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Since the start of the gravitational wave observation era, no joint high energy neutrino and
gravitational wave event has been found. These non-detections could be used for setting an upper
bound on the neutrino emission properties for gravitational wave events individually or for a set of
them. Although in the previous joint high energy neutrino and gravitational wave event searches
upper limits have been found, there is a lack of consistent method for the calculation. The problem
addressed in this paper is finding those limits for astrophysical events which are localized poorly
in the sky where the sensitivities of the neutrino detectors change significantly and can also emit
neutrinos, for example the gravitational wave detections. Here we describe methods for assigning
limits for expected neutrino count, emission fluence and isotropically equivalent emission based on
maximum likelihood estimators. Then we apply described methods on the three GW detections
from aLIGO’s first observing run (O1) and find upper limits for them.

I. INTRODUCTION

With the observational discovery of gravitational
waves (GW), humanity acquired another way of ob-
serving the universe [1]. It could allow us to ob-
serve phenomena which we are not able to see with
other methods such as observations based on elec-
tromagnetic or neutrino emission, as well as ob-
serving cosmic events which could be observed via
a multitude of messengers [2, 3]. There has been
three such fundamental observations so far; the bi-
nary neutron star (BNS) merger which was observed
with GWs and electromagnetic radiation in vari-
ous bands [4], the blazar which was observed with
high energy neutrinos (HEN) and electromagnetic
radiation [5] and the SN1987a supernova which was
observed with lower energy neutrinos (in MeV en-
ergy) and in various electromagnetic bands [6]. Hav-
ing one or more additional messengers beyond GWs
might shed a brighter light on the physical processes
happened before, during, and after the astrophysi-
cal event [7, 8] which can enable having new obser-
vations that wouldn’t be possible [9, 10]. Moreover
absence of an additional messenger is also informa-
tive as in the case of the first multimessenger obser-
vational result with GWs that addressed the origin
of a short-hard gamma-ray burst from the direction
of the Andromeda galaxy [11]. Despite well over a
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decade long effort [12–22], one remaining two mes-
senger combination is a joint observation with HENs
and GWs.

During aLIGO’s first observing run (O1) and sec-
ond observing run with aVirgo (O2) searhces for
joint GW and HEN events couldn’t find any signifi-
cant event [19–22]. Moreover during the first half
of the third observing run of aLIGO and aVirgo
(O3a), search on every public alert of LIGO-Virgo
Collaboration is performed [23]; no significant event
was found and the results for each search was re-
ported via The Gamma-ray Coordinates Network
(GCN) Notices by IceCube Collaboration [24–26]
Such searches are based on assigning a test statis-
tic (TS) to each observed HEN, which are detected
in a fixed time window before and after the de-
tected GW [15, 27]. Based on the value of the TS
for each detected event, a significance is assigned to
each event by comparing it to a known background
TS distribution. Unless the observed event’s TS ex-
ceeds a threshold, which is determined by a fixed
significance level and the background TS distribu-
tion, the event is not counted as a multi-messenger
detection. One physical information that can be ex-
tracted from GW detections is an upper limit on the
neutrino emission fluence, on the expected neutrino
count or an isotropically equivalent neutrino emis-
sion energy from the GW event’s source. In case
of a non-detection these upper limits can still be
used to make inferences. Although in the previous
searches upper limits were calculated for these quan-
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tities in various ways, there hasn’t been a consistent
method used for those calculations [19, 21, 22]. For
individual events, upper limit range for the isotrop-
ically equivalent emitted energy in neutrinos for ev-
ery point in the sky was found; but a single limit
for the each event wasn’t found. Due to the need
of having such a formalism, with this paper we pro-
pose a method for calculating frequentist upper lim-
its based on maximum likelihood estimators.

As the sensitivities of GW observatories get better
and number of GW observatories in the GW detec-
tion network increases, the rate of GW observations
will increase. For example, in the first 6 months of
the third observing run of aLIGO and aVirgo 33 GW
candidate detections have been announced publicly
compared to total 11 detections announced from O1
and O2 after offline analysis [28]. Thus, it is ex-
pected to have a population for the GW detections
in future. Therefore a proper quantification of the
upper limits for the counterparts of these GW events
will let us infer about the physics involved in them.

