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Abstract

Previous research evaluating the influence of category knowl-
edge on memory found that children, like adults, rely on cat-
egory information to facilitate recall (Duffy, Huttenlocher, &
Crawford, 2006). A model that combines category and target
information (Integrative) provides a superior fit to preschoolers
recall data compared to a category only (Prototype) and target
only (Target) model (Macias, Persaud, Hemmer, & Bonawitz,
in revision). Utilizing data and computational approaches from
Macias et al., (in revision), we explore whether individual and
age-related differences persist in the model fits. Results re-
vealed that a greater proportion of preschoolers recall was best
fit by the Prototype model and trials where children displayed
individuating behaviors, such as spontaneously labeling, were
also best fit by the Prototype model. Furthermore, the best fit-
ting model varied by age. This work demonstrates a rich com-
plexity and variation in recall between developmental groups
that can be illuminated by computationally evaluating individ-
ual differences.
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Introduction

Reconstructing events from memory is an important facet

of cognition, given that it informs how we perceive, inter-

act with, and reason about the world around us. As with all

computational processes, human memory is limited in its ca-

pacity and resolution, raising questions of how the mind han-

dles the reconstruction of events from memory. That is, how

do we strategically encode information that supports later

use, while minimizing effort, error, and large demands on

storage? This question is doubly interesting for young chil-

dren whose memory systems are still developing. Relative

to adults, children have comparatively limited cognitive re-

sources (Davinson, Amso, Anderson, & Diamond, 2006; Di-

amond, 2006; Keresztes, Ngo, Lindenberger, & Newcombe,

2018), and their ability to maintain information in memory

becomes compromised when faced with increased cognitive

load (e.g., increased inhibition demands). Thus, an important

question of development is what cognitive strategies might

young learners employ to reduce uncertainty (i.e., noise or

error) when retrieving information from memory?

To tackle strategic reconstruction of episodic events, re-

search in adult cognition suggests that adults use prior knowl-

edge and expectations to facilitate retrieval of information

from memory. Adults develop prior knowledge and expec-

tations that are well-calibrated to the statistical regularities of

the environment (e.g., Griffiths & Tenenbaum, 2006), and use

this knowledge to optimally perform on a broad range of cog-

nitive tasks including: categorization (Huttenlocher, Hedges,

& Vevea, 2000), reasoning (Oaksford & Chater, 1994), and

generalization (Tenenbaum & Griffiths, 2001). In memory,

well-calibrated knowledge and expectations for a stimulus

category can improve average recall (Huttenlocher, Hedges,

& Duncan, 1991; Huttenlocher et al., 2000). For exam-

ple, Huttenlocher et al. (2000) found that people quickly de-

velop expectations for the underlying categorical distribution

of stimulus features, and use this knowledge to fill in noisy

and incomplete memories. They demonstrated that responses

regressed toward the mean of the overall category, thereby

improving average recall.

This relationship between prior knowledge and episodic

memory can be captured within a simple Bayesian framework

which assumes that prior knowledge and expectations for

the environment are optimally combined with noisy episodic

content to produce recall of episodic experiences (Hemmer &

Steyvers, 2009; Huttenlocher et al., 2000; Persaud & Hem-

mer, 2014; Steyvers & Dennis, 2006). Bayes rule provides

a principled account of how to combine noisy memory rep-

resentations with prior expectations to calculate the posterior

probability for recall.

p(θ|y) ∝ p(y|θ)p(θ)

The posterior probability p(θ|y) describes how likely a re-

called feature θ is, given prior expectations for the recalled

feature p(θ) and noisy memory traces y. In this way, the

Bayesian framework makes specific predictions about pat-

terns that are explicitly borne out of the data, namely a re-

gression to the category mean effect. It predicts that recall of

stimulus features (e.g., different shades of red) is either over

or under-estimated toward the mean of the category.

Recent evidence suggests that children, like adults, adopt a

similar process of integrating prior category knowledge with

episodic traces to reconstruct events in memory. For example,

Duffy et al. (2006) used assumptions of the Category Ad-

justment model (CAM) (Huttenlocher et al., 1991, 2000) to



evaluate the contribution of category knowledge to memory

for object sizes in children. CAM assumes that if category

knowledge is integrated in memory, recall would exhibit re-

gression to the mean effects. The model also assumes that the

more noisy the episodic information, like memories in chil-

dren, the stronger recall will regress to the mean. Duffy et al.

(2006) found that like adults, children’s recall regressed to-

ward the mean of the underlying category distribution. This

suggests that on an individual trial, a child might not have

remembered the exact studied size, so they might use their

learned category knowledge of the most frequently studied

object sizes to help reconstruct the true size. They concluded

that children use category knowledge to estimate stimulus

features from memory.

