
PROBABILISTIC WARING PROBLEMS FOR FINITE

SIMPLE GROUPS

MICHAEL LARSEN, ANER SHALEV, AND PHAM HUU TIEP

Abstract. The probabilistic Waring problem for finite simple groups
asks whether every word of the form w1w2, where w1 and w2 are non-
trivial words in disjoint sets of variables, induces almost uniform distri-
butions on finite simple groups with respect to the L1 norm. Our first
main result provides a positive solution to this problem.

We also provide a geometric characterization of words inducing al-
most uniform distributions on finite simple groups of Lie type of bounded
rank, and study related random walks.

Our second main result concerns the probabilistic L∞ Waring prob-
lem for finite simple groups. We show that for every l ≥ 1 there exists
(an explicit) N = N(l) = O(l4), such that if w1, . . . , wN are non-trivial
words of length at most l in pairwise disjoint sets of variables, then
their product w1 · · ·wN is almost uniform on finite simple groups with
respect to the L∞ norm. The dependence of N on l is genuine. This
result implies that, for every word w = w1 · · ·wN as above, the word
map induced by w on a semisimple algebraic group over an arbitrary
field is a flat morphism.

Applications to representation varieties, subgroup growth, and ran-
dom generation are also presented. In particular we show that, for cer-
tain one-relator groups Γ, a random homomorphism from Γ to a finite
simple group G is surjective with probability tending to 1 as |G| → ∞.
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1. Introduction

In the past two decades there has been much interest in word maps and
related Waring type problems (see for instance [Sh2] and the references
therein). Recall that a word is an element w = w(x1, . . . , xd) of the free
group Fd on x1, . . . , xd. Given any group G, the word w gives rise to a
word map wG : Gd → G induced by substitution. When the group G is
understood, we denote the map simply w.

Word maps on finite simple groups have attracted particular attention.
Here and throughout this paper, by a finite simple group we mean a non-
abelian finite simple group. Two words w1, w2 are said to be disjoint if they
are words in disjoint sets of variables. If w = w1w2 where w1, w2 6= 1 are
disjoint words, then it was shown in [LST] (following partial results from
[LS1, LS2]) that the word map w is surjective on all sufficiently large finite
simple groups. This provides a best possible solution to the Waring problem
for finite simple groups, inspired by the classical Waring problem in number
theory.

The probabilistic Waring problem for finite simple groups asks whether,
for w = w1w2 as above, the push-forward distribution pw,G = w∗UGd on a
finite simple group G tends to the uniform distribution UG in the L1 norm
(see (1.1)) as the order of G tends to infinity. That is, for a word w, a finite
group G and an element g ∈ G, we let pw,G({g}) denote the probability that
w(g1, . . . , gd) = g when gi ∈ G are chosen uniformly and independently:

pw,G({g}) =
|w−1(g)|
|G|d .

It is conjectured that, for finite simple groups G, we have

lim
|G|→∞

‖pw,G − UG‖L1 = 0

(see for instance [Sh2, 4.5]). When this holds we say that w is almost uniform
on finite simple groups.

This conjecture has already been established in some cases. In [GS, 7.1]
it is proved for w = x21x

2
2 (and it is also shown in [GS] that the commutator

word [x1, x2] is almost uniform). In [LS4, 1.1] the conjecture is proved for
w = xm1 xn2 where m,n are arbitrary non-zero integers. It is also shown in
[LS4, 1.2] that admissible words, i.e., words in which each variable appears
exactly twice, once as xi and once as x−1

i , are almost uniform on finite
simple groups. In [LS1] the conjecture is established for arbitrary w1w2 for
alternating groups An (see Theorem 1.18 there and the discussion following
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it). In this paper we prove the conjecture in full by confirming it for simple
groups of Lie type.

For a real function f on a finite set G and a real number p > 0, we define

‖f‖Lp = (|G|p−1
∑

g∈G
|f(g)|p)1/p.

In particular,

(1.1) ‖f‖L1 =
∑

g∈G
|f(g)|, ‖f‖L∞ = |G| ·max

g∈G
|f(g)|.

Our first main result is as follows.

Theorem 1. Let w1, w2 6= 1 be disjoint words and let w = w1w2. Then

lim
|G|→∞

‖pw,G − UG‖L1 = 0,

where G ranges over all finite simple groups.

Let G and w ∈ Fd be as in Theorem 1. Then it follows from the theorem
that, as |G| → ∞ and S ⊆ Gd satisfies |S|/|G|d → 1, we have

|w(S)|/|G| → 1,

namely, almost all elements g ∈ G can be expressed in the form g =
w(g1, . . . , gd) where (g1, . . . , gd) ∈ S. Combining this observation with suit-
able known results we obtain some immediate applications of Theorem 1.
For example, using [LiSh1, Theorem] we deduce that almost all elements of
G have the form w(g1, . . . , gd) where 〈gi, gj〉 = G for all 1 ≤ i < j ≤ d.
The same holds when we require that all gi are regular semisimple if G is
of Lie type and bounded rank; that n(1/2−ε) logn ≤ o(gi) ≤ n(1/2+ε) logn for
G = An where ε > 0 and o(g) is the order g (see [ET, Theorem]); that

|CG(gi)| ≤ q(1+ε)r where ε > 0 and G is classical of rank r over Fq (this
follows by combining Corollary 1.2(1) of [FG] with Lemma 5.3 of [Sh1]).

The proof of Theorem 1 makes use of the classification of finite simple
groups. Since the result is asymptotic in nature, we do not need to consider
sporadic groups at all, so it remains to deal with groups of Lie type. For
groups of classical type of unbounded rank, we combine arguments of com-
binatorial flavor with essential use of strong new character estimates proved
in [GLT2, GLT3]. For groups of Lie type of bounded rank (including ex-
ceptional groups) we provide two proofs: one character-theoretic, and the
other geometric. The latter proof is based on the following characterization
of almost uniform words in bounded rank, which is of independent interest.

Theorem 2. Let r and d be positive integers, and w ∈ Fd a non-trivial
word. The following conditions are equivalent:

(i) As G ranges over finite simple groups of Lie type of rank ≤ r,

lim
|G|→∞

‖pw,G − UG‖L1 = 0.
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(ii) For every prime p and every split simply connected semisimple group
G over Fp of rank ≤ r, there exists a power q of p such that

lim
n→∞

|w(G(Fqn))|
|G(Fqn)|

= 1.

(iii) For every simply connected semisimple group G of rank ≤ r over any
field k, the evaluation morphism w : Gd → G has geometrically irre-
ducible generic fiber.

If these equivalent conditions hold we say that w is almost uniform in rank
≤ r. If this is true for all r, we say that w is almost uniform in bounded rank.
Our geometric proof of Theorem 1 in bounded rank is based on Theorem 2
above and the fact that the generic fiber for any word of the form w = w1w2,
where w1 and w2 are disjoint non-trivial words, is geometrically irreducible.

Theorem 2 shows, in particular, that words that are surjective on large
enough finite simple groups of bounded rank are also almost uniform in
bounded rank. This is by no means obvious. In Segal’s monograph [Seg] a
word w ∈ Fd is said to be silly if w ∈ xe11 . . . xedd F ′

d where gcd(e1, . . . , ed) = 1.
It is observed in [Seg, 3.1.1] that silly words are precisely the words that are
surjective on all groups. It therefore follows that silly words are almost
uniform in bounded rank. In our next result we estimate the probability
that a random word has the above properties.

For any d > 1 and n ≥ 0, we let Wn,d denote the random element of Fd

obtained from an n step random walk on Fd with steps uniformly distributed
in {x±1

1 , . . . , x±1
d }.

Theorem 3. (i) For all d > 1 and all n > 0, the probability that Wn,d is
surjective on all groups exceeds 1/3 and tends to 1 as d → ∞.

(ii) For all d > 1 and all n > 0, the probability that Wn,d is almost uniform
in bounded rank exceeds 1/3 and tends to 1 as d → ∞.

It has recently been shown in [CH, Theorem B] that a finite group G
is nilpotent if and only if all words w which are surjective on G induce
the uniform distribution UG on G. Using this and part (i) of Theorem 3 it
follows that the probability that Wn,d is uniform on all finite nilpotent groups
exceeds 1/3 and tends to 1 as d → ∞.

Next, we turn to almost uniformity results with respect to other norms.
For the groups PSL2(q), we can strengthen Theorem 1, replacing the L1

norm by the L2 norm. Indeed, by Corollary 4.3 below, if G = PSL2(q) where
q ranges over prime powers, then

lim
q→∞

‖pw,G − UG‖L2 = 0.

It would be interesting to find out which families of finite simple groups
satisfy this property. We note that if w is [x1, x2] or x

2
1x

2
2 then we have

lim
|G|→∞

‖pw,G − UG‖L2 = 0
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as G ranges over finite simple groups; indeed, this follows from [GS, §2].
It is also interesting to obtain almost uniformity results in the L∞ norm

or the Lp norm for arbitrary p > 1. In this sense, for any fixed k ≥ 1,
the product w1 · · ·wk of k non-trivial pairwise disjoint words need not be
almost uniform on all finite simple groups. Indeed we may take wi = xni for
n ≥ k+2. If G is an alternating group of large degree (compared to n), then

it follows from Lemmas 2.17 and 2.18 of [LiSh2] that pxn
i ,G

(1) ≥ |G|−1/n.
If G is a classical group of large rank (compared to n) over a field with q
elements, then for some constant c(n) > 0 one has that

pxn
i ,G

(1) ≥ q−c(n)|G|−1/n > |G|−1/(n−1)

by [LiSh3, Theorem 4.3]. Hence,

pw,G({1}) ≥ |G|−k/(n−1),

and w is not almost uniform in L∞. If moreover we take n ≥ kp/(p− 1)+ 2
then we see that w is not almost uniform in Lp whenever p > 1.

However, we do show in Corollary 4.4 below, that if w = w1w2w3w4, a
product of four pairwise disjoint non-trivial words, then w is almost uniform
on PSL2(q) with respect to the L∞ norm. This result is best possible in the
sense that it fails to hold for some products of three disjoint words. Indeed,
it is shown in [Sh1, p. 1406] that x21x

2
2x

2
3 is not almost uniform on PSL2(q)

with respect to the L∞ norm.
Our second main result concerns the probabilistic Waring problem for

finite simple groups with respect to the L∞ norm.

Theorem 4. For a positive integer l define N(l) = 2 ·1018l4. Let N ≥ N(l)
be an integer and w = w1 · · ·wN a product of pairwise disjoint non-trivial
words of length at most l. Then

lim
|G|→∞

‖pw,G − UG‖L∞ = 0,

where G runs over all finite simple groups.

This theorem generalizes Proposition 8.5 of [Sh1] dealing with Lie type
groups of bounded rank (where N depends on the rank r and not on l; cf.
Proposition 6.10), and Theorem 2.8 of [Sh1] where wi are commutators and
N = 2. Unlike Theorem 1, which was established long ago for alternat-
ing groups, Theorem 4 is new (and highly non-trivial) also for An – note
that in this case the bound for N(l) is substantially smaller, see Proposition
6.8. The proof of Theorem 4 is rather complicated, combining combinato-
rial and character methods. In particular it follows from the theorem that
xl1x

l
2 · · ·xlN(l) is almost uniform in L∞ on finite simple groups, which may be

regarded as a probabilistic non-commutative analogue of the Waring prob-
lem in number theory. The discussion prior to Theorem 4 shows that the
conclusion of the theorem does not hold for N ≤ l − 2, so the dependence
of N on l is genuine.



6 MICHAEL LARSEN, ANER SHALEV, AND PHAM HUU TIEP

Our third main result concerns flatness of certain word maps on algebraic
groups, representation varieties and subgroup growth of some one-relator
groups, as well as random generation of finite simple groups. While parts
(i)–(iv) below are applications of Theorem 4, parts (v) and (vi) are more
challenging and require various additional tools.

Let us say that a word w ∈ Fd is even if its image in the abelianization
Fd/[Fd, Fd] is a square, and that w is odd otherwise (see also Definition 6.6
below).

Theorem 5. For every positive integer l there exists a positive integer N∗(l)
such that the following statement holds. Let N ≥ N∗(l) and d be positive
integers. Suppose w = w1 · · ·wN ∈ Fd is a product of pairwise disjoint non-
trivial words of length at most l, and Γ = 〈x1, . . . , xd | w(x1, . . . , xd) = 1〉.
Then all the following statements hold.

(i) For every field k and every semisimple algebraic group G over k, the
word morphism w : Gd → G is flat.

(ii) For every field k and every semisimple algebraic group G over k, the
dimension of the k-variety Hom(Γ, G), i.e., the Krull dimension of its
coordinate ring, is (d− 1) dimG.

(iii) For every field k and every positive integer n, the dimension of the
k-variety Hom(Γ,GLn) is (d − 1)n2 + a, where a = 0 if w 6∈ [Fd, Fd]
and a = 1 otherwise.

(iv) The number an(Γ) of index n subgroups of Γ satisfies

an(Γ) ∼ bn · (n!)d−2,

where b = 1 if w is odd and b = 2 if w is even. Thus
an(Γ)

an(Fd−1)
→ b as

n → ∞.
(v) The number mn(Γ) of maximal subgroups of Γ of index n satisfies

mn(Γ) ∼ bn · (n!)d−2,

where b is as above. Thus
mn(Γ)

an(Γ)
→ 1 as n → ∞.

(vi) The probability that a random homomorphism from Γ to a finite simple
group G is an epimorphism tends to 1 as |G| → ∞.

Note that for statements (i)–(iv) of Theorem 5 to hold, it suffices to take
N∗(l) = N(l) = 2 · 1018l4 as in Theorem 4.

Some special cases of Theorem 5, where wi are commutators or squares,
were already obtained in the past.