In this paper we describe a method of finding fre-
quentist upper limits based on maximum likelihood
estimators for expected neutrino count and neutrino
emission fluence for single GW events which we ex-
plain in Sections II and III respectively; and in Sec-
tion IV we describe the method for finding the upper
limit on the isotropically equivalent emitted energy
for an ensemble of events of same kind, assuming
the energy is same for all. Considering the corre-
spondence of frequentist limit from maximum like-
lihood estimation and Bayesian limit for uniform
prior on an ideally counted Poisson variable, we also
compare frequentist and Bayesian limits for uniform
prior for the neutrino count which is inferred by a
TS in Sec. II C. Finally in Section V we demon-
strate our method by finding the upper limits for
the 3 GW events detected during the first observing
run of aLIGO (O1).

Generally a 90% upper limit is desired to be found
in the joint GW-HEN event searches [19, 21, 22] al-
though it is an arbitrary confidence interval. With-
out loss of generality, throughout this paper we aim
to find 90% upper limits for clarity. However any
kind of confidence interval at any confidence level
can be found with this method, by requiring a differ-
ent relationship between the estimators of the true
quantity and the measurement at the very end of the
calculation. Furthermore, due to inferred low chance
of detecting a joint HEN with GW from absence of
such an example, again without loss of generality we
also assume that we are dealing with 2 or less signal
neutrinos for simplicity.

II. UPPER LIMIT FOR NEUTRINO COUNT

A. Frequentist upper limit

In this section we find the 90% upper limit for the
expected number of neutrinos from a single measure-
ment via maximum likelihood estimators, where the
measurement’s significance is quantified by a test
statistic (TS). In order to write the likelihood we
need to have the TS distributions for 0, 1 and 2
detected neutrinos. First write the likelihood and
denote the expected number of neutrinos with θ;

L(θ;TSm) = P (TSm|θ)

=
∞∑
n=0

P (TSm|θ, n)P (n|θ), θ ≥ 0 (1)

where n is the number of detected neutrinos from the
joint source and TSm is the measured TS. As said
before we assume to have at most 2 signal neutrinos.

L(θ;TSm) =

e−θP0(TSm) + θe−θP1(TSm) +
θ2

2
e−θP2(TSm)

(2)

where P0, P1, P2 are the TS distributions corre-
sponding to 0, 1, and 2 detected neutrinos. Now
find the local maximum of the likelihood. After tak-
ing derivative with respect to θ and equating to 0,
we have

P1(TSm)− P0(TSm)

+ (P2(TSm)− P1(TSm))θ − P2(TSm)
θ2

2
= 0 (3)

we find the local maximum at

θ̂ = 1− P1(TSm)

P2(TSm)
+

√
1 +

P1(TSm)2

P2(TSm)2
− 2P0(TSm)

P2(TSm)

(4)
(other root corresponds to local minimum). For
P2(TSm) = 0 it is

θ̂ = 1− P0(TSm)

P1(TSm)
(5)

For P2(TSm) = P1(TSm) = 0 there is no local max-
imum. The absolute maximum is at,

θ̂ = 0 (6)

The hat on θ is for denoting the maximum like-
lihood estimator. Local maximum may not be
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the absolute maximum in θ = [0,∞). The only
other candidate for absolute maximum is the bor-
der value θ̂ = 0. So maximum likelihood esti-
mator for expected neutrino number is either 0 or

1− P1(TSm)
P2(TSm) +

√
1 + P1(TSm)2

P2(TSm)2 −
2P0(TSm)
P2(TSm) , it can be

determined by comparing the value of likelihood at

these two points. Let’s keep denoting it as θ̂.
Now the upper limit for expected neutrino number is
defined as the neutrino number above which we have
90% probability to have a higher maximum likeli-
hood estimator than the one for our measurement,
in mathematical notation we find the θ which satis-
fies the Equation (7)

P (θ̂ < θ̂′|θ) = 0.9 (7)

where θ̂′ is the maximum likelihood estimator for θ,

and θ̂ is the maximum likelihood estimator for our
current measurement. It is equivalent to

∫ θ̂+0+

0−
f(θ̂′|θ)dθ̂′ = 0.1 (8)

where f(θ̂′|θ) is the probability distribution func-
tion for the maximum likelihood estimator for true
expected neutrino number θ. It consists of delta
distributions at integers and a continuous distribu-

tion between θ̂′ = [0, 2]. Delta distribution at in-
tegers ≥ 3 are identical to Poisson distribution and
strengths’ of delta distributions at 0, 1 and 2 are
less than the corresponding Poisson strengths. The
missing probability is contained in the continuous
distribution.

