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0. I n t r o d u c t i o n

Andrei Suslin (1950–2018) was both friend and mentor to us. This article dis-
cusses some of his many mathematical achievements, focusing on the role he played
in shaping aspects of algebra and algebraic geometry. We mention some of the many
important results Andrei proved in his career, proceeding more or less chronolog-
ically beginning with Serre’s Conjecture proved by Andrei in 1976 (and simul-
taneously by Daniel Quillen). As the reader will quickly ascertain, this article does
not do justice to the many mathematicians who contributed to algebraic K- theory
and related subjects in recent decades. In particular, work of Hyman Bass,
Alexander Be ı̆linson, Spencer Bloch, Alexander Grothendieck, Daniel Quillen, Jean-
Pierre Serre, and Christophe Soul̀ e strongly influenced Andrei’s mathematics and
the mathematical developments we discuss. Many important aspects of algebraic K-
theory (e.g., the study of manifolds using surgery and the study of operator al-
gebras) are not mentioned here; such topics are well addressed in various books on
algebraic K-theory such as that of Charles Weibel [83].

In discussing Andrei’s mathematics, we hope the reader will get some sense of the  
sweep  and evolution of  algebraic K-theory in the past 50  years.  Andrei was  deeply
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involved in both the formulation and the solution of many of the most important
questions in algebraic K-theory. His own evolution from a “pure algebraist” led to a
partnership with Vladimir Voevodsky in building the edifice of motivic cohomology.
The close relationship of arithmetic algebraic geometry to algebraic K-theory, seen
frequently in Andrei’s work, has contributed much to the development of algebraic
K-theory which is situated at the interface of algebra, algebraic geometry, number
theory, homotopy theory, and K-theory.

Towards the end of his career Andrei made important contributions to the mod-
ular representation theory of finite group schemes. This represented something of a
return by Andrei to more algebraic questions, though still reflecting his engagement
in K-theory and algebraic geometry.

Andrei was primarily a problem solver, a mathematician confident that clearly  
formulated questions could be answered by “direct, imaginative attack”. Time and 
again, Andrei introduced new techniques and structures in order to solve challeng-

ing problems. Although he did not incline to “theory building”, he has left us 
considerable theory with which to continue his efforts. For many years, Andrei’s 

clear, precise, careful approach to fundamental questions placed him as the “final  
judge” of many current efforts at the interface of algebraic geometry and K-theory.  

Andrei freely shared his ideas, gave brilliantly clear lectures, and encouraged the 
work of others. Many of us felt that while stepping to the edge of this new 

mathematics, we  needed  Andrei’s guidance  and confirmation  of  validity.  Hisdeath
is a great loss to us personally as well as to our mathematical world.

1 . P r o j e c t i v e modules

The early period of K-theory was led by Richard Swan and Hyman Bass, be-
ginning in the late 1950s. Much of this early work was very algebraic, though
motivation from topology and functional analysis played an important role. There
was experimentation of definitions of higher K-theory, questions of stability for
such  groups as En(R) ⊂ t tLn(R), and much  discussion  about projective modules.

We  recall  that  if  R  is  an  associative,  unital  ring  and  M  is  a  (left) R-module,
then  a (finitely generated)  projective R-module P  is  a summand  of  a free  module

R⊕ N  ; in other words, there is some R-module Q and an isomorphism of R-modules  
R⊕ N c  P ⊕ Q.

Andrei began his independent research as an undergraduate, solving special cases
of Serre’s problem which asks whether every finite generated projective module P

over a polynomial ring F [x1 , . . . , xn] over a field F is free [57], following Serre’s
earlier proof that any such projective module is stably free (see [3]). Andrei, working
in relative isolation, first verified (in the affirmative) cases known to experts and
then, while still an undergraduate, verified new cases. In 1976, Andrei and Daniel
Quillen independently and essentially simultaneously proved the following theorem,
at the time the most famous problem of commutative algebra.

Theorem 1.1 ([56], [59]). Let S bea finitely generated polynomial algebra over a field

F , so that S = F [x1 , . . . , xd] for some d. Then every finitely generated projective S-

module P (i.e., any direct summand P of somefree S-module M ) is a free S-module.

Andrei’s proof of Theorem 1.1 proceeds by induction on d. Thanks to the stable  
freeness  of  projective  S-modules  proved  earlier  by  Serre,  it  suffices  to  prove the

http://www.ams.org/journal-terms-of-use


License or copyright restrictions may apply to redistribution; seehttps://www.ams.org/journal-terms-of-use

T H E  M AT HEM AT ICS O F ANDREI SUSLIN 3

cancellation  property  for  a  finitely  generated  projective  S-module:   given  an iso-
morphism  P ⊕ S   c  S⊕ n  for some  n  > 0,  then P  is  isomorphic  to S⊕n−1 . Andrei

observes that this is equivalent to proving that the group t tLn(S) acts transitively
on the set of unimodular rows Umn(S) of length n, where a row is unimodular if its
entries generate S as an S-module.

The key step in Andrei’s proof is the following elementary algebraic fact designed
for  his  goal:   Let  R  be  a  commutative  ring,  and  set  f  =  (f1,  f2)  ∈ R[t]⊕2  (not
necessarily unimodular).  Let c ∈ R  ∩ (f1R[t]+ f2R[t]).  Then for any commutative
R-algebra A  and a, ar ∈ A  such that a ≡ ar modulo cA, we have that f  (a) and f (ar)

are conjugate by an element of ttL2(A). This is a remarkable piece of ingenuity!
As seen especially in Quillen’s proof, Serre’s problem can be usefully considered as

a question of extendability : under what conditions can one say that a projective
module for R[x] arises by extension from a projective module for R? Quillen’s proof
relied on earlier work of Geoffrey Horrocks [33] and was somewhat more geometric in
nature than Andrei’s. Andrei preferred Quillen’s approach, and this might have led
him into more geometric considerations of algebraic problems.

During the 1970s, Andrei refined and extended the above theorem with many
other cancellation results (see, for example, [60]). These studies appeared to have led
Andrei to consider other aspects of algebraic groups, in particular related ques- tions
of algebraic K-theory. Other algebraic constructions occupied Andrei in this period,
including considerations of division algebras, which appeared repeatedly in his work
in the 1980s. We mention one beautiful result of Andrei’s concerning unimodular
rows whose proof involved elaborate algebraic arguments.

Theorem 1.2 ([61]). Let m1 , m 2 , . . . , m n be positive integers. Given a unimodular

row (x1, x 2 , . . . , xn) over a commutative ring R , the unimodular row

1 2
m m m1 2 n

n
(x , x , . . . , x )  can  always  be   completed  to  an  invertible  n × n matrix over

R  if and only if the product m 1 m 2  ···  m n  is divisible by  (n − 1)!.

2.  K2  o f  f i e ld s  a n d  t h e  B r a u e r g r o u p

In this section, we discuss Andrei’s role in revealing how important Quillen’s 
foundations for algebraic K-theory [55]proved to be in the study of the Galois  

cohomology of fields. Andrei developed much of this mathematics in the 1980s. The 
remarkable Merkurjev–Suslin theorem (Theorem 2.2) has had a tremendous 
influence on the study of division algebras; it also paved the way for Vladimir 

Voevodsky’s proof of Theorem 5.3, usually referred to as the Bloch–Kato conjecture. 
We begin with the definition of the Grothendieck group K0(R) of an associa- tive, 

unital ring R. This group is the free abelian group generated by isomorphism classes  
[P ]   of  finitely generated  projective left R-modules  P , which  we  denote by

Z{[P ]}, modulo  the  relations  {[P1 ⊕ P 2 ]  =  [P1] + [P2]}. This  construction (ex-
tended to locally free, coherent sheaves on a scheme) was introduced by Alexander
Grothendieck in formulating his Riemann–Roch theorem [9]. Grothendieck’s intro-
duction of K0(R) was soon followed by work of Michael Atiyah and Fritz Hirzeburch
[1], who adapted Grothendieck’s construction to the context of algebraic topology.
Ever since, algebraic geometers have tried to establish fundamental properties for
algebraic K-theory analogous to those established by Atiyah and Hirzebruch for
topological K-theory.

