 

− 4 u n 
i −1 , j,k 

+ u n 
i −2 , j,k 

)

/ 2�x and 
(

u n 
i, j,k 

)+ 

x 
= 

(

−u n 
i +2 , j,k 

+ 4 u n 
i +1 , j,k 

− 3 u n 
i, j,k 

)

/ 2�x . 

4. Numerical experiments 

To verify the stability and the robustness of our Finite Volume solver, we test two numerical examples for the 3D incom- 

pressible viscoelastic fluid system in this section. In both experiments, the time interval is [0, 1.5] s ; ν = 0 . 01 ; the boundary 

condition for F is set to be ∂ F 
∂ n 

= 0 ; the Dirichlet boundary condition for u is u = 0 . For notation, we will denote the interior 

of � as �∧ and the boundary of � as ∂�. 

(i) As the first example, the computational domain � is a cube of size 0.1 mm ×0.1 mm ×0.1 mm , divided into 80 0 0 cells. 

We set �x = �y = �z = 0 . 005 mm . The initial condition for F is: 

F = 

⎡ 

⎣ 

2 0 0 

0 4 0 

0 0 0 . 125 

⎤ 

⎦ . (4.1) 

The initial condition for u is 

u = 

{

f ( x, y, z ) ∈ �∧ , 

0 ( x, y, z ) ∈ ∂�, 

f = 

(

10 e −80 0 0 ( ( y −0 . 055 ) 2 + ( z−0 . 045 ) 2 ) , 1 0 e −80 0 0 ( ( x −0 . 055 ) 2 + ( z−0 . 045 ) 2 ) , 1 0 e −80 0 0 ( ( x −0 . 055 ) 2 + ( y −0 . 055 ) 2 ) 
)

Although the initial and boundary conditions have explicit expressions, no exact solution is available because of the 

complicated interaction mechanism of the coupled system. In order to check the stability of our scheme, we conduct two 

experiments by using two different time step sizes. The first one is �t = 0 . 0 0 05 s while the second is �t = 0 . 0 0 025 s . Nu- 

merical solutions using different time step sizes for u , F and p are provided and compared for Figs. 2–10 . A video animation 

available for online readers can be found in Fig. 11 , see also: https://www.dropbox.com/s/jd0mc4f78edkge4/pcube.ogv?dl=0 . 

From the numerical results, we observe that those obtained from using different time step sizes are almost the same, par- 

ticularly, for p and F . The results show that our numerical solutions are convergent, accurate and, therefore, support that 

our Finite Volume scheme is stable. Moreover, we observe that numerical solutions decay as time evolves. This reflects the 

energy decay property of the incompressible viscoelastic system. From the results, we see that if a smaller time step size is 

used, the numerical solution of velocity decays faster, which is perhaps caused by the numerical dissipation of the scheme. 
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Fig. 2. Comparisons of the profiles of | u | at t = 0 . 01 using different time step sizes. 

Fig. 3. Comparisons of the profiles of | u | at t = 0 . 75 using different time step sizes. 

Fig. 4. Comparisons of the profiles of | u | at t = 1 . 5 using different time stepping sizes. 

Fig. 5. Comparisons of the profiles of p at t = 0 . 01 using different time stepping sizes. 
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Fig. 6. Comparisons of the profiles of p at t = 0 . 75 using different time stepping sizes. 

Fig. 7. Comparisons of the profiles of p at t = 1 . 5 using different time stepping sizes. 

Fig. 8. Comparisons of the profiles of | F | at t = 0 . 01 using different time stepping sizes. 

Fig. 9. Comparisons of the profiles of | F | at t = 0 . 75 using different time stepping sizes. 
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Fig. 10. Comparisons of the profiles of | F | at t = 1 . 5 using different time stepping sizes. 

Fig. 11. Video animation for the numerical example whose domain is a cube. 

Table 1 

Table of numerical errors in L 2 norm. The last column is the final approximation of the order 

of accuracy. 

