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Abstract

This work proposes and analyzes a family of spatially inhomogeneous epidemic
models. This is our first effort to use stochastic partial differential equations
(SPDESs) to model epidemic dynamics with spatial variations and environmen-
tal noise. After setting up the problem, existence and uniqueness of solutions
of the underlying SPDEs are examined. Then definitions of permanence
and extinction are given. Certain sufficient conditions are provided for the
permanence and extinction. Our hope is that this paper will open up windows

for investigation of epidemic models from a new angle.
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1. Introduction

This work presents an effort of studying stochastic epidemic models, in which
spatial in-homogeneity is allowed. The hope is that it will open up a new angle
for investigating a large class of epidemic processes. In lieu of the usual stochastic

differential equation based formulation considered in the literature, we propose a new
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class of models by using stochastic partial differential equations. This effort largely
enriches the class of systems and offers great opportunities both mathematically and
practically. Meanwhile, it poses greater challenges.

The epidemic models (compartment models), in which the density functions are
spatially homogeneous were introduced in 1927 by Kermack and McKendrick in [24, 25].
The main idea is to partition the population into susceptible, infected, and recovered
classes. The dynamics of these classes are given by a system of deterministic differential

equations. One of the classical models takes the form

ds(t) = [ ~ usS(t) ;f)(ﬂlffz) dt >0,
aI(t) = [~ (ur +1)I(0) + &g(ﬂfffg Jar 1>,

where S(t), I(t), R(t) are the densities of susceptible, infected, and recovered popula-
tions, respectively. In the above, A is the recruitment rate of the population; ug, pir, g
are the death rates of susceptible, infected and recovered individuals, respectively;
« is the infection rate and 7 is the recovery rate. To simplify the study, it has
been noted that the dynamics of recovered individuals have no effect on the disease
transmission dynamics. Thus, following the usual practice, the recovered individuals
are removed from the formulation henceforth. The SIR models are known to be useful
and suited for such diseases as rubella, whooping cough, measles, smallpox, etc. It
has also been well recognized that random effect is not avoidable and a population
is often subject to random disturbances. Thus, much effort has also been devoted
to the investigation of stochastic epidemic models. One popular approach is adding
stochastic noise perturbations to the above deterministic models. In recent years,
resurgent attention has been devoted to analyzing and designing controls of infectious
diseases for host populations; see [1, 4, 6, 14, 17, 23, 20, 26, 36, 37] and references
therein.

For the deterministic models, studying the systems from a dynamic system point of
view, certain threshold-type results have been found. In accordance with the thresh-

old, the population tends to the disease-free equilibrium or approaches an endemic
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equilibrium under certain conditions. It has been a long-time effort to find the critical
threshold value for the corresponding stochastic systems. A characterization of the
systems using critical threshold was done very recently in [15, 18, 21, 22], in which
sufficient and almost necessary conditions were obtained using the idea of Lyapunov
exponent so that the asymptotic behavior of the system has been completely classified.

Such idea can also be found in the work [16, 28] for related problems.

From another angle, it has been widely recognized that there should be spatial
dependence in the model, which will better reflect the spacial variations. In the

spatially inhomogeneous case, the epidemic reaction-diffusion system takes the form

a(z)S(t,x)I(t,x)

0
g —S(t,x) = kiAS(t, z) + A(z) — pa (2)S(t, x) — S(t.2) + 1(.0) n R x O,
88 I(t,z) = ko AI(t,z) — po(x)I(t,x) + aé,?i?fiféf;? nRT x O,
9,8, x) =0, I(t,x) =0 in RT x 90,
S(x,0) = So(x), I(x,0) = Io(x)  in O,
(1.1)

where A is the Laplacian with respect to the spatial variable, O is a bounded domain
with C? boundary of R! (I > 1), 8,.S denotes the directional derivative with the v being
the outer normal direction on 0O, and k; and ko are positive constants representing
the diffusion rates of the susceptible and infected population densities, respectively.
In addition, A(z), u1(z), pa(z), a(x) € C?(O) are non-negative functions. Recently,
the epidemic reaction-diffusion models have been studied in [2, 19, 32, 33, 40] and
the references therein. In [36], some results were given for a general epidemic model
with reaction-diffusion in terms of basic reproduction numbers. The above models
are all noise free. However, random noise perturbations in the environment often in-
evitably appear. Therefore, a more suitable description requires to consider stochastic
epidemic diffusive models. Taking this into consideration, we propose a spatially non-

homogeneous model using a system of stochastic partial differential equations given
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a(x)S(t,x)I(t,x
é(t{ x() n ir(i a:))}dt
+S(t,x)dWi(t,z) in R x O,
a(x)S(t, x)I(t, x)}

S(t,x)+1(t,x)
+I(t,z2)dWs(t,z) in Rt x O,

dS(t,z) = [klAS(t, )+ A(z) — ()8 (¢, ) —

dI(t,z) = [kgAI(t, ) — pa(2)I(t,2) +

8,S(t,x) =98,I(t,x) =0 in R x 00,

S(xz,0) = So(x), I(x,0) = Ip(x) in O,

(1.2)
where Wy (¢,x) and Wy(t,z) are L?(O,R)-value Wiener processes, which present the
noises in both time and space. We refer the readers to [12] for more details on the
L?(0,R)-value Winner process.

Because this is our first work in this direction, we have to settle a number of issues.
First, we establish the existence and uniqueness of solutions in the sense of mild solution
of the stochastic partial differential equations. Moreover, we examine some long-term
behavior of the solutions. These are the main objectives of the current work.

The rest of the paper is arranged as follows. Section 2 gives some preliminary results
and also formulates the problem that we wish to study. Section 3 establishes the
existence and uniqueness of the solution of the stochastic partial differential equations.
Section 4 provides sufficient conditions for the extinction and permanence while Section
5 provides an example. Finally, Section 6 concludes the paper with some further

remarks.