Various important questions in algebraic number theory and the structure of  
algebraic groups  have  formulations  in  terms  of  low degree  algebraic K-theory.  As
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mentioned above, Grothendieck launched the subject with his definition of K0; Bass
[3] extensively considered K1 of a ring, in some sense viewing K1(R) as units R× of R

modulo algebraic homotopies. In his remarkable book [46], John Milnor defined
K2(R) and proved certain exact sequences giving us the sense that a general theory
with good properties lurked amonst these groups.

There is  a natural product map  R× ⊗ R× → K2(R) for  a commutative  ring  R

which can be viewed as the universal symbol,  one  of the many connections   between
algebraic number  theory and  algebraic geometry.   Hideya  Matsumoto  gave  a pre-
sentation of  K2(F ) as a quotient of  F × ⊗ F × [39], which led Milnor to define the

∗Milnor K-theory of  a  field:   K M  (F ) is  defined  to be  the  tensor  algebra  T ∗(F ×)
modulo  the relations { a ⊗ (1 − a) : 0,1 = aƒ

∈ F } ,
M
∗

∗ ×(1) K   (F )  :=  T  (F  ) / {a ⊗ (1 − a) : 0, 1 =ƒ a ∈ F } .

1 n
M
n

The class  of  the tensor  a  ⊗ ···   ⊗ a   in  K   (F ) is  denoted by { 1 na , . . .  , a } .

These developments  encouraged  various mathematicians to formulate K i(R) for
all  i ≥  0.    Quillen  gave  a  definition  of  K∗(R)  in  terms  of  the  Quillen  plus con-

struction  applied  to t tL∞(R)  [54]. Perhaps  to the despair  of  algebraists, Quillen’s

K-groups were defined as the homotopy groups of a topological space; homotopy
groups are notoriously difficult to compute. Quillen followed his plus construction
definition with a more general, more widely applicable definition using what we now
call Quillen’s Q-construction [55]. Very quickly, Andrei recognized the power and
potential of the theoretical tools and many new results that Quillen introduced.

Galois cohomology groups provide a powerful tool in the study of fields, especially
in class field theory, which can be viewed as an early forerunner of algebraic K-
theory. Let ΓF be the absolute Galois group of a field F , i.e., ΓF = Gal(Fsep/F ),
where Fsep is a separable closure of F . Then ΓF acts on the multiplicative group Fs

×
ep

of nonzero elements of Fsep, typically denoted Gm. Thus the cohomology groups

Hd(F, Gm)  := Hd(ΓF ,  Fs
×

ep)

are  defined  for  every d ≥ 0,  and  are  viewed  (following  Grothendieck) as  the étale

cohomology  of  Spec F  with coefficients  in  the associated sheaf  (also denoted Gm),
d d

e tm mH  (F, G  )  c  H  (Spec F, G ).

Theorem  2.1.  Let F  be  a field.

•  H0(F, Gm)  =  F ×.

•  H1(F, Gm)  = 0, Hilbert’s Theorem 90.
•  H2(F, Gm)  = Br(F ), the Brauer group of F .

The vanishing of H1(F, Gm) is “essentially equivalent” to the exactness of the  
sequence

1−σ Norm L / F

1 1 1K  (L) −−−→                K  (L) −−−−−−→    K  (F )

for a cyclic field extension L/F with σ denoting a generator of Gal(L/F ) (frequently
referred to as Hilbert’s Theorem 90 ). This is an early appearance of norm maps in
algebraic K-theory.

The only finite groups isomorphic to ΓF for some field F are the trivial group and
Z/2. Further restrictions on ΓF are implicit in some of the results we proceed to
discuss. Let M be a Galois module over F (i.e., M is a discrete ΓF -module with
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a continuous  action) and  consider  the graded  cohomology ring

∗ ⊗∗

i ≥0

i ⊗ i
H (F, M ) := H (F, M ).

If m  is an integer prime to char(F ) and M  =  μ m is the ΓF -module of mth roots  
of unity in Fsep, then the cohomology ring H∗(F, μ⊗

m
∗) is related to the Milnor ring

∗K M  (F ) of F  via the norm residue homomorphism  defined as follows.  The Kummer
exact sequence  of  Galois modules

×
m sep

m ×
sep

1 → μ → F −→ F → 1

yields a connecting homomorphism  l : F × =  H0(F, Fs
×

ep)  → H1(F, μm).  The cup-
× ⊗n n ⊗n

m
product  in  Galois  cohomology  yields  a homomorphism (F  ) → H (F, μ ) for
every n ≥ 0   sending  the tensor a1 ⊗ ···   ⊗ an to l(a1) ∪ ···   ∪ l(an).  One shows that

this determines the norm residue homomorphism (so named, presumably, because  of  
the Hilbert symbol  taking values  in  the Brauer group)

(2) M M n ⊗n
n n n m

h  : K (F )/ m K (F ) → H (F, μ ).

If F contains a primitive mth root of unity, we have μ m = Z/mZ, so that in this case
H∗(F, μ⊗

m
∗) = H∗(F, Z/m).

Theorem 2.1 suggests that one investigates Br(F ) := H2(F, Gm). Miraculously,
Br(F ) is naturally isomorphic to the group of Brauer equivalence classes of simple F

-algebras with center F with the group operation given by the tensor product over
F . Thus, the Brauer group can be studied by means of the theory of noncommuta-
tive associative algebras and the study of the algebraic geometry of Severi–Brauer
varieties. (The Severi–Brauer variety of a central simple algebra A of dimension n2 is
the variety of right ideals in A of dimension n. It is a twisted form ofthe
projective space Pn−1.) Conversely, simple algebras can be studied with the help of
Galois cohomology.

Let F be a field. A central simple F -algebra (c.s.a.) is an (associative) finite-
dimensional F -algebra with center F and no nontrivial (two-sided) ideals. By
Weddenburn’s theorem, every c.s.a. A over F is isomorphic to the matrix algebra
M r(D) over a unique (up to isomorphism) central division F -algebra D (called the
underlying division algebra of A). Two c.s.a.s A and B over F are Brauer equivalent
if Ms(A) c  M t(B)  for some  s and t, or, which is the same,  the underlying  division

algebra of A and B are isomorphic. The tensor product over F endows the set Br(F )
of equivalence classes of all c.s.a.s over F a group structure called the Brauer group of
F . The Brauer group Br(F ) is an abelian torsion group. Weddenburn’s theorem
establishes a bijection between Br(F ) and the set of isomorphism classes of central
finite-dimensional division F -algebras. Moreover, two c.s.a.s over F are isomorphic if
and only if the classes of A and B in Br(F ) are equal and dim(A) = dim(B).

The first computations one typically encounters include Br(Fq) =  0  for any finite
field  Fq and  Br(R) c  Z/2, generated  by the class  of  the classical  quaternion alge-

bra. Work of Adrian Albert, Richard Brauer, Helmut Hasse, and Emmy Noether
determined Br(F ) for any number field F , showing that every c.s.a. over F is cyclic,
namely constructed as follows.

