
test: A Semantic Approach to Modularizing SDN Software

Software-defined networking (SDN) refactors the dis-
tributed network protocols in the network into an ensemble
of centralized programs running at a server (controller) that
is separate from the network, creating a rare opportunity to
simplify network management with modern software engi-
neering. Yet the SDN software architecture, which often
requires coordination among multiple entities over shared
states, remains monolithic. The SDN controllers, or network
operating systems [4, 5], while exposing to control software
a uniform programming interface that abstracts away details
of the network hardware, fall short in providing the operating
system functionality of coordination among those software.

The onus of combining multiple control software that col-
lectively drive the behavior of a single network is falling
on the admin to write modular programs. Modular pro-
gramming, though a natural choice at first glance, often pre-
fixed [3, 7] modularization support in the language features
tailored to a particular task. The modular composition itself
is tightly coupled with the code that achieves the individual
target task, and determining the composition requires clear
understanding of the joint intent of every components.

Modularization by Semantics layering
To bring modularity to SDN software, in this position pa-

per, we propose a drastically different approach called se-
mantics layering. Rather than embedding modularization in
user-supplied modular software, semantics layering realizes
modularization through a distinct orchestration service im-
plemented at the controller. Semantics layering is a general
organizational principle that is decoupled from individual
software component, it promotes, enforces, and automati-
cally determines modularization.

Semantics layering is built on the insight that essential to
modular composition is not the different form of network ab-
stractions used to realize a semantic property, but the prop-
erty itself expressible in standard logic. That is, we view the
SDN software components as semantic units that operate in
a control loop — each control module continuously moni-
tors the network states s against some property i, whenever
a violation of i is detected, it reconfigures s to restore the
invariant by generating some update u.

Rather than relying on the composition logic explicitly
specified in the modular program for instructing the inter-
actions among these semantic units, semantic layering or-
chestrates the network updates u by automatically inferring
their impacts on the semantic properties. The result of such
automated reasoning is semantic layering of SDN applica-
tions — the upper layers depend on the lower ones for re-
pairing property violations. Whenever an application initi-

ates an update, all lower-layer applications are invoked as
well. For example, routing application is located below the
firewall application because the firewall, in order to enforce
secure end to end connectivity, must depend on the routing
application to actually remove the switch configurations cor-
responding to the insecure request.

Determining Semantics layering
The essence of semantics layering is to coordinate SDN

modules to respect the semantic properties of every individ-
ual modules such that the updates pushed by one will not
inadvertly hurt the properties of another. To this end, we
introduce the notion of semantics dependency: one module
depends on another module if the maintenance of its prop-
erty logically implies the maintenance of the property of the
second.

To determine semantics layering, we only need to deter-
mine semantic dependency, a problem that can be recasted
as the (database) irrelevant update problem. Given two mod-
ules x and y, and some shared network states s; we rep-
resent s by tables (facts), and formalize x and y as a pair
of database programs that continuously query (monitor) and
update (reconfigure) the tables s. In the database terms, x
depends on y if the output of x’s query — a database view
— is affected by y’s update program, but x’s update will
never alter y’s query result. That is, we only need to check
whether x’s update is irrelevant of y’s query.

Armed with the formulation of semantic dependency as
a database irrelevant update problem, we can determine se-
mantic dependency by database irrelevant reasoning [1, 6,
2], a satisfiability technique that checks irrelevant updates.
Once we generate the dependency graph containing all se-
mantic dependencies among the modules, we can run a topo-
logical sort to produce a hierarchy of modules — seman-
tics layers, in which each layer enriches and depends on the
properties maintained by the ones beneath it.

1. REFERENCES
[1] BLAKELEY, J. A., COBURN, N., AND LARSON, P.-V. Updating derived

relations: Detecting irrelevant and autonomously computable updates. ACM
Trans. Database Syst. 14, 3 (Sept. 1989), 369–400.

[2] ELKAN, C. Independence of logic database queries and update. In Proceedings
of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 1990), PODS ’90, ACM, pp. 154–160.

[3] FOSTER, N., GUHA, A., REITBLATT, M., STORY, A., FREEDMAN, M. J.,
KATTA, N. P., MONSANTO, C., REICH, J., REXFORD, J., SCHLESINGER, C.,
WALKER, D., AND HARRISON, R. Languages for software-defined networks.
IEEE Communications Magazine 51, 2 (2013), 128–134.

[4] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO, M., MCKEOWN,
N., AND SHENKER, S. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev. 38, 3 (July 2008), 105–110.

[5] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI, L.,
ZHU, M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA, T., AND
SHENKER, S. Onix: a distributed control platform for large-scale production

1



networks. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation (2010), OSDI’10.

[6] LEVY, A. Y., AND SAGIV, Y. Queries independent of updates. In Proceedings of
the 19th International Conference on Very Large Data Bases (San Francisco,
CA, USA, 1993), VLDB ’93, Morgan Kaufmann Publishers Inc., pp. 171–181.

[7] REICH, J., MONSANTO, C., FOSTER, N., REXFORD, J., AND WALKER, D.
Modular SDN Programming with Pyretic. USENIX ;login 38, 5 (October 2013).

2