B. Bayesian limit with uniform prior

Now we discuss the Bayesian credible limits with
for a uniform prior θ. Frequentist limits with max-
imum likelihood estimators and Bayesian limits for
uniform priors give the same limits if the quantity
of interest is a location parameter [29], such as the
mean of a Gaussian distribution. Moreover as shown
in section II C 1, they also correspond to each other
for the mean of a Poisson distribution although the
mean of Poisson distribution is not a location pa-
rameter.

Bayesian upper limit requires having a posterior
distribution for θ as

P (θ|TSm) =
P (TSm|θ)P (θ)

P (TSm)
(9)

where P (TSm) acts like a normalization constant.
For uniform prior P (θ) = k

P (θ|TSm) =
kP (TSm|θ)
P (TSm)

(10)

Again if we are sure that detected neutrino number
≤ 2

P (θ|TSm) =

e−θP0(TSm) + θe−θP1(TSm) + θ2

2 e
−θP2(TSm)

P0(TSm) + P1(TSm) + P2(TSm)
(11)

The Bayesian 90% upper limit is defined as the point
where cumulative posterior probability is 0.9, or the
θ′ which satisfies the Equation (12)

P (θ < θ′|TSm) =

∫ θ′

0

P (θ|TSm)dθ = 0.9 (12)

Hence

e−θ
′
(1+

θ′(P1(TSm) + P2(TSm)) + θ′2

2 P2(TSm)

P0(TSm) + P1(TSm) + P2(TSm)
) = 0.1

(13)

C. Comparison of frequentist and Bayesian
limits for uniform prior

Now we compare the frequentist and Bayesian lim-
its for a uniform prior for the quantity we estimate.
First we show that these two limits have correspon-
dence for the ideal Poisson counting case and then
we show that when we have a measurement with a
TS they do not necessarily correspond to each other.

1. Ideal Poisson counting experiment

Before comparing frequentist and Bayesian limits
for uniform prior for the case of interest, compare
them for a Poisson counting experiment where we
count the events and the maximum likelihood es-
timator and the TS are equivalent to the observed
event count, in other words there is no ambiguity
in the detected neutrino count. Denote it with θobs.
The frequentist 90% upper limit θL satisfies

∞∑
n=θobs+1

Poisson(n, θL) =

∞∑
n=θobs+1

θnLe
−θL

n!
= 0.9

(14)
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The Bayesian posterior distribution with uniform
prior becomes

P (θ|θobs) = Poisson(θobs, θ) (15)

and the Bayesian limit θL satisfies

∫ θL

0

θθobse−θ

θobs!
dθ = 0.9 (16)

Now compare
∫ θL

0
θθobse−θ

θobs!
dθ and

∑∞
n=θobs+1

θnLe
−θL

n! .
First differentiate them with respect to θL. From the
sum’s derivative we have

∞∑
n=θobs+1

θn−1
L e−θL

(n− 1)!
− θnLe

−θL

n!
=
θθobsL e−θL

θobs!
(17)

From the integral’s derivative we have

θθobsL e−θL

θobs!
(18)

the same expression. Hence
∫ θL

0
θθobse−θ

θobs!
dθ and∑∞

n=θobs+1
θnLe
−θL

n! can only differ by a constant.
However when θL = 0 they are both 0. Therefore
equations

∫ θL

0

θθobse−θ

θobs!
dθ = 0.9 (19)

and

∞∑
n=θobs+1

θnLe
−θL

n!
= 0.9 (20)

give the same limit values. Frequentist and Bayesian
upper limits with uniform prior are same. This is
not specific to Poisson distribution and valid for all
distributions where the estimated parameter is a lo-
cation parameter [29] although for Poisson distribu-
tion mean is not a location parameter. Hence this is
not a trivial result for Poisson distribution.