For example, in the case of surface words

w = x−1
1 x−1

2 x1x2 · · ·x−1
2g−1x

−1
2g x2g−1x2g

for g ≥ 2, part (i) of Theorem 5 was obtained in [AA, 4.4]. In characteristic
zero it is also shown in [AA, VIII] that, for g ≥ 374, the fibers of wG have
rational singularities. It would be interesting to know whether the statement
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about rational singularities holds in the generality of part (i) of Theorem 5,
if N is sufficiently large in terms of l.

Part (ii) of Theorem 5 for surface words (including non-oriented ones
w = x21 · · ·x2g where g ≥ 3) was obtained in [LiSh3, 1.11].

Part (iii) of Theorem 5 for (oriented and non-oriented) surface words was
obtained in [RBC] and [BC] for fields of characteristic zero (see also [Go]),
and in [LiSh3, 1.8] for arbitrary fields.

Parts (iv) and (v) for surface groups were obtained in [MP].
For Fuchsian groups of genus g ≥ 2 (g ≥ 3 in the non-oriented case),

a result similar to part (vi) of Theorem 5 was obtained in Theorem 1.6 of
[LiSh3].

We conclude the introduction with a result of independent interest, which
plays an important role in this paper and might be useful for other purposes.

Theorem 6. Let w ∈ Fd be a non-trivial word, and let G be a finite simple
group. Choose g1, . . . , gd ∈ G uniformly and independently. Then, for every
ε > 0, the probability that

|χ(w(g1, . . . , gd))| ≤ χ(1)ε for all χ ∈ Irr(G)

tends to 1 as |G| → ∞.

This result generalizes Proposition 4.2 of [LS4] dealing with the case w =
x1, and Theorem 7.4 of [LS1] dealing with alternating groups.

The rest of the paper is organized as follows. In Section 2 we use methods
from algebraic geometry to prove Theorem 2 and deduce Theorem 1 for Lie
type groups of bounded rank. In Section 3 we discuss random walks and
prove Theorem 3. In Section 4 we use character methods to provide an
alternative proof of Theorem 1 in bounded rank (as well as some stronger
results for PSL2(q)). In Section 5 we discuss classical groups of large rank,
and apply new character bounds obtained for them, and other tools, to
complete the proof of Theorem 1. Theorem 6 is also proved in Section 5,
and plays a key role in proving Theorem 1. The proof of Theorem 4 is given
in Section 6, and Section 7 is devoted to the proof of Theorem 5.

2. Geometric methods

In this section we prove Theorem 2 and deduce Theorem 1 for Lie type
groups of bounded rank. At the end of the section, we prove a result which
will be needed below for Theorem 5. Note that by an Fq-variety, we mean
a separated, geometrically integral scheme of finite type over Fq.

Proposition 2.1. Let X be an Fq-variety, Y a disjoint union of Fq-varieties
Y i of equal dimension, and f : Y → X a morphism defined over Fq. If Y is
irreducible, then

(2.1) lim
n→∞

|f(Y (Fqn))|
|X(Fqn)|

= 1



8 MICHAEL LARSEN, ANER SHALEV, AND PHAM HUU TIEP

if and only if f is dominant and its generic fiber is geometrically irreducible.
In general,

(2.2) lim
n→∞

‖f∗UY (Fqn ) − UX(Fqn )‖L1 = 0,

implies each restriction fi of f to a component Y i of Y is dominant and the
generic fiber of each fi is geometrically irreducible.

Proof. Let us first assume Y is irreducible. By the Lang-Weil estimate, we
may replace X, Y , and f by X ′, Y ′, and f ′ = f |Y ′ respectively, for any

open subvariety X ′ of X and any open subvariety Y ′ of f−1(X ′). Thus,
we are justified in assuming X and Y are affine and non-singular, and f
is dominant. We denote their coordinate rings A and AY respectively. As
X and Y are varieties, these are integral domains. Let K and KY denote
the fraction fields of A and AY respectively, and let L denote the separable
closure L of K in KY . As KY is a finitely generated field, L is a finite
extension of K. Our claim is that L = K if and only if (2.1) holds.

Choose α ∈ L∩AY to be a primitive element of L/K; after multiplying by
a suitable element of A, we may assume it is also integral over A. Let B =
A[α] ⊂ AY , so f factors through the finite morphism Spec B → Spec A. By
[EGA IV4, Théorème 17.6.1], Spec B → Spec A is étale in a neighborhood
of the generic point of Spec B, so replacing A by A[1/a] for Spec A[1/a]
small enough and B and AY by B[1/a] and AY [1/a] respectively, we may
assume Spec B → Spec A is finite étale. In particular Spec B is non-singular
[EGA IV4, Théorème 17.11.1]. Both A and B are therefore integrally closed,
and B is module-finite over A and hence integral. Thus B is the integral
closure of A in L.

Let M denote any finite extension of L which is Galois over K and C the
integral closure of B in M . Thus CGal(M/K) contains A and has fraction
field K. It is contained in K and integral over A, therefore equal to A.
Thus X = Spec A is the quotient of Z = Spec C by Gal(M/K). Likewise,

B = CGal(M/L), so Z → X factors through Y = Spec B. Let m denote the
common dimension of X, Y , and Z. By the Lang-Weil estimate, |X(Fqn)|,
|Y (Fqn)|, and |Z(Fqn)| are all (1 +O(q−n/2))qmn.

Applying the Chebotarev density theorem for Z → X [Se], we see that in
the limit n → ∞, a positive proportion of points in X(Fqn) split completely
in Z and therefore in Y . It follows that (2.1) implies L = K.

Conversely the condition K = L is equivalent to the generic geometric
irreducibility of f . By [EGA IV3, Proposition 9.5.5, Théorème 9.7.7], we
may assume without loss of generality that all fibers of f are geometrically
irreducible and of equal dimension. It is well known that the Lang-Weil
theorem holds uniformly for families of varieties of the same dimension (see,
e.g., [LS2, Lemma 2.2]), and this implies (2.1) and even the stronger (2.2).

Finally, we consider the case that Y has irreducible components Y 1, . . . , Y r.
We note first that Lang-Weil implies that as n → ∞, the probability of a
random element of Y (Fqn) lying in any fixed Y i(Fqn) approaches 1/r, so
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(2.2) implies that the restriction of f to each Y i is dominant. Proceeding as
before, we may assume that X = Spec A is affine, each Y i is affine and geo-
metrically connected over Spec Bi, Spec Bi is finite étale overX, the fraction
field Li of Bi is a finite separable extension of the fraction field K of A, and
Mi is a finite Galois extension of K containing Li. Let e = dimY i − dimX,
the relative dimension of Y i over X, which is the same for all i since the Y i

have the same dimension and the morphisms to X are all dominant. By the
uniform version of the Lang-Weil theorem, for each Fqn-point of Spec Bi,
there are (1 + o(1))qne elements of Y i(Fqn) lying over it.

Applying the Chebotarev density theorem for M1 · · ·Mr/K, in the limit
as n → ∞, a positive proportion of points x ∈ X(Fqn) split completely in
each Li, which means that there are [Li : K] Fqn-points of Spec Bi lying
over x, therefore (1 + o(1))[Li : K]qne points of Y i(Fqn) lying over x, and,
finally, (1 + o(1))([L1 : K] + · · · + [Lr : K])qen points of Y (Fqn) lying over
x. If any of L1, . . . , Lr is of degree ≥ 2 over K, then this sum of degrees
strictly exceeds r. On the other hand, Lang-Weil implies

lim
n→∞

|Y (Fqn)|
qen|X(Fqn)|

= 1.

Thus, ‖f∗UY (Fqn ) − UX(Fqn )‖L1 does not approach 0.
�

We now embark on the proof of Theorem 2.

Proof. If G is any finite group and H is contained in its center, then for all
g ∈ G,

[G : H]d|w−1
G/H(gH)| =

∑

h∈H
|w−1

G (gh)|.

Defining f : Gd ×H → G by f(g1, . . . , gd, h) = wG(g1, . . . , gd)h, we have

(2.3) ‖f∗UGd×H − UG‖L1 = ‖pw,G/H − UG/H‖L1 .

On the other hand, the triangle inequality implies

(2.4) ‖pw,G/H − UG/H‖L1 ≤ ‖pw,G − UG‖L1 .

We specialize to the case that H is the center of G, while G is of the form
G(Fp)

F , where F is a generalized Frobenius map and G is a simply con-
nected, split, almost simple algebraic group of rank ≤ r over Fp.

To prove (i) implies (ii), given p and G, we choose q so that the center Z
of G(Fp) is contained in G(Fq). Applying Proposition 2.1 to the morphism

Gd × Z → G given by (g1, . . . , gd, z) 7→ w(g1, . . . , gd)z, condition (i) in the
form given by (2.3) implies that each component of Gd × Z maps to G
with geometrically irreducible generic fiber. In particular this is true for the
identity component, which is Gd. A second application of Proposition 2.1
gives (ii).

To prove (ii) implies (iii), we first note that generic geometric irreducibil-
ity is stable under base change of k, so we could assume without loss of
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generality that k is algebraically closed and therefore that G is split. Since
every split group is obtained by base change from a split group over a prime
field, we assume instead that G is split and that k is either Q or Fp for some
p. Let G denote a split semisimple group scheme over Z with the same root
system as G, and we denote by wG the word morphism Gd → G of schemes
of finite type over Spec Z. By [EGA IV3, Théorème 9.7.7], the set of points
of G over which wG is geometrically irreducible is constructible and con-
tains the generic point. It therefore contains a non-empty open set S. By
Chevalley’s constructibility theorem [EGA IV1, Corollaire 1.8.5], its image
in Spec Z is constructible and therefore contains all but finitely many closed
points. Thus S contains the generic point of all but finitely many fibers of
G → Spec Z, so it suffices to prove the geometric irreducibility in the case
that k = Fp and G is split. This case follows from Proposition 2.1.

It remains to show that (iii) implies (i); by (2.4), it suffices to prove

lim
|G|→∞

‖pw,G − UG‖L1 = 0,

where G ranges over groups of the form G0(Fp)
F , where F is a generalized

Frobenius map and G0 is a simply connected, split, almost simple algebraic
group of rank ≤ r over Fp. We fix any root system Φ of rank ≤ r and
prove the limit is zero as G ranges over groups of this form with root system
Φ. In the case that F is a standard Frobenius map, G0(Fp)

F = G(Fq) for
some simply connected G of rank ≤ r and some q. Thus, (i) follows from
Proposition 2.1. In the case of Suzuki or Ree groups, it follows from the
following lemma. �

Lemma 2.2. Let G be a split simple algebraic group over Fp and f : Gd → G

a morphism of schemes. There exists a constant C such that if x ∈ G(Fp) is
a geometric point of G such that w−1(x) is irreducible of dimension k, and
F : GFp

→ GFp
an endomorphism which preserves w−1(x) and such that

F 2 is a standard p-Frobenius endomorphism, and s is a sufficiently large
integer, then

∣
∣
∣
∣ w−1(x)(Fp)

F 2s+1 ∣
∣ −p(2s+1)k/2

∣
∣≤ Cp(2s+1)k/2−1/4.

Proof. We fix ` 6= p. By the finiteness and proper base change theorems
for étale cohomology over a field we see that for all i, dimH i

c(w
−1(x),Q`) is

bounded as x varies.
We would like to apply the Lefschetz trace formula to count the F -fixed

points of w−1(x). We use Fujiwara’s theorem (formerly Deligne’s conjecture)
[Fu]. If F is an endomorphism of G whose square is the p-Frobenius, then
the naive Lefschetz trace formula applies to all sufficiently high odd powers
of F :

(2.5) |w−1(x) ∩ (G(Fp)
F 2s+1

)d| =
2k∑

i=0

(−1)itr(F 2s+1|H i
c(w

−1(x),Q`)).
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Since F 2 is a standard p-Frobenius map, by [De, 3.3.1] the eigenvalues

of F on H i
c(w

−1(x),Q`) have absolute value at most pi/4 ≤ √
pdimw−1(x).

As w−1(x) is a variety, its top cohomology group, H2k(w−1(X),Q`), is 1-
dimensional, and F 2 acts with eigenvalue pk. Thus F acts on the top coho-
mology with eigenvalue ±pk/2, and as left hand side of (2.5) is non-negative,

for f sufficiently large, the eigenvalue is pk/2, and the number of F 2s+1-fixed
points differs from p(2s+1)k/2 by O(q(2s+1)k/2−1/4). The lemma follows. �

An immediate consequence of Theorem 2 is the following.

Corollary 2.3. If the image of w ∈ Fd in the abelianization Zd = Fd/[Fd, Fd]
is primitive, then w is almost uniform in bounded rank.

Proof. It suffices to prove that w(G) = G for all groups G. Indeed, as shown
in [Seg, 3.1.1], if the image of w in Zd is a primitive d-tuple (a1, . . . , ad), we
fix b1, . . . , bd ∈ Z such that

∑

i aibi = 1. Then w(gb1 , . . . , gbd) = g. �

We can now deduce Theorem 1 for Lie type groups of bounded rank. It
follows immediately from Theorem 2 together with the following lemma.

Lemma 2.4. Let w = w1w2 ∈ Fd where w1, w2 6= 1 are disjoint words, and
let G be a semisimple simply connected algebraic group. Then w : Gd → G
has geometrically irreducible generic fiber.

Proof. It suffices to prove this in the case that G is simple modulo its center.
In the case, G = G(Fq) is the universal central extension of a finite simple
group if q is sufficiently large. By Borel’s theorem, w1 and w2 define dom-
inant morphisms, so if q is sufficiently large, there exist regular semisimple
conjugacy classes C1 and C2 of G lying in the image of w1 and w2 re-
spectively. By [GT, Lemma 5.1], the image of w contains all non-central
semisimple elements of G when q is large, so condition (ii) of Theorem 2 is
satisfied. Hence condition (iii) follows, as required. �

We conclude with a result which will be needed in §7.
Proposition 2.5. Let w ∈ Fd be a word such that, as G ranges over all
finite simple groups of Lie type, we have

(2.6) lim
|G|→∞

‖pw,G − UG‖L∞ = 0.

