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ABSTRACT
In many real-world applications, data looses its value if its not
analyzed in real-time. Examples include natural disasters, crop dis-
ease identification and bioterrorism, traffic monitoring, monitoring
human activities and public places, gas pipeline monitoring for
leaks. Edge computing refers to pushing computing power to the
edge of the network or bringing it closer to the sensors. We en-
vision that an integrated framework (sensors + edge computers
+ analytics) allows near realtime analytics at the edge, which is
critical for first responders to national security agencies alike. In
addition to the generation of real-time actionable knowledge, edge
computing allows compressing/reducing big geospatial data that
need to be transmitted to centralized cloud or data centers. In this
study, we present the vision behind geoEdge, and show feasibility
results using feature extraction and unsupervised learning on an
edge computing device.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies;Machine learning algorithms; • Computer systems orga-
nization → Embedded systems.
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1 INTRODUCTION
A recent Computing Community Consortium (CCC) visioning activ-
ity defined spatial computing as a unifying field that “encompasses
the ideas, solutions, tools, technologies, and systems that transform
our lives by creating a new understanding of locations – how we
know, communicate, and visualize our relationship to locations and
how we navigate through them.” [9]. Advances in sensor technolo-
gies have greatly facilitated collection and archival of big spatial and
temporal data, that lead to the centralized processing. Planet Labs is
collecting about 9 PB/year and DigitalGlobe (Maxar) is collecting 36
PB/year of remote sensing data alone. In a recent study, IDC [4] pre-
dicted that the global data will grow from 33 Zettabytes in 2018 to
175 Zettabytes in 2025. Using commodity 8 TB disk drives, we need
more than 125 million hard disks to hold a Zettabyte of data, making
offline analytics infeasible without employing smart data and edge
computing technologies. In addition, there are many real-world ap-
plications, such as, natural disasters, crop disease identification and
bioterrorism, traffic monitoring, monitoring human activities and
public places, gas pipeline monitoring for leaks, and autonomous
vehicles, where real-time extraction of knowledge from these data
streams becomes critical. We envision that the edge computing
frameworks that bring computing closer to the sensors (e.g., UAVs)
is very relevant for the spatial computing community. Figure 1
shows an example architecture of spatiotemporal edge computing.
This figure also shows the distinction between traditional off-line
(backend) analytics and online (near) real-time analytics.

1.1 Why Now?
We see two key technology innovations that is driving this new vi-
sion. First, we observe that edge computing is not a new technology.
Though ideas were in development for sometime, due to limited
computing capabilities and power requirements, deploying com-
puting closer to the field sensors was prohibitive. Second, unlike
traditional sensors, the data generated by modern remote sensing
sensors (e.g., UAV based) and in-situ sensors (e.g., optical soil mois-
ture sensors) poses problems in terms of data transmission and
storage. However, with recent advances in computing, especially
embedded supercomputing chips (e.g., Nvidia’s Jetson TX-1, TX-2,
Nano), tiny yet powerful edge computers (e.g., Lenovo’s P330 Tiny),
and high-end edge workstations (e.g., Nvidia’s EGX), spatiotem-
poral edge computing at the edge can be feasible and impactful.

https://doi.org/10.1145/1122445.1122456
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As per Gartner, “91% of today’s data is created and processed in
centralized data centers. However, by 2022 about 75% of all data
will need analysis and action at the edge.” We now briefly describe
the enabling technologies behind this vision and showcase few im-
portant applications, and argue why spatial computing community
should pay attention to this emerging theme.

Figure 1: Traditional Offline Analytics Vs. Edge Based Near
Real-time Analytics

2 THE RISE OF THE SENSORS
Gartner estimates that there will be 25 billion things connected to
the Internet by 20201. These sensors (or things) range from sim-
ple temperature sensors to complex ultrasound sensors. They are
placed at fixed locations, or on moving platforms, or on remote
platforms like traditional satellites to recent UAVs. Most of these
sensors are connected to the Internet to transmit data to centralized
facilities, including traditional data centers or modern cloud storage.
In particular, we are interested in multi-spectral and hyper-spectral
sensors mounted on UAVs which allows us to monitor natural re-
sources and critical infrastructures (e.g., crops, waters, forest, cities,
nuclear facilities). One major limitation with current centralized
storage and offline data processing is that this infrastructure can
neither support nor scale well for near realtime applications. A large
portion of the data generated from these sensors is spatiotemporal
in nature. Spatiotemporal data is often big, therefore it make sense
to process this data close to where it is being generated, which
makes case for edge computing.