Let L/F  be a cyclic field  extension  of  degree  m  and  σ a generator of  the Galois
group  and  b  ∈  F ×.  We  introduce  an  F -algebra  structure  on  the m-dimensional

vector space C(L/F, σ, b) over L with basis 1, u, u 2 , . . . ,  um−1 by um =  b and  
(xu i)(yu j)  = xσ i (y)u i + j  with  x, y  ∈  L.  Then  C(L/F, σ, b)  is  a  c.s.a.  over  F of
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dimension m2. An F -algebra isomorphic to C(L/F, σ, b) for some L/F  , σ and b is  
called a cyclic algebra.  If F contains a primitive mth root of unity ξ, then L = F (α)
where α =  a1 /m and σ(α) = ξα for some a ∈ F ×. We write C(a, b)ξ for the algebra

C(L/F, σ, b). This algebra is generated over F by two elements v and u subject to  
the relations vm =  a, um =  b  and vu = ξuv.

Possibly the most well known and most influential work of Andrei’s concerns this
norm residue homomorphism. First, Merkurjev proved that h2 is an isomorphism if
m = 2, answering a long-standing question of Adrian Albert. This work was
much  influenced  by Andrei and  it utilized Andrei’s paper [62].

Here  is  the famous  Merkurjev–Suslin theorem.

Theorem 2.2 ([42]). Let F be a field, let m  be an integer prime to char(F ), and  let ξ 
∈  F  be  a  primitive mth root of unity.  Then the norm residue  homomorphism

(3) h  = h2 F,2
M M 2
2 2 m: K   (F ) / m K   (F )  →  H (F, μ ), {a, b} →› C(a, b)ξ,

is  an  isomorphism,  where H2(F, μm) = Br(F )[m] ⊂ Br(F )  consists  of all

elements of whose exponent divides m .  In particular, the subgroup Br(F )[m] of the  
Brauer group is generated  by  the classes  of cyclic algebras  C(a, b)ξ for a, b ∈ F ×.

We  remark that a tensor product of  two  cyclic algebras is not necessarily  cyclic.
There are  c.s.a.s that are  not  tensor  products of  cyclic algebras  (see [75]).

The idea of the proof of Theorem 2.2 is as follows. Injectivity of h2 is proved by
induction on the number of symbols in the presentation of an element in K2 as a sum
of symbols, using the passage to the function field of a Severi–Brauer variety
splitting a cyclic algebra C(a, b)ξ and hence the symbol {a, b} modulo  m. To prove

surjectivity of  h2, it suffices  to construct a field  extension  F r/F  such that

(1) K2(F r) = mK2(F r) and Br(F r)[m] = 0, so hF t ,m is an isomorphism triv-

ially.
(2) The natural  homomorphism  Coker(hF,m) → Coker(hF t ,m) is injective.

In  fact,  we  may  assume  that m  is  prime  and  ξ  ∈  F .  The property  (1) implies
that every symbol u =  {a, b} with a, b  ∈  F × is  contained in  mK2(F r).  There is a

generic way to make u divisible by m  over a field extension: as in the proof of injec-
tivity, one  passes  to the function field  F (X)  of  the Severi–Brauer  variety X  of the
algebra C(a, b)ξ. The dimension of X  equals m− 1; since m  is assumed to be prime,
(m − 1)! is relatively prime to m  which is useful in applying the Riemann–Roch the-

orem. Quillen’s computation of higher K-theory of X ,  the Brown–Gersten spectral  
sequence  [10], and Grothendieck’s Riemann–Roch  theorem  yield the surjectivity of
Coker(hF,m) → Coker(hF (X ) ,m).

Iterating  this  passage  to  the  function  fields  of  Severi–Brauer  varieties  forvar-
ious  cyclic  algebras,  we  find  a  field  extension  F r/F  satisfying  (2)  and  such that
K2(F r)/mK2(F r) =  0.  Finally, one shows that Br(F r) =  0  and hence (1).

Theorem 2.2 quickly led to various new algebro-geometric results, typically
guided by Andrei. One such development was the following theorem of Andrei’s
(occurring as Theorem 24.8 in the somewhat difficult to access paper [66]). This
theorem partially answered a question of Serre, who asked whether H1(F, t t) = 0 for
every simply connected semi-simple algebraic group t t over a field F of co-
homological  dimension  ≤ 2.   In  other  words,  such  t t  have  no  nontrivial principal

homogeneous  spaces over  F .  This is known  informally as Serre’s Conjecture II.
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Theorem  2.3  ([66]).   Let F  be   a  field of cohomological  dimension ≤ 2.  Then the

reduced  norm  homomorphism  Nrd :  A× →  F × is  surjective  for every  central

simple algebra A  over F of degree n. This implies that Serre’s Conjecture I I  is  valid 

for simply connected  groups  of inner type An−1 .

Andrei proved this theorem by first reducing to the case when n is a prime
number and A is a central simple algebra of degree n. Using calculations of certain K

cohomology and étale cohomology groups of the Severi–Brauer variety of A,
Andrei proved that an element a ∈ F × is in the image of the reduced norm map if
and only if l(a) ∪ [A] = 0   in  H3(F, μ⊗

n  
2), where  [A] is  the class  of  the algebra A in

the subgroup H2(F, μn)  = Br(F )[n] of  the Brauer group of  F .
Some years later, Theorem 2.3 was much improved by Eva Bayer-Fluckiger and

Raman Parimala in [4]. A recent survey of work on Serre’s Conjecture II by Phillipe
Gille is given in [29].

Another outcome of [66]  was progress on the Grothendieck–Serre conjecture  that

etH  (R, tt)1 1
et K→  H  (K, t t   ) is injective for any flat reductive group scheme t t  over a

regular local ring R  with field of fractions K .  In [51], Andrei and Ivan Panin  proved
a special case of this conjecture (for t t = SL1 ,D with D an Azumaya algebra over
R). This was the starting point of the recent proof of the Grothendieck–Serre
Conjecture by Roman Fedorov and Panin in [18].

3.  M i l n o r  K - t h e o r y  ve r sus  a l g e b r a i c K - t h e o r y

∗By Matsumoto’s theorem, Milnor K-theory K M  (F ) of a field F  agrees in degree
M2  with K2(F ).  However,  beginning in degree 3, K i  (F ) can be quite different  from

3K i(F ); for  example, K3(Fq) is  nonzero  for a finite field  Fq, whereas  K M  (Fq) = 0.
Much of Andrei’s work in the 1980s  following the Merkurjev–Suslin theorem  (which

∗concerns  K2(F )) was  dedicated to exploring the relationship between K M  (F ) and
K∗(F ).   In  this  section,  we  review  some  of  Andrei’s  results  obtained  during this

period.
We  define  the  indecomposable  group  K (F )3 nd

M
3

as  the  cokernel  of  K   (F )  →

K3(F ).   Using  the definition  of  K M  (F ) as  an  explicit quotient  of  the tensor  al-
gebra T ∗(F ×), one  can show  that

∗
groups  K2(F ) and K3(F )nd may contain large,

uniquely divisible subgroups that cannot be detected by torsion and cotorsion. On
the other hand, the following theorem of Merkurjev and Suslin determines the tor-
sion and cotorsion of K2(F ), extending Theorem 2.2.

Theorem 3.1 ([44], see also [37]). Let m be an integer prime to char(F ). Then there

is an exact sequence

0 ⊗2
m

0  → H (F, μ ) → K (F )3 nd
m 1 ⊗2

3 nd m
−→ K (F ) → H (F, μ )

m 2 ⊗2
2 2 m

→ K  (F ) −→  K  (F ) → H (F, μ ) → 0.