Then for every field k and every semisimple algebraic group G over k, the
word map wG : Gd → G associated to w is a flat morphism.

Proof. As flatness is not affected by faithfully flat base change [EGA IV2,
Cor. 2.2.11 (iii)], we can proceed as in Proposition 2.1, observing that it
suffices to consider the case that k is prime and G is split. Suppose we can
prove flatness for k = Fp for all p and therefore for k any finite field. Let G
denote the split semisimple group scheme over Spec Z with the same root
datum as G, and let wG denote the word map Gd → G. Every non-empty
closed set of Gd contains a closed point. By [EGA IV3, Théorème 11.1.1],
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the flat locus of wG is open, so if it contains all closed points of Gd, it must
be all of Gd. Thus, we assume that k = Fp.

By “miracle flatness” [EGA IV2, Proposition 6.1.5], it suffices to prove
that every fiber of wG has dimension (d− 1) dimG, the inequality

dimw−1
G (g) ≥ (d− 1) dimG

being automatic [EGA IV2, (5.5.2.1)]. If there exists a point on G over
which the inequality is strict, then by Chevalley’s semicontinuity theorem
[EGA IV3, Théorème 13.1.3], there exists a closed point x with this property.
If Gad denotes the adjoint quotient of G, then the image of x in Gad has the
same property for the word map wGad . Thus, we may assume G is adjoint,

and since it is also split, it suffices to consider the case that it is absolutely
simple. The closed point x corresponds to a Gal(Fq/Fp)-orbit of points of
G(Fq) for some q, and we let x0 denote a point in this orbit. Thus, the fiber
Fx0 of wG

Fq
over x0 has dimension at least (d− 1) dimG+ 1.

Replacing Fq by a finite extension field if necessary, we may assume that

the fiber Fx0 ⊂ Gd
Fq

has the property that all of its irreducible components

are geometrically irreducible. We may further assume the same for the
inverse image F sc

x0
of Fx0 in (Gsc

Fq
)d:

F sc
x0

//

��

(Gsc)d

��

Fx0
//

��

Gd

wG

��

Spec Fq
x0

// G

Let G denote the derived group of G(Fq). The image of F sc
x0
(Fq) in

Fx0(Fq) ⊂ G(Fq)
d lies in

im(Gsc(Fq)
d → G(Fq)

d) = Gd,

and by the Lang-Weil estimate, if q is sufficiently large,

|F sc
x0
(Fq)| >

q1+(d−1) dimG

2
,

so

|im(F sc
x0
(Fq) → Fx0(Fq))| ≥

q1+(d−1) dimG

2|Z(Gsc(Fq))|d
.

The denominator does not depend on q, so when q is sufficiently large, this
is inconsistent with (2.6). �
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3. Random words

This section is devoted to the proof of Theorem 3.
For n ≥ 0 and d ≥ 1 let Xn,d denote the random variable associated with

the standard random walk with n steps in Zd. We also set Xn = Xn,2. Thus
Xn is the probability distribution in Z2 corresponding to a random walk of
length n in which each step in the set {(±1, 0), (0,±1)} has probability 1/4.

Lemma 3.1. Let (a, b), (a′, b′) ∈ N2, with a+ b ≡ a′ + b′ (mod 2). Then

P[Xn = (a, b)] ≤ P[Xn = (a′, b′)]

for all n ∈ N if either of the following conditions holds:

(3.1.1) a− a′, b− b′ ∈ N.
(3.1.2) a+ b = a′ + b′, and |a− b| ≥ |a′ − b′|
Proof. We proceed by induction on n, the claim being trivial for n = 0. For
any a, b ∈ Z, we abbreviate P[Xn = (a, b)] by (a, b)n. Thus,

(a, b)n+1 =
(a− 1, b)n + (a+ 1, b)n + (a, b− 1)n + (a, b+ 1)n

4

=
(|a− 1|, b)n + (a+ 1, b)n + (a, |b− 1|)n + (a, b+ 1)n

4
.

We write (a′, b′) �∗ (a, b) if a, b, a′, b′ ∈ N and (3.1.∗) holds for ∗ ∈ {1, 2}. If
(a′, b′) �1 (a, b), then

(a′ + 1, b′) �1 (a+ 1, b), (a′, b′ + 1) �1 (a, b+ 1).

Moreover,
(|a′ − 1|, b′) �1 (|a− 1|, b)

unless a′ = 0 and a = 1. In this case, the parity condition implies b ≥ b′+1,
so

(|a′ − 1|, b′) = (1, b′) �2 (0, b
′ + 1) �1 (0, b) = (|a− 1|, b).

Likewise,
(a′, |b′ − 1|) �1 (a, |b− 1|)

unless b′ = 0 and b = 1, in which case

(a′, |b′ − 1|) = (a′, 1) �2 (a
′ + 1, 0) �1 (a, 0) = (a, |b− 1|),

so (3.1.1) follows by induction.
Suppose, on the other hand, that (a′, b′) �2 (a, b). It suffices to consider

the case that a > a′ ≥ b′ > b, so a and a′ are positive. It follows that

(|a′ − 1|, b′) = (a′ − 1, b′) �2 (a− 1, b) = (|a− 1|, b),
(a′ + 1, b′) �2 (a+ 1, b),

(a′, b′ + 1) �2 (a, b+ 1).

If b > 0, then

(a′, |b′ − 1|) = (a′, b′ − 1) �2 (a, b− 1) = (a, |b− 1|),
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and we are done by induction. If b = 0, then

(a′, |b′ − 1| = (a′, b′ − 1) �1 (a
′ + 2, b′ − 1) �2 (a, 1) = (a, |b− 1|),

and we are done by induction. �

Proposition 3.2. If p > 2 is prime and n > 0, then

P[Xn ∈ pZ2 \ {0, 0}] < 4

(p+ 1)2
.

Proof. Let Z = Z>0×N. If R is the group of automorphisms of Z2 generated
by rotation by π/2, then Z2\{0, 0} is the disjoint union of ρ(Z) for all ρ ∈ R.
Let Zp = pZ2 ∩ Z. As |R| = 4, it suffices to prove that

(3.1) P[Xn ∈ Zp] <
1

(p+ 1)2
.

For (a, b) ∈ Zp, we define subsets Y(a, b) of Z as follows. For b = 0,

Y(a, 0) = Z ∩
⋃

ρ∈R
ρ{(x, y) ∈ Z2 : |x− a|+ |y| ∈ 2Z ∩ [0, p], x+ |y| ≤ a},

and for b > 0,

Y(a, b) = {(x, y) ∈ Z : |x− a|+ |y − b| ∈ 2Z ∩ [0, p], |x| ≤ a, |y| ≤ b}.
By Lemma 3.1, (x, y) ∈ Y(a, b) implies (x, y)n ≥ (a, b)n for all n.

We claim the sets {Y(a, b) | (a, b) ∈ Zp} are pairwise disjoint. Indeed,
for Y(a1, b1) ∩ Y(a2, b2) to be non-empty for distinct elements (a1, b1) and
(a2, b2) of Zp, it is necessary that a1+b1 ≡ a2+b2 (mod 2), and this together
with the fact that a1, b1, a2, b2 ∈ pZ implies that the the L1 distance between
any point in the R-orbit of (a1, b1) and any point in the R-orbit of (a2, b2)
is at least 2p. On the other hand, all the elements of Y(a, b) are within
distance p− 1 in the L1 norm of some element of the R-orbit of (a, b).

Whether b is 0 or not, |Y(a, b)| = (p+ 1)2/4. Thus,

(a, b)n ≤ 4

(p+ 1)2
P[Xn ∈ Y(a, b)].

By symmetry, P[Xn ∈ Z] ≤ 1/4, so

P[Xn ∈ Zp] =
∑

(a,b)∈Zp

(a, b)n ≤ 4

(p+ 1)2
P[Xn ∈

⋃

(a,b)∈Zp

Y(a, b)]

<
4

(p+ 1)2
P[Xn ∈ Z] =

P[Xn 6= (0, 0)]

(p+ 1)2
,

implying (3.1). �

Proof of Theorem 3. Part (ii) of the theorem follows from part (i) and The-
orem 2, so it suffices to prove the two assertions in part (i).

Let Wn,d = w1 · · ·wn, where the wi are chosen independently from the

standard generating set {x±1
1 , . . . , x±1

d }, with all elements equally likely, and
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n > 0. Let φ : Fd → Zd be the abelianization map. Thus φ(Wn,d) is exactly
Xn,d.

We first assume d = 2, so Xn,d is just Xn, and the probability that φ(Wn,d)
is primitive is the probability Pn that an n step random walk in Z2 gives a
primitive element.

By [Seg, 3.1.1], if φ(w) is primitive, then w is surjective on all groups,
and by Theorem 2, it is almost uniform in bounded rank. Thus, to prove
the theorem for d = 2, it suffices to prove that Pn > 1/3 for all n > 0. Now,
if an,m denotes the probability that Xn 6= (0, 0) and the g.c.d. of m and the
two coordinates of Xn is > 1, then

Pn ≥ 1− an,6 −
∑

p

an,p − (0, 0)n,

where p ranges over primes ≥ 5, so

inf
n≥1

Pn ≥ 1− sup
n

an,6 −
∑

p

sup
n

an,p − (0, 0)n.

To estimate supn an,6, we fix a cutoffN and calculate an,6 for n ≤ N (using
interval arithmetic to get a rigorous upper bound). To bound an,6 for n ≥ N ,
we consider the n step random walk on (Z/6Z)2 in which the steps (±1, 0),
(0,±1) each have probability 1/4. An upper bound for the probability of
any state occurring in n ≥ N steps is given by the maximum over all states
of the probability of occurrence in N steps. Since the image of (2Z)2∪ (3Z)2

in (Z/6Z)2 has 12 elements of which 10 have even coordinate sum and 2
have odd coordinate sum, the probability of landing in (2Z)2 ∪ (3Z)2 after
n ≥ N steps is at most 10 times the maximum probability at time N of any
state in the (mod 6) Markov chain.

Likewise, for any given p ≥ 5, to estimate supn an,p, we can fix a cutoff
N and proceed as before. In practice, to obtain a good bound, N should be
chosen of order p2. We use this method for small p, while for large p, we use
the estimate supn an,p < 4/(p + 1)2 given by Proposition 3.2. For n ≥ N ,
(0, 0)n is bounded above by the maximum of (a, b)N over pairs (a, b) ∈ N.
Implementing these calculations by computer using N = 1000,

(0, 0)n ≤ .0006, an,6 < .5556, an,5 < .0401, an,7 < .0205, · · · an,59 < .0007

for all n ≥ 1000, so

inf
n≥1000

Pn > 1− .5556− .0401− .0205− .0083− . · · · − .0007

−
∑

p>60

4

(p− 1)2
− .0006

> .3535−
∑

60<p<10003

4

(p− 1)2
−
∫ ∞

10000

2 dx

x2

= .3535− .0132− .0005− .0006 >
1

3
.
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This proves the the theorem for n ≥ 1000; and for 1 ≤ n < 1000, ma-
chine computation shows that the probability that the coordinates of Xn are
relatively prime is greater than .4.

We now consider the general case d ≥ 2. Recall that Xn,d denotes the
random variable associated with the standard random walk with n steps in
Zd. It suffices to prove that the probability that Xn,d is primitive always

exceeds 1/3 and tends to 1 as d → ∞. For 1 ≤ i < j ≤ d, let πi,j : Zd → Z2

denote the projection map onto the ith and jth coordinates.
For Xn,d to be primitive, it suffices that πi,j(Xn,d) is primitive for some i, j.

Let ni,j denote the number of terms in the sequence w1, . . . , wn which belong

to {x±1
i , x±1

j }; conditioning on ni,j , πi,j(φ(Wn,d)) has the same probability

distribution as Xni,j . Since there is always at least one pair (i, j) for which
ni,j > 0 it follows that Xn,d is primitive with probability greater than 1/3.

If n is fixed and d → ∞, the probability approaches 1 that φ(w1), . . . , φ(wn)
are linearly independent, which implies that Xn,d is primitive. On the other
hand, for any k > 0, as n and d both grow without bound

P[Span(φ(w1), . . . , φ(wn)) ≥ k]

goes to 1. Assuming the span has dimension ≥ k and d ≥ 2k, there ex-
ist k disjoint pairs of coordinates such that each projection of the random
walk associated to one of the k pairs (i, j) satisfies ni,j > 0, and therefore,
conditioning on the choice of the k pairs, the probability that each of the k
projections of Xn,d is imprimitive is less than (2/3)k. Thus, Xn,d is primitive

with probability greater than 1 − (2/3)k. Taking k → ∞, this implies the
second assertion in part (i) of the theorem and completes the proof. �

Remark 3.3. For any odd number m, the Markov chain on (Z/mZ)2 given
by our (mod m) random walk is irreducible and aperiodic, since the set
of possible steps does not lie in a single coset of any proper subgroup of
(Z/mZ)2. Therefore, it converges to the unique invariant distribution, which
is the uniform distribution. It follows that

lim
n→∞

an,m = 1−
∏

p|m
(1− p−2).

For m even, the situation is slightly more complicated, since for n odd,
an,2 = 0 and for n > 0 even, an,2 = 1/2. Thus,

lim
n→∞

a2n,m = 1− (2/3)
∏

p|m
(1− p−2)

while

lim
n→∞

a2n+1,m = 1− (4/3)
∏

p|m
(1− p−2).