3 THE RISE OF EDGE COMPUTING
The need for edge computing is evident from recent report “IDC
FutureScape: Worldwide Internet of Things 2017 Predictions.” As
per this report, “By 2019, at Least 40% of IoT-Created Data Will Be
Stored, Processed, Analyzed, and Acted Upon Close to, or at the
Edge of, the Network.” There are two key requirements for edge
computing to be successful, (i) computing devices with low energy
requirements, and (ii) highly scalable streaming analytics platforms.

1http://www.gartner.com/technology/research/internet-of-things/

4 THE RISE OF THE LOW ENERGY HIGH
PERFORMANCE COMPUTING (AKA
EMBEDDED SUPERCOMPUTING)

The power and efficiency of GPUs has increased drastically in
the past decade [8] along with ever-cheaper and faster storage.
Only 20 years ago, the fastest computer in the world achieved a
performance metric of 1 teraFLOP [10] with energy consumption
of 850,000 watts. The current NVIDIA Jetson TX1 platform can
achieve the same performance metric at under 15 watts, and weighs
88 grams. The progress is absolutely astonishing. We effectively can
put supercomputers in UAVs, but the algorithms and software have
not kept pace. Fortunately, we are increasingly seeing algorithms
adapted for streaming GPU-processed workflows.

5 THE RISE REAL TIME SPATIOTEMPORAL
APPLICATIONS

We now describe two real world applications making the case for
spatiotemporal edge computing. More comprehensive with geospa-
tial big data, applications, and analytics can be found in [1, 3, 11, 12]

TowardsUAV-basedGPU-acceleratedRemote Sensing: In aerial
remote sensing, such as with unmanned aerial vehicles, edge com-
puting with embedded GPUs can leverage immense computational
power and efficiency [8] to provide actionable insight in the food-
energy-water (FEW) nexus. NSF and several other federal agencies
are considering FEW 2 to be next big research thrust in the USA.
Food, energy, and water are essential for human wellbeing. Agri-
culture accounts for 70% of total freshwater withdrawals. About
the 30% of global energy is consumed in food production. Figure 2
shows simple interaction between these three systems, where en-
ergy being is used to pump water for crops. In this context, spa-
tiotemporal edge computing can be used to analyze data from UAVs
to estimate in near real-time the soil moisture and crop water stress
at field scale which allows farmers to schedule irrigation more
optimally.

Figure 2: Image shows nexus between food, energy, and wa-
ter systems

2https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505241

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505241
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Farmers and agricultural producers cannot wait very long for
remote sensing data to process in the cloud when an immediate
decision must be reached regarding water application to a crop field,
or how much fertilizer to use (and where to apply it) to address
nutrient deficiency. In search and rescue operations, the immedi-
acy of data processing is obvious. Embedded supercomputers (or
GPUs) can greatly assist with remote sensing algorithms due to the
inherent multidimensionality of the image data and the processors’
highly parallel computational architecture [5] [8]. The effect would
be to expedite the remaining processing, if not obviate some offline
processing outright. The following are some example cases:

(1) Batch-to-stream workflows: In some cases, what has been
an offline batch process like orthorectification of remote
sensing images (image stitching) can happen in real time if
hardware can leverage efficient parallel processing [2] [13].

(2) Anomaly detection: traditional streaming adaptations such
as using a sliding window on real time data can allow for
streaming anomaly detection with GPU acceleration and
modified algorithms [13]. Rapidly processed anomaly detec-
tion could be of great benefit when assessing crop damage
due to extreme weather events such as floods or large hail.

(3) Image classification: Multispectral or hyperspectral imagery
can allow detection of crop pestilence or disease using meth-
ods such as support vector machines [7].

(4) Hyperspectral signature classification: Water contamination
could be detected from hyperspectral data by flying UAVs
alongwaterways. On-board processing for certain signatures
and thresholds could trigger a flight reassignment to gather
higher resolution imagery in suspected areas for offline pro-
cessing. This approach could lead tomore regularmonitoring
of waterways for threats to healthcare, agriculture, and the
ecosystem.

(5) Data compression and summarization: Data compression
and summarization (e.g., clustering) are efficient techniques
to reduce data storage and transmission costs. As these are
unsupervised techniques, it is easy to implement these al-
gorithm on edge computers and compress images on the
fly.