If p =  char(F ) > 0,  then the group K3(F )nd is uniquely p-divisible.

Theorem 3.1 implies that the group K3(F )nd is never trivial! The theorem is
proved using the analogue of Hilbert’s Theorem 90 for relative K2-groups of ex-
tensions of semilocal principal ideal domains. We remark that the motivic spectral
sequence of Theorem 5.1 (constructed considerably later than the appearance of

3 nd
1
M

Theorem  3.1) yields  an  isomorphism  K (F ) c  H (F, Z(2)).

One  application  of  Theorem  3.1 is  the  computation  that  K3(Q)nd is  a cyclic
group  of  order  n,  where  n is  the  largest  integer  such  that  i2 − 1 is  divisible  by
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with a1, a 2 , . . . , an ∈F ×.

n for  all  i prime  to  n.  This  integer  n equals  24.   One  can  deduce  from  this that
K3(Q) = Z/48Z, a well-known  result of  Ronnie Lee and Robert Szczarba  [35].

Let F be a field of characteristic not 2, and let W (F ) be the Witt ring of F . By
definition, W (F ) is the factor ring of the Grothendieck ring of the category of non-
degenerate quadratic forms over F by the ideal of hyperbolic forms. Write I(F ) for
the fundamental ideal in W (F ) consisting of the classes of even-dimensional forms.
For any n the nth power I(F )n of the fundamental ideal is generated by the classes
of Pfister forms

((a1, a 2 , . . . , an)) = (1, −a1)⊗ (1, −a2) ⊗ ···  ⊗ (1, −an)

The Milnor K-theory of F is related to the Witt ring of F by the homomorphisms

n n n
s  : K   (F )/2K  (F ) → I(F )  / I(F )M M n n + 1

taking a symbol {a1,  a 2 , . . .  , a n }  to the class of the Pfister form  ((a1, a 2 , . . .  , an)).

Milnor conjectured in [47]that sn is always an isomorphism. Another application  of  
Theorem 3.1 is  the verification of  this conjecture of  Milnor  for  n =  3,  provedby

M
3 3

showing that Andrei’s map K  (F )  →  K   (F ) (see Theorem 3.4) is trivial  modulo

2.

Theorem 3.2 ([43], see also [2]). Let F be a field whose characteristic is not 2.  Then 

Milnor’s map

3 3 3
s  : K   (F )/2K   (F )  → I(F )  / I (F )M M 3 4

is an isomorphism.

Here is the impressive theorem of Dimitri Orlov, Alexander Vishik, and Vladimir  
Voevodsky [50] proving  the validity of  Milnor’s  conjecture  for  all n.

Theorem  3.3  ([50]).   Let F  be   a  field  of characteristic not equal  to 2,  let W (F )
denote  the  Witt ring of  equivalence  classes  of  nondegenerate  symmetricquadratic
forms over F ,  and let I(F ) ⊂ W (F ) denote the ideal of even  forms.  ThenMilnor’s

mapping (F ∗)n to I(F )n / I(F )n+ 1 sending (a1 , . . . , an) to ( (a 1 , . . . , an)) induces an

isomorphism from the Milnor K-theory of F to the associated graded ring (with  

respect  to I(F )) of the Witt ring of F ,

M
∗ ∗

∼
s  : K   (F )/2  → gr(W (F )).

Theorem 3.3 is a fairly direct consequence of Voevodsky’s proof of the mod-2  
Bloch–Kato conjecture (see Theorem 5.3) established by Voevodsky in [80] and [81].

∗The relationship  between  the  Milnor  K-theory K M  (F ) and  the  algebraic K-
theory  K∗(F ) of  F  is  of  great  interest.   The next  theorem  of  Andrei’s  gives con-
siderable information about this relationship, showing it is closely related to the  
homological stability for t tLn .

Theorem  3.4  ([61], [65]).  If F  is an infinite field, then

Hn(t tLn(F ))  →∼
Hn(ttL∞(F )),

n nH (t tL (F ))/ im n n−1{ H (t tL (F )) M
n

}  c  K (F ).

Moreover, the natural composition

M
n n n ∞

M
n n n

K   (F ) → K  (F ) → H (ttL  (F ))  c  H ( t tL (F ))  →  K  (F )

is multiplication by  (n −1)!.
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This is a somewhat remarkable result, for Milnor K-theory is defined by genera-
tors and  relations, whereas  K∗(F ) is  defined  as homotopy  groups  of  some infinite-

dimensional  space and thus seemingly very inaccessible to    computations.
One consequence  of  the preceding theorems is another result of   Andrei’s.

3
M
3

Corollary   3.5.   The  image  of  K  (F )  →  K   (F )  coincides  with  the  kernel of
M 3 4 M
3 3

K   (F ) → I(F ) / I(F ) , and  hence  coincides  with 2K (F ) by  the  bijectivity  of

s3.

Using the previous theorem, Andrei together with Yuri Nesterenko proved the
following theorem relating Milnor K-theory to motivic cohomology. As discussed in
Section 4, motivic cohomology was first formulated by Bloch as higher Chow groups

in [8], and it was then reformulated and developed into a powerful theory by Suslin
and Voevodsky. Shortly after the following theorem appeared, a new proof was
given by Burt Totaro [78].

p
MTheorem  3.6  ([49]).  Let F  be  a  field, and let H  (F, Z(q)) denote Bloch’s   higher

Chow group CHq(F, 2q − p) of F . Then

n
MH  (F, Z(n)) M

n
c  K   (F ).

This too is a somewhat surprising theorem, for Milnor K-theory has an explicit,
naive description, whereas motivic cohomology involves sophisticated constructions.

4.  K - t h e o r y  a n d  co ho mo lo gy t h e o r i e s

In this section we discuss two further important theorems of Andrei’s from the
1980s: Theorem 4.1 computes the torsion and cotorsion of the algebraic K-theory in
all degrees of an algebraically closed field, and Theorem 4.2 provides an alter- nate
approach to producing ´etale homology. These theorems are of considerable interest in
their own right. In addition, they introduced important insights for the formulation
of Suslin–Voevodsky motivic cohomology; namely, Suslin rigidity and the
consideration of (Suslin) complexes.

Bĕ ılinson, Bloch, Lichtenbaum, and Souĺ e all contributed to a grand vision of the
role of algebraic K-theory in arithmetic algebraic geometry. Algebraic K-theory
should be some sort of universal cohomology theory with realizations in famil- iar
cohomology theories, it should carry much arithmetic information, it should be
determined by étale cohomology in high degrees, and it should have properties anal-
ogous to those of topological K-theory. These have been codified as the Be˘ılinson

conjectures [5].
In  the early 1970s,  Quillen  and  Lichtenbaum  proposed  a close  relationship be-

tween  algebraic K-theory and étale  cohomology.  Of particular interest  was  K∗(F )
for   a   field F . Quillen   formulated   algebraic   K-theory  so   that  K2 i(Fq)  = 0,

K2 i−1(Fq)  = Z/q i  − 1 for  any  i  >  0    and  any  prime  power  q =  pd;  this  deter-

mines the algebraic K-theory of the algebraic closure of a finite field which has  close  
similarities to the topological K-theory of  a point.

Since an algebraically closed field F appears as a point in the étale topol- ogy,  the 
Quillen–Lichtenbaum  conjecture for  F  predicts  a similar  computation for
K∗(F, Z/n).  Andrei  proved  this  as  stated below.  (When he  announced  this theo-
rem and gave its proof at a meeting in Paris, his mathematical audience vigorously  
applauded.)
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Theorem 4.1 ([63], [64]). Let F be an algebraically closed field, and let n be a  positive 

integer invertible in F .  Then

K2 i(F, Z/n) = Z /n, K2 i+ 1(F, Z /n) = 0, i ≥0.

