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Abstract

Ceria has proven to be an excellent ion-transport and ion-exchange material when
used in polycrystalline form and with a high-concentration of aliovalent doped cations.
Despite its widespread application, the impact of atomic-scale defects in this mate-
rial are scarcely studied and poorly understood. In this article, using first-principles
simulations, we provide a fundamental understanding of the atomic-structure, ther-
modynamic stability and electronic properties of undoped grain-boundaries (GBs) and
alkaline-earth metal (AEM) doped GBs in ceria. Using density-functional theory simu-
lations, with a GGA+U functional, we find the 3 (111)/[101] GB is thermodynamically
more stable than the ¥3 (121)/[101] GB due to the larger atomic coherency in the %3

(111)/[101] GB plane. We dope the GBs with ~20% [M|gp (M=Be, Mg, Ca, Sr, and
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Ba) and find that the GB energies have a parabolic dependence on the size of solutes,
the interfacial strain and the packing density of the GB. We see a stabilization of the
GBs upon Ca, Sr and Ba doping whereas Be and Mg render them thermodynamically
unstable. The electronic density of states reveal that no defect states are present in or
above the band gap of the AEM doped ceria, which is highly conducive to maintain low
electronic mobility in this ionic conductor. The electronic properties, unlike the ther-
modynamic stability, exhibit complex inter-dependence on the structure and chemistry
of the host and the solutes. This work makes advances in the atomic-scale understand-
ing of aliovalent cation doped ceria GBs serving as an anchor to future studies that can

focus on understanding and improving ionic-transport.

Introduction

Doped polycrystalline electroceramic oxides are an important class of materials in which
point defects in the bulk and grain boundaries play a key role in regulating mechanical,
optical, thermal, magnetic, catalytic and charge transport properties.!? The transport and

ion exchange functionalities of electroceramics make them suitable for many technological

11,12 13-15

applications including catalysts, solid electrolytes and electrodes, gas separation

16,17 o35 sensing systems, '® and memristors.'® Many of the relevant oxides have

membranes,
fluorite or perovskite structures where oxygen transport occurs via thermally activated va-
cancy hopping and electron transport takes place via polaron hopping. In these oxides,
aliovalent cation doping can be employed to introduce oxygen vacancies, manipulate oxygen
migration energies, and regulate the concentration of mobile electrons and holes.

Many applications employ polycrystalline solids where the overall properties of the ma-
terial are significantly impacted by the presence of grain boundaries. For example, ionic con-
ductivity is degraded by space charge effects which block oxygen transport across GBs2? 26

and it is commonly assumed that there is a high concentration of immobile positively charged

oxygen vacancies at the GB core which repel mobile vacancies. Simple Mott-Schottky and



Gouy-Chapman models have been developed to treat space charge effects. 242673939 Although
successful in many ways, the Mott-Schottky and Gouy-Chapman models are built on the
so-called aAlJdilute-soluteaAl or aAlJnon-interactingdAl defect assumption. There is a

2,3,5,6,31-35 and theoretical predictions33436 that con-

growing body of experimental evidence
firm solute cation concentrations at GBs which exceed the range of validity of the dilute
solute assumption (~ 1%). These observations are not surprising considering the typical
temperatures employed for ceramic processing. There is a strong driving force for solute
segregation to reduce the overall system energy due to cation size mismatch, electrostatic
forces (i.e. GB core charge neutralization), and/or reduction in the GB energy. >:313236:37 The
ionic conductivity behavior of GBs with high solute concentration is substantially enhanced
contradicting the predictions of the dilute-solute space charge models. ™! The origin for the
conductivity increase is not currently understood and requires a fundamental investigation
of the role of solutes on the atomic structure and bonding at grain boundaries.

In this article, using first-principles simulations, we provide a fundamental understanding
of the atomic-structure, stability and electronic properties of pristine as well as aliovalent,
alkaline-earth metal (AEM) doped GBs in CeO,. We show that a local doping with ~20%
[M|gs (M=Be, Mg, Ca, Sr, and Ba) has a significant impact on the thermodynamic sta-
bility of the GBs. Using density-functional theory simulations with a GGA+U functional
we examine the structure, thermodynamic stability and coordination of atoms at the GB
interface for two of the more frequently observed grain-boundaries in Ca-doped ceria,"3®
the 33 (111)/[101] and X3 (121)/[101] GB. We show that a local doping with ~20% [M|gp
(M=Be, Mg, Ca, Sr, and Ba) has a significant impact on the thermodynamic stability of the
GBs. Element-projected and orbital-projected density of states show that no defect states
are present in or above the band gap of the AEM doped ceria, which is conducive to main-
taining lower electronic mobilities that is necessary for good ionic transport. In addition,