Similarly, Macias and colleagues (in revision) used a sim-

ple episodic memory task, where children were shown shapes

paired with different colors and were asked to recall the color-

shape pairings. They found that children’s recall regressed to-

ward the mean of the seven color categories that were studied,

indicating an influence of category knowledge on memory.

To further assess episodic memory, they then evaluated the

fits of three computational models of memory to explain the

data: a Noisy Target model that assumes recall solely mirrors

episodic information (i.e., the target color values plus ran-

dom noise), a Noisy Prototype model that assumes that recall

solely mirrors category information (plus noise), and an In-

tegrative model that assumes that recall is an integration of

episodic and category information. Quantitative model fits to

the aggregate data favored the Integrative model.

These studies of memory in children, taken together, high-

light an important role that category knowledge plays in

episodic memory at early development (i.e., preschool age)

and provide a watershed moment to explore the reconstruc-

tive nature of episodic memory at earlier stages. More specif-

ically, this work facilitates the opportunity to perform a crit-

ical in-depth analysis of children’s recall data to tease apart

underlying individual and group-related differences in the re-

constructive process. Exploring individual and age related

differences is motivated by the Duffy et al. (2006) finding

that not only do children rely on category knowledge, but also

that memory in younger children exhibited steeper regression

to the mean patterns, relative to older children. Recall based

solely on category information could also result in steeper re-

gression to the mean, and in turn, might be better fit by the

Macias et al., Noisy Prototype (’category only’) model. In

other words, it could be the case that at the individual subject

level, children might differ in the best fitting model, such that

those with steeper regression might be better fit by the Noisy

Prototype model, while less steep regression might be better

captured by an Integrative model.

Furthermore, recall performance in children might not only

differ at the individual subject level, but also at the individual

trial level, especially if contextual strategies, such as spon-

taneously labeling study features, are employed to facilitate

recall performance. For example, while running their study,

Macias et al., observed that participants spontaneously la-

beled the colors, as they studied them and/or as they recalled

them. For example, one older learner (age = 4.64years),

stated, “Purple, purple, purple. I got this.”, while studying

a purple hue value. Counterintuitively, while labeling may

boost the learner’s ability to remember that an item was ob-

served from a particular category, it may also lead to noisier

storage of specific stimuli that deviate from category means,

because the label provides a cheaper (albeit potentially less

accurate) compression option than storing the details of the

original. In this way, this individuating behavior of labeling

might impact the reconstruction of events in memory at either

the individual subject or trial level. Recent research suggests

that labeling can influence recall of continuous color values,

such that labeling results in information being lost gradu-

ally as opposed to suddenly (see, Donkin, Nosofsky, Gold,

& Shiffrin, 2014 for discussion on the role of labeling, sud-

den death, and gradual decay in memory). To this end, there

might be a difference in the best fitting models for children

who spontaneously label colors or for specific trials where

colors are labeled.

Therefore, the goal of this paper is to assess individual and

age related differences in the reconstruction of events from

memory in early development. More specifically, we sought

to evaluate whether younger and older children employ dif-

ferent strategies to recall episodic events and whether the be-

havior of spontaneously labeling was better fit by a particular

model. We hypothesized that young and older children would

differ in their reconstructive processes, such that a different

proportion of children from each group would be better fit

by the three models. We expected that older children would

be better explained by an Integrative model (i.e., combining

noisy episodic traces with category knowledge), mirroring the

behavior of adults, and younger children would be better ex-

plained by a Noisy Prototype model, given the degree of in-

exactness in their memory traces.

We also hypothesized that the individuating behavior of

spontaneous labeling would impact memory reconstruction

such that trials where labels were spontaneously provided

would be better captured by the Noisy Prototype model. To

test our hypotheses, we fit the Noisy Target, Noisy Prototype,

and Integrative models to the experimental data from Macias

et al., (in revision) at the individual subject level.

We then evaluated the log likelihood scores of the model

fits to determine which account most often explained memory

performance in younger and older children. In other words,

we looked to see which model explained behavior for the

greater proportion of children. After, we explored best fit-

ting parameter values that would capture the amount of noise

in the recall data for young and older children. A difference

in the amount of noise in the data is one potential explanation

for age related differences in the best fitting model. Finally

we assessed whether labeling behavior affected the propor-

tion of children fit by each of the models.