From this together with Proposition 3.2 it is easy to deduce that

lim sup
n→∞

Pn =
4

π2
,
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and it follows, without any necessity for computer calculation, that there
exists a positive lower bound for Pn for all n > 0. We do not know whether
Pn > 4/π2 for all n > 0.

4. Character methods

In this section we provide an alternative proof of Theorem 1 for Lie type
groups of bounded rank using character theory. We also prove a stronger L2

result in the case G = PSL2(q) by studying the non-commutative Fourier
expansion of the probability distribution pw,G.

Lemma 4.1. Let w ∈ Fd be a non-trivial word. Let G(q) be a finite simple
group of Lie type of rank r over a field with q elements. Let S be the set of
regular semisimple elements of G(q). Then we have

pw,G(q)(S) ≥ 1− cq−1,

where c > 0 depends on w and r but not on q.

Proof. At the level of the algebraic group G, the regular semisimple elements
form an open dense subset, and its complement is a proper subvariety. By
Borel’s theorem [Bor] the inverse image of this subvariety under the word
map induced by w on Gd is a proper subvariety of Gd. By the Lang-Weil
estimate,

pw,G(q)(G(q) \ S) ≤ cq−1,

yielding the desired conclusion. �

Next, let w1, w2 be non-trivial disjoint words, and let G = G(q) be as
above. Let C1, C2 be conjugacy classes of regular semisimple elements of
G, and let g be a regular semisimple element of G. For i = 1, 2 choose
xi ∈ Ci uniformly and independently. It is well known that the probability
p(C1, C2, g) that x1x2 = g satisfies

(4.1) p(C1, C2, g) = |G|−1
∑

χ∈Irr(G)

χ(C1)χ(C2)χ(g
−1)

χ(1)
.

It is known that there exists a constant b depending only on r such that
|χ(s)| ≤ b for all regular semisimple elements s ∈ G (see for instance [Sh1,
4.4]). This yields

|p(C1, C2, g)− |G|−1| ≤ |G|−1
∑

1 6=χ∈Irr(G)

b3/χ(1) = b3|G|−1(ζG(1)− 1),

where ζG(s) =
∑

χ∈Irr(G) χ(1)
−s is the Witten zeta function of G. Suppose

G 6= PSL2(q). Then we have ζG(1) → 1 as |G| → ∞ by [LiSh3, 1.1]. This
yields

p(C1, C2, g) = |G|−1(1 + o(1)),
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for all C1, C2, g as above. Summing up over C1, C2 and applying Lemma
4.1 we see that for every ε > 0 and large enough G, for at least (1 − ε)|G|
elements g ∈ G we have pw1w2,G({g}) ≥ (1− ε)|G|−1. This easily yields

‖pw1w2,G − UG‖L1 → 0

as |G| → ∞. This proves Theorem 1 for bounded rank Lie-type groups
G 6= PSL2(q).

In the case G = PSL2(q) we obtain a somewhat stronger result, see Corol-
lary 4.3 below. We need some preparations.

Let G be a finite group, w ∈ Fd a word, and pw,G its induced proba-
bility distribution on G. We express the class function Pw,G as a linear
combination of irreducible characters

Pw,G = |G|−1
∑

χ∈Irr(G)

aw,χχ.

It is well known (see for instance [Sh1, §8]) that if w1, w2 are disjoint words,
then we have

aw1w2,χ = aw1,χaw2,χ/χ(1)

for all χ ∈ Irr(G). Using an inverse Fourier transform one obtains

aw,χ = |G|−d
∑

g1,...,gd∈G
χ(w(g1, . . . , gd)

−1) =
∑

g∈G
Pw,G(g)χ(g

−1).

The following result, which may be of some independent interest, will be
useful in this section.

Proposition 4.2. For every word 1 6= w ∈ Fd there exists a positive number
c(w) such that for every group G = PSL2(q) and every character χ ∈ Irr(G)
we have |aw,χ| ≤ c(w).

Proof. Inspecting the well known character table of G, we see that, if 1 6=
g ∈ G and χ ∈ Irr(G), then |χ(g)| ≤ 2 except if g is unipotent. In this
case we have |χ(g)| > 2 for at most two irreducible characters χ, and in any

case, |χ(g)| ≤ q1/2. Let S ⊂ G be the set of (regular) semisimple elements
and let U be the set of (regular) unipotent elements. Then, at the level of
algebraic groups, U is contained in a proper subvariety, and it follows from
Borel’s theorem [Bor] and the Lang-Weil theorem that pw,G(U) ≤ eq−1 for
some constant e = e(w).

We have

|aw,χ| ≤
∑

g∈G
Pw,G(g)|χ(g)| ≤ 2pw,G(S) + pw,G(U)q1/2 + Pw,G(1)χ(1).

Since Pw,G(1) ≤ f(w)q−1 and χ(1) ≤ q + 1 this yields

|aw,χ| ≤ 2 + e(w)q−1q1/2 + f(w)q−1(q + 1) ≤ 2 + e(w)q−1/2 + 2f(w) ≤ c(w)

for a suitable c(w). �

The above result has some applications, as follows.
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Corollary 4.3. Let w = w1w2 where w1, w2 ∈ Fd are non-trivial disjoint
words. If G = PSL2(q) where q ranges over prime powers, then we have

lim
q→∞

‖pw,G − UG‖L2 = 0.

Proof. This follows easily using non-commutative Fourier methods. For χ ∈
Irr(G) we have

|aw,χ| =
|aw1,χ||aw2,χ|

χ(1)
≤ c(w1)c(w2)

χ(1)

by Proposition 4.2. Applying [GS, Lemma 2.2] we obtain

(4.2) (‖pw,G − UG‖L2)2 ≤
∑

1 6=χ∈Irr(G)

|aw,χ|2 ≤ c(w1)
2c(w2)

2(ζG(2)− 1),

where ζG is as before. By [LiSh2, Theorem 1.1] the RHS of (4.2) tends to 0
as |G| → ∞ for all finite simple groups G. This completes the proof. �

Note that the above result completes the proof of Theorem 1 for Lie-type
groups of bounded rank. We also obtain an L∞ result as follows.

Corollary 4.4. Let w1, w2, w3, w4 be pairwise disjoint non-trivial words.
Let w = w1w2w3w4 and G = PSL2(q). Then

lim
q→∞

‖pw,G − UG‖L∞ = 0.

Proof. Note that

aw,χ =
aw1,χaw2,χaw3,χaw4,χ

χ(1)3
.

Combining this with Proposition 4.2 we obtain

|aw,G| ≤
C

χ(1)3
,

where C = c(w1)c(w2)c(w3)c(w4).
Proposition 8.1 of [Sh1] shows that

‖pw,G − UG‖L∞ ≤
∑

1 6=χ∈Irr(G)

|aw,χ|χ(1).

This yields

‖pw,G − UG‖L∞ ≤
∑

1 6=χ∈Irr(G)

Cχ(1)−2 = C(ζG(2)− 1).

As noted above, the right hand side tends to 0 as |G| → ∞, completing the
proof. �

A similar statement for three words is false. Indeed, it is shown in [Sh1,
p. 1406] that for w = x21x

2
2x

2
3 and G = PSL2(q), pw,G is not almost uniform

in L∞.
Finally, it is easy to see that the bound on the Fourier coefficients in

Proposition 4.2 cannot hold for all finite simple groups; indeed words of the
kind w = xn1 give counter-examples. However, we conjecture that, for every
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non-trivial word w there exist a real number ε(w) > 0 and a positive integer
N(w) such that, for all finite simple groups G of order at least N(w) and
for all characters χ ∈ Irr(G) we have

|aw,χ| ≤ χ(1)1−ε(w).

5. The L1 Waring problem

In this section we prove Theorem 6 and use it to complete the proof of
Theorem 1.

Recall that Theorem 6 is known for alternating groups, see [LS1, Theorem
7.4]. For groups of Lie type G = G(q) of bounded rank, it follows easily
from Lemma 4.1 above. (Indeed, when |G(q)| → ∞, q tends to infinity,
and Lemma 4.1 then shows that the probability that w(g1, . . . , gd) is regular
semisimple tends to 1. The character values of regular semisimple elements
are bounded in term of the rank r of G, whereas χ(1) is at least of the
magnitude of qr, whence Theorem 6 follows.) Hence it remains to prove
Theorem 6 for simple classical groups of arbitrarily high rank (which, in
particular, can be assumed to be of type Ar,

2Ar, Br, Cr, Dr, or 2Dr.)
Thus we may (and do) assume that G is a simple classical group of Lie type
whose rank can be taken as large as we wish.

Let H be a group satisfying for some n and q one of the following condi-
tions: SLn(q)CH ≤ GLn(q), SUn(q)CH ≤ Un(q), Spn(q)CH ≤ CSpn(q)
(with 2|n), or Ω±

n (q) CH ≤ O±
n (q). We will consider the natural action of

H on V = Fn
q , F

n
q2 , F

n
q , F

n
q , which in the last three cases is endowed with a

non-degenerate H-invariant Hermitian, symplectic, or quadratic form 〈 , 〉.
In the unitary and orthogonal cases, the form is preserved; in the symplectic
case, it only needs to be preserved up to a multiplier. We set f = 2 if H
is unitary; otherwise f = 1. In what follows, we will write H = Cl(V ) to
specify that H is one of the described groups.

By a classical group G (in dimension n, if we wish to specify), we mean
henceforth a group which is the quotient of some group H = Cl(V ) as above
by a central subgroup Z of H. Note that |Z| ≤ max(q+1, 2) < 2q and that
|H/[H,H]| < 2q. For such a group G, the rank of G is the semisimple rank
of the algebraic group underlying H. The finite simple groups G with which
we are concerned are of this type, but for the purposes of §7 it will be useful
to do things in this slightly greater generality. Note that any classical group
in our sense is a classical group in the sense of [GLT3, Definition 1.2]; hence
the results of [GLT3] apply.

Theorem 6 is obtained by combining recent estimates for values of irre-
ducible characters of classical groups with the following result, which may
be of independent interest.

Theorem 5.1. For every non-trivial word w ∈ Fd there exists a constant
c = c(w) such that, if G is a classical group of rank r over the field with q
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elements, and g1, . . . , gd ∈ G are chosen uniformly and independently, then

P[|CG(w(g1, . . . , gd))| ≤ qcr] → 1 as |G| → ∞.

We now embark on the proof of Theorem 5.1. This result is trivial if the
rank r is bounded, so we may assume G is classical of arbitrarily high rank.
We follow [LS3] closely.

Lemma 5.2. If h ∈ H maps to g ∈ G, with G = H/Z as above, then
|CG(g)| ≤ |CH(h)|.
Proof. Let

J = {j ∈ H | j−1hj ∈ hZ}.
Then J is a group containing Z, and x 7→ j−1hjh−1 defines a homomorphism
J → Z whose kernel is CH(h). It follows that |J | ≤ |CH(h)| · |Z|. The
restriction of the quotient map H → G to J has kernel Z and image CG(g).
Thus,

|CG(g)| = |Z|−1|J | ≤ |CH(h)|.
�

Lemma 5.3. For any A ∈ R>0,

|{(g1, . . . , gd) ∈ Gd : |CG(w(g1, . . . , gd))| > A}|
|G|d

≤ |{(h1, . . . , hd) ∈ Hd : |CH(w(h1, . . . , hd))| > A}|
|H|d .

Proof. Indeed, any preimage in Hd of an element (g1, . . . , gd) in the left-
hand side numerator belongs to the set in the right-hand side numerator.
The lemma follows. �

Equivalently,

P[|CG(w(g1, . . . , gd))| > A] ≤ P[|CH(w(h1, . . . , hd))| > A].

Therefore, to prove that there exists c > 0 such that

lim sup
|G|→∞

P[|CG(w(g1, . . . , gd))| > qcr] = 0

it suffices to prove that there exists c > 0 such that

lim sup
|H|→∞

P[|CH(w(h1, . . . , hd))| > qcr] = 0,

so it is certainly enough to prove there exists c > 0 such that

lim sup
|H|→∞

P[|CGL(V )(w(h1, . . . , hd))| > qcr] = 0.

If F is a finite field and h ∈ GLn(F), we define for each monic irreducible
polynomial P (x) ∈ F[x]

aP,1 ≥ aP,2 ≥ . . .
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to be the descending sequence giving the sizes of Jordan blocks for any root
λ of P (x). (Clearly, this sequence does not depend on the choice of root λ.)
Clearly,

(5.1)
∑

P,m

aP,m degP = n.

It is well known [Hu, §1.3] that the centralizer of h in Mn(F) is a vector
space over F of dimension

∑

P

∑

m

(2m− 1)aP,m degP.

Thus,

|CGLn(F)(h)| < |F|
∑

P

∑
m(2m−1)aP,m degP .

For later use, we note that by (5.1), if

|CGLn(F)(h)| > |F|2δn2
,

then

(5.2) there exist some P and some m0 > δn such that aP,m0 6= 0,

i.e., some eigenspace of h has dimension greater than δn. For immediate
use, we note that

|CGLn(F)(h)| > |F|6cn

implies
∑

P

∑

m>c

(m− c)aP,m degP = −cn+
∑

P

∑

m>c

maP,m degP

> −cn+
∑

P

∑

m≥1

maP,m degP −
∑

P

c∑

m=1

c∑

k=m

aP,k degP

≥ −cn+
∑

P

∑

m≥1

maP,m degP − c
∑

P

c∑

k=m

aP,k degP

> −2cn+
1

2

∑

P

∑

m≥1

(2m− 1)aP,m degP > cn

As aP,m is non-increasing in m,

∑

m>c

(m− c)aP,m degP ≤
(

max
{(m,P )|aP,m>0}

(m− c)

)
∑

P

aP,c+1 degP.