we find that the band gap of ceria can be modulated by up to 0.3 eV by selecting different
AEM dopants at the ceria GB.
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Figure 1: (a) Structure of the conventional fluorite CeOs unit cell. Its (121) and (111) lattice
planes are shown as shaded planes. These indicate the interface planes for the GBs. (b) The
xz-plane of the X3 (111)/[101] GB supercell. Inset shows the GB structure from the GB
containing plane, i.e., the x-y plane and the GB is located in the center of the plane. (c)
The percent deviation of the bonds in the ¥3 (111)/[101] GB supercell from the average
Ce-O bond length of the GB supercell, Arc._o, is shown as a color map. Blue indicates
compressed bonds while red indicates tensile bonds. (d) The xz-plane of the %3 (121)/[101]
GB supercell. Inset shows the structure from the x-y plane. (e) Arce_o is shown as a color
map.



Computational Methods

All simulations are based on density functional theory (DFT) using the the projector aug-
mented wave method®?#? as implemented in the plane-wave code VASP.#44 All simula-
tions included spin-polarization and the generalized gradient approximation (GGA) with
the Perdew-Burke-Ernzerhof (PBE)*546 exchange correlation functional was used. In addi-
tion, the strong correlation effects of the Ce 4f electrons were treated within GGA using
the Hubbard U correction (GGA+U) formulated by Dudarev et. al.*” An on-site Coulomb
interaction, U.;y = 5 €V, was used for Ce, as determined by Dholabhai et al.,*® to provide a
better fit with the experimental band gap (Eg.p), lattice parameter (ag), and bulk modulus
(By) compared to traditional GGA methods. For a 2x2x2 supercell of bulk ceria, we find
that Eg,p [O(Qp) — Ce(4f)] — 2.0 6V, ap=5.5 A, and By=180.59 GPa which is in reasonable
agreement with the measured values of Eg,,[O(2p) — Ce(4f)]=3 eV, ap=5.411 A% and
By—204-236 GPa.*5! The chosen value of U.g correctly describes the localization of the
4f electrons on the nearby Ce atoms—unlike traditional GGA which results in delocalized
electrons on all cerium ions in the lattice.

A plane wave cutoff energy of 400 eV was used for all cases except for the volume opti-
mization of ceria, where it was set to 520 eV. This cutoff energy was sufficient to converge the
forces® acting on each ion to 0.01 eV A /atom or better. A block Davidson® minimization
algorithm was used to achieve a convergence in total energy per cell on the order of 0.001
eV or better.

Figure la and Figure 1b show the 33 (111)/[101] and 23 (121)/[101] GBs, respectively.
These were constructed from the conventional fluorite unit cell of CeO,, Figure la, using
pymatgen > -an open-source Python library for materials analysis. The large variation in the
atomic structures of these GBs and the presence of high-quality experimental characteriza-

38 motivates the choice of these two GBs for

tion of GBs in polycrystalline Ca-doped ceria”
this study. The undoped ¥3 (111)/[101] GB cell has optimized lattice vectors [7.72, 7.72,

38.75] A with 144 atoms and was converged with a 3x3x1 gamma-centered k-point grid. The



undoped £3 (121)/[101] GB cell has optimized lattice vectors [9.53, 7.74, 54.84] A with 288
atoms and was converged with a 2x3x1 gamma-center k-point grid. A Gaussian smearing
with a sigma value of 0.05 eV was employed.

During the initial construction of each GB supercell structure, the inter-GB spacing
between respective grains (the z-axis separation) was set to maintain the same cation-anion
bond distance across the interfaces as the grain interior. This was motivated by several
studies suggesting that ceramic oxides relax to retain a bond length between ions that is
similar to the grain interiors.®>% To minimize the GB interactions between periodic images,
the undoped GB cells were constructed from grains having a c lattice vector two times the
periodic repeat distance of the oriented cell, such that ¢ = 2ay,;, where hkl are the crystal
directions associated with the (111) and (121) interfacial planes. These GB supercells are
used for assessing the energy and electronic properties of the undoped and doped GBs.
Note that the GB energy difference between the GB supercells constructed using grains
with c=ay and c=2ay;; was only 8 meV/A? and 2 meV /A2 for the ¥3 (111)/[101] and £3
(121)/]101] GB, respectively.