Andrei’s proof of this theorem proceeded as follows, extending the known compu-
tation of K∗(−, Z/n) for the algebraic closure of Fp to any algebraically closed   field

F of characteristic p. Consider a smooth, connected curve over the algebraically  
closed field  F  with field  of  fractions E =  F (C).  Andrei constructs a specialization
map  K∗(E, Z/n) → K∗(F, Z/n) using  a  local  parameter  at  an  F -rational point

of the curve C. Suslin’s rigidity theorem, which requires properties of the trans- fer  
map  for  algebraic  K-theory  and  the  divisibility  of  Pic0(C),  tells  us  that this
specialization  map  is  independent  of  the  point  c  ∈  C.  This  leads  quickly  to the

statement that if X  =  Spec A  is a smooth, connected variety over  F  and x,  xr are
F -rational points of  X ,  then the two induced maps  K∗(A, Z/n) → K∗(F, Z/n) are

equal.  Andrei’s proof that K∗(F, Z/n) →∼
K∗(L, Z/n) is  completed  using  a “trick”

to  base  change  from  F  to  L and  comparing  maps  induced  by  A  → F  → L and
A  ⊂ frac(A) ⊂L.

Subsequently, Andrei verified in [64] the conjecture for algebraically closed   fields
of  characteristic 0   using  an argument of  Ofer Gabber.

As Suslin first observed, and various other mathematicians have employed, this
technique of Suslin rigidity applies to various other cohomology theories and K-
theories, applies with the base field F replaced by a smooth scheme over F , and
even  applies  with smoothness  dropped  if  K∗(−, Z/n) is  replaced  by K r  (−, Z/n).

∗  
prowess,This proof typifies both Andrei’s originality and his considerable algebraic  

motivated by geometric insight.
In  1987,  Andrei introduced  the Suslin  complex  Sus∗(X) associated  to a variety

X  over a field F :

∗
n

∞

d= 0

d +Sus  (X)   =   n ›→ Hom(Δ , ( S  (X)) ).

Here,  S d(X)  is  the  d-fold  symmetric  product  of  X ,  the  quotient  of  X × d  by the
n

d 0 nsymmetric  group  Σ ; Δ := Spec k[t , . . .  , t ]/(
Σ n

i = 0 t i  =  1)  is  the  algebraic n-
simplex over k; Hom(−, −) in this formula designates morphisms of varieties over F .

Motivation for this definition comes from the Dold–Thom theorem [14] in   algebraic
topology,  which  asserts  that the homotopy  groups  of  the simplicial  abelian group
Sing(

∞

d= 0
d +S  (T ))   )  can  be  naturally  identified  with  the  integral  homology  of a

CW complex  T .  One  might  not expect this definition  to be useful  because   many
varieties X  admit few maps from affine spaces; Andrei’s insight was that  symmetric
powers  of  a variety X  do admit many  maps  from  the affine  space Δd c Ad.

Using  this  definition,  Suslin  and  Voevodsky  proved  the  following   remarkable
theorem. In some sense, they achieved a primary goal of Grothendieck for étale
cohomology using Andrei’s “naive” Suslin complex. They also prove a similar
statement for varieties over an algebraic closed field of characteristic p > 0 provided
that p does not divide n. Their proof uses Suslin rigidity and various Grothendieck
topologies introduced by Voevodsky.

Theorem 4.2 ([73]). If X is a quasi-projective variety over C, then the natural map

πi(Sus∗(X), Z/n)  → H i(X(C)an , Z/n), i ≥0,

is an isomorphism.
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For the understanding of the algebraic K-theory of a scheme X which is “not
equivalent to a point” in the étale topology, one must incorporate more information
about X . This was made clear by Grothendieck at the inception of K-theory. A fun-
damental theorem of Grothendieck [9] (a consequence of Grothendieck’s Riemann–
Roch theorem) asserts that the Chern character

(4) ch∗ : K0 (X)  ⊗ Q  → CH∗(X) ⊗ Q

is a ring isomorphism for any smooth, connected algebraic variety X over a field F ,
where CH i(X) denotes the Chow group of rational equivalence classes of algebraic
cycles on X of codimension i. These Chow groups are not simply étale cohomology
groups.

A difficult theorem of Robert Thomason [77] established a convergent spectral
sequence whose E2-page involved the étale cohomology of a smooth variety with Z/n-
coefficients and which converged to K∗(X, Z/n)[1/β], the localization of al-
gebraic  K-theory  obtained  by  inverting  the  Bott element  β ∈  K2 (X,  Z/n). Étale

K-theory, formulated by Dwyer and Friedlander [16], provided the abutment for a
spectral sequence whose E2-term was étale cohomology. Nevertheless, it became
clear that one required a more elaborate cohomology theory than étale cohomology
to “approximate” algebraic K-theory. Be ı̆linson’s conjectures encompassed the ex-
istence of a well-behaved cohomology theory involving complexes of sheaves which
could serve as a suitable refinement of étale cohomology and which would relate to
algebraic K-theory through a motivic spectral sequence.

In   [8], Bloch  formulated  bigraded  higher  Chow  groups   which   are  related  to
i

K∗(X).   For  each  n ≥  0,   Bloch  introduced  CH (X, n),  defined  in  terms  of  the
nth homology group of the complex of codimension i cycles on X  × Δ∗. Rationally,

CH i(X, n) is the ith weighted piece of Kn(X);  more generally, Bloch anticipated a 
spectral sequence relating his higher Chow groups to algebraic K-groups. Bloch’s 

higher Chow groups proved to be a major step towards realizing Be ı̆linson’s vision. 
Since groups of equivalence classes of algebraic cycles are so closely related to 

algebraic K-groups, we briefly outline Grothendieck’s proof (see (4)) that the Chern
character ch∗  of  (4) is  an isomorphism.

For  a scheme  X ,  write K∗(X) for  the K-groups of  the exact category of   vector
bundles  over  X .  This is  a  graded  ring  cohomology  theory,  contravariant  in  X . If

∗X  is  Noetherian, we  define  K r  (X)  as  the K-groups of  the abelian categoryM ( X )

∗of  coherent  OX  -modules.     The  assignment  X  ›→  K r  (X)  is  a  homology theory,

covariant with respect to proper morphisms.  For any i ≥ 0,  let M ( X ) ( i )  be the  full
subcategory of  M ( X )  consisting  of  all OX  -modules  with codimension  of  support

at least  i.  The images  K r  (X) ( i )  of  the  natural  homomorphisms  K∗(M(X) ( i )) →

∗ fi ∗K r  (X)  form a topological 
∗   

ltration on  K r (X).

Assume  now  that  X  is  a  regular  scheme.     Then  the  natural  homomorphism

∗K∗(X) → K r  (X)  is an isomorphism.  Thus, K∗(X) is a graded ring together   with
( i )

∗ ∗
r ( i )the topological filtration by the ideals    K (X) := K (X) with the subsequent

factor groups  K∗(X) ( i / i + 1 ) .   There is  a well-defined  surjective  graded  ring  homo-
morphism

ϕ∗ : CH∗(X) → K0(X) (∗ /∗+1)

taking   a   class   [Z]   of   a   codimension   i  closed   subvariety   Z  ⊂  X  to  [OZ ] in

K0 (X) ( i / i + 1 ) ,  the class  of  the structure sheaf  of Z .
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In order to construct homomorphisms in the opposite direction, Grothendieck  
constructed Chern classes:

i
c i  : K0 (X)  → CH (X) , i ≥0.