2. Measurement with a TS

The ideal Poisson counting experiment is a spe-
cial case of measurement with a TS where the TS
distributions of each detection count are separate.
When we check the relationship between frequentist
and Bayesian with uniform prior limits we see that
there is not such a coincidence like the ideal count-
ing experiment. This can be demonstrated with a
simple counter example. Consider having uniform
TS distribution for 0 detections in between [a,b] and
for 1 detection in between [c,d] such that c < b and
b − a > d − c. TS distributions for other detection
counts are separate such that there is no ambiguity
there. For a TS measurement which may correspond
to 0 or 1 count (c < TSm < b) one needs to solve
the Equation (21) in order to find the Bayesian limit
for uniform prior

e−θ(1 +
θ(d− c)−1

(b− a)−1 + (d− c)−1
)

= e−θ(1 +
θ(b− a)

b− a+ d− c
) = 0.1

(21)

where we plugged in P1(TSm) = (d − c)−1 and
P0(TSm) = (b− a)−1 to Equation (13).

However, in the frequentist approach we solve
Equation (22)

e−θ(1 +
θ(b− c)
d− c

) = 0.1 (22)

which follows from Equation (8). In frequentist ap-
proach, the length of the intersection of P0(TS) and
P1(TS) affects the limit whereas in the Bayesian in-
terpretation it has no such direct role. When the in-
tersections between the distributions vanish, we get
the ideal counting example.

III. UPPER LIMIT FOR FLUENCE WITH A
GRAVITATIONAL WAVE SKYMAP

Now instead of the neutrino count we want to esti-
mate the fluence. Neutrino detectors, have a sky po-
sition dependent sensitivity due to the interaction of
neutrinos and cosmic rays with the Earth and atmo-
sphere; hence detected number of neutrinos depend
on their position on the sky for a constant fluence.
Again start by writing the likelihood, denote the flu-
ence by φ,

4



L(φ;TSm,PGW ) = P (TSm,PGW |φ) = P (PGW |φ)P (TSm|PGW , φ)

= αP (TSm|PGW , φ) = α
∞∑
n=0

P (TSm|φ, n,PGW )P (n|φ,PGW )

= α
∞∑
n=0

P (TSm|φ, n,PGW )

∫
P (n|φ,Ω,PGW )P (Ω|φ,PGW )dΩ, φ ≥ 0 (23)

where n is the detected neutrino number from the
joint source, Ω is the sky position of source and
PGW is the probability distribution of sky posi-
tion acquired from the gravitational wave detection,
namely the skymap. P (Ω|φ,PGW ) has no fluence de-
pendency and is PGW (Ω). P (PGW |φ) doesn’t have
a fluence dependency and is denoted with α. Since it

doesn’t affect the maximum likelihood estimator it
will be dropped for the rest of analysis. Also denote
the position dependent coefficient which relates flu-
ence to the expected neutrino number as c(Ω) which
is proportional to the effective area of the neutrino
detector [30]. Again assume we are sure that we only
have at most 2 neutrinos, then we have

L(φ;TSm,PGW ) = P0(TSm)

∫
e−c(Ω)φPGW (Ω)dΩ + P1(TSm)

∫
c(Ω)φe−c(Ω)φPGW (Ω)dΩ

+ P2(TSm)

∫
(c(Ω)φ)2

2
e−c(Ω)φPGW (Ω)dΩ (24)

After taking the derivative with respect to φ and equating to 0 for finding the local maximum, we have
the condition for φ

∫
PGW (Ω)e−c(Ω)φc(Ω)[P1(TSm)−P0(TSm)+(P2(TSm)−P1(TSm))c(Ω)φ−P2(TSm)

c(Ω)2φ2

2
]dΩ = 0 (25)

Although for neutrino detectors, c(Ω) can be well
approximated; since PGW (Ω) doesn’t have an apri-
ori estimated form we cannot go further in solving
the equation analytically. Therefore in order to find

the maximum likelihood estimator φ̂ for fluence, one
needs to find it numerically with known PGW (Ω).
Similar to the neutrino count case, the upper limit
for fluence is found by finding the φ which satisfies
Equation (26)

P (φ̂ < φ̂′|φ) = 0.9 (26)

where φ̂′ is the maximum likelihood estimator for φ,

and φ̂ is the maximum likelihood estimator for our
current measurement.