We ensured that the strain fields due to the AEM solutes decayed within the supercell
as discussed in the following section. When doped with an AEM solute, an oxygen vacancy
was introduced in the cell to maintain charge neutrality. Pseudopotentials for each AEM
solute were chosen such that the total energy was a minimum, and to ensure convergence of
the simulations. The O and Ce atoms have been described by 2s22p* and 5s25p%6525d'4 f!
valence electrons, respectively. The valence electrons for Be and Mg were described by
25?2 and 3s? while Ca, Sr, and Ba used 3s23p54s2, 4524p°5s2, 5525p°65s? valence electrons,
respectively. All structures, the bulk ceria, the GB structures and the AEM-doped GB, were

subject to full structure optimization.



Results and discussion

Grain Boundary Structure and Character

Grain boundary notations represent its 5 macroscopic degrees of freedom, i.e., the four
degrees specifying two directions and one specifying the angle.®” Besides these macroscopic
specifications, atomic-level parameters like the number of coordination-deficient cation sites,
the average cation-anion bond distance, and the GB induced lattice expansion can further
elucidate the GB’s structure-property relationship. A coordination-deficient cation site is
a site which has fewer bonds than that of the host cation in the defect-free lattice. Thus
for ceria-based compounds, a coordination-deficient cation site will have less than 8 nearest
neighbor oxygen atoms. GB expansion, yap in A, is defined as the difference in the z-axis
length between the relaxed GB supercell and the corresponding relaxed GB-free supercell
divided by two. Hence, vgp is a measure of the expansion of the pristine ceria’s lattice vector
that is perpendicular to the GB plane.

Table 1 lists the aforementioned atomic-scale parameters and the misorientation angles of
the GBs. The 33 (111)/]101] and X3 (121)/[101] are both high-angle coincident site lattice
boundaries3® with misorientation angles of 35.26 and 54.74°, respectively. Interestingly, the
equidistant (near cubic) polyhedral arrangement of the O ions around the Ce ions tend to
remain intact at/near the GB core as can be seen in Figure 1. This can be attributed to the
large ionicity of the Ce-O bonds. In order to retain the polyhedral arrangement of the host
lattice the ygp is significant, 0.315 A for %3 (111)/[101] and 0.471 A %3 (121)/[101] GB,
in agreement with experimentally measured values in similar systems.®® We emphasize here
that in stoichiometric ceria, the coordination-deficient vacancy sites are structural in origin.
The charge neutrality of the compound is maintained for all simulations thus no other point
defects were considered to be present at the GB.

The averaged Ce-O bond distance, 7 C5,, in the X3 (111)/[101] and 33 (121)/[101] GB

models are 2.379 A and 2.385 A, respectively. These average bond distances in the GBs



are practically equal to the bond distances in bulk ceria, Tg:?f-) — 2.380 A. The excellent

agreement between 725, and 7"859(2), however, does not imply that there are no distortions

in the lattice upon incorporation of the GB. On the contrary, as shown in Figure 1c and d,

CeOq

T GB T .
up to £9% bond deviation, Ar &8, = -2=25¢=0 % 100, where 3 is the length of bonds
Ce—-0O

in the GB structure, is observed. Both tensile and compressive strains are present in each
GB lattice. The lattice distortions are predominant near the GB and diminish rapidly away

from the GB.

Table 1: The interface-plane notation, the misorientation angle, # in °, the total number
of coordination deficient cation sites per GB, the average Ce-O bond distance for each GB
structure, 7 &8, in A, the z-axis expansion of the GB supercell, YeB in A and the GB
energy, AFEgp in eV/ A? are listed for the two GBs studied in this work. AFqp values listed

in parenthesis are in J/m?.

Interface-Plane | 6 (°) | sites | 7 GB, (A) | vas (A) | AEgp (eV/A?)
¥3 (111)/[101] | 35.26 | 4| 2.379 0.315 | 0.058 (0.93)
23 (121)/[101] | 54.74 | 4| 2.385 0471 | 0.093 (1.48)

Thermodynamic Stability of GBs and Solute Doped GBs

In order to compare the stability of ceria in the presence of GBs’ and dopants we compute

the GB energy, AFgg,

Eap — nceo, Eceo, — nvoEvo (1)
2A

AEgp =

where Egp is the total energy of the GB supercell with solute M, E, is the energy of one

formula unit of bulk x where y = CeOy or MO (see SI Table 1), n,, is the number of formula

units of x in the GB supercell, and A is the area of xy-plane i.e. the GB containing plane.