Three Models of Memory

Noisy Target Model The Noisy Target model assumes that

information is stored in episodic memory as noisy traces of

studied values (e.g., specific color values). In this way, recon-

structed events are just inexact representations of true studied

values (and not altered by category knowledge). If children

are using the Noisy Target model, we should expect the noise

(or error) in recall to be normally distributed around the true

studied feature values, with no apparent bias toward a partic-

ular recall value. To evaluate this model relative to the data,

we calculated the probability of responses given a Gaussian

distribution centered on the target value, with noise in mem-

ory (we assume the same memory noise value learned from

Macias et al.).

Noisy Prototype Model The Noisy Prototype model as-

sumes that information is stored in episodic memory as cate-

gorical representations of studied features (e.g., the mean of

the category to which the studied value belongs). In other

words, under this model, the initial encoding of the represen-

tation is simply a pointer to the participant’s prototype in that

category. Other information about the studied value is not

stored. Memory is simply a recall of the prototype – which

we define as a sample drawn from this category, assuming a

particular distribution, mean, and variance associated with it.

To evaluate this model relative to the data, we calculated the

probability of responses given a Gaussian distribution cen-

tered on the category prototype (i.e., mean) value given by

participant ratings in Macias et al., (in revision), with noise

on the category also calculated from noise given in a separate

study 1.

Integrative Model The Integrative model amalgamates the

assumptions of both the Noisy Target and Noisy Prototype

models and assumes that recall is an integration of noisy

episodic content and prior category knowledge. Under this

model, prior category knowledge is used to fill in the gaps

when episodic traces are noisy or incomplete. When the cat-

egory representation is strong, and the memory trace is noisy,

recall will resemble the category representation. The proba-

bility of responses under the Integrative model are relatively

straightforward to calculate, because both the prior and like-

lihood distributions are Gaussian (which are self-conjugate).

Furthermore, there are not specific weights assigned to the

contributions of each model – this falls out naturally based on

the degree of variance of each target and prototype models.

We evaluate this model relative to the data, by calculating the

probability of responses given the Gaussian that results from

integrating these two Gaussian. Specifically, for the Integra-

tive model, which integrates the Noisy Target and Prototype

distributions, the standard solution for the mean and variance

1We also assessed a model in which we sample over variance,
but best fit variance matched participant responses on Macias et al.’s
prior knowledge task.

Table 1: Frequency of Children Best Fit to Each Model

Model Count(%)

Integrative 11 (33.33%)

Noisy Target 7 (21.21%)

Noisy Prototype 15 ( 45.45%)

is given by,

µ =
1

1

σ
2
t
+ n

σ2
p

(
t

σ
2
t

+
µp

σ2
p

),σ =
1

1

σ
2
t
+ n

σ2
p

(1)

where σt refers to the memory noise on the target distribution,

σp refers to the noise on the prototype distribution, t refers to

the studied target value, µp refers to the mean of the prototype

distribution to which the target value belong, and n=1.

In what follows, we first briefly explain the experimental

methods employed by Macias et al., (in revision), to assess

the role of category knowledge in episodic memory in chil-

dren. We then discuss the results of the model fitting at the in-

dividual subject level in general, and age related differences,

more specifically.

Experimental Methods and Results

Macias et al., (in revision) conducted two developmental

experiments where they examined the relationship between

prior color category knowledge and episodic memory in

preschoolers (mean age: 54 mos.; range: 43 mos.-73 mos.).

In the prior knowledge assessment, participants were pre-

sented with 9 color category labels (red, orange, yellow,

green, blue, light blue, dark blue, purple, and pink) one at

a time on a computer screen, along with a color wheel. The

color wheel varied in hue only while luminance and satura-

tion were held constant at 50 and 100 units respectively. Chil-

dren were asked to point to a location on a color wheel to

indicate the color that best represented the label.

In the episodic memory task, 33 participants studied 15

shapes uniquely paired with 152 colors, one at a time on a

computer screen. At test, participants were presented with a

studied shape (filled in white with a black border), along with

the color wheel used in the prior knowledge assessment. The

task for the participants was to choose along the color wheel

to indicate the color they recalled being paired with the pre-

sented shape. For complete experimental methodology, refer

to the source publication (Macias, et al., in revision).

The results of the memory task revealed a regression to the

category mean effect in a majority of the studied color cate-

gories such that studied hue values that were greater than the

mean of the category were underestimated and studied hue

values less than the mean of the category were overestimated.

This regression to the mean effect is taken as evidence of an

2One of the study trials was treated as a filler in order to counter-
balance presentation order and was therefore removed from the data
set prior to running any analyses.







beled and non-labeled trials contributed by each age group

(p=.002). A larger proportion of labeled trials were generated

by older (66%) compared to younger children (34%).