IV. UPPER LIMIT ON ISOTROPICALLY
EQUIVALENT EMISSION ENERGIES OF AN
ENSEMBLE OF EVENTS WITH VOLUME

LOCALIZATION

In this section we consider finding an upper limit
for an ensemble of similar GW events , for exam-
ple same kind of events like binary black hole merg-
ers (BBH) or binary neutron star (BNS) mergers.
Due to expected different distances of these events,
it can’t be expected to have a similar neutrino count
or fluence from each event due to the suppression
with distance squared. Instead one quantity which
can be similar for them is the isotropically equiva-
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lent emission energy (Eiso) for neutrinos. Here by
assuming all the events having the same Eiso, we de-
scribe the procedure of finding an upper limit on Eiso

with maximum likelihood estimation. Although it is
clear that true Eiso will be different for each event,
this assumption enables us to infer more stringent
information about the physics involved in same kind
of processes. In order this assumption to be mean-

ingful, the set of events should be downselected for
having same kind of events. For example using BBH
and BNS events together doesn’t make sense as the
physics involved in those are different.

We consider having N events with volume local-
izations VGW,i and measured TS values TSm,i for ith

event. We write the likelihood for Eiso whose value
is denoted as Eiso.

L(Eiso;TSm,1...N ,VGW,1...N ) =
N∏
i=1

P (TSm,i,VGW,i|Eiso) =
N∏
i=1

P (TSm,i|Eiso,VGW,i)P (VGW,i|Eiso)

= β
N∏
i=1

P (TSm,i|Eiso,VGW,i) = β
N∏
i=1

∞∑
n=0

P (TSm,i|Eiso,VGW,i, n)P (n, |Eiso,VGW,i)

= β

N∏
i=1

∞∑
n=0

P (TSm,i|Eiso,VGW,i, n)

∫
P (n|Eiso,VGW,i, r,Ω)P (r,Ω|Eiso,VGW,i)r2drdΩ, Eiso ≥ 0 (27)

where n is the number of detected neutrinos from
the joint source, r is the distance of the source, Ω
is the sky position of the source. We assume the
GW volume localizations are not affected by Eiso

and hence are effectively a constant for the likelihood
which is denoted by β which will be dropped. For
having at most 2 neutrinos from the joint source the
likelihood becomes

L(Eiso;TSm,1...N ,VGW,1...N )

=
N∏
i=1

∫
(P0,i(TSm,i) + c′(Ω)

Eiso
4πr2

P1,i(TSm,i) +
1

2
(c′(Ω)

Eiso
4πr2

)2P2,i(TSm,i))e
−c′(Ω)

Eiso
4πr2 VGW,i(r,Ω)r2drdΩ

(28)

where P0,i, P1,i, P2,i are the TS distributions cor-
responding to 0, 1, and 2 detected neutrinos for the
ith event and

c′(Ω) =
c(Ω)∫

Eν
dN
dEν

dEν
(29)

since φ and Eiso are connected as∫
Eνφ

dN

dEν
dEν =

Eiso
4πr2

(30)

where Eν is the neutrino energy and dN
dEν

is the en-
ergy dependency of the differential neutrino fluence;
i.e. = E−2

ν spectrum over a range of energies which is

expected from Fermi acceleration [31]. Similarly to
the fluence case, we can’t go further in analytically
maximizing the likelihood. The maximum likelihood
estimators should be found by numerically evaluat-
ing the likelihood with known VGW,i(r,Ω). Then
the 90% upper limit is found for Eiso by finding Eiso
which satisfies

P ( ˆEiso < ˆEiso
′
|Eiso) = 0.9 (31)

where ˆEiso
′

is the maximum likelihood estimator for
Eiso and ˆEiso is the maximum likelihood estimator
for the measurements of the ensemble of events.
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V. LIMITS FOR THE GW EVENTS IN
ALIGO’S FIRST OBSERVING RUN