2. Preliminary and Formulation

Let O be a bounded domain in R’ (with [ > 1) having C? boundary and H :=
L?(O;R) be the separable Hilbert space, endowed with the scalar product

(u,v) g ::/Ou(os)v(z)d:c,

and the corresponding norm |u|, = \/(u,u)mz. We will say v > 0 if u(x) > 0 almost

everywhere in O. Moreover, we denote by L?(O,R?) the space of all functions u(z) =
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(u1 (), u2(z)) where uy,us € L*(O,R), on which the inner product is defined as

(u,v) 200, R2) = /O<u(x),v(x)>R2dx = /(9 (ur(z)v1(2) + uz(2)v2(2))de
= (u1,v1)r2(0,r) + (U2, V2) L2(0 R),

for all u,v € L?(O,R?). Note that L?(O,R?) is a separable Hilbert space. In what
follows, we use u to denote a function that is either real-valued or an R2-valued. It
will be clear from the context. Denote by E the Banach space C(O;R) endowed with

the sup-norm

|ul g := sup Ju(z)].
zeO

Let (Q,]:, {}}}QO,P) be a complete probability space and LP (Q; c([o,t],C(O, RQ)))
be the space of all predictable C(O, R?)-valued processes v in C([0,t], C(O,R?)), P-a.s.
with the norm L. , as follows

P — p
|U‘Lt’p T Eszl[lol?t} |u(8)|C(6,R2) ’

where

2 1
lulc@re) = (Z SUB|U1'($)\2>2 if w=(u1,up) € C(O,R?).
i=1 €O

For ¢ > 0,p > 1, denote by WP(0O,R?) the Sobolev-Slobodeckij space (the Sobolev
space with non-integer exponent) endowed with the norm

|ui(x) — ui(y)[”
lul,, == |U‘LP(OR2)+Z Oxoﬁd zdy.

Assume that By 1(t) and By 2(t) with k = 1,2, ..., are independent {F; };>o-adapted
one-dimensional Wiener processes. Now, fix an orthonormal basis {ex}32, in H and
assume that this sequence is uniformly bounded in L (O, R), i.e

Cy = sup |ex| o (o) = Supesssupeg(z) < .
ke kEN zeO

We define the infinite dimensional Wiener processes W;(t), which are driving noises in

equation (1.2) as follows

= Z Vi iBr,i(t)ep, 1=1,2,

k=1
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where {ax ;}7° | are sequences of non-negative real numbers satisfying
oo
;=Y ap; <oo, i=12. (2.1)
k=1
Let A; and As be Neumann realizations of k1A and ks A in H, respectively, i.e.,
D(4A;) = {u € H|Au € H and d,u =0 on 8(9},

Aiu = klA’LL, u e D(AZ),

where the Laplace operator in the above definition is understood in the distribution
sense. Then, A; and A, are infinitesimal generators of analytic semi-groups e*4! and
e!42 with corresponding Neumann heat kernels, denoted by pg’l(t,sr,y),pg’2 (t,z,y),
ie.,

(i) (z) = /O Ytz y)uly)dy, i = 1,2,

respectively. In addition, if we denote A := (A1, As), the operator defined in L?(O, R?)
by Au := (Ajui, Aqus) for u = (u1,uz) € L*(O,R?), then it generates an analytic
semigroup e*4 with et4u = (e'A1uy,e!42uy). In [13, Theorem 1.4.1], it is proved that
the space L'(O,R?) N L>(O,R?) is invariant under e*4, so that e’ may be extended
to a non-negative one-parameter semigroup ') on L?(O; R?), for all 1 < p < co. All
these semi-groups are strongly continuous and consistent in the sense that 4Py =
etA Dy, for any v € LP(O,R?)NLI(O,R?) (see [9]). So, we will suppress the superscript
p and denote them by e?4 whenever there is no confusion. Moreover, if we consider
the part AF of A; in the space of continuous functions F, it generates an analytic
semi-group (see [3, Chapter 2]), which has no dense domain in general. However, since
we have assumed that O has C? boundary, in our boundary condition, AF has dense
domain in E (see [12, Appendix A.5.2]) and hence, this analytic semi-group is strongly
continuous. Finally, we recall some well-known properties of the operators A; and
analytic semi-groups e!4i for i = 1,2 as follows. For further details, we refer the reader

to the monographs [3, 13, 31] and the references therein.

e Yu € H then fg e*Aiuds € D(A;) and Ai(fot e*Aiuds) = ety — u.

e By Green’s identity, it can be proved that A; is symmetric, that A; is self-adjoint
in H, and that Yu € D(4;), [,(Asu)(z)dr = 0.
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e Forany t > 0,z,y € O,

\m—y\Q

0 Spo (t z,y) < cl(t/\l)_’ 2 ,

for some constant ¢q, ¢o, which depends on O, but is independent of u, t.

e The semigroup e/ satisfies the fowling properties

A A
|e! u|Lm(o7R2) < clul poe o g2y and |€f u|0(5,R2) < clulgo gz » (2.2)

for some constant ¢, which depends on O, but is independent of u, t.
e For any t,& > 0, p > 1, the semigroup e*4 maps LP(O,R?) into WP(O, R?) and
Yu € LP(O,R?)
|etAu‘57p <e(tn1)~e? ul Lo (0,r2) » (2.3)
for some constant ¢ independent of wu, t.

Now, we rewrite equation (1.2) as the stochastic differential equation in an infinite

dimension space

dS(t) = [Als(t) FA— St — M] dt + S(t)dW (1),
dI(t) = [Azf(t) ~ ol (t) + M} dt + I(£)dWs(t), (2.4)

5(0) = Sp, 1(0) = Io.

