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0. Introduction

Andrei Suslin (1950—2018) was both friend and mentor to us. This article dis-
cusses some of his many mathematical achievements, focusing on the role he played
in shaping aspects of algebra and algebraic geometry. We mention some of the many
important results Andrei proved in his career, proceeding more or less chronolog-
ically beginning with Serre’s Conjecture proved by Andrei in 1976 (and simul-
taneously by Daniel Quillen). As the reader will quickly ascertain, this article does
not do justice to the many mathematicians who contributed to algebraic K- theory
and related subjects in recent decades. In particular, work of Hyman Bass,
Alexander Be“1linson, Spencer Bloch, Alexander Grothendieck, Daniel Quillen, Jean-
Pierre Serre, and Christophe Soul'e strongly influenced Andrei’s mathematics and
the mathematical developments we discuss. Many important aspects of algebraic K-
theory (e.g., the study of manifolds using surgery and the study of operator al-
gebras) are not mentioned here; such topics are well addressed in various books on
algebraic K-theory such as that of Charles Weibel [83].

In discussing Andrei’s mathematics, we hope the reader will get some sense of the
sweep and evolution of algebraic K-theory in the past 50 years. Andrei was deeply
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2 ERIC M. FRIEDLANDER AND ALEXANDER S. MERKURIJEV

involved in both the formulation and the solution of many of the most important
questions in algebraic K-theory. His own evolution from a “pure algebraist” led to a
partnership with Vladimir Voevodsky in building the edifice of motivic cohomology.
The close relationship of arithmetic algebraic geometry to algebraic K-theory, seen
frequently in Andrei’s work, has contributed much to the development of algebraic
K-theory which is situated at the interface of algebra, algebraic geometry, number
theory, homotopy theory, and K-theory.

Towards the end of his career Andrei made important contributions to the mod-
ular representation theory of finite group schemes. This represented something of a
return by Andrei to more algebraic questions, though still reflecting his engagement
in K-theory and algebraic geometry.

Andrei was primarily a problem solver, a mathematician confident that clearly
formulated questions could be answered by “direct, imaginative attack”. Time and
again, Andrei introduced new techniques and structures in order to solve challeng-
ing problems. Although he did not incline to “theory building”, he has left us
considerable theory with which to continue his efforts. For many years, Andrei’s
clear, precise, careful approach to fundamental questions placed him as the “final
judge” of many current efforts at the interface of algebraic geometry and K-theory.
Andrei freely shared his ideas, gave brilliantly clear lectures, and encouraged the
work of others. Many of us felt that while stepping to the edge of this new
mathematics, we needed Andrei’s