Now, by using publicly available data, we illus-
trate our method and find the neutrino emission lim-
its on the 3 GW events from aLIGO’s first observ-
ing run O1; GW150914, GW151012 and GW151226
[1, 28, 32, 33]. These events were analyzed before
and the temporally coincident neutrinos in ±500s
window are reported [19, 21]. The list of neutrinos
can be found in Table I and the GW localizations
overlayed with the neurinos can be found in Fig. 1.
Volume localization of the GW events are also avail-
able. We use the significance calculation method
of the Low-Latency Algorithm for Multi-messenger
Astrophysics (LLAMA) search which has been used
in the third observing run of aLIGO and aVirgo
(O3) for joint GW-HEN event search [27, 34]. 9 of
the 10 reported neutrinos were detected by the Ice-
Cube Observatory and the other one was detected by
ANTARES Observatory which was coincident with
GW151226 [21]. Here we only use the neutrinos
detected by IceCube for simplicity as the method
for calculating the significance assumes a single neu-
trino detector at the moment. We assume these 3
GW events are certain detections without any signif-
icance ambiguity. The significance calculation uses
detector specific background distributions. In the
case of certain GW events, only a background neu-
trino sample is needed. We use the most recent
publicly available all-sky point source sample of Ice-
Cube from year 2012 in its final configuration with
86 strings[35]. We assume the sensitivity of IceCube
hasn’t changed significantly from 2012 to 2015 as it
has reached to its final configuration with 86 strings
in 2011 [36].

A. Event generation

The neutrino detection rate in the sample is about
3.5 in 1000s. Consequently we have the average
background neutrino rate of 3.5 per GW, as we con-
sider neutrinos in ±500s window around the GW
event. In order to construct the significance distri-
bution for zero signal neutrinos, we drew average of
3.5 neutrinos from the public events list according to
a Poisson distribution and distributed these events
uniformly on a ±500s window around the GW event.
We calculated significance for 1000 such events for
obtaining P0 for each event. For obtaining P1, we
generated signal neutrinos by using the effective area
distribution of IceCube for the same configuration

FIG. 1. Sky localization of the three GW events over-
layed with neutrinos according to the labelling in Table
I. Darker color represents higher probability density for
the GW source location. Green crosses shows the loca-
tion of the neutrinos.

which is also publicly available. First we generate
the sky coordinates of these neutrinos by sampling
coordinates from the sky according to the probabil-
ity distribution of GW localization from the param-
eter estimation sample. We also keep the distance
information of the chosen points from the as dis-
tance distribution is needed for Eiso calculation and
distance and sky position are not independent. We
assume the time of the GW event is not a random
variable and therefore all the events with the same
GW data create the same localization. The effec-
tive area depends on the neutrino energy and the
declination of neutrinos[30]. By assuming an E−2

ν

spectrum [31] and using the effective area, we assign
these neutrinos energies. One remaining property of
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Event
Neutrino
number

Time difference [s] Right ascension [◦] Declination [◦]
Angular
uncertainty [o]

Energy [TeV ]

GW150914 1 37.2 132.6 -16.6 0.35 175
GW150914 2 163.2 167.0 12.0 1.95 1.22
GW150914 3 311.4 -108.5 8.4 0.47 0.33
GW151012 1 -423.3 360.0 28.7 3.5 0.38
GW151012 2 -410.0 7.5 32.0 1.1 0.45
GW151012 3 -89.8 115.5 -14.0 0.6 13.7
GW151012 4 147.0 9.0 12.3 0.3 0.35
GW151226 1 -290.9 325.5 -15.1 0.1 158
GW151226 2 -22.5 88.5 14.9 0.7 6.3