As usual, we say that (S(t),I(t)) is a mild solution to (2.4), i

I(t) = eIy + /o elt=s)42 ( — pol(s) + M)ds + Wi(t),

where

Ws(t) = /0 et=3)418(5)dW, (s) and Wy(t) = /O =942 (5)dWy(s),

or in the vector form

Z(t) = e 2y + /t e(t_S)AF(Z(s))dS + /t e Z(s)dW (s), (2.6)

0 0

aST n aST
S+ M T erT

eI Z(5)dW () := ("IN S (s)dWi(s) , e~ A21(5)dWa(s)).

where Z = (8,1), F(Z) = (F\(2), Fy(2)) := (A S — ) and
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Because we are modeling the SIR epidemic systems, we are only interested in the
positive (> 0) solutions. Therefore, we define a “positive mild solution” of (2.4) as a
mild solution S(t,z), I(t,z) such that S(¢,x),I(¢t,2) > 0, almost everywhere z € O,

s

for all ¢ > 0. Moreover, to have the term P well defined, we assume that it is equal

0 whenever either s =0 or ¢ = 0.

Remark 2.1. The integrals on the right-hand side of (2.5) are understood as Bochner
integrals (in the Banach space H) while Wg(t) and W;(t) are the stochastic integrals
(stochastic convolutions). The S(s) (resp. I(s)) in the stochastic integrals is under-

stood as multiplication operator, i.e.,
S(s)(u) = S(s)u, Yue H.

The stochastic integral fot (=947 (5)dW;(s) (see [12, Chapter 4] for more details on

stochastic integrals) is well-define if the process U(s) satisfies that

t O
/ E 7%
0

k=1

2
=) A T (s)ey . ds < oo.

Finally, in the vector form, to simplify notation, we do not write the vectors in the
column form. However, the calculations involving vectors are understood as in the

usual sense.

To investigate the epidemic models, an important question is whether the infected
individual will die out in the long time. That is, the consideration of extinction or
permanence. Since the mild solution is used, let us introduce the definitions in the

weak sense as follows.

Definition 2.1. A population with density u(t, ) is said to be extinct in the mean if
1 t
lim sup 7/ ]E/ u(s,x)dzxds = 0,
t—o00 t 0 (@)
and that is said to be permanent in the mean if there exists a positive number Ry, is
independent of initial conditions of population, such that

L1t 9 3
lim inf 7/ (IE/ (u (s,2) A l)da;) ds > Rj.
t Jo o

t—o0

Remark 2.2. It is well known that it is fairly difficult to confirm the existence of

strong solutions for stochastic partial differential equations (even weak solution); see
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[12, Section 6.1]. As an alternative, we shall use the notion of mild solutions. Hence,
the convergence in our situation is in the weak sense. Note however, in the deterministic
case, in [2, 19, 32, 33, 40], the authors obtained strong solutions of the deterministic
reaction-diffusion epidemic models and the convergence is taken in a space such as L™,
E, or a Sobolev space. In what follows, for convenience, we often suppress the phrase
“in the mean” when we refer to extinction and permanence, because we are mainly

working with mild solutions.

3. Existence and Uniqueness of the Positive Mild Solution

In this section, we shall prove the existence and uniqueness of the positive mild
solution of the system as well as its continuous dependence on initial conditions. In
what follows, without loss of the generality we can assume |O| = 1, where |O| is the

volume of bounded domain @ in R! and the initial values are non-random for simplicity.

Theorem 3.1. For any initial data 0 < Sy, Iy € E, there exists a unique positive mild
solution (S(t), 1(t)) of (2.4) belongs to L? (Q; C([0,T],C(O,R?))) for any T > 0,p > 1.

Moreover, this solution depends continuously on the initial data.

Proof. In this proof, the letter ¢ denotes a positive constant whose value may change
in different occurrences. We will write the dependence of constant on parameters
explicitly if it is essential. First, we rewrite the coefficients by defining f and f* as

follows:

flx,s,4) = (A(x) —pi(z)s — i.)’ €0, (s,i) € R?,

and

Writing z = (s, ¢), by noting that as our assumption, the term will be equal to 0

s+
whenever either s = 0 or i = 0, it is easy to see that f*(x,-,-) : R? — R? is Lipschitz

continuous, uniformly in € O so that the composition operator F*(z) associated with
[ e,
F*(2)(z) = (FY (2) (@), F5 (2)(@)) := f*(2,2(2)), 2 €O,

is Lipschitz continuous, both in L*(O,R?) and C(O,R?). Now, we consider the
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following problem
dzZ*(t) = [AZ*(t) + F*(Z*(t))|dt + (Z*(t) V0)dW (t), Z*(0) = Zo = (S0, Ip), (3.1)
where Z*(t) = (5*(t), I*(t)) and Z*(t) V 0 is defined by
(Z*(t) V 0) (z) = (S*(t, ) V0, T*(t, ) V 0).
For any
u(t,z) = (ui(t,z),us(t, x)) € LP(Q; C([0,T],C(O,R?))),

consider the mapping

() (t) = €4 2y + / =94 P (u(s))ds + () (2),

where
o(u)(t) = / )4 ((s) v 0)dW (s)
0
= (/ e(t=9)4 (u1(s) v0)dW1(3)7/ elt=9)A42 (uz(s) \/O)de(s)>.

0 0
We will prove that v is a contraction mapping in L?(Q; C([0, Tp], C(O,R?))), for some
Ty > 0, and any p > pg for some pg.

Lemma 3.1. There exists py such that for any p > po, the mapping
maps LP (Q; C([0,t], C(O,R?))) into itself,
and for any u = (u1,uz),v = (v1,v2) € LP (€ C([0,t], C(O,R?)))

() — ()], < ) lu—roly, (32)
where ¢y (t) is some constant satisfying cp(t) L 0 ast ] 0.