These  are  maps  (not  necessarily  homomorphisms),  functorial  in  X .  The class   c0
0

sends  all  of  K0 (X)  to 1 ∈  CH  (X). The map  c1 takes  the class  of a vector bundle
1

E over  X  to  det(E)  ∈ Pic(X)  = CH  (X).  These  properties  together  with the

nWhitney  sum  formula  c  (a +  b) = 
Σ

i + j = n i jc (a)c  (b)  and  the  splitting principle

uniquely  determine  the  Chern  classes.    For  every  i  >  0,   the  restriction  of  c i to
K∗(X) ( i )  is a group homomorphism  trivial on K∗(X) ( i+1) .  Hence, c i  yields a  group
homomorphism

ψ i  : K 0 (X ) ( i / i + 1 )  → CH i(X).

Grothendieck’s Riemann–Roch theorem implies that both compositions ϕ i  ◦ψ i and
ψ i  ◦ ϕ i  are  multiplication  by (−1) i−1(i − 1)!.  For  certain classes  of  varieties  (for
example for  Severi–Brauer  varieties of  dimension  l − 1, l prime,  used  in  the proof

of  Theorem  2.2) ϕ∗  is  an  isomorphism,  so  that  computations  of  the  topological
filtrations on the Grothendieck group K0 (X )  are particularly useful for the study  of  
the Chow ring CH∗(X).

Chern classes with values in the Chow groups are a special case of more gen- eral
constructions of Chern classes with values in an arbitrary oriented generalized
cohomology theory. The Chern classes can also be extended to higher K-groups
K∗(X) with  values  in  certain  groups  of  étale   cohomology  (see  [58] and  [30])    or

motivic cohomology  (see  [31] and [52]).

5.  Mot iv ic  cohomology a nd  K - t h e o r i e s

In the 1990s, Andrei enabled many of the foundational results for Suslin–

Voevodsky   motivic  cohomology   [40],   whose   origins   can  be  traced  to  the Suslin
complex  Sus∗(X) and Suslin  rigidity discussed  in  the previous  section.  As  shown
by Andrei in  Theorem 5.4 below, Bloch’s higher  Chow groups  CH∗(X, ∗)        (further

studied by Levine; see [38]) often agree with Suslin–Voevodsky motivic cohomol- ogy
HM

∗(X, Z). In contrast with Bloch’s higher Chow groups, Suslin–Voevodsky motivic
cohomology is more amenable to arguments using functoriality and local behavior;
moreover, HM

∗ (X, Z) fits into the general framework of A1-homotopy theory of
Fabien Morel and Voevodsky [48], enabling Voevodsky to prove many of the
conjectures (now theorems) we have discussed: Milnor’s conjecture, the Quillen–
Lichtenbaum conjecture, the Be˘ılinson–Lichtenbaum conjectures, and the Bloch–
Kato conjecture.

In this section we discuss numerous foundational results for motivic cohomology
proved by Andrei. We also return to the norm residue homomorphism, briefly
discussing Voevodsky’s dramatic results.

Voevodsky introduced important innovations into the study of algebraic varieties,
continuing the historical development of the subject following work of Grothendieck.
The first was to enlarge the set of morphisms from X to Y to include finite cor-

respondences from X to Y . Another innovation was to focus on presheaves φ on the
category of smooth varieties and finite correspondences which are homotopy
invariant: the projection X  × A1 → X  induces an isomorphism φ(X) →∼

φ(X ×A1)

for any smooth variety X .  Yet another innovation was Voevodsky’s introduction of  
new  Grothendieck  topologies,  especially the Nisnevich topology.
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The graph  of  a  morphism  X  → Y  of  varieties  over  F  can  be  viewed  as  a cor-
respondence  (a  cycle  on  X  × Y )  that  projects  isomorphically  onto  X .   A finite

correspondence  from  some  smooth,  connected X  to Y  is  a cycle α on  X  × Y such

that every prime component of α is finite and surjective over X . For example, if Y is
also irreducible, then a finite, surjective morphism from Y to X can be viewed as a
finite correspondence from X to Y . We have the category Cor(F ) of finite
correspondences: the objects are smooth varieties over F and morphisms from X to
Y are finite correspondences from X to Y . A presheaf of abelian groups with
transfers is a contravariant functor A from Cor(F ) to abelian groups. Thus, if A is
a presheaf  with transfers,  then a finite,  surjective morphism  Y  → X  with Y   irre-
ducible is equipped with a transfer (norm) homomorphism A(Y ) → A(X). The role

of Suslin rigidity arises in establishing the homotopy invariance of cohomological  
complexes  associated  to presheaves  with transfers.

There  are  motivic complexes  of  ́ etale   sheaves  with  transfers  Z(q)  for  q  ≥ 0. In

fact, Z(0) and Z(1) are quasi-isomorphic to the sheaves Z and Gm placed in degree 0
and 1, respectively. One defines the motivic and ´etale motivic cohomology groups of
a smooth variety X with coefficients in an abelian group A by

p p p p
M Zar et e t

H  (X, A(q)) := H (X, A ⊗ Z(q)), H (X, A(q)) := H (X, A  ⊗ Z(q)).

The formulation of motivic cohomology by Suslin and Voevodsky led to much
progress on conjectures made a decade earlier by Be ı̆linson, Bloch, Lichtenbaum, and
Souĺ e. For example, the following theorem provides the analogue for algebraic K-
theory of the Atiyah–Hirzeburch spectral sequence for topological K-theory. Al-
though many mathematicians contributed to the proof of this result, Andrei did
most of the “heavy lifting.”

Theorem 5.1 ([68], [27]). Let X  be a smooth quasi-projective variety over a field.  

Then there is a  strongly convergent  spectral sequence

(5)
p,q p−q

2 M
E = H (X, Z(−q))  ⇒ K −p−q(X ).

One sees more clearly the interplay between Milnor K-theory and algebraic K-
theory  with  the  help  of  motivic  cohomology  (and  the  above  spectral   sequence;

Msee  Theorem  3.6). We  start with  the  observation  that H 1  (F, Z(1)) =  Gm(F ) = 
F ×. The  product  in  motivic  cohomology  yields  a  homomorphism   (F ×)⊗p  →

p
M 1 p i jH  (F, Z(p)).   The  image  of  a  tensor  a   ⊗ ···     ⊗ a   is  trivial  if  a  +  a   = 1 for

some  i ƒ= j .   Hence  we  get  a  homomorphism K M
p

p
M

(F ) → H  (F, Z(p)) which  is an

isomorphism by Theorem 3.6. The norm maps for Milnor K-groups correspond to the
norm maps in motivic cohomology created by the structure of presheaves with
transfers.

There is  a natural homomorphism

p p
M et

H  (X, Z(q))  →  H  (X, Z(q)).

The integral Be˘ılinson–Lichtenbaum conjecture  asserts that this is an  isomorphism
when  p ≤ q  and  a monomorphism  when  p =  q +  1.  Replacing  Z(q) by  Z/A(q) for

some prime A, we obtain the mod-A Be ı̆linson–Lichtenbaum conjecture which has an
equivalent formulation (used in the statement of Theorem 5.2) asserting that for
every prime A the natural homomorphism

p p ⊗q

M et A
H   (X , Z/A(q)) → H (X , μ )
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is an isomorphism if p ≤ q  and a monomorphism  if p =  q +  1.  The mod-ABĕ ılinson–

Lichtenbaum conjecture is now a theorem proved by Voevodsky (see Theorems 5.2 
and 5.3).