TABLE I. List of neutrinos which were in the ±500s window around the three GW events. Data taken from [19, 21]

the generated neutrinos is their angular uncertainty.
In order not to lose the dependency of angular un-
certainty to energy and declination, for each gener-
ated neutrino we narrowed the list of real events via
their energies and declinations. We required decli-
nation difference with the generated neutrino to be
less than 10◦ and differences of their base 10 loga-
rithm of energies to be less than 1.5. From the re-
maining real neutrinos we picked one of their angular
uncertainty uniformly and assigned it to the gener-
ated neutrino. We set the energy and declination
difference constraints by considering the number of
neutrinos remained after cuts. Having more strin-
gent cuts causes some of the generated neutrinos to
have no similar real neutrino for taking its angular
uncertainty. With a larger sample, more stringent
cuts could be imposed. Due to the axial symmetry
of IceCube we did on put a constraint on the right
ascension of neutrinos. One caveat worth noticing
here is that although the energy proxy given in the
neutrino list is an estimate of the actual neutrino
energy, it has expected differences with the actual
neutrino energy [35]. However, we consider it as the
neutrino energy in our generation. Next, we shift
the position of each generated neutrino, by randomly
choosing a offset distance according a normal distri-
bution with zero mean and with variance angular
error squared. Then a uniformly random angle is
chosen in 0−2π and neutrinos’ positions on the sky is
shifted along that direction by the chosen distances.
After the neutrinos are generated we sampled the
time of each signal neutrino from a symmetric tri-
angular distribution whose mode is the GW event
time and extend is ±500s. This distribution is ob-
tained if one assumes the GW and neutrino emission
to be uniformly in ±250s window around the same
astrophysical event [37]. Convolution of two uniform
distributions give a triangular distribution which im-
plies that temporally closer neutrinos to the GW are
more likely to be associated than background neutri-

nos which are distributed uniformly around the GW
event. Finally we choose background neutrinos to
accompany each signal neutrino. These background
neutrinos are chosen identically as the ones chosen
for obtaining P0. Similarly we generate 1000 of such
events. We do not consider any of these neutrinos to
be coming from the same source as for each combi-
nation of two, the positional difference is larger than
the sum of angular errors. Hence we take P2 to be
zero for all of the events.

B. Calculation and results

We find the maximum likelihood estimators for
the events with actual coincident neutrinos, as well
as the generated background and signal neutrinos.
Then we find the value of the true quantity which
satisfies Eqs. (7), (26) or (31). In order to do it,
and also for finding the estimators for fluence and
Eiso, we need to find the expected number of neu-
trinos for unit fluence at a given declination which
has been denoted as c(Ω) in this paper. The require-
ment when calculating the value of the true quantity
arises due to the fact that we directly sampled the
signal neutrino positions from the GW skymap; but
didn’t account for the declination dependency of the
IceCube’s sensitivity or the effective area. We only
used the effective area for the energies of the neu-
trinos after we had chosen the positions. By using
c(Ω) we get the expected detected signal neutrino
count distribution for a given fluence. With that dis-
tribution we weight the signal neutrino events with
the Poisson probabilities whose mean is determined
by the true value of the estimated quantity, decli-
nation and the distance of the simulated emission.
For events with 2 or more signal neutrinos we take
the corresponding estimator to be higher than the
estimator of the actual event. c(Ω)is obtained by
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FIG. 2. Expected number of particles for the differential
fluence of 1 GeV/cm2E−2

ν vs. declination, obtained from
the effective area distribution

Event
Detected signal
neutrino count

Fluence
[GeV/cm2]

Eiso [ergs]

GW150914 2.3 0.82 5.0 × 1053

GW151012 2.1 0.36 1.1 × 1054

GW151226 2.3 0.45 2.5 × 1053

Combined - - 5.7 × 1052

TABLE II. 90% upper limits for the detected signal neu-
trino count, fluence and Eiso for three events and Eiso for
the population of three events.

integrating the effective area of each declination in
energy after scaling with E−2

ν . For E−2
ν spectrum

the obtained c(Ω) is shown in Fig 2.
The obtained 90% frequentist upper limits with

maximum likelihood estimators are shown in Table
II. The Bayesian upper limits for the neutrino count
with uniform prior are found to be 2.3 for all events.