Proof. Let py be sufficiently large to satisfy that for any p > pg, we can choose
simultaneously 3, > 0 such that
1 1 l 1
—<B<z and -<e<2(8--).
p 2 p p
Now, for any fixed p > pg, let 5, be chosen as above. By using a factorization

argument (see e.g., [12, Theorem 8.3]), we have

sin g

p(u)(t) — p(v)(t) =

t
/ (t — )P4y, (u, v)(s)ds,
0

™
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where
Ys(u,v)(s) = / (s — 1)~ Pels—mA (u(r) VO —u(r)V o) dW (r).
0
If
t
/0 Y5 (u, v)(8)[7.0 (0 g2y ds < 00, as.,
then it is easily seen from the properties (2.3) of semi-group e and Holder’s inequality

that
lo(u)(t) — (v)()].,

t
_ —e/2
SCg/O (t—s)""H((t—s)A1) «/ Ya(u, 0)| 100 g2y ds
' T A v
<enn®( [ ((t=5) A1) as) 7 ([ Walu ) e 05)
0 0

t 1
< a0 [ Wl 0) () o 0oy ) .
(3.3)
where cg ,(t) is some positive constant, satisfies cgp(¢t) J 0 as ¢ | 0. Rewriting

Ys(u,v)(s) = (Ym(u,v)(s),Yw(u, v)(s)), where
Yig(u,v)(s) := /Os(s — )Pl (1) V O — (1) V 0)dWi(r), i = 1,2.

Therefore, applying the Burkholder inequality, we obtain that for all s € [0, ¢], almost
every x € O,

P
2

E|Yig(u,v)(s,z)[" < cpIE[/O (s —r)~28 Z arq | M;(s,r, k, x)|” dr]
k=1

where

M;(s,r k) = g5 (ui(r) VO —u(r)V O) k-
In above, we used the notations
Yig(u,v)(s,x) :== Yig(u,v)(s)(x), M(s,r k,x):=M(s,rk)(z), i=1,2.
As a consequence,
S "
< (0E | t L (Wistw o) sl + Waau.o) (5,2 ) dods (3.4)

P
2

t s
< cp(t)/ ]E(/ (s — )" %8 (ay + ag) sup |M(s,r, k)\im(aRz) dr) ds,
0 0 keN
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where M (s,r, k) := (Ml(s,r, k), Ma(s,r, k)) and aq,as are defined in (2.1). Moreover,

since the uniformly boundedness property of {ex};2, and (2.2), we have

221R)1|M(8 T k)|L°°(O R2) < clu(r) — (7")|C(6,R2)v (3.5)

for some constant ¢ independent of s, r, u,v. Combining (3.4) and (3.5) implies that
t
B [ V(0 0)(6) o
g

< ¢p(t) /OtE sup |u(r) —v(r) g(aRQ) (/05(8 —r)” 2'Bdr) ds (3.6)

re[0,s]

t
< ca®) [ B s> ur) ~ o) g 50,43 < i) 00l < o

where cg () is some positive constant and satisfies cg () | 0 as t | 0. Therefore, the
inequality (3.3) holds and as a consequence, p(u)(t) — p(v)(t) € WP(O,R?). Since
e > I/p, the Sobolev embedding theorem implies that (u)(t) — p(v)(t) € C(O,R?).
Finally, (3.3) and (3.6) imply that

o) — (o)l < eplt) lu—rol,,
for some constant c,(t), satisfying c,(¢) J 0 as ¢t | 0. The Lemma is proved. O

Therefore, for p > pg, with sufficiently large pg, v maps LP (Q; c([o,t,C(0, Rz)))

into itself. Moreover, by using (2.2) and Lipschitz continuity of F'*, we have

[ o = GO, g < 1) =k e

t
< c/ sup | (u(r) — o)) |2 = oo ds < et sup |u(s) — v(s)|P = . .
0 rejlo,s] |( )|C(O’R ) s€[0,t] C(OR?)

(3.7)

Hence, (3.2) and (3.7) imply that

(W) =)y, , < eplt) [u—vly, .

where ¢, (t) is some constant depending on p, ¢ and satisfying c,(t) | 0 as t | 0. There-
fore, for some Ty sufficient small, 7 is a contraction mapping in L? (Q; ([0, Ty], C(O, R2))).
By a fixed point argument we can conclude that equation (3.1) admits a unique mild
solution in LP (€%; C([0, Tp], C(O,R?))). Thus, by repeating the above argument in each
finite time interval [kTp, (k + 1)To], for any T > 0,p > po the equation (3.1) admits a
unique mild solution Z*(t) = (S*(t), I*(t)) in LP(€;C([0,T],C(O,R?))). We proceed
to prove the positivity of S*(t), I*(t).
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Lemma 3.2. Let (S*(t),1*(t)) be the unique mild solution of (3.1). Then Vt € [0,T],
S*(t),I*(t) > 0 a.s.

Proof. Equivalently, (S *(t), I *(t)) is the mild solution of the equation

dS*(t) = [A1S*(t) + F1(S*(t) V 0,I*(t) vV 0)]dt + (S*(t) vV 0)dW:(t),
dI*(t) = [AoI*(t) + Fo(S*(t) V0,1*(t) v 0)]dt + (I*(t) V 0)dWa(t), (3.8)
5*(0) = So, I* (0) = Io.

For i = 1,2, let A; € p(4;) be the resolvent set of A; and R;(\;) := A\;R; (i, A;), with
R;(\i, A;) being the resolvent of A;. For each smalle > 0, A = (A1, A2) € p(A1) X p(As),
by [27, Proposition 1.3.6], there exists a unique strong solution S . (¢,z), I (¢, ) of

the equation

Sy (t) = {AlSM(t) + Ri(A) Py (2B(= 1S o (1)), e@(sflh,g(t)))} dt
+R1 ()\1)6@ (s*ISA,E(t))dI/Vl (t),
dl\:(t) = {Azb\,g(t) + Ro(X) 2 (e®(e7 S e (1)), 5<I>(5_1IA,5(t)))] dt (3.9)

+Ra(X2)e® (e I\ o (1)) dWa(2),

Sxe(0) = Ri(A1)So, Ine(0) = Ra(A2) 1o,

where
0 if¢ <o,
P(€) =3 -84+ 663 if0<E<,
§ ifg>1,
satisfying
® € C*(R),

eP(e71E) - £EVO ase — 0.