AFEqg represents the area normalized excess energy of ceria due to the creation of the GB
interface.

As listed in Table 1, the AEgp of undoped 3 (111)/[101] GB is approximately half the
value of the X3 (121)/[101] GB. This is not surprising since the 33 (111)/[101] GB has a
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Figure 2: The a) 33 (111)/[101] and b) 33 (121)/]101] GB structures with all distinct solute
sites indicated by a unique marker-color combination. All ions represented with a marker
indicate a core GB cation site which was considered as potential substitutional site. ¢) AEgp
for the 33 (111)/[101] (open/dashed markers) and 3 (121)/[101] (filled /solid markers) GBs.
Each marker corresponds to the AFEgg for each respective solute site depicted in the GB
structure models.

high atomic coherency across the interface, see Figure 1b and SI Figure la. The continuity
of the anion and cation sublattices is clearly preserved in the ¥3 (111)/[101] GB but the %3
(121)/[101] GB has a disruption in the cation sublattice, see Figure 1c and SI Figure 1b.
Other ceramic oxides such as yttria stabilized zirconia, display similar dependence of the
AFEgg on the coherency of atoms at the interface.?5:56:58

Figure 2a and 2b mark the substitutional sites at the ¥3 (111)/[101] and 3 (121)/[101]
GB of ceria, respectively, where we place the Be, Mg, Ca, Sr, and Ba solutes to assess
their impact on the stability, structure and electronic properties of the lattice. Note that
higher concentrations of dopants in ceria-based electrolytes have been reported at or near

the GBs. 385960 By definition, for a cation site to be considered part of the GB core, the site

must lie along/on either side of the GB mirror plane (see SI Figure 1). The $3 (111)/[101]



GB has two distinct sites, a coordination-deficient site marked by magenta triangles and a
fully-coordinated site marked by blue diamonds. The 3 (121)/[101] GB has three distinct
sites, the coordination-deficient site marked by orange triangles and fully-coordinated sites
marked by yellow diamonds and green circles. While the sites marked by green circles are
fully-coordinated, they favor an asymmetric arrangement of the O-atoms around the site
unlike the symmetric cubic arrangement in ceria.

A local GB solute concentration of 25% can be achieved for the %3 (111)/[101] and the
33 (121)/[101] GBs by sequentially considering one core GB site (indicated by the markers
in Figure 2a and 2b within one region of the GB core for doping. A region within the GB
core is assumed to have a 2 A width perpendicular to the GB plane which originates at the
cation mirror plane and extends towards the bulk. A total of 25 configurations of solutes
were thus studied in this work. The large number of atoms in the simulation cell and the
rapidly increasing number of configurations prohibit a comprehensive study of other solute
concentrations.

Figure 2¢ shows that the AEgp is greater for the 33 (121)/[101] GB than the X3
(111)/]101] GB. Furthermore, for each substitutional site, A Egp has a parabolic dependence
on the solute cation’s ionic radius. The site-dependence of the AEgp of the X3 (111)/[101]
GB is low in comparison to that of the 33 (121)/[101] GB. This can be understood by exam-
ining the net bond strain at the dopant sites of the GBs shown in Figure 1c and le. In the
Y3 (121)/[101] GB, the three distinct solute sites have markedly different net bond strain
illustrated by the variation in color in Figure 1c, le, and SI Figure 10-11. The net tensile to
compressive bond strain ratio is highest in the green-site, intermediate in the yellow site and
lowest in the orange site. In comparison, the blue and magenta sites in the ¥3 (111)/[101]
GB have a similar, and in fact much smaller, net bond strains shown in Figure 1c.