Figure 3 shows an use case of near real-time detection of weeds
using the spatiotemporal edge computing framework. Such real-
time detection of weeds and crop diseases will allow timely action
by the farmer before its too late.

Anomaly Detection in Video Streams: Anomaly detection in
video streams have several security applications. For example, one
could monitor video streams at airports and other public places to
identify unattended bags or other objects. We recently developed a
probabilistic anomaly detection framework (KDD-17 under review).
We ran this algorithm on a video dataset “Peds1” [6] consisting
of natural images of a pedestrian walkway. Given that we model
variation in local spatio-temporal neighborhoods, we would expect
the method to behave similar to a 3D feature (optical flow) detector.
Anomalous events could be abnormal motion patterns or high
amount of variation in pixel values that lasts for a short amount of
time. Figure 4 shows the result of applying our anomaly detection
method to a video dataset. (a) represents the frame on which we

Figure 3: Near real-time weed detection while the data still
being collected by UAVs

queried for anomalies with respect to the rest of the video. Darker
regions in (b) represent low cumulative chi-squared scores and thus
low deviation and whiter regions represent high deviation from
normality (e.g., person on bicycle on a pedestrian pathway). Finding
such anomalous patterns in realtime is highly useful.

Figure 4: Anomalous events detected for a frame of a video
of a pedestrian walkway

6 FEASIBILITY STUDIES
To study the feasibility of running complex models on the edge,
we started with benchmarking the running times for widely used
unsupervised approaches such as feature extraction (e.g., vegetation
indices) and data summarization (e.g., clustering) methods. We used
Lenovo ThinkStation P320 Tiny edge computer equipped with an
Nvidia Quadro P600 GPU for these experiments.
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Figure 5

Experiment details: For these experiments we considered (i)
Normalized Difference Vegetation Index, (NDVI) (ii) Enhanced Veg-
etation Index (EVI), (iii) Standardized Vegetation Index (SVI), (iv)
K-means clustering and (v) Gaussian Mixture Model (GMM) cluster-
ing. For the clustering experiments, a 10% sample of input pixels is
used to build the clustering model (with 10 clusters) and every pixel
is classified with this model. K-means clustering used the smaller of
1000 iterations or a difference of 1e-2 on root mean squared error
as the stopping criterion. GMM clustering used the smaller of 1000
iterations or a difference of 1e-8 on total log likelihood between
successive iterations as the stopping criterion. To implement these
functions we used python3 with the pytorch GPU acceleration
library.

For image input, we synthetically generate an image by picking
values in [0, 255] from a uniform distribution. We ran each of of
these functions 1000 times and compute the average runtime per
function call to summarize scalability.

Results: Figure 5 shows how the runtime scaling as function
of image size. Since SVI, NDVI and EVI use 1, 2 and 3 bands to
perform their computation and the data transfer to GPU memory
is the most expensive piece, we see this trend reflected in their
runtimes. We see that with even slightly more complex tasks such
as K-means clustering or GMM clustering, the runtime per call
quickly approaches 100 ms, and depending on the frequency of
input images, may not meet a real-time processing requirement on
the edge for large image sizes (I/O bound) and compute intensive
tasks. Moreover, when the image size is too large (2048 x 2048),
even a single image is too large to fit into GPU memory, throwing
an OutOfMemory error. We are also working on parallelizing these
algorithms on the Jetson TX-1/2 cards.We are also workingwith our
UAS collaborators to integrate Jetson TX-1 for onboard processing
of image streams.

7 CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

Now we have all ingredients required to enable spatiotemporal
computing at the edge. If we suppose that a large problem in the
food-energy-water nexus is inefficient agricultural resource use
and a solution is advanced decision support, then a missing link
in the chain between the two is a suite of algorithms and software

to take advantage of edge-based supercomputing with efficient
GPU (and hybrid GPU-CPU) systems such as the NVIDIA Jetson
series, or even FPGA-CPU hybrids embed on UAVs. To conclude,
we should state that for effective computation at the edge and
achieving real-time performance with more complex tasks, the data
transfer between CPU RAM and GPU DRAM should happen as
the computation is being performed, asynchronously. Other factors
such as size of GPU memory and optimizing computations should
also be given a careful thought.

In order for edge-based spatial computing to have an impact
on real-world problems, experts from multiple disciplines must
collaborate to identify and develop right solutions. We believe that
the time is ripe to form a community around the topic of geospatial
edge computing and attack major challenges of spatiotemporal
edge computing.
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