Combined with the convergence property in [27, Proposition 1.3.6], we obtain that
(Sak).e @), Inry.c (1)) = (S*(t), I*(t)) in LP (€ C([0, T], L*(O, R?))) for some sequence
{Ak) 172, C p(A1) x p(A2) and € — 0.
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Now, let
52—1 ife< -1,
g ¢l
g — 5 "3 f-1<¢<0,
0 if € > 0.

Then ¢'(§) < 0V¢ and g”(€) > 0 V€. Hence, we are to compute di( [, g(Ix(t, z)dz)).
Since the fact ¢'(£)®(£) = ¢ (£)®(£) = 0 V¢, by Itd’s Lemma [10, Theorem 3.8], we get

¢
/g(I)\’g(t,x))d:v:kg/ /g’(I)\’E(s,x))AIA’E(s,x)dxds
o 0 Jo
¢
:—k‘g/ /g”([,\,g(s,a:)) |VI,\7E(s,x)\2dxds
0o JO

<0.

Since ¢g(§) > 0 for all £ < 0, we conclude that VA € p(A41) x p(Az),e > 0 then

Iy (t,x) > 0 for all t € [0,T], almost everywhere in O. Similarly, we have

/Og(SA,E(t,x))dx = /Ot /Og'(SA,E(&x)) (k:lASA}E(s,x) + (R1(A1)A) (gc))dxds
=—k; /Ot /Og”(S,\@(s,x)) \VS,\7E(S,x)|2d:cd5

+ /0 /O 9 (Sx.c(5.2)) (Ri(A1)A) () dds
<0,

where the last inequality above follows from the fact
oo
Rl()\hAl) = / B_AltetAldt
0
preserves positivity. Again, since g(§) > 0 for all £ < 0, we obtain the positivity of
Sx,e(t,z). Hence, S*(t,x),I*(t,x) > 0 almost everywhere in O for all ¢ € [0,T7], a.s. O

Completion of the Proof of the Theorem. Since (5*(t),I*(t)) is a unique mild
solution of (3.8) and is positive, it is a mild solution of (2.4). Therefore, the equation
(2.4) admits a unique positive mild solution (S(t), I(t)).

Now, we prove the second part. For convenience, we use subscripts to indicate the
dependence of the solution on initial value. Let Z,,(t),Z.;(t) be the positive mild

solutions of (2.6) with the initial condition Z(0) = 2z and Z(0) = z{, respectively.
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That means,

and

It implies that

0

Z.(t) — Zs (t) = et 29 — ez + /0 et=9)4 (F* (Z.4(s)) — F* (Zzé(s)))ds

+ /t o(t—5)A (ZZO (8) = Z.; (s))dW(s).

0
Since (3.3) and (3.6), we can obtain that

E sup
s€[0,t]

/0 -y ( Zoo(r) — 2oy (r))dW(r)

¢
< cp(t)/ E sup |Z.,(r) = Z.(r) 2(6 %2) ds (3.10)
0 rel0,s] ’

t
< plt) / 2., — 2.,

Therefore, by virtue of (3.7) and (3.10), it is possible to get

p
L., ds

p

t
‘Zzo - Zzé Ly p S Cp |20 - 26‘2(6)[@2) + Cp(t) /0 }ZZO a Zz6 Iz’s,p ds.

Hence, it is easy to obtain from Gronwall’s inequality that

P P
|ZZO - ZZ{, Ly, < CP(T) |ZO - 26|C(5,]R2) .
Therefore, the continuous dependence of the solution on initial values is proved. O

4. Longtime Behavior

This section investigates the properties of the positive mild solution (S(t),1(t)) of
system (2.4) when ¢t — oo. In particular, we provide the sufficient conditions for the
extinction and permanence. For each function u € E, denote

e = inf u(x).
zcO

Define the number
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Theorem 4.1. If A, >0 and R> 0, then the infected class is permanent in the sense

that for any the initial values 0 < Sy, Iy € E satisfying

/ —1InI(z)dx < oo,
o

we have

t—o0

1
I E
liminf — <IE/ (I*(s,x) A 1)dx> ds > Ry,
t Jo o
for some Ry > 0 independent of initial values.

Proof. To obtain the longtime properties of (S(t),1(t)), one of tools we use is It6’s
formula. Unfortunately, in general the It6’s formula is not valid for the mild solutions.
Hence, our idea is to approximate the solution by a sequence of strong solutions when
the noise is finite dimensional. First, we assume that Sp, I € D(AF), where D(AF)
is the domain of A¥, the part of A; in E. For each fixed n € N, let S,,(¢, ), I, (¢, )
be the strong solution (see [12] for more details about strong solutions, weak solutions,

and mild solutions) of the following equations

dS,(t,r) = |A1S,(t, z) + A(z) — p1(x)Sn(t, ) —

—

T, (t, ) = [Agfn(t, 2) — po(2)Tn(t, ) +

Sn(2,0) = So(z), In(x,0) = Iy(x).

(4.1)
The existence and uniqueness of the strong solution of (4.1) follow the results in [11]
or [12, Section 7.4]. To see that the conditions in these references are satisfied, we note

that the semi-groups et41, et42 (

as well as their restrictions to F) are analytic (see
[3, Chapter 2]) and strongly continuous (see [12, Appendix A.5.2]). Moreover, since
the characterizations of fractional power of elliptic operators in ([38, Chapter 16] or
[12, Appendix A], it is easy to confirm that the coefficients in equation (4.1) satisfies

condition (e) in Hypothesis 2 in [11]. Moreover, a detailed argument can be also found

in [29, 30].
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In addition, since the continuous dependence on parameter ¢ of the fixed points
of family of uniform contraction mappings T'(§), by a similar “parameter-dependent
contraction mapping” argument, it is easy to obtain that (see [12] or [30, Proposition

4.2]) for any fixed t,

lim E|S(t) - Sa(t)]7, = 0,

n—oo
and

lim E|1(t) - Ta(t)|3, — 0.

n—oo

To proceed, we state and prove following auxiliary Lemmas.