Discussion

Our goal was to evaluate whether age-related differences per-

sist in the strategies young learners use to reconstruct events

from memory. Recent work has found that young learners,

like adults, adopt the strategy of integrating prior category

expectations with noisy episodic traces to reconstruct events

from memory (Macias, et al., in revision). This was evi-

denced by a model that assumes an integration of target and

category information (i.e., Integrative model) providing a su-

perior fit to the preschool data. Here we evaluate individual

differences in the best fitting strategies. We first fit three mod-

els at the individual subject level and found that the larger

proportion of children were better fit by the Noisy Prototype

model compared to the other models.

In addition, there were marked differences in the propor-

tion of young and older children best fit by each model. While

young children were almost evenly split in fit across the three

models, surprisingly, older children were most frequently fit

by the Prototype model. This result might have been bol-

stered by the number of trials where older children sponta-

neously labeled. Recall that a significantly large proportion

of labeled trials belonged to older children. In this way, spon-

taneously labeling during study and test might have induced

older children to encode and/or retrieve the prototype of the

category they verbally labeled. Thus, older children may have

been more likely to adopt a general strategy (labeling) that

instead led to less accurate recall of the specific observation.

Future work might further explore the role of spontaneous la-

beling on children’s recall performance. For example, it is

unclear whether children were still using a labeling strategy

on trials where they did not spontaneously label aloud. It is

possible that they were silently labeling during the task. It is

unlikely that this is the case, given that we found a significant

difference in performance between labeled and non-labelled

trials in terms of the model fitting. However, this is an empir-

ical for future investigation. For instance, follow up studies

could use verbal interference tasks to manipulate children’s

ability to provide verbal labels during encoding and retrieval

to evaluate whether labeling alone encourages the use of the

category prototype.

What might explain the finding that the Noisy Prototype

model slightly outperformed the Integrative model in terms

of best fit at the individual level? First, early memory devel-

opment is marked by an up-prioritization of category infor-

mation over nuanced episodic information (Keresztes et al.,

2018). Such behavior would equate to encoding a red color

value as a prototypical shade of red (e.g., the color of a red ap-

ple) as opposed to encoding the specific shade of red studied.

Thus, during study, a majority of children may have encoded

target information as a pointer to the category from which

the target belongs, such as a category representative (i.e., the

category mean) as opposed to encoding the exact color value

studied.

Alternatively, it could be the case that the use of category

knowledge happens at retrieval. After the initial testing phase,

the original studied information could have degraded over

time and instead of reproducing the degraded information,

children reproduced a value closer to the category represen-

tative to reduce error or uncertainty. Whether the influence of

category knowledge occurs at encoding, retrieval, or both is a

question for future research.

A third potential explanation for why a slightly great por-

tion of children were best fit by the Noisy Prototype model

might be due to the particular information studied. It should

be noted that the study values for each category were selected

such that they fell one standard deviation above and below the

mean of the category (mean and standard deviations learned

from the prior knowledge task). Given that children only

studied colors that fell in close proximity of the prototypes,

this might have propelled learners to rely on their category

expectations, that is, adopting the Prototype strategy. Thus,

the finding of a large portion of older children who are better

fit by the Noisy Prototype model might be a consequence of

the study values falling relatively close to the prototype. Fu-

ture work might explore whether the model fitting results vary

when children are presented with colors that substantially de-

viate from the prototype (i.e., more than 1 sd).

There were a number of limitations in this study that war-

rant caution in the interpretation of the results. First, the ini-

tial goal of Macias et al., (in revision), was to compare chil-

dren’s episodic memory performance to adults. For this pur-

pose, a sample of 33 child participants was sufficient. How-

ever, to evaluate individual and age-related differences, a sig-

nificantly larger sample of participants is needed to achieve

strong statistical power for analysis. Second, the goal of

this paper was to assess age related differences. Although

a median split of children revealed some clear trends in a dif-

ference in model fitting by age, a more diverse age sample

of children could provide further insight into differences in

memory strategy by age. For instance, we anticipated that

older children might rely less on the prototype to facilitate re-

call (although this might interact with the contrary strategy to

label as children get older), but it is possible that the sample

of children used here did not contain a wide enough age-range

to observe this pattern. To this end, a natural future direction

would be to collect more data for the purposes of evaluating

age differences.

Despite these limitations, this paper demonstrates clear

trends in age related differences in model fitting. Further-

more, we hope to have demonstrated that an approach that

applies model fits at the individual level can provide insight

into how different cognitive strategies (such as labeling) may

color recall.
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