For both the GBs, the coordination-deficient cation sites (magenta and orange triangles)
are among the lowest energy sites. For the ¥3 (121)/[101] GB, the fully-coordinated sites

marked by the green circle also have low AFEgg, especially for the heavier solute cations.
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These three low AFEgp sites are also the most strained sites in the GBs. The blue sites in
the ¥3 (111)/[101] GB and the yellow sites in the 33 (121)/[101] GB have largest energies
displaying a barrier for doping and preference for the Ce-atoms to remain in a site that has
coordination and bond-length similar to that of the grain interior. Similar trends in four
symmetric tilt GBs have been observed for yttria-stablized zirconia. 33>

It is noteworthy that the addition of Be and Mg make the GBs consistently more unstable
across all sites. Apart from the large mismatch in the ionic radii of Ce (R; = 0.97 A) with
that of Be (R; = 0.27 A) and Mg (R; = 0.57 A),5! the nature of bonding in the native oxides
of Mg and Be also dictates the stability of the GB. Unlike the octahedral coordination
predominant in Ca (R; = 1.12 A), Sr (R; = 1.42 A) and Ba (R; = 1.26 A) oxides, Be and
Mg oxides display a tetrahedral bonding, see SI Table 1. The Be and Mg dopants relax into
interstitial sites to attain this 4-fold coordination where possible, for example in some of the
coordination-deficient sites. The relaxed structure of all solutes configurations is presented
in the SI Figure 10-11. Since the Ca dopants have the lowest mismatch in the ionic radii with
the host Ce atoms and also more closely match the cubic coordination of the host cation,
these solutes render the GB most stable in comparison to the other solutes.

Overall, the AEgp critical point appears to be modulated by three primary factors, (a)
the local atomic environment of the solute site, (b) the solute size and (c) the coordination
of the solute in its native oxide. The relative difference in AFEgg between the GBs may
be due to the GB packing density. Furthermore, it is evident that the AFEgg can be more
easily modulated by varying the solute type and is much less weakly modulated by the sub-
stitutional site. Additionally, GB doping strategies attempting to smooth out the potential
energy landscape across GBs should focus on Ca or Sr solutes since out of the five solute

sites explored the lowest GB energy is achieved for the Ca and Sr solutes.
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Electronic Structure of AEM Doped Ceria

Aliovalent solutes are often used to increase the number of charge carriers in ceramic ox-
ides.®? But they can also introduce localized defect states and/or bands above the band
gap activating electronic conduction mechanisms such as polaron hopping. %% This can be
detrimental to the ionic conductivities. In this section, we show that the AEM solutes can
deactivate these potentially detrimental electronic conduction mechanisms. In this context,
we find that AEM solutes do not introduce any defect states above the valence band or in

the band gap as discussed below.
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Figure 3: The element-projected DOS for the a) undoped (solid lines) and Be-doped (shaded
regions) for the ¥3 (111)/[101] GBs, and b) undoped (solid lines) and Ba-doped (shaded
regions) for the ¥3 (121)/[101] GBs. The Ar &5, of the Be-doped %3 (111)/[101] GB is
shown in (c) and that of the Ba-doped 3 (121)/[101] GB is shown in (d). Blue indicates
compressed bonds while red indicates tensile bonds. The DOS is shifted such that the top
of the valence band is at 0 eV.

Figure 3a and b show the element-projected density of states (DOS) for the supercells
with the ¥3 (111)/[101] and X3 (121)/]101] GB, respectively. The solid lines show the DOS
for the undoped GB and the shaded regions mark the DOS for the solute-doped GB. From

the DOS, it is clear that incorporation of Be and Ba solutes at the GB core does not result

12



in defect states above the band gap or within it. Similarly, we find that none of the solutes
impart defect states, see SI Figure 5-9.

In the undoped GB, the states at the conduction band maxima (CBM) are dominated by
Ce-4f and O-2p states with smaller contributions from Ce-4d and 5p states. See SI Figure
6-9 for orbital-projected density of states. The states at the valence band minima (VBm)
are mostly O-2p states.

Negligible changes occur in the states present at the VBm and CBM upon doping. For
all but the Be-doped GBs, d, p and s states of the solute atom are present at the CBM,
resulting in distorted cubic bonding of the solute-O bonds at the GB, see Figure 3d and
SI Figure 6-9. For Be-doped GBs, only p and s states of the Be are present at the CBM,
indicating a strong propensity of Be to form tetrahedral Be-O bonds as shown in Figure 3c.

Figure 4 shows that, relative to bulk ceria, the presence of the GBs and solutes has a
significant impact on the band gap. The presence of the planar defect, the GB, results in a
decrease in the Eg,, with calculated Eg,, values for the 3 (111)/[101] and 3 (121)/[101]
GB of 1.61 eV and 1.72 €V, respectively. The incorporation of solutes can modulate the band
gap further, by up to 0.3 eV relative to the undoped GB. A close inspection of the occupied
states in the DOS of AEM doped GBs reveals that the states well below the Fermi level alter
the Ce-O bonded states in a manner that the Eg,, decreases with respect to the bulk.