Lemma 4.1. Let

ps = inf min{p (), p2(2)}

zeO
If pi > 0 then

|Alg

E /O (S(t,2) + I(t,2))de < ¢! /O (o) + o))+ 1

Proof. In view of It6’s formula ([10, Theorem 3.8]), we can obtain

Eet /O(Sn(t,x)-l-fn(t,x))dxﬁ/o(So(a?)-i-fo(x))dx—i—ﬂ*:/o e”*S/OA(w)dwds

§/ (So(z) + Io(z))dx + we”*t.
o

.
Letting n — oo, we obtain the desired result. O

Now, we are in a position to estimate Efo ﬁdm by the following Lemma.

Lemma 4.2. For any p > 0, if fo S%(w)dx < 00, there exists f(p > 0, which is
0

independent of n and initial conditions such that

1 1 -
E —dr < eit/ ———dr + K,,.
/o Sh(t,x) o S5(x) g

Proof. For any 0 < & < p/2\*’ using It6’s Lemma ([10, Theorem 3.8]) and by direct
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calculations, we have

dx

o
o (Su(t,z) +¢)’

»dx + = dwds +
/(So )+e)’ x/ / n(s,7) +¢)” IS/ / p+1

X <k1ASn(s,x) + A(x) — p1(2)Sn(s,x) —

1 t n 1 2 -2
4 7/ es Z/ p(p +7 )akylek(x)spj—(257 I) drds
2Jo imiJo (Su(s,z) +e)

+ ; /ot e [\/m /o (Ts‘pe(k(x))i: S,pgi)l d“”} 4B (s)

</O( / / _pklAS pi dads

1 p+1
/ / (s, p+1(—A(x)+5+(|u1|E+|a|E+;+ 5 a1C3)

X Syn(s,) dzds+2/ \/akil/ —peg(r )p+)1 dx}dBk 1(s)

1 pr+12p
< 7(130—&—/ —L o e%ds
/ (So(x) + )p 0 A%

+Z/ \/W/ —pex(@ p+)1d]d3k1()

(4.2)

where K}, = || g + ol + % + 22a,CZ. In the above, we used the following facts

o — 2
:pklASn(S’ ) — —p(p+ 1k 7|VSn(s,x)| de <0 as.,
p+1 pF2
0 (Su(s,z) +e) 0 (Su(s,x) +e)

and

P B € L o ptl oo
L (- A@+ 5 Gl ol + L+ B )30

D A, .
= /(9 (Sn(s,z)+ €)p+1 (_ 2 i Kpsn(sw))l@"(s’r)zzf\ﬁ}dx

1
P K];tg?-i- op

a.s.



An SPDE Epidemic Model 19

Hence, (4.2) implies that ¥Vt > 0, Vn € N

t hKPt+lop
IE/ %dw < 64/ %dajJre*t/ ppipesds. (4.3)
o (Sn(t,x) + 6) o (So(x) + 6) 0 A

Letting € — 0, we have from the monotone convergence theorem that

1 1 P pKpttop
E[| ——dzx<e’ ——d _t/ — L _e%ds. 4.4
/(952@,:5) x<e /oSg(x) x+e ; A7 e’ds (4.4)

The proof of the Lemma is completed. O

Noting that our initial condition are not assumed to satisfy fo 52 )dx < 00.
However, we will prove that after some finite time, the solutions have the inverse

functions that belong to L?(O,R) as the following Lemma.
Lemma 4.3. For anyn € N
1
E / ———dx < {y,
0S8, 4,z)
where £y depends only initial condition (independent of n).

Proof. By the following facts:

/S txdx—/So dm—i—/ /klAS (s,2) + Ax)

i B ~ ox)8n(s, ) (s, )
Hl( )S ( ) §n(5 ZZ?)ITL(S :Z:)

)dxds

< / So(a)de + t[Al,
(@)

and s? < s+ 1, Vs € R > 0,q € [0,1], it is easy to show that there exists £; > 0 such
that

E/ S (t,x)dx < ¢y, for any t € [0,1],¢ € [0,1], (4.5)
o

where {1 is independent of n. For any € > 0, using It6’s Lemma ([10, Theorem 3.8])
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again, we have

E/@@(Lx)%)
:/(Q(So(x)JrE)éder/olE/o 2(Sn(s;)+5)

Nl

dx
(k:l AS, (s, x)

[N

—2

)5y (s

1/1Ei/ akEGZ(Q?’ s
8o o ,x) +¢)

%/ / )ldxds—Nl/Ol<IE/OS§L

where
a1 C

N, = bl el + 25

In view of (4.5) and (4.6), we have

/ / o —————dxds < (1 + Ny )ty + /&, Ve >0,

which implies that

/ / " dads < 201+ M),

or there exists t; = t1(n) € [0, 1] such that

A(z) 2(1+ Ni)by
E| —2 —de < — /=,
/ (Sn(t1,2))? A

Applying Lemma 4.2 and the Markov property of (Sy, I,,), we have

A(z)
E[ — " _de <ty Vtell,2],
/o(S (t,z)+¢)? v el

(4.6)
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for some /> independent of n. We again have

E/O (Sn(2,2) +¢) 2da

:E/O(Sn(1,x)+g>—%dx_/l E/<92(5n(s,x)+g)3 (1 A,y (s.2)

(4.7)

o MO e 5 e b
= 2/1E/C’>(Sn(s,x)+€)gddJrE/o(Sn(L Je)

2 1
+ Ng/ (E/ Snz(s,z)dx) ds,
1 o

_ ‘N1|E+ |a|E +
2

/12E/(9 (&L((;\Q(Uig)gdxds < /3,

for some ¢3 depending only on initial conditions. Letting ¢ — 0, we can obtain that

where
3a1 Cg
1

N,

Thus,

for some to = ta(n) € [1,2]