Thus, at least one of the following conditions holds:

(5.3)
∑

P

aP,c+1 degP >
√
cn,

or

(5.4) for some polynomial P and some m0 >
√
cn, we have aP,m0 6= 0.
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Lemma 5.4. Condition (5.2) implies that there exists a non-constant poly-
nomial Q(x) ∈ F[x] such that

dimF kerQ(g) > δn degQ.

For any positive integer t > 0, if c is sufficiently large in terms of t and n
is sufficiently large in terms of c, then the conditions (5.3) and (5.4) each
imply that there exists a non-zero polynomial Q(x) ∈ F[x] such that

dimF kerQ(g) > 2t degQ+
√
n.

Proof. If (5.2) holds, setting Q = P , we have that

dimkerQ(g) ≥ m0 degP > δn degP.

In case of (5.3), aP,1 ≥ aP,2 ≥ . . . ≥ aP,c+1 for all P implies
∑

P

aP,c+1 degP ≤ n

c+ 1
.

Assuming c ≥ 2t and n > (c + 1)2, we set Q =
∏

P aP,c+1 and obtain
degQ >

√
n. Regarding Fn as F[x]-module, where x acts as g, the kernel of

Q(g) is isomorphic to
⊕

P

[

(F[x]/(P (x)aP,c+1))c+1 ⊕
⊕

m>c+1

F[x]/(P (x)aP,m)
]

,

whose dimension is ≥ (c+ 1) degQ > 2t degQ+
√
n.

In case of (5.4), if c > (2t + 1)2 ≥ 1 then we have degP ≤ n/m0 <
√
n.

Setting Q = P , we obtain

dimkerQ(g) ≥ m0 degP >
√
cn degP > (2t+1)

√
n degP > 2t degP +

√
n.

�

Proposition 5.5. Let H = Cl(V ) be a finite classical group as described,
where F = Fqf and n = dimF V . Let w ∈ Fd be a word of length l > 0. If k

and D are positive integers and (h1, . . . , hd) is chosen uniformly from Hd,
the probability that there exists a polynomial Q(x) ∈ F[x] of degree D such
that

dimkerQ(w(h1, . . . , hd)) ≥ 2lDk

is at most q−fk((k−1)lD−2.5).

Proof. We choose an ordered k-tuple (v1, . . . , vk) uniformly from V k and
a d-tuple (h1, . . . , hd) uniformly from Hd. It suffices to prove that the
probability that Q(w(h1, . . . , hd))(vi) = 0 for all i ∈ [1, k] is less than

qf(2.5k+k(k+1)lD−kn). Indeed, the probability that a uniformly chosen ran-
dom k-tuple (v1, . . . , vk) of vectors belongs to any particular subspace of

dimension 2lDk is q2flDk2−fkn, so this implies that the probability that
dimQ(w(h1, . . . , hd)) ≥ 2lDk is at most q−fk((k−1)lD−2.5), as claimed.
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We write wD as a reduced word ymym−1 . . . y1, where m ≤ lD and each
yi belongs to {x±1

1 , . . . , x±1
d }. Let zj = yjyj−1 · · · y1 and for j ≥ 0, let

ei,j = zj(h1, . . . , hd)(vi).

If {v1, . . . , vk} ⊂ kerQ(w(h1, . . . , hd)), then for each i ∈ [1, k], the set
{ei,0, ei,1, . . . , ei,m} is linearly dependent.

We endow the set of integer pairs in [1, k]× [0,m] with the lexicographic
ordering. Let the event Xi,j be the condition

ei,j 6∈ Span{ei′,j′ | (i′, j′) < (i, j)}.
Let

Yi,j = Xi,0Xi,1 · · ·Xi,j−1X
c
i,j .

Let Zi be the event that ei,0, ei,1, . . . , ei,m is a linearly independent sequence.
If Zc

i occurs, then Yi,j occurs for some j ∈ [0,m]. Thus,

P[Zc
i |Zc

1Z
c
2 · · ·Zc

i−1] ≤
m∑

j=0

P[Yi,j |Zc
1Z

c
2 · · ·Zc

i−1].

We find an upper bound for each term on the right hand side by giving
an upper bound on the conditional probability of Yi,j with respect to any
possible set of data ei′,j for i′ ∈ [1, i) and j′ ∈ [0,m].

Given this data, the event Yi,0, or, equivalently, X
c
i,0, is the condition that

vi belongs to the span of {ei′,j′ | i′ < i, 0 ≤ j′ ≤ m}. As
dimSpan{ei′,0, . . . , ei′,m} ≤ m,

the probability of Xc
i,0 is at most qf((i−1)m−n). For j ∈ [1,m], we further

condition on ei,0, ei,1, . . . , ei,j−1 consistent with Xi,j′ for j
′ < i. Either yi =

xt or yi = x−1
t for some t, and ei,j is determined by the specified value

ei,j−1 and the random variable ht, so the conditional probability in question
depends only ht.

If h (taken to be ht or h−1
t depending on whether yi is xt or x−1

t ), is
a uniformly distributed random variable on H, and for some linearly in-
dependent sequence of r ≤ (i − 1)m + j vectors, w1, . . . , wr and a second
linearly independent sequence w′

1, . . . , w
′
r, we condition on h(wj) = w′

j for

j = 1, . . . , r − 1, then the probability that h(wr) = w′
r is the reciprocal of

the number of possibilities for h(wr) given h(wj) = w′
j for j = 1, . . . , r − 1.

If H is of linear type, it contains SL(V ) and therefore acts transitively
on r-tuples of linearly independent vectors of V for r < n. It follows that
any w′ not in the span of w′

1, . . . , w
′
r−1 is possible. Otherwise H contains

SU(V ), Sp(V ), or Ω(V ), respectively. In each of these cases, Witt’s extension

theorem [KlL, Proposition 2.1.6] applied to H̃ = U(V ), Sp(V ), or O(V ),
respectively, implies that the number of possibilities for h(wr) is at least
1/α of the number of solutions in w′ of the system of equations

(5.5) 〈w′
j , w

′〉 = 〈wj , wr〉, j = 1, . . . , r − 1; 〈w′, w′〉 = 〈wr, wr〉,
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where α = q + 1 in the U-case, 1 in the Sp-case, and α = 2 or 4 in the
O-case, depending on whether 2|q or not.

The equations (5.5) are Fqf -linear except for the last, in which the left
hand side is a quadratic form over Fq. Since a quadratic form in k variables

over a field of cardinality q takes on each possible value at least qk−2 times,
we conclude that the probability of any single possible value w′ for h(wr) is

at most αqf(1+r−n) ≤ αqf(1+(i−1)m+j−n). Since

dimSpan{ei′,j′ | (i′, j′) < (i, j)} ≤ (i− 1)m+ j,

we conclude that

P[Yi,j |Zc
1Z

c
2 · · ·Zc

i−1] ≤ αqf((i−1)m+j)qf(1+(i−1)m+j−n) = αqf(1+2(i−1)m+2j−n).

It follows that

P[Zc
i | Zc

1Z
c
2 · · ·Zc

i−1] ≤
m∑

j=0

αqf(1+2(i−1)m+2j−n)

<
α

1− q−2f
qf(1+2im−n) < qf(2.5+2im−n).

This implies

P[Zc
1 · · ·Zc

k] ≤ qf(3k+k(k+1)m−kn) ≤ qf(2.5k+k(k+1)lD−kn),

as claimed. �

Proof of Theorem 5.1. This follows by combining Lemma 5.4 with Propo-
sition 5.5. Indeed, by the discussion preceding Lemma 5.4, we need to
bound from above the probability P′ that either (5.3) or (5.4) holds for
h = w(h1, . . . , hd). We may assume that the rank r of H is as large as we
wish; in particular, we may assume that

r0 = b 4
√
r/
√
2lc ≥ 4,

where l is the length of w. First we apply Lemma 5.4 with t = 2l to see that
either of (5.3), (5.4) for h implies the existence of non-constant Q ∈ F[x]
such that

dimF kerQ(h) > 2t degQ+
√
n > max(4l degQ, 2lr20).

By Proposition 5.5 applied to k = 2, the probability P′
1 that D = degQ is

at least r0 is

P′
1 < q5f

∞∑

D=r0

q−2flD <
q5f

q2r0f (1− q−2f )
< q−r0f/2.

On the other hand, by Proposition 5.5 applied to k = r0 ≥ 4, the probability
P′

2 that D = degQ ≥ 1 is < r0 is

P′
2 < q2.5r0f

∞∑

D=1

q−3r0flD <
q2.5r0f

q3r0f − 1
< 2q−r0f/2.
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Note that when |G| → ∞, we have that qr0 → ∞, and so

P′ = P′
1 +P′

2 < 3q−r0f/2

tends to 0, as desired. �

Proof of Theorem 6. By [GLT2, Theorem 1.3] and [GLT3, Theorem 1.3], for
all c and ε > 0, increasing r if necessary, |CG(g)| < qcr implies

|χ(g)| ≤ χ(1)ε

for every irreducible character χ of G. Now apply Theorem 5.1. �

Proof of Theorem 1. It remains to show that, given any two disjoint words
w1, w2 6= 1, there exists a positive constant R such that if S is any set of
finite simple groups of rank r ≥ R, and w = w1w2, then

lim
G∈S,|G|→∞

‖pw,G − UG‖L1 = 0.

Fix any 0 < ε < 1/3. We say that an element g ∈ G is ε-good if χ(g)| ≤ χ(1)ε

for all χ ∈ Irr(G); a conjugacy class C is ε-good if it consists of ε-good ele-
ments. By Theorem 6, if R is chosen sufficiently large, G is of rank r > R,
and g1, . . . , gd ∈ G are chosen uniformly and independently, then the prob-
ability that w1(g1, . . . , gd) and w2(g1, . . . , gd) are both ε-good approaches 1
as |G| → ∞. For proving L1 convergence to the uniform distribution, we
may therefore assume that both w1(g1, . . . , gd) and w2(g1, . . . , gd) belong to
ε-good conjugacy classes.

For i ∈ {1, 2} and any conjugacy class Ci, the conditional distribution of
wi(g1, . . . , gd) given that it belongs to Ci is the uniform distribution on Ci.
Thus, it suffices to prove that the convolution of the uniform distribution
on an ε-good C1 with the uniform distribution on an ε-good C2 approaches
the uniform distribution on G in the L1 norm uniformly in C1 and C2 as
the order of G (of sufficiently high rank) grows without bound. This would
follow if we knew that there exist at least (1 − o(1))|G| elements g ∈ G for
which the probability that x1x2 = g as xi ∈ Ci are chosen uniformly and
independently is (1 + o(1))|G|−1, where o(1) = o|G|(1).

By Proposition 4.2 of [LS4], if ε > 0 and the rank of G is sufficiently large
in terms of ε, then the proportion of ε-good elements in G tends to 1 as
|G| → ∞. Hence we may assume that g is ε-good. By (4.1), the probability
p(C1, C2, g) that x1x2 = g satisfies

p(C1, C2, g) = |G|−1
∑

χ∈Irr(G)

χ(C1)χ(C2)χ(g
−1)

χ(1)
,

so

|p(C1, C2, g)− |G|−1| ≤ |G|−1
∑

1G 6=χ∈Irr(G)

χ(1)3ε

χ(1)
= |G|−1(ζG(1− 3ε)− 1),

where ζG(s) =
∑

χ∈Irr(G) χ(1)
−s is the Witten zeta function of G. Since

1 − 3ε > 0, we may choose R sufficiently large so that ζG(1 − 3ε) → 1 as
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|G| → ∞; indeed, this follows from Theorem 1.1 and 1.2 of [LiSh2]. This
yields

p(C1, C2, g) = |G|−1(1 + o(1)),

for all C1, C2, g as above. This completes the proof of Theorem 1. �

6. The L∞ Waring problem

In this section we prove Theorem 4.

Proposition 6.1. Fix any 0 < ε < 1. There exists some A(ε) > 0 such
that, for any n ≥ A(ε), any element g in G ∈ {An, Sn}, and any χ ∈ Irr(G),
the following two statements hold.

(i) If fix(g) ≤ n1−ε, then |χ(g)| ≤ χ(1)1−ε/3.

(ii) If fix(g) = k, then |χ(g)| ≤ nk/4χ(1)1/2+ε.

Proof. (a) First we consider the case G = Sn. Then [LS1, Theorem 1.2]
implies (i) immediately. For (ii), it implies that there exists C(ε) > 0 such
that, if n− k ≥ C(ε) and x ∈ Sn−k is fixed-point-free, then

(6.1) |χ(x)| ≤ χ(1)1/2+ε

for all χ ∈ Irr(Sn−k). On the other hand,

|χ(g)|
nk/4χ(1)1/2

≤ χ(1)1/2

nk/4
≤ |Sn|1/4

nk/4
<

(n/2)n/4

nk/4
=

(
nn−k

2n

)1/4

.

In particular, the desired bound in (ii) holds if n−k < C(ε) is bounded, but
n is large enough.

Hence we may assume that n − k ≥ C(ε) is sufficiently large, and also
ε < 1/2. We use the branching rule from Sm to Sm−1 for n ≥ m ≥ n− k+1
consecutively and write

χ|Sn−k
= χ1 + · · ·+ χN

of irreducible characters of Sn−k, with repetition allowed. The number of
terms N is at most the kth power of the maximum number of removable
boxes from any Young diagram of size ≤ n, and so N < (2n)k/2.