The mod-A  Bloch–Kato conjecture asserts  that the norm  residue homomorphsm

n nh  : K   (F )/AM n ⊗n
A

→ H (F, μ )

is an isomorphism for all n, provided A is invertible in the field F . We state an
important theorem of Suslin and Voevodsky which closely links this conjecture to
the Be˘ılinson-Lichtenbaum conjecture. The paper [74] not only gives a carefully
written, well organized presentation of the proof of this important link, but it also
presents details of various key results of Voevodsky.

Theorem 5.2 ([74]). Let F be a field, and let Abe a prime invertible in F . Then the

following assertions are equivalent for any smooth, quasi-projective variety X over

F :

(1) The mod-l Bloch–Kato conjecture for F in weight n asserts that the norm  

residue homomorphsm

h  : K   (F )/AM n ⊗n
A

→  H (F, μ )n n

is an isomorphism;
(2)  The  mod-l Be ı̆linson–Lichtenbaum  conjecture in weights q  ≤ n asserts that

p p ⊗q q+ 1
M et A M

H (X, Z/A(q))   c  H (X, μ ),  p ≤ q; H (X, Z/A(q)) ‹ q+ 1 ⊗q
et A

→  H (X , μ ).

We remark that the mod-A Bloch–Kato conjecture is essentially the diagonal
portion of the mod-A Be˘ılinson–Lichtenbaum conjecture, yet the inductive argument
for the mod-A Bloch–Kato conjecture requires the verification of earlier nondiagonal
cases of the mod-A Be ı̆linson–Lichtenbaum conjecture. The Be˘ılinson–Lichtenbaum
conjecture admits a precise formulation in terms of truncations of complexes; with
this formulation, the conjecture is a statement that a certain map of complexes is a
quasi-isomorphism.

With considerable input from Andrei, Markus Rost, Charles Weibel and others,
Voevodsky proved the following spectacular result, the mod-A Bloch–Kato con-
jecture. Theorem 5.3 partially realizes the vision of Be ı̆linson, closely related to
conjectures of Bloch, Lichtenbaum, and Souĺ e, a vision which has served as a tem-
plate for much of the work on motivic cohomology. A detailed exposition of the proof
of this theorem is given in the book [32] by Christian Haesemeyer and Weibel.

Theorem 5.3 ([82]). Let F be a field, and let A be a prime invertible in F . For all
n ≥0,

M n ⊗n
n A

K    (F )/A c H (F, μ ).

Consequently, for any smooth variety over  F ,

p p ⊗qH (X, Z/A(q))   c  H (X, μ ),  p ≤ q+ 1
M et A Mq; H (X, Z/A(q)) ‹

q+ 1 ⊗q
et A

→  H (X , μ ).

1 2

Voevodsky proves Theorem 5.3 with an argument which proceeds by induction on
n. A significant component of Voevodsky’s proof of Theorem 5.3 is the existence and
properties of suitable splitting varieties for symbols in Milnor K-groups of F . This
is foreshadowed by the role of the Severi–Brauer variety for a symbol

M
2

α =  {a , a  }∈  K   (F ) appearing in the proof of  Theorem 2.2.
The existence of norm varieties (generic splitting varieties of dimension An−1 − 1)

for  an  arbitrary  symbol  α  = { M
1 2 n n

a , a , . . .  , a  }  ∈ K   (F )  modulo  A          was proved
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by Markus Rost. In a series of clear, detailed lectures (notes of which by Seva 
Joukhovitski served as the basis for [72]), Andrei established the basic properties of 
these norm varieties needed for Voevodsky’s proof. The proofs Andrei gives follow 

Rost’s unpublished results, notably Rost’s degree formula and Rost’s chain lemma. 
Let X  be  a  norm  variety  of  an  n-symbol  α modulo  A.    Consider  the simplicial

scheme  X  with  Xn =  X n + 1  whose  face  maps  are  given  by  various  projections.
The motive  of  X is  independent  of  the choice  of  the norm  variety of  α modulo  A.

n + 1
M

Voevodsky  proved  triviality  of  the  motivic  cohomologygroup H (X , Z(n)); he

then  used  this vanishing  to deduce  the validity of  the Bloch–Kato conjecture.
Somewhat surprisingly, the triviality of  Hn + 1 (X , Z(n)) (together with the tools

used in Voevodsky’s proof) yields a computation of the motivic cohomology   groups
i
M

H  (X , Z(j)) for all i and j  (see [45] and   [84]).

The following theorem of Andrei’s makes explicit the close relationship of Bloch’s
higher Chow groups  and  Suslin–Voevodsky  motivic cohomology.

Theorem 5.4  ([67]).  Let X  be  an equidimensional quasi-projective scheme over an
algebraically closed  field F  of characteristic 0.  Assume  that i ≥ d := dim X . Then

(6) CH (X, n; Z/A)  = Hi 2(d− i ) + n
c

#(X, Z/A(d − i)) ;

in other words,  the  mod-A  bigraded  higher Chow  groups  of Bloch  equal  the mod-A

Suslin–Voevodsky  bigraded  motivic cohomology  groups  with compactsupports.

Andrei’s last published paper extended results of Suslin–Voevodsky motivic co-
homology for smooth varieties over a perfect field F of characteristic p > 0 by
showing how to avoid the assumption that F is perfect. Andrei proves that one can
simply base change to the separable closure F∞ of F and apply the existing theory
for  varieties over  F∞.  Step by step,  Andrei verifies  that the theory developed    by
Suslin and Voevodsky applies without the assumption that F be perfect, provided
that one considers presheaves with transfers of Z[1/p]-modules. His primary goal is
to prove that every homotopy sheaf with transfers of Z[1/p]-modules is strictly
homotopy invariant, a key result for the Suslin–Voevodsky theory.

We state Andrei’s final theorem in his final paper, giving the flavor of the mathe-
matics involved. For those who wish precision, we mention that DMp

−(F ) appearing

in the statement of Theorem 5.5 is the full subcategory of the derived category of
bounded above complexes of Nisnevich sheaves with transfers of Z[1/p]-modules
consisting of those complexes whose cohomology sheaves are homotopy invariant.

.

Theorem 5.5 ([69]). Let E / F be an arbitrary field extension, and consider an
arbitrary A• ∈  DMp

−(F ).  For  any  smooth  scheme  X  over  F ,  there  is  a natural

isomorphism
Hom(Mp(X), A•)E c  Hom(Mp(XE), A•

E),

where the left-hand side is the base change to E of the internal Hom of DMp
−(F ),  and 

the right-hand side is the internal Hom  of  DMp
−(E).

It is interesting to observe that during the development of Suslin–Voevodsky
motivic cohomology there was a parallel development of semitopological theories

initiated by H. Blaine Lawson in [34] and continued in various papers by numerous
authors. We point out the formulation of morphic cohomology by Friedlander and
Lawson in [21] and the work of Friedlander and Mark Walker in [28]. In a paper by
Friedlander, Haesemeyer, and Walker [20] an interesting conjecture by Andrei was
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stated and investigated with the aim of relating morphic cohomology and singular
cohomology of complex algebraic varieties in the spirit of the Bloch–Lichtenbaum
conjecture. This conjecture is related to many classical conjectures. One result
concerning such relationships is given by Be ı̆linson [7].