E/ #dl‘ S £3,
© 55 (t2, )

which together with Lemma 4.2 implies that
A
IE:/ 7(—$)§dx <y, Ve 2,3,
O (Sy(t,z) +e)?
where ¢, is some constant independent of n. Keeping this process we can obtain that

there exists t3 = t3(n) € [0, 4], ¢5 such that

Aw)
g Gults i ="

Therefore, it is possible to obtain the existence of two constants t4 = t4(n) € [0,4] and
lg satisfying
3 dr < EG-

1
" /(9 (gn(t4, .ZE))

The Lemma is proved by applying Lemma 4.2. O
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In view of Lemma 4.2 and Lemma 4.3, we have

IE/ 721 dr < e "o+ Ky Vn € Nt > 4. (4.8)
0 S, (t,x)

Noting that both £y and K, are independent of n; and ¢y may depend on initial
point but Kj is independent. By Ité’s Lemma ([10, Theorem 3.8]) again and similar

calculations in the process of getting (4.3) we have

IE/OTn(tw)dgc ZE/oln (In(t,x) +¢)da

1 _
:/Oln(lo( z) +e)dx + ; ]E/oln(s,x)—ke ko AT, (s, x)
7 a(@)Sn(s,z)In(s,x)
— (o) Ta(s) + 2 S 2 S dads)

_,/ Z/ ““IEL( E; ) dwds

2/ In (Io(z) + €)dx — (?+|u2|E)t, VneN,Vt>0,0<e< 1.
(@]

As a consequence

]E/ I,(t,z)dx > IE/ InTl,(t,z)dx > / In Iy(z)dx — (a—; + |p2lp )t > —o0, Vt > 0.
o o o
(4.9)

That means
P{I,(t,z) > 0 almost everywhere in O} =1, ¥n € N,V¢ > 0. (4.10)

On the other hand, combining It6’s Lemma and basic calculations implies that

I(t,x) +¢ Io(z)
0>E/Olnl+j()da:>/olnl+lo()d —|—Rt

I,(s,x) a(z)S,(s,2)1,(s,x)
/ / (s,x —|—I( )+(S (s,2) + In(s,2)) (In(s, ) —|—1))d$d8

/ / dxds Vi>0,neN0<e<l.

Thus, Vt >0,neN,0<e <1
;) a(-r)gn( Tn(s,a:)
/ / (s,z) +I (s,x) * (Sn(s @)+ In(s, x)) (jn(s,x)—l—l))dxds

>E/ln%d + Rt — o tIE/ - duds
~ Jo 1+ I(w) Plo " JoTn(s,x)+e '
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Let € — 0 and using (4 10) and (4.11) we have
J Y LT M
(s,x) +I (s,z)  (Suls,z) + In(s, )
Io(z)
z/olnmdm—l—]%t Vi > 0,n € N.

We have the following estimates:

o M T : M -
ol (E/O (1 +7n(379€))2d ) ZE/@ 1+1, (s,a:)d

n(s

~— |~

(4.12)

C“'E( o) (2 (s ) )
o) S o Gt s e

1+1 1 N I 1
S+1 S+1 S+I—S

Therefore, after some basic estimates, we can get from (4.12) that

t a L x : _ i x % s
/4 | 'E< /(1+1 ( x))2d> (H(E/o(Sn(s,x)H) d) )d
(s,x) a(z)S,(s,2) (s, x)
/ / T,(s,2) * (Sn(s,z) + In(s,2)) (In(s,z) + 1) )dazds
Io(x )
z/oln-l-lo()derRtEBME’
which together with (4.8) leads to

4
t ; : 1
/ lo| ]E/I"EL)CZI2 (2\/6—550 —&-QIN(; +3) ds
4 0 (1+TIn(s,x))

2

(

Io() =

> In ————2—dz — 8|a| . + Rt.
/o 1+ Io(x) ol

| V

since

+ 1.

Letting n — oo yields

K I*(s,z) : — ~1
@ E| ——————dz Ve st K3 ds
[l | E( /O (1+I(s,2))° ) (2 o +3) (4.13)
Io(z)
o

In 7xdx—8|a|E + Rt,

>
- 1+I()(£C)
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which is easily followed by

1 I ’ R
liminff/ E/ %dl‘ ds > #
=ty \ o (14 1(s,2)) ol (2K5 +3)

As a consequence,

t 3
liminf%/ (E/ (12(s,x)A1)dx> ds > Ry >0,
0 (@]

t—00
where R is independent of initial points. The proof of the theorem is completed by
using dense property of D(AF) in E and continuous dependence on initial data of the
solution. In more detailed, since constants f(g, R are independents of initial points,
the estimates (4.8) and (4.13) still hold for the solution starting from arbitrary initial
points Sy, Iy € E with [, —InIy(z)dz < cc. O

Theorem 4.2. For any nonnegative initial data Sy, Iy € F, if

(12 = ). = inf (ja(x) — a(a)) >0, (4.14)

then the infected class will be extinct with exponential rate.

Proof. First, we define the linear operator J : H — R as following

Yue H, Ju:= / u(z)dz.
o

By the properties of e?4i, Vu € H, J(e!4u —u) =0 or Ju = Jetiu, Vi = 1,2.

Now, as in the definition of mild solution, we have

I(t) _ etAQIO +/0 e(t—s)A2 ( — N2I<S> + M)ds +/0 6<t_s)A2I(S)dW2<S).

Hence, applying the operator J to both sides, using the properties of operator J and

stochastic convolution (see [12, Proposition 4.15]), we obtain

/@ I(t, 2)dx = /O Io(a)dz + /0 /O (MQ(I)I(s,x)+aégi;f%ff;)m%

where J(e(*=#)42](s)) in the stochastic integral is understood as the process taking
values in spaces of linear operator from H to R, that is defined by

T4 [ (5))u := /

(e(t_S)A2I(s)u> (x)dzr Yue H.
o
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Since (2.1), it is easy to see that these integrals are well-defined. By taking the ex-
pectation on both sides and using the properties of stochastic integral [10, Proposition

2.9],

E /O I(t, 2)dx = /O Io(2)de + E /O t /O (= m@)I(s2) + “éfs)sgf;fxfx ”§>)dxds

As a consequence,

IE/OI(t,x)dx — E/Ol(s,x)dx = /:IE/O (— pe(z)I(r, ) + aggzi;fif(ff)))dxdr

—(p2 — @)« /:E/O I(r,x)dxdr

Hence, we can obtain the following estimate for the upper Dini derivative

(4.15)

d

dt+E/ I(t,z)dz < —(p2 — a)*E/ I(t,x)dz, ¥t > 0.

(@]

Since (ua — ) > 0, we can get that Efo I(t,z)dz converges to 0 with exponential

rate as t — co. Hence, it easy to claim that the infected class goes extinct. O

Theorem 4.3. Suppose that Ws(t) is a space-independent Brownian motion with co-

variance ast. For any nonnegative initial data Sy, Iy € E, if

az

(g — @)y + e inf (p2(z) — a(z)) + = >0, (4.16)
2 z€O 2
then when p > 0 be sufficiently small that
1—
Ry i= (12 — a). + L2202 2p)a2 >0,
we have
InE (t,z)d
lim sup - (fo ?) a:) < -pR, <0.
t—o0 t

Proof. Since Wh(t) is a space-independent Brownian motion, as the arguments in
proof of Theorem 4.1, the mild solution I(t) is also the solution in the strong sense if

Iy € D(AF). Hence, with initial value in D(AF), we have

/Ol(t,x)z/ot/o(—ug(a:)l(s,x)+as(,() () }( )dzds +// (5, 2)dWa(s)
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By Ito’s formula, we obtain that

(/Ol(t,x)dx)p
_ /: <p( L) [ (= patonn + %7 <;f>lf(7§f; ?)dx) dr
+/:p(1p)a22 (/Of(r,z)dx)pdr+/: </01(r,x)dz>dez(r)
< -pR, /St </o I(r,x)dx)pdr+/st (/o I(r,a:)dx)de2(7")-

Since E ([, I(t,z)dz)" < oo, we have

E (/0 I(t,x)dx)p _E (/O I(s,x)dx)p PR, /: E (/O I(r, x)dm)p dr

which easily derives that

dt%E (/o I(t,:c)dx)p < —pR,E (/o I(t,x)dx>p.

An application of the differential inequality shows

E ( /O I(t,:c)dx)p < PRt ( /o I(O,x)dm)p, (4.17)

for any ¢ > 0 and initial values in D(AF). Since D(A¥) is dense in E, (4.17) holds for

each fixed ¢t and any initial values in E. Then the desired result can be obtained. [

5. An Example

In this section, to demonstrate our results, we consider an example when the
processes driving noise processes in equation (1.2) are standard Brownian motions

and the recruitment rate, the death rates, the infection rate, and the recovery rate are
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independent of space variable. Precisely, we consider the following equation

dS(t,z) = [k1AS(t,:E) +A— St ) — M]

S(t,x) + 1(t,x)
+015(t,x)dB1(t) in Rt x O,

aS(t,z)I(t,x)
S(t,x)+ 1(t,x)

+O’2](t,l’)ng(t) in Rt x O,

dI(t,z) = [kgAI(t, ) — pol(t, ) + ]dt

9,S(t,x) =9,I(t,x) =0 in Rt x 90,

S(z,0) = So(x), I(x,0) = Ip(x) in O,

(5.1)
where A, p1, po, o are positive constants, and Bj(t), Bs(t) are independent standard
Brownian motions. As we obtained above, for any initial values 0 < Sy, Iy € E, (5.1)
has unique positive mild solution S(t,z), I(t,z) > 0. Moreover, the long-time behavior

of the system is shown as the following theorem.

Theorem 5.1. Let S(t,z),I(t,z) be the positive mild solution (in fact also in the
strong sense) of equation (5.1).

2
(i) For any non-negative initial values So, Iy € E, if a < ,uz—&-%, then the infected

individual is extinct.

(ii) For the initial values 0 < Sp, Iy € F satisfy

/ —InI(z)dx < cc.
o

2
If a > po + %, then the infected class is permanent.

Remark 5.1. As in Theorem 5.1, the sufficient condition for permanence is almost
necessary condition. It is similar to the result for SIS reaction-epidemic model, which

is shown in [33, Theorem 1.2].

6. Concluding Remarks

Being possibly among one of the first papers working on spatially inhomogeneous

stochastic partial differential equation epidemic models, we hope that our effort will
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provide some insights for subsequent study and investigation. For possible future study,

we mention the following topics.

e First, there is a growing interest to use the so-called regime-switching stochastic
models in various applications; see [39] for the treatment of switching diffusion
models, in which both continuous dynamics and discrete events coexist. Such
switching diffusion models have gained popularity with applications range from
networked control systems to financial engineering. For instance, in a financial
market model, one may use the random switching process to model the mode
of the market (bull and bear). Such a random switching process can be built
into the SPDE models considered here. The switching is used to reflect different

random environment that are not reflected from the SPDE part of the model.

e Second, instead of systems driven by Brownian motions, we may consider systems
driven by Lévy process; some recent work can be seen in [5]. One could work
with SPDE models driven by Lévy processes. The recent work on switching jump

diffusions [8] may also be adopted to the SPDE models.

e Finally, in terms of the mathematical development, various estimates about
longtime properties were given in average norm although the solution is in the
better space E. Our effort in the future will be to obtain stochastic regularity of
the solution by using the methods in [7, 34, 35] so that it is possible to provide
estimates in the sup-norm (|-|;). Nevertheless, some mathematical details need
to carefully worked out. The result in turn, will be of interests for people working
on real data. Some other properties such as strictly positivity of the solutions and

sharper conditions for extinction and permanence are worthy of consideration.
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