�t 
∣

∣p �t − p �t/ 2 
∣

∣

| p �t −p �t/ 2 | 
| p �t/ 2 −p �t/ 4 | 

log 2 
| p �t −p �t/ 2 | 
| p �t/ 2 −p �t/ 4 | 

0.0 0 05 0.08674 2.43105 1.2816 

0.0 0 025 0.03568 2.30491 1.20471 

0.0 0 0125 0.01548 

To validate the order of accuracy in (3.4) , we calculate the L 2 norm of the numerical errors by using different time step 

sizes in Table 1 . We choose the scalar variable p to calculate the numerical errors. From the results in Table 1 , we see clearly 

that the order of the time errors is around 1, which verifies the estimate (3.4) . 

In Fig. 12 , we apply log-log plot to �t versus the numerical errors. From the plot, we see clearly that the slope of 

numerical errors is approximately 1. Therefore, the time accuracy is of order 1. 

In Fig. 13 , we apply log-log plot to �h (here �h = �x, �y, �z) versus the numerical errors. From the plot, we see clearly 

that the slope of numerical errors is approximately equal 1. Therefore, the order of spatial accuracy is 1. 

(ii) In the second example, we show that our Finite Volume solver can be applied to the incompressible Oldroyd-B model 

with complex geometry. In this example, the computational domain � is a dumbbell formed by connecting a large ball with 

a small ball through a handle. The radius of the small ball is 0.7 mm ; the radius of the large ball is 1.4 mm . There is a small 

spherical cavity inside the large ball with radius 0.35 mm . The center of the large ball, small ball and ball cavity are located 

at (0 . 21 , −0 . 01 , −2 . 25) , (0 . 21 , −0 . 01 , 2 . 25) , (0 . 21 , −0 . 01 , −2 . 6) , respectively. The radius of the (cylindrically shaped) handle 

is 0.18 mm . The mesh is generated by using the “SnappyHexMesh” utility in OpenFOAM. The initial condition of F is again 
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Fig. 12. The loglog plot of �t versus the numerical errors. The slope of the error plot is (nearly) equal to 1. 

Fig. 13. The loglog plot of the �h versus the numerical errors. The slope of the error plot is close to 1. 

Fig. 14. The profiles of | u | at t = 0 . 01 (left) and at t = 0 . 75 (right). 

defined by (4.1) . The initial condition for u is: 

u = 

{ 
(

80 e −80 0 0 ( y 2 + z 2 ) , 80 e −80 0 0 ( x 2 + z 2 ) , 80 e −80 0 0 ( x 2 + y 2 ) 
)

, x 2 + y 2 + z 2 < 0 . 025 , 

0 , Otherwise . 
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Fig. 15. The profiles of | u | at t = 1 . 5 (left) and the profile of p at t = 0 . 01 (right). 

Fig. 16. The profiles of p at t = 0 . 75 (left) and at t = 1 . 5 (right). 

Fig. 17. The profiles of F 23 at t = 0 . 01 (left) and at t = 0 . 75 (right). 

Fig. 18. The profile of F 23 at t = 1 . 5 . 



14 J. Tian, M. Cai and Z. Luo et al. / Commun Nonlinear Sci Numer Simulat 0 0 0 (2019) 104876 

Fig. 19. An video animation of the dumbbell experiment. 

The time step size is set to be �t = 0 . 0 0 05 s . Snapshots for u , F and p are given in Figs. 14–18 . The mesh and a video 

animations available online can be found in Fig. 19 , see also: https://www.dropbox.com/s/7ndtg2yyrhx3act/pdumbbell.ogv? 

dl=0 . 

From the numerical results, again, we observe that all numerical solutions decay with time. Such results reflect this 

energy decay property of the incompressible viscoelastic flow model. 

5. Concluding remarks 

Most of the PDE numerical analysts work on the Finite Element Method (FEM). There appears to be a shortage of numer- 

ical analysis work for the FVM. Nevertheless, many contemporary commercial computational mechanics software packages 

are based on FVM, including the open-source software OpenFOAM. Thus, stability analysis of the kind studied in our work 

here fills in some requisite knowledge for FVM in this regard, especially due to the fact that our numerical scheme is exactly 

the one being used in the OpenFOAM codes. 

There are many other similar models in electromagnetism, heat conduction, elasticity, etc., whose FVM schemes’ stability, 

error and convergence need to be analyzed, whether such schemes are based on OpenFOAM or other commercial packages. 

We hope that our work here can also provide some head-start for those models. 
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Appendix 

OpenFOAM codes 
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Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.cnsns.2019. 
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