Let h ∈ Sn−k map to an element of Sn conjugate to g. Then χ(g) =
∑

i χi(h). Since fix(g) = k, h has no fixed point; also, n− k ≥ C(ε). Hence

|χi(h)| ≤ χi(1)
1/2+ε by (6.1). As ε < 1/2, we obtain

|χ(g)| ≤
∑

i

|χi(h)| ≤
∑

i

χi(1)
1/2+ε ≤ N

(∑

i χi(1)

N

)1/2+ε

= N

(
χ(1)

N

)1/2+ε

< (2n)k/4−kε/2χ(1)1/2+ε ≤ nk/4χ(1)1/2+ε

when n > 21/2ε.
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(b) Now we consider the case G = An. We are certainly done by (a) if χ
extends to G. Hence we may assume that there is a self-associated partition

λ = (λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1)

of n such that the character χλ of Sn labeled by λ restricts to G as χ++χ−,
with χ± ∈ Irr(G) and χ = χ+. Let h11 > . . . > htt ≥ 1 denote the hook
lengths of the Young diagram of λ at the diagonal nodes. By [JK, Theorem
2.5.13], if the cycle type of g is not (h11, h22, . . . , htt), then

|χ(g)| = |χλ(g)|
2

≤ χλ(1)1−ε/3

2
≤ χ(1)1−ε/3

if fix(g) ≤ n1−ε; and the same argument applies to (ii). On the other hand,
if the cycle type of g is (h11, h22, . . . , htt), then

|χ(g)| ≤



1 +

√
√
√
√

t∏

i=1

hii



 /2.

Since λ is self-associated, we have that λ1 ≤ (n+ 1)/2, and so

(6.2) χ(1) = χλ(1)/2 ≥ 2(n−5)/4

by [GLT1, Theorem 5.1]. Also, all hii are odd integers. Note that if m ≥ 3
is any odd integer, then

m < 2m/4

if and only if m ≥ 17; furthermore,

7∏

j=1

2j + 1

2(2j+1)/4
< 37.

It follows that
t∏

i=1

hii < 37 · 2
∑t

i=1 hii/4 = 37 · 2n/4

and so

|χ(g)| < (1 + 6.1 · 2n/8)/2.
Together with (6.2), this implies that

|χ(g)| < min{χ(1)2/3, χ(1)1/2+ε} ≤ min{χ(1)1−ε/3, nk/4χ(1)1/2+ε}
when n is large enough. �

For use in §7, we will also need an imprimitive version of Proposition 6.1:

Lemma 6.2. For any 0 < ε < 1, let A(ε) > 0 be the constant in Proposition
6.1. Let m|n and consider the subgroup H = Sn/m o Sm of G = Sn. If
n/m ≥ A(ε), then for any h ∈ H and χ ∈ Irr(H) we have

(i) If fix(h) ≤ (n/m)1−ε, then |χ(h)| ≤ m!χ(1)1−ε/3.

(ii) If fix(h) = k, then |χ(h)| ≤ m!(n/m)k/4χ(1)1/2+ε.
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Proof. Let K = (Sn/m)m /H. The restriction of any irreducible representa-
tion V of H to K is a direct sum of representations of the form V1� · · ·�Vm,
where each Vi is an irreducible representation of Sn/m, and the m-tuples
(V1, . . . , Vm) appearing in tensor decompositions of the different irreducible
factors of V |K are the same up to permutation.

There exists a unique partition π = (a1, a2, . . . , ar) ` m, and an irre-
ducible representation Wi of Sn/m for each i (so that W1, . . . ,Wr are pair-
wise non-isomorphic) such that, after permuting tensor factors, V1� · · ·�Vm

can be rewritten

Wπ = W�a1
1 � · · ·�W�ar

r .

This representation has inertia group Hπ = Sn/m oSπ in H, where Sa1 ×· · ·×
Sar ⊂ Sm, Wπ extends to a representation W̃π of Hπ, and

V = IndHHπ
(W̃π ⊗ U)

for a suitable irreducible representation U of Sπ (inflated to Hπ).
To calculate the trace χ(h) of h ∈ H acting on V , we first consider the

image h of h in Sm. In general, h permutes the Sπ-cosets and therefore
the summands of V |Hπ . Only the summands which are stabilized by h
contribute to χ(h), and the number of those summands is certainly bounded
by [Sm : Sπ]. Also, the absolute value of the trace of h acting on U is at
most |Sπ|. Hence, it suffices to prove that assuming h ∈ Sπ, we have

(i) If fix(h) ≤ (n/m)1−ε, then tr(h|W̃π) ≤ dim W̃
1−ε/3
π .

(ii) If fix(h) = k, then tr(h|W̃π) ≤ (n/m)k/4 dim W̃
1/2+ε
π .

Writing h = (h1, . . . , hr) where hi ∈ Sn/m oSai acts on the extension W̃�ai
i

of W�ai
i to Sn/m o Sai , it suffices to prove

(i) If fix(hi) ≤ (n/m)1−ε, then tr(hi|W̃�ai
i ) ≤ dim W̃�ai

i

1−ε/3

.

(ii) If fix(hi) = k, then tr(hi|W̃�ai
i ) ≤ (n/m)k/4 dim W̃�ai

i

1/2+ε

.

Thus, we can reduce to the case r = 1. Decomposing h ∈ Sa1 into a
product of disjoint cycles, we further reduce to the case that h is an a1-cycle
σ, say (1, 2, . . . , a1). Writing h = ((t1, ..., ta1), σ) with ti ∈ Sn/m, we then
obtain

|tr(h | W�a1
1 )| = |tr(t1 · · · ta1)|;

in particular, it is at most dimW1 ≤ (dimW�a1
1 )1/2 if a1 ≥ 2, implying both

(i) and (ii). If a1 = 1, then fix(t1 · · · ta1) = fix(h), and we are again done by
Proposition 6.1(ii) applied to Sn/m. �

Let w ∈ Fd be a non-trivial word. We write it in reduced form: w =
yl · · · y2y1, where each yi can be regarded as a function Gd → G which is
either projection on the kth factor for some k ∈ [1, d] or projection composed
with the inverse map.
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Lemma 6.3. For integers 1 ≤ a < b ≤ l, m ≥ 1, and n > 2m(b − a), and
G ∈ {An, Sn}, we define

Xm,n(w, a, b) ⊂ Gd × [1, n]m(b−a)

to be the set of tuples

(g1, . . . , gd, r1,a, . . . , r1,b−1, . . . , rm,a, . . . , rm,b−1)

satisfying:

(6.3.1) all the ri,j, 1 ≤ i ≤ m, a ≤ j ≤ b− 1, are pairwise distinct;
(6.3.2) for all 1 ≤ i ≤ m and a ≤ j ≤ b−2, yj(g1, . . . , gd)(ri,j) = ri,j+1; and
(6.3.3) for all 1 ≤ i ≤ m, yb−1(g1, . . . , gd)(ri,b−1) = ri,a.

Then the projection p1 of Xm,n(w, a, b) onto Gd has cardinality less than or
equal to

e2m
2(b−a)2/n

m!
|G|d.

Proof. If ya = y−1
b−1, then (6.3.2) for j = a together with (6.3.3) implies

ri,a+1 = ri,b−1 for all i, contrary to (6.3.1), so it follows that Xm,n(w, a, b) is

empty. We therefore assume ya 6= y−1
b−1.

For each choice of ri,j , 1 ≤ i ≤ m, a ≤ j ≤ b − 1 satisfying (6.3.1), the
conditions (6.3.2) and (6.3.3) impose a total of m(b − a) conditions on the
(g1, . . . , gd), where each condition is of the form ghu = v or g−1

h u = v, for
some h ∈ [1, d] and u, v ∈ [1, n]. These conditions are independent because
the ri,j are all distinct from one another, and ya 6= y−1

b−1. Let ch for 1 ≤ h ≤ d
denote the number of conditions on gh. As c1+ · · ·+ cd = m(b− a) ≤ n− 2,
each ch is less than n− 1, and the number of elements gh ∈ G satisfying the
ch conditions is

|G|
n(n− 1) · · · (n− ch + 1)

≥ |G|
(n− ch)ch

.

Overall,

|Xm,n(w, a, b)| ≤ nm(b−a)
d∏

h=1

|G|
(n− ch)ch

≤ nm(b−a)

(n−m(b− a))m(b−a)
|G|d.

The projection of Xm,n(w, a, b) onto Gd is at least m! to 1 since Sm acts
faithfully on Xm,n(w, a, b) through its action on the i-coordinate of ri,j .
Thus, the cardinality of the projection is bounded above by

nm(b−a)

m!(n−m(b− a))m(b−a)
|G|d.

Setting M = m(b− a) < n/2, we have

nM

(n−M)M
= exp

(

M log
(

1 +
M

n−M

))

< exp
( M2

n−M

)

< exp
(2M2

n

)

,

which implies the lemma. �
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For G ∈ {An, Sn} and w a word of length l in Fd, let Wn be the corre-
sponding random variable on G with distribution pw,G.

Proposition 6.4. If k ≥ (el)36, then for all positive integers n,

P[fix(Wn) ≥ k] ≤ k−
k

3l4 .

Proof. Let Xi, i = 1, . . . , d, be independent uniform random variables on G.
We write w = yl · · · y2y1 in reduced form, and let zi = yi · · · y2y1. Let Yi
denote the random variable yi(X1, . . . , Xd).

Let us first assume that l4 divides k and if l = 1 we assume also k ≤ n/2.
Since there are less than l2 pairs of integers (a, b) with 0 ≤ a < b ≤ l, if
fix(w(g1, . . . , gd)) ≥ k, there exist a and b and at least k/l2 integers r ∈ [1, n]
such that the following two conditions hold:

(6.4.1) the terms of the sequence

za(g1, . . . , gd)r, za+1(g1, . . . , gd)r, . . . , zb−1(g1, . . . , gd)r

are pairwise distinct, and
(6.4.2) za(g1, . . . , gd)r = zb(g1, . . . , gd)r.

For a ≤ i, j < b and any given r ∈ [1, n], there is at most one element
s ∈ fix(w(g1, . . . , gd)) such that

zi(g1, . . . , gd)r = zj(g1, . . . , gd)s.

Thus, if there exist k/l2 elements r satisfying (6.4.1) and (6.4.2), there exists
a subset of m = k/l4 elements {r1, . . . , rm} for which the sets

{{za(g1, . . . , gd)rj , za+1(g1, . . . , gd)rj , . . . , zb−1(g1, . . . , gd)rj} | 1 ≤ j ≤ m}
are pairwise disjoint. Setting

rj,i = zi(g1, . . . , gd)(rj),

we see that the tuple

(g1, . . . , gd, r1,a, . . . , r1,b−1, . . . , rm,b−1)

satisfies conditions (6.3.1)–(6.3.3). Thus, the set

{(g1, . . . , gd) | fix(w(g1, . . . , gd)) ≥ k}
is contained in

⋃

0≤a<b≤l

p1(Xm,n(w, a, b)).

As 2ml = 2k/l3 ≤ n, Lemma 6.3 applies, so

P[fix(Wn) ≥ k] = P[fix(Yl · · ·Y1) ≥ k]

≤ l2maxa,b |p1(Xm,n(w, a, b))|
|G|d ≤ l2e2k

2/l6n

(k/l4)!
.
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We now consider the general case k > (el)36. If k1 denotes the largest
multiple of l4 not exceeding k (or n/2 if l = 1), we have k1 ≥ k/2, and

(k1/l
4)! ≥ (k1/el

4)k1/l
4 ≥ (k/2el4)k/2l

4
.

By (i), we now have

− logP[fix(Wn) ≥ k] ≥ − logP[fix(Wn) ≥ k1]

≥ −2 log l − 2k21
l6n

+
k

2l4
log

k

2el4

≥ −2 log l − 2k

l6
− k

2l4
log 2el4 +

k log k

2l4
.

As 2 log l, 2k
l6
, k
2l4

log 2el4 all do not exceed k log k
18l4

, we conclude that

− logP[fix(Wn) ≥ k] ≥ k log k

3l4
,

as claimed. �

The following variant of Proposition 6.4, where H is allowed to be any
permutation group and Wn is the random variable on H corresponding to w,
is needed in §7. We say H is ε-roughly transitive if for all 1 ≤ i ≤ t = n1−ε,
the size of every H-orbit of ordered i-tuples of pairwise distinct integers in
[1, n] is at least ti.

Proposition 6.5. Let l be a positive integer and 0 < ε < 1/4l. If n is

sufficiently large in terms of l, 2el4n1/2 < k < n1−ε, and H < Sn is ε-
roughly transitive, then

P[fix(Wn) ≥ k] ≤ n−k/8l4 .

Proof. The number of elements g ∈ H satisfying c conditions of the form
gu = v or g−1u = v is at most |H| divided by the cardinality of the smallest
H-orbit of a c-tuple (s1, . . . , sc) of pairwise distinct integers in [1, n], which
is bounded above by t−c|H|. Thus, following the notation of Lemma 6.3,

|Xm,n(w, a, b)| ≤ nm(b−a) |H|d
tm(b−a)

≤ (n/t)ml|H|d ≤ nεml|H|d.

Let k1 be the largest multiple of l4 which is bounded above by k. As in
Proposition 6.4, fix(w(g1, . . . , gd)) ≥ k1 implies there exist at least k1/l

2

elements satisfying (6.4.1) and (6.4.2) and therefore (g1, . . . , gd) lies in the
projection of Xk1/l4,n(w, a, b) for some a, b with 1 ≤ a < b ≤ l.

As ε < 1/4l and k/2el4 >
√
n, if n is sufficiently large,

P[fix(Wn) ≥ k1] ≤
l2nεk1/l3

(k1/l4)!
≤ l2nεk/2l3

(k1/el4)k1/l
4 ≤ l2nεk/2l3

(k/2el4)k/2l4
≤ nk/8l4

nk/4l4
,

which gives the proposition. �
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Definition 6.6. (i) Recall from the introduction that a word w in the
free group Fd is even if w ∈ 〈[Fd, Fd], x

2
1, . . . , x

2
d〉. Otherwise we say

that w is odd. We define γ(w) = 1 (resp. γ(w) = 0) when w is even
(resp. odd).