6.  M o d u l a r  r e p r e s e n t a t i o n t h e o r y

This mathematical subject is one that attracted Andrei’s attention late in his
career, but its appeal to him is natural. Andrei gave qualitative information about
the (Hochschild) cohomology of finite group schemes over a field k of characteristic p

> 0, extending known results for finite groups, and he investigated the actions of
these finite group schemes on finite-dimensional vector spaces over k (in other words,
modular representations). On the one hand, Andrei answered general struc- tural
questions by developing new tools and by extending known techniques in a highly
nontrivial manner. On the other hand, Andrei’s algebraic insights provided
computations and examples that were previously inaccessible.

Andrei’s most cited paper, joint with Friedlander, proves the following theorem.
This is a generalization of a classical theorem of Leonard Evens [17] and Boris
Venkov [79].

Theorem 6.1 ([26]). Let t t be a finite group scheme over a field k. Then H∗(tt, k)

is a finitely generated algebra over k.

Moreover, if M is a tt-module finite-dimensional over k, then H∗(tt, M ) is a

finitely generated module over H∗(tt, k).

This is a first suggestion that one can find a common context for finite groups, re-
stricted enveloping algebras of finite-dimensional restricted Lie algebras, and other
finite group schemes. The outline of proof for this theorem has been used in other
contexts (for example, in the recent paper by Friedlander and Cris Negron [22]). At
its heart, it requires a proof of the existence of certain cohomology classes which can
serve as generators. The existence proof of Theorem [26] explicitly constructs these
classes (in high degree) using extensions in the category of strict polynomial functors
(which are not actually functors).

These strict polynomial functors have led to numerous explicit calculations of Ext
groups by Andrei and others (e.g., [19]). Furthermore, Antoine Touzé and
Wilberd van der Kallen in [76] used this technology to prove that the subalgebra of
tt-invariants of H∗(tt, A) is finitely generated, where t t is a reductive group over a

field and A is a finitely generated tt-algebra; this extends the classical result that
the algebra of tt-invariants H0(t t , A) of A is finitely generated. As another example,
Christopher Drupeiski in [15] extended the arguments of the above theorem in order
to prove its generalization to finite supergroup schemes.

Theorem 6.1 is the foundational result enabling a theory of supports for represen-
tations of finite group schemes, providing a geometric interpretation of cohomologi-
cal invariants for such representations. Among the most geometric and informative
results in this theory of supports are those proved in two papers by Suslin, Fried-
lander, and Christopher Bendel [70], [71] concerning infinitesimal groups schemes.
The following theorem states central results of these two papers.

We remind the reader that an infinitesimal group scheme H over k is an affine
group scheme represented by a finitely dimensional, local k-algebra k[tt] (so that
k[tt] is equipped with the structure of a Hopf algebra over k). An important
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example of infinitesimal group schemes is the rth Frobenius kernel of the addi- tive  
group  Ga  for  some  r  > 0,   usually  denoted  Ga(r).   The  coordinate algebra

r

k[G ]   equals  k[T ]/tp  with  dual algebra kG := (k[Ga(r ) a(r ) a( r ) ])# isomorphic to

0 r −1 i

r

k[u , . . . , u ]/(up ).

Theorem  6.2  ([70], [71]).  Let  t t  be   a  connected  affine group  scheme  over  afield

k of positive  characteristic,  and  let r be   a  positive integer.  Then the    morphisms
Ga(r)  → t t  of group  schemes  over k (i.e., the  height r, one-parameter subgroups of

tt) are the k-points of an affine scheme   Vr(tt).

There is a  natural map of finitely generated  commutative k-algebras

ψ : k[Vr(tt)]  →  H∗(tt (r ), k)

which induces  a  homeomorphism  on prime ideal spectra.

Theorem 6.2 is reminiscent of Quillen’s description of the spectrum of the coho-
mology of a finite group in [53]; in the special case r = 1, this recovers a theorem of
Friedlander and Brian Parshall [23] and eliminates the condition on the prime p

required in that earlier paper.
Andrei’s computational power is clearly evident in [70] and [71], which provide a

qualitative description of the cohomology of infinitesimal group schemes. The
arguments required to prove the various results of Theorem 6.2 involve questions
already considered for t t a finite group (detection of cohomology classes modulo
nilpotents, characteristic classes) but formulated now in the more general context of
group schemes. Computations with characteristic classes become elaborate, but
fortunately one does not always need these computations in closed form. One can see
the origins of the theory produced in the foundational work of Jon Carlson for rank

varieties for elementary abelian groups [11] and of Friedlander and Parshall
[23] for restricted Lie algebras.

Considering the example of t t = t tLN gives a flavor of the information provided
by Theorem 6.2. The scheme V r(t tLN ) is the scheme of r-tuples (B 0 , . . . ,B r−1)
of  pairwise  commuting,  p-nilpotent  N  × N  matrices.  Consequently,  k[V r(ttLN ]is
generated by elements  {X i , j(A) :   1 ≤ i, j  ≤ N, 0  < r }  with explicit relations given

by the conditions  that the B i ’s are  p-nilpotent  and  pairwise commuting.
The two papers [70] and [71] also provided a geometric interpretation of (co-

homological) support varieties of finite-dimensional modules for an infinitesimal
group scheme tt. Namely, the support of M is given as the closed subscheme of
one-parameter  subgroups  ψ  :   G(r)   → t t  such  that  ψ∗(M )  has  an  explicit non-

projectivity property. One surprising aspect of these results is that no condition is  
placed on  p, the residue  characteristic of  the ground  field k.

These papers led to the formulation of π-points of finite group schemes  by  Fried-
lander and Julia Pevtsova [24] which further extended certain aspects of the repre-
sentation theory of  finite  groups  to all arbitrary finite  group schemes.

In the next theorem, Andrei (together with Friedlander and Pevtsova) introduced
refined invariants of tt-modules, new even for finite groups. These invariants involve  
Jordan types, the decomposition  of  a p-nilpotent operator into blocks of  sizes   ≤ p.

Theorem 6.3  ([25]).  Let t t  be  a finite group scheme, let M  be  a  finite-dimensional
tt-module, and let x  ∈  Proj H∗(tt, k) correspond  to a  minimal homogeneous prime

ideal  of H∗(tt, k). Then  this  data  naturally  determines  a  natural  partition of
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m := dim(M),
pΣ

i = 1

im = a  ·i, a i  ≥0.

This partition arises from the Jordan type of any representative of the p-nilpotent  
action of t t  on M  at the generic point x  ∈  Proj H∗(tt, k).

The proof of this theorem is subtle, further evidence of Andrei’s ingenious in-
sights. Among other consequences, this theorem led to the interesting class of
modules of constant Jordan type introduced by Carlson, Friedlander, and Pevtsova in
[12]. The essential step of the proof is the following observation of Andrei’s
concerning  Jordan  types of  commuting  nilpotent elements  α, β ∈  t tLN  (F ) for an

infinite  field  F  and  a positive integer  N  :   the Jordan  type of  α is  greater than or
equal  to the  Jordan  type of  α +  tβ for  all  t  ∈  β if  and  only  if  the  kernel  of  α is

Σ
contained in μ∈F ∗Ker(α + μβ).

We  mention  one  further  paper  on  modular  representation  theory  that Andrei
wrote with Carlson and Friedlander [13]. The title of the paper, “Modules for  Z/p×

Z/p”, is probably surprising to those unfamiliar with the complexities of modular  
representations.  For p > 2, the category of finite-dimensional representations on   k-
vector spaces (with char(k) = p) for the finite group Z/p×Z/p is wild, which implies

that this category contains as a full subcategory the category of representations of
every finite-dimensional k-algebra. The paper [13] investigated various special
classes of Z/p × Z/p-modules, providing a wealth of details.
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