The 33 (111)/[101] GB shows greater site and solute dependence for the Eg,, than the 33
(121)/[101] GB. Although strain has been shown to strongly alter band gap of bulk ceria, %>-6¢
the increased site sensitivity of the Eg,, for the 33 (111)/[101] GB is not correlated with
changes in the lattice vectors or volume, see SI Figure 4. Based on this observation we can
infer that perhaps the changes in bond strains and the atomic environment have a greater
impact for GB cores which are atomically coherent and have bulk like packing densities.

For the ¥3 (121)/[101] GBs, the band gap changes are well correlated with the average
Ce-O bond distances, see SI Figure 2, and fluctuate around the undoped ¥3 (121)/[101]

GB band gap. However, for the doped 33 (111)/[101] GB the band gaps appear to be
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Figure 4: a) The Eg,, for each solute-GB configuration. The undoped GBs are represented
with black squares and the bulk ceria by blue square. The %3 (121)/[101] GB shows mi-
nor site and solute dependence while the 33 (111)/[101] GB shows both site and solute
dependence.

modulated by three main factors: bond strain, local atomic environment of the GB core,
and the ionic radii of the solute atom. The coordination-deficient sites (magenta triangle)
in the ¥3 (111)/[101] GB have less strain than the fully-coordinated sites (blue diamond)
resulting in a linear increase in the band gap, see SI Figure 10. This trend continues until Sr
and Ba where the band gap values decrease, an effect which most likely originates from the
increased bond strain which extends well into the bulk and can be seen in SI Figure 10. The
fully-coordinated sites, blue diamond symbols, are unable to relax since they are sterically
hindered by the surrounding anions. The increased strain for these sites which increase the
hybridization between the Ce 4f — O 2p — M nd, np and ns states, where M = Ca, Sr, and
Ba and n is the principle quantum number, decreasing the band gap which can be seen in
SI Figure 6. For both the GBs, the Ba-doped ceria maintains a similar band gap compared
with the undoped GB samples for all sites considered.

In all, the band gap in ceria is considerably affected by the presence of both planar
and solute defects. This can result in heterogeneous electronic properties in experimentally
synthesized nanocrystalline ceria. The changes in the band gap due to both solutes and the
presence of GBs are correlated with the local atomic structure of the GB, average Ce-O bond

distance, and the bond strain. Furthermore, the sensitivity of the electronic structure may
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be modulated by the GB packing density. For close packed GBs, sites which are sterically
hindered may have increased hybridization decreasing the band gap, where unhindered sites

show a linear increase in the band gap.

Conclusions

In conclusion, we use DFT with GGA+U functional to examine the structure, stability and
electronic properties of undoped and alkali-earth metal doped GBs in ceria. We studied two
high-angle grain boundaries, the ¥3 (111)/[101] and the %3 (121)/[101] GB and find that
the ¥3 (111)/[101] GB is thermodynamically more stable than the $3 (121)/[101] GB due
to its larger atomic coherency at the GB interface.

Considering all the substitutional sites in the GB core, we find that when the GBs
are doped with ~20% AEM solutes, the GB energies of ceria will depend strongly on the
substitutional site’s coordination numbers and its local atomic structure. We identify the
lowest energy substitutional sites for each AEM dopant and find that Ca, Sr and Ba solutes
stabilize the GBs but Be and Mg solutes render the GBs unstable. The enhancements in
the GB stability upon addition of Ca, Sr and Ba can be attributed to similarity in the ionic
radii of the solutes and Ce as well as the closely matching coordination of the solute in its
native oxide and the ceria lattice. The electronic density of states of doped GBs reveals
that no defect states are present in or above the band gap of the AEM doped ceria, which
is highly conducive to maintaining low electronic mobility in these ionic conductors. The
electronic properties, unlike the thermodynamic stability, exhibit complex inter-dependence
on the structure and chemistry of the host and the solutes. The presence of dopants can
modulate the band gap of ceria up to 0.3 €V in comparison to the undoped ceria with GBs.

In the future, advances in computational methods and computing power can enable a
comprehensive first-principles based study of more GB structures, solute concentrations as

well as the coordinated transport of oxygen-vacancies and ions. Our work serves as a guide
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to these future studies, making an impact on the design of more efficient oxide based ionic

conductors.
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