(ii) For G = Sn, let U0
G = UG, the uniform distribution on G, and let

U1(g) = 2/|G| for g ∈ An and U1(g) = 0 for g ∈ Gr An.

Note that if w = w1w2 · · ·wN is a product of pairwise disjoint words, then

(6.3) γ(w) = γ(w1)γ(w2) · · · γ(wN ).

The relevance of Definition 6.6 follows from the following statement, where
sgn denotes the sign character of Sn:

Lemma 6.7. Let G = Sn, w ∈ Fd, and let X be the random variable on G
with distribution pw,G. Then

∑

C

P(X ∈ C)sgn(C) = γ(w),

where the summation runs over conjugacy classes in G.

Proof. Note that the sum in question is Σ = P(X ∈ An) − P(X /∈ An). If
w is even, then X is always in An, whence Σ = 1 = γ(w). If w is odd, then
half of the time X belongs to An and half of the time it does not, whence
Σ = 0 = γ(w). �

Proposition 6.8. Let l, N ≥ 1 be integers such that N > 8l4 + 41. If
w1, w2, . . . , wN is a sequence of non-trivial words of length at most l, then
we have

lim
n→∞

‖ pw1,An ∗ · · · ∗ pwN ,An
︸ ︷︷ ︸

N

−UAn‖L∞ = 0.

Furthermore, for γ = γ(w1w2 · · ·wN ), we have

lim
n→∞

‖ pw1,Sn ∗ · · · ∗ pwN ,Sn
︸ ︷︷ ︸

N

−Uγ
Sn
‖L∞ = 0.

Proof. For G ∈ {An, Sn}, let X1,n, . . . , XN,n be independent random vari-
ables on G, with distribution pw1,G, . . . , pwN ,G which are invariant under

conjugation in G. Let XN
n = X1,n · · ·XN,n. For g ∈ G,

(6.4)

P[XN
n = g] = |G|−1

∑

C1,...,CN

( N∏

i=1

P[Xi,n ∈ Ci]

)
∑

χ

χ(C1) · · ·χ(CN )χ(g)

χ(1)N−1
,

where each Ci in the first summation ranges over the conjugacy classes of G,
and the second summation runs over all irreducible characters χ ∈ Irr(G).
In the second summation, the contribution of the χ = 1G term is 1.
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Suppose G = Sn. Then, by Lemma 6.7 and (6.3), the contribution of
χ = sgn to (6.4) is

(6.5)

sgn(g)|G|−1
∑

C1,...,CN

( N∏

i=1

P[Xi,n ∈ Ci]sgn(Ci)

)

=

sgn(g)|G|−1

( N∏

i=1

∑

Ci

P[Xi,n ∈ Ci]sgn(Ci)

)

= γ · sgn(g)|G|−1.

Our goal is to show that the error term in (6.4), i.e., the contribution of
the characters χ with χ(1) > 1 to the sum, is o(|G|−1). Indeed, in the case
G = An we then have for all g:

|G| ·
∣
∣P[XN

n = g]− U({g})
∣
∣ = o(1).

Suppose G = Sn. Then Uγ(g) = (1 + γ · sgn(g))/|G|, and so (6.5) yields

|G| ·
∣
∣P[XN

n = g]− Uγ({g})
∣
∣ = o(1).

We choose ε = 1/4 in Proposition 6.1 and assume n > A(ε). We also

assume that n is large enough that n3/4 > (el)36. For any conjugacy class

Ci in G and any irreducible character χ of G, either fix(Ci) ≤ n3/4, in which
case

(6.6) P[Xi,n ∈ Ci]|χ(Ci)| ≤ χ(1)11/12

by Proposition 6.1(i), or fix(Ci) ≥ n3/4 > (el)36, in which case

(6.7) P[Xi,n ∈ Ci]|χ(Ci)| < nfix(Ci)/4χ(1)3/4

by Proposition 6.1(ii), and

(6.8) P[Xi,n ∈ Ci]|χ(Ci)| < fix(Ci)
−fix(Ci)/3l

4
χ(1) < n−fix(Ci)/4l

4
χ(1)

by Proposition 6.4. We combine these inequalities by putting the right hand

side of (6.7) to the 1
l4+2

power and the right hand side of (6.8) to the l4+1
l4+2

power and multiplying:

(6.9) P[Xi,n ∈ Ci]|χ(Ci)| < n
− fix(Ci)

4l4+8 χ(1)
4l4+7

4l4+8 ≤ n
− n3/4

4l4+8χ(1)
4l4+7

4l4+8 .

The error term

|G|−1
∑

C1,...,CN

( N∏

i=1

P[Xi,n ∈ Ci]

)
∑

χ(1)>1

|χ(C1) · · ·χ(CN )χ(g)|
χ(1)N−1

can be rewritten as

(6.10) |G|−1
∑

χ(1)>1

|χ(g)|χ(1)
∑

C1,...,CN

( N∏

i=1

P[Xi,n ∈ Ci]|χ(Ci)|
χ(1)

)

.
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If fix(Ci) ≥ n3/4 for at least 25 different values i ∈ [1, N ], then by (6.6),

N∏

i=1

P[Xi,n ∈ Ci]|χ(Ci)|
χ(1)

≤ χ(1)−25/12
n∏

i=1

P[Xi,n ∈ Ci].

Now,

∑

χ(1)>1

|χ(g)|χ(1) · χ(1)−25/12
∑

C1,...,CN

n∏

i=1

P[Xi,n ∈ Ci] = ζG(1/12)− [G : An]

goes to zero by Theorem 2.6 and Corollary 2.7 of [LiSh2]. Therefore, the
contribution of N -tuples (C1, . . . , CN ) of which at least 25 of the Ci have

fixity ≤ n3/4 to the the error term (6.10) is o(|G|−1). That leaves the N -

tuples for which at least 8l4 + 16 classes Ci have fixity ≥ n3/4. For these,
the bound (6.9) gives

N∏

i=1

P[Xi,n ∈ Ci]|χ(Ci)|
χ(1)

≤ n−2n3/4
χ(1)−2.

The total number of ordered N -tuples of conjugacy classes in G is at most
(2p(n))N ≤ ecN

√
n, where p(n) denotes the partition function. Thus,
∑

χ(1)>1

|χ(g)|χ(1)
∑

C1,...,CN

n−2n3/4
χ(1)−2 = o(1),

which implies the proposition. �

Proposition 6.9. Let l and N be positive integers such that N > (1.5) ·
1010l2. If w1, w2, . . . , wN is a sequence of non-trivial words of length at most
l, then we have

lim
|G|→∞

‖ pw1,G ∗ · · · ∗ pwN ,G
︸ ︷︷ ︸

N

−UG‖L∞ = 0

if the limit is taken over finite simple groups G of Lie type of rank r ≥
7 · 108l2.

Proof. We follow the method of Proposition 6.8, and let Wi denote a random
variable with values in G and distribution pwi,G. We write G as the quotient

of H = Cl(V ) by its center, where F = Fqf , f ≤ 2, and V = Fn. Let W̃i

denote a random variable on H with distribution pwi,H . Let δ0 = 0.0011 and
δ = 1/7400. Note that δ(2n + 2)2 < δ0n

2, since n ≥ r. Hence, by [GLT3,

Theorem 1.4], if |CG(g)| ≤ q2fδn
2
then |χ(g)| ≤ χ(1)1−.008.

By Lemma 5.3,

P[|CG(Wi)| ≥ q2fδn
2
] ≤ P[|CH(W̃i)| ≥ q2fδn

2
].

By Lemma 5.4 (and the discussion prior to (5.2)), P[|CH(W̃i)| ≥ q2fδn
2
]

does not exceed the probability that there exists a non-constant polynomial
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Q(x) ∈ F[x] such that dimF kerQ(W̃i) ≥ δn degQ. As n ≥ r > 7 · 108l,
nδ ≥ 9 · 104l, and so

k = bnδ/2lc ≥ nδ/3l + 3.

From Proposition 5.5, it follows that

P[|CG(Wi)| ≥ q2fδn
2
] ≤ q−fk((k−1)lD−2.5) ≤ q−δ2fn2/9l2 ≤ |G|−δ2/9l2 .

Setting ε = 1
5·108l2 < .008, for every i and conjugacy class Ci, we have that

either |χ(Ci)| ≤ χ(1)1−ε for all χ ∈ Irr(G), or P[Wi ∈ Ci] ≤ |G|−ε.
By hypothesis, G has rank r ≥ 11/(8ε); in particular 1.1Nr ≤ (4/5)Nr2ε.

Recall that by [FG], the number k(G) of conjugacy classes in G is less than
27.2qr < qr+5 < q1.1r, while |G| ≥ qhr/2(r + 1), where h ≥ r + 2 is the

Coxeter number of G, so |G| ≥ qr
2
. As N ≥ 11/ε and using the obvious

estimate |χ(g)χ(1)| ≤ |G|, we have that

|χ(g)|χ(1)
∑

C1,...,CN

|G|−(9/10)Nr2ε ≤ q1.1Nr|G|1−(9/10)Nε

≤ q1.1Nr−(4/5)Nr2εqr
2(1−Nε/10) ≤ q−0.1r2 .

It follows that

∑

χ

|χ(g)|χ(1)
∑

C1,...,CN

N∏

i=1

(
P[Xi,n ∈ Ci]|χ(Ci)|

χ(1)

)

≤ q−0.1r2 ,

if the inner sum is taken only over N -tuples (C1, . . . , CN ) for which at least

0.9N of the classes satisfy P[Wi ∈ Ci] ≤ |G|−ε. Certainly, q−0.1r2 → 0 when
|G| → ∞. On the other hand, by [LiSh3, Theorem 1.1],

lim
|G|→∞

ζG(1)− 1 = 0.

As N > 30/ε, we obtain that

∑

χ 6=1G

|χ(g)|χ(1)
∑

C1,...,CN

N∏

i=1

(
P[Xi,n ∈ Ci]|χ(Ci)|

χ(1)

)

≤ ζG

(
Nε

10
− 2

)

− 1

≤ ζG(1)− 1,

if the inner sum is taken over N tuples (C1, . . . , CN ) for which at least 0.1N
classes satisfy |χ(Ci)| ≤ χ(1)1−ε for all irreducible χ. �

Proposition 6.10. Let r and N be positive integers such that N ≥ (2r+1)2

and w1, w2, . . . , wN be any sequence of non-trivial words. Then

lim
|G|→∞

‖ pw1,G ∗ · · · ∗ pwN ,G
︸ ︷︷ ︸

N

−UG‖L∞ = 0

if the limit is taken over finite simple groups G of Lie type of rank r.
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Proof. We follow the method of Proposition 6.8. Let Wi denote a random
variable with values in G and distribution pwi,G. By [FG], the number k(G)
of conjugacy classes in G is < 28qr. (Note q need not be in Z since G may be
of Suzuki or Ree type.) By classification of root systems, dimG ≤ 2r2 + r,
where by a slight abuse of notation we write dimG for the dimension of the
simply connected algebraic group associated to G. Thus,

χ(1) ≤ |G|1/2 = O(qr
2+r/2).

By Gluck’s bound [Gl] for irreducible character values of groups of Lie type,

|χ(g)| = O(q−1/2χ(1)) for all g 6= 1. On the other hand P[Wi = 1] = |w−1(1)|
|G|d .

By [LS3, Proposition 3.4], this is O(q−1). Thus, for every conjugacy class
Ci, either Ci = {1}, in which case P[Wi ∈ Ci] = O(q−1), or Ci 6= {1}, in
which case |χ(Ci)|/χ(1) = O(q−1/2).

Let S denote any subset of {1, . . . , N}, and let C(S) denote N -tuples
(C1, . . . , CN ) such that Ci = {1} if and only if i ∈ S. Then,

∑

(C1,...,CN )∈C(S)

n∏

i=1

(
P[Wi ∈ Ci]|χ(Ci)|

χ(1)

)

= O(q−|S|−N−|S|
2 ) ≤ O(q−N/2).

As |Irr(G)| = k(G) < 28qr,

∑

χ 6=1G

|χ(g)|χ(1)
∑

S

∑

(C1,...,CN )∈C(S)

n∏

i=1

(
P[Wi ∈ Ci]|χ(Ci)|

χ(1)

)

= O(q2r
2+2r−N/2)

≤ O(q−1/2),

which proves the proposition, since q → ∞ when |G| → ∞. �

Proof of Theorem 4. By the classification of finite simple groups, it suffices
to prove the result for alternating groups, groups of Lie type of rank greater
than 7 · 108l2, and groups of Lie type of lower rank. These three cases are
covered by Propositions 6.8, 6.9, and 6.10 respectively. �

7. Some applications

In this section we derive various applications, proving Theorem 5.

Proposition 7.1. There is an absolute constant 0 < ε < 1 such that the
following statement holds for any prime power q and for any positive integer
n. Let G = Cl(V ) be a classical group in dimension n (in the sense of §5),
and let P be a maximal subgroup of G of order |P | > |G|1−ε not containing
[G,G]. Then there is a classical group H in dimension m, with m < n and
a normal subgroup K C P with |K| < [G : P ]3 such that P/K ∼= H.

Proof. The smallest index of proper subgroups of a simple finite classical
group is listed in [KlL, Table 5.2.A]. It follows for n ≤ 9 that, if we take
0 < ε < 1/10 small enough, then any maximal subgroup P of G of order
|P | > |G|1−ε contains [G,G]. Hence in the rest of the proof we may assume
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n ≥ 10. By Theorems 1 and 2 of [Ka], there is some θ(n) ≥ 1 such that P

acts reducibly on V whenever [G : P ] < qθ(n) and P 6≥ [G,G]; furthermore
θ(n) > d(G)/5 when n is large enough, where d(n) is the degree of |[G,G]|
as a polynomial of q. By taking 0 < ε ≤ 1/5 small enough, we may therefore
assume that P stabilizes a subspace U ⊂ V of dimension 0 < k < n. The
maximality of P then implies that P = StabG(U), and furthermore, if G
respects a form 〈·, ·〉, U is either totally singular or non-degenerate with
respect to 〈·, ·〉.

First suppose that SLn(Fq) ≤ G ≤ GLn(Fq). Then [G : P ] > qk(n−k).
Replacing the action of P on U by its action on V/U if necessary, we may
assume that k ≥ n/2, and get a surjection from P onto H = GLk(Fq), with
kernel K of order less than

qk(n−k)+(n−k)2 = q(n−k)n ≤ q2k(n−k) < [G : P ]2.

Next suppose that SUn(Fq) ≤ G ≤ Un(Fq). If U is non-degenerate, then

replacing it by U⊥ if necessary, we may assume that k ≥ n/2. The action of
P on U yields a surjection from P ≤ Uk(Fq)× Un−k(Fq) onto H = Uk(Fq),
with kernel K ≤ Un−k(q) of order less than

q(n−k)2+1 ≤ q2k(n−k)−3 < [G : P ].

If U is totally singular, then k ≤ n/2 and

q2kn−3k2−4 < [G : P ] < q2kn−3k2+1.

By taking 0 < ε ≤ 1/5 small enough, the condition |P | > |G|1−ε implies
that n− 2k ≥ 6. Now the action of P on U⊥/U yields a surjection from P
onto H = Un−2k(q) with kernel K of order less than

qk(2n−3k)+2k2 ≤ q3k(2n−3k)−12 < [G : P ]3.

The orthogonal and symplectic cases are handled in the same way. �

Recall that the group Γ is defined in Theorem 5 as the group with gen-
erators x1, . . . , xd and a single relator w = w1 · · ·wN , where wi ∈ Fd are
pairwise disjoint non-trivial words of length at most l.

Proposition 7.2. If N is sufficiently large in terms of l then there exists
ε > 0 such that for all positive integers n, if m < nε/2 divides n, then

|Hom(Γ, Sn/m o Sm)| = (1 + o(1))|Sn/m o Sm)|d−1.

Proof. The proof is essentially that of Proposition 6.8, but it requires three
estimates for H = Sn/m o Sm analogous to those for Sn and An used in
that proof: an upper bound on the probability that a random variable with
distribution w∗UHd takes values with more than 2el4

√
n fixed points, an

upper bound on values of irreducible characters χ of H on elements with
≤ 2el4

√
n fixed points, and an upper bound on |Irr(H)|.

For the first, we fix ε < 1/4l and apply Proposition 6.5. Indeed, since
n/m ≥ 2n1−ε, the orbit OHS

(u) of any element u ∈ [1, n] under the point-
wise stabilizer HS of any subset S ⊂ [1, n] \ {u} with |S| ≤ n1−ε, satisfies
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|OHS
(u)| ≥ n1−ε. The second is given by Lemma 6.2. The third follows

from the classification of irreducible characters of H used in the proof of
Lemma 6.2; namely, each such character is determined by an ordered m-
tuple of irreducible characters of Sn/m together with an irreducible character
of Sm. Thus, |Irr(H)| ≤ p(n/m)mp(m). As m < nε, we conclude that

log |Irr(H)| = O(n
1+ε
2 ).

�

Lemma 7.3. Let d ∈ Z≥1 and let ∆ be any d-generated group such that

lim
|G|→∞

|G|1−d|Hom(∆, G)| = 1,

where G ranges over the finite simple groups. If 0 < ε < 1/(d − 2), then
the probability that a homomorphism ϕ : ∆ → G chosen uniformly from
Hom(∆, G) has the property that ϕ(∆) is contained in a maximal subgroup
M of G of index greater than |G|ε goes to 0 as |G| → ∞.

Proof. For any finite simple group G, let Q(G) denote the probability that
a random homomorphism from ∆ to G is not an epimorphism. Then

Q(G) ≤
∑

M
max
< G

|Hom(∆,M)|/|Hom(∆, G)|.

Since ∆ is d-generated, we trivially have |Hom(∆,M)| ≤ |M |d. Thus

Q(G) ≤ (1 + o(1))
∑

M
max
< G

|M |d/|G|d−1.

By [LMS, Theorem 1.1],

(7.1)
∑

M
max
< G

[G : M ]−2 → 0

as G ranges over the finite simple groups. If |M | ≤ |G|1−1/(d−2) then
|M |d/|G|d−1 ≤ [G : M ]−2. This implies

∑

M
max
< G,|M |≤|G|1−1/(d−2)

|M |d/|G|d−1 → 0 as |G| → ∞.

�

Proposition 7.4. Let l be a positive integer and w = w1 · · ·wN ∈ Fd be a
product of pairwise disjoint non-trivial words wi, each of length at most l.
If N is sufficiently large in terms of l, then there exists 0 < ε < 1 such that
the following statement holds. For every finite classical group G and every
P < G maximal among subgroups not containing [G,G] with |P | > |G|1−ε,
we have

|w−1
P (1)| ≤ [G : P ]−2|G|d−1.
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Proof. By Proposition 7.1, we can find 0 < ε < 1 such that, given any P as
in the theorem, there exists a classical quotient group H with

(7.2) |P |/|H| < [G : P ]3,

and so

|w−1
P (1)| ≤ (|P |/|H|)dmax

h∈H
|w−1

H (h)| < [G : P ]3dmax
h∈H

|w−1
H (h)|.

We claim that the right hand side is O([G : P ]3d+3|H|d−1). It suffices to
prove that the maximum of |w−1

H (h)| is O(q3|H|d−1). We follow the method
of proof of Proposition 6.8. We start with the inequality

|w−1
H (h)| ≤ |H|d−1

∑

χ∈Irr(H)

∑

C1,...,CN

|χ(C1) · · ·χ(CN )|
χ(1)N−2

N∏

i=1

P[Wi ∈ Ci],

where theWi are independent random variables ofH with distribution pwi,H ,
and the Ci are the conjugacy classes of H. We separate this sum into
two pieces according to whether the restriction of χ to [H,H] has a trivial
constituent. The contribution of the characters whose restriction to [H,H]
has a trivial constituent is at most

∑

χ∈Irr(H/[H,H])

χ(1)2 = |H/[H,H]| < 2q.

Let Irr(H)∗ denote the set of characters whose restriction to [H,H] has
no trivial constituent. If for some positive constant ε depending only on l we
have that for every conjugacy class Ci of H and every irreducible character
χ of H, either P[Wi ∈ Ci] < |H|−ε or |χ(Ci)| ≤ χ(1)1−ε, and, moreover,

(7.3) lim
|H|→∞

∑

χ∈Irr(H)∗

χ(1)−3 = 0,

then we can finish as in Proposition 6.9. The dichotomy for Ci follows for
general classical groups by the same argument as for finite simple classical
groups since Proposition 5.5 and the character estimate [GLT3, Theorem 1.3]
hold for classical groups in full generality.

To estimate the sum in (7.3), we choose a function f : Irr(H)∗ → Irr([H,H])
mapping each χ to a non-trivial irreducible character of [H,H] which ap-
pears as a factor of the restriction of χ to [H,H]. Thus, f(χ)(1) ≤ χ(1),
and f is at most |H/[H,H]| ≤ 2q to 1. Thus, it suffices to prove

lim
|H|→∞

∑

1 6=χ∈Irr([H,H])

2qχ(1)−3 → 0,

and since the minimum degree of a non-trivial representation of [H,H] is
greater than q/3, this follows from [LiSh3, Theorem 1.1]. �

Proof of Theorem 5. In the proof of parts (i)–(iv) we take N∗(l) = N(l)
(defined in Theorem 4). In the proof of parts (v) and (vi) we have N∗(l) ≥
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N(l). Hence in any case we have N∗(l) > 3 for all l, which implies that
d > 3.

(i) This follows immediately from Theorem 4 and Proposition 2.5.

(ii) As Hom(Γ, G) is the fiber of the word map wG over the identity,
this follows from (i) and the fact [EGA IV2, Corollaire 6.1.2] that all non-
empty fibers of a flat morphism of affine varieties X → Y have dimension
dimX − dimY .

(iii) The quasi-finite morphisms (i.e., morphisms with finite fibers) SLn×
GL1 → GLn and GLn → PGLn ×GL1 give rise to quasi-finite morphisms

Hom(Γ, SLn)×Hom(Γ,GL1) → Hom(Γ,GLn) → Hom(Γ,PGLn)×Hom(Γ,GL1).

It follows from part (ii) above that

dimHom(Γ, SLn) = dimHom(Γ,PGLn) = (d− 1)(n2 − 1).

We therefore have the inequalities

(d− 1)(n2 − 1) + dimHom(Γ,GL1) ≤ dimHom(Γ,GLn)

≤ (d− 1)(n2 − 1) + dimHom(Γ,GL1),

and so

dimHom(Γ,GLn) = (d− 1)(n2 − 1) + dimHom(Γ,GL1).

Note that dimHom(Γ,GL1) is d or d − 1 depending on whether w belongs
to [Fd, Fd] or not. Thus dimHom(Γ,GLn) = (d − 1)n2 + a where a = 0 if
w 6∈ [Fd, Fd] and a = 1 otherwise.

(iv) Note that for any group Γ we have

an(Γ) = |Homtrans(Γ, Sn)|/(n− 1)!,

where Homtrans(Γ, Sn) is the set of homomorphisms from Γ to Sn with tran-
sitive image. See for instance [LuSe, 1.1.1].

By Proposition 6.8, we have for γ = γ(w) (and so b = 1 + γ) that

lim
n→∞

‖pw,Sn − Uγ
Sn
‖L∞ = 0.

It follows that Pw,Sn(1) ∼ b/n!, hence

|Hom(Γ, Sn)| ∼ b · n!d−1.

Now, the probability Qn that φ ∈ Hom(Γ, Sn) is not in Homtrans(Γ, Sn)
satisfies

Qn ≤
∑

1≤k≤n/2

(
n

k

)

|Hom(Γ,Mk)|/|Hom(Γ, Sn)|,

where Mk = Sk × Sn−k, the stabilizer of {1, . . . , k} in Sn. We have

|Hom(Γ,Mk)| = |Hom(Γ, Sk)| · |Hom(Γ, Sn−k)|
≤ (b+ ok(1))k!

d−1 · (b+ on(1))(n− k)!d−1.
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Therefore

Qn ≤
∑

1≤k≤n/2

(
n

k

)
(b+ ok(1))(b+ on(1))

b+ on(1)
· k!

d−1(n− k)!d−1

n!d−1
,

and since d ≥ 3 we see that

Qn ≤
∑

1≤k≤n/2

(b+ ok(1))

(
n

k

)−(d−2)

= O
( ∑

1≤k≤n/2

(
n

k

)−1)

→ 0 as n → ∞.

Therefore, as n → ∞, almost all homomorphisms from Γ to Sn have transi-
tive image. This yields

|Homtrans(Γ, Sn)| ∼ |Hom(Γ, Sn)| ∼ bn!d−1.

Dividing both sides by (n − 1)! we obtain an(Γ) ∼ bn · n!d−2, proving the
main assertion of Theorem 5(iv). To prove the second assertion, note that
an(Fd−1) ∼ n · n!d−2 (see [LuSe, 2.1]), and this yields an(Γ)/an(Fd−1) → b
as n → ∞.

To prove the remaining statements in Theorem 5, we use another conse-
quence of Theorem 4 that

lim
|G|→∞

|G|1−d|Hom(Γ, G)| = 1

when G runs over the finite simple groups. Thus Lemma 7.3 applies to
∆ = Γ.

(v) Denote by Homprim(Γ, Sn) the set of homomorphisms from Γ to Sn
with primitive image. Then we have

mn(Γ) = |Homprim(Γ, Sn)|/(n− 1)!.

The argument is now similar to the one given above in (iv), except that we
also have to take the maximal subgroups M ∩ An with M = Sn/k o Sk into
account. Applying Lemma 7.3 to ∆ = Γ, we need only consider k-values
which are less than nε. By Proposition 7.2, the set of homomorphisms
ϕ : Γ → An for which there exists a partition into k sets of cardinality n/k
which ϕ(Γ) respects has cardinality less than

[Sn : M ]|Hom(Γ,M)| = (1 + o(1))n!|M |d−2 = O(n2−d|Hom(Γ,An)|).
As d > 3, the sum over all k values is o(|Hom(Γ,An)|).

(vi) We apply Lemma 7.3 to ∆ = Γ to bound the probability Q(G) defined
as in the proof of the lemma. First assume that G is of Lie type of bounded
rank r. Choosing N (hence d) large, as we may, and using for instance
Tables 5.2.A and 5.3.A of [KlL], we have that all the maximal subgroups of

G satisfy |M | < |G|1−1/(d−1). So by Lemma 7.3 we obtain that Q(G) → 0
as |G| → ∞ for such simple groups G.

For alternating groups G = An, by Bochert’s theorem (see [DM, 3.3B]),
for n sufficiently large, we need only consider maximal subgroups of the
types considered in (iv) and (v), and so we are done in this case.
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Now let G be a simple classical group of large rank. Choosing N (hence d)
large, we may assume that Proposition 7.4 holds for a fixed 0 < ε < 1/(d−2).
If Hom(Γ, G) fails to be surjective, its image is contained in a subgroup P
of G maximal among all subgroups not containing [G,G] = G. By Lemma
7.3, the probability of this event, but under the condition that |P | ≤ |G|1−ε

tends to 0 when |G| → ∞. So it remains to bound this probability under
the condition that |P | > |G|1−ε. By Proposition 7.4, for each such P , the
probability of this is less than [G : P ]−2. Together with (7.1), this implies
that Q(G) → 0 as |G| → ∞. �
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