C. Discussion

The 90% frequentist upper limit for the mean
count of a background free ideal Poisson process is
2.3 and as shown in Sec. II C it also corresponds
to a 90% Bayesian upper limit with uniform prior
for the count. When we look at the neutrino count
limits we have we see that except the frequentist
limit for the event GW151012 we have the upper
limit as 2.3 neutrinos. It shows that for GW150914
and GW151226 the background and signal distribu-
tions are separated sufficiently for behaving as ideal
counting processes. The fact that for GW151012,
the frequentist limit is less than 2.3 points a substan-

tial intersection of background (P0) and signal (P1)
distributions in a region of higher significance than
the event’s significance. The fact that its Bayesian
limit is still 2.3 implies that for the values around
event’s significance the intersection of background
and signal distributions is negligible. When we look
at the fluence upper limits, we see that the upper
limit for GW150914 is about twice of other events’
limits. This can be explained by the localization of
the GWs and IceCube’s declination dependent sen-
sitivity, i.e. Fig. 2. Required fluence for the same
number of neutrinos is about an order larger in the
south hemisphere compared to the northern hemi-
sphere, therefore fluence requirement from southern
regions dominates the northern regions for compa-
rable probabilities. As GW150914 is completely lo-
calized in the southern hemisphere and the other
two events are more or less equally localized in both
hemispheres, it is expected to have twice the limits
of GW151012 and GW151226 for GW150914. When
we look at the upper limits for Eiso, we see that
the limit of GW150914 is twice of GW151226. Both
events have similar expected distances, 440 Mpc and
450 Mpc for GW150914 and GW151226 respectively
[28]. Therefore we expect their Eiso upper limit ra-
tio to be similar to their fluence upper limits. The
expected distance of GW151012 is 1080 Mpc [28],
about twice of GW150914 and GW151226. There-
fore we expect a factor of 4 difference between the
fluence upper limits and Eiso upper limits, which is
present. In [19, 21] Eiso upper limits were found for
every point in the sky. Our method allows one to
have a single upper limit value for the whole event.
Our upper limits fall in the previously reported up-
per limit range in the whole sky. Finally we com-
ment on the Eiso upper limits for combination of the
three events. We see that when three GW events
which don’t have sufficient significance for having a
counterpart in neutrino emission are combined for
an upper limit, we get an order of magnitude more
stringent upper limit. This illustrates the impor-
tance of having collection of events when constrain-
ing astrophysical parameters.

VI. CONCLUSION

We described the methods of finding frequentist
upper limits with maximum likelihood estimators for
expected neutrino count, neutrino emission fluence
and isotropically equivalent neutrino emission en-
ergy for an ensemble of events which are specifically
aimed for joint GW and HEN events; but could be
used for any similar search which uses TS for count-
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ing discrete events. Then we applied this method on
the GW events in aLIGO’s first observing run (O1)
and found upper limits for them. Through the pa-
per we considered 90% upper limits although differ-
ent confidence intervals at arbitrary confidence levels
can also be found with this method instead of 90%
upper limits; by requiring different relationships be-
tween the estimators of the true quantity and the
measurement instead of Equations (7), (26) or (31).

VII. ACKNOWLEDGMENTS

The authors are grateful for the useful discussion
with Klas Hulqvist and Hans Niederhausen. The au-
thors thank Columbia University in the City of New
York and University of Florida for their generous
support. The Columbia Experimental Gravity group
is grateful for the generous support of the National
Science Foundation under grant PHY-1708028. DV
is grateful to the Ph.D. grant of the Fulbright foreign
student program.

[1] LIGO Collaboration and Virgo Collaboration
(LIGO Scientific Collaboration and Virgo Collab-
oration), Phys. Rev. Lett. 116, 061102 (2016).

[2] LIGO Collaboration and Virgo Collaboration, Clas-
sical and Quantum Gravity 25, 114051 (2008),
arXiv:0802.4320 [gr-qc].

[3] I. Bartos, P. Brady, and S. Márka, Classi-
cal and Quantum Gravity 30, 123001 (2013),
arXiv:1212.2289 [astro-ph.CO].

[4] B. P. Abbott et al., The Astrophysical Journal 848,
L12 (2017).

[5] M. G. Aartsen et al., Science 361, 147 (2018).
[6] W. D. Arnett, J. N. Bahcall, R. P. Kirsh-

ner, and S. E. Woosley, Annual Review of
Astronomy and Astrophysics 27, 629 (1989),
https://doi.org/10.1146/annurev.aa.27.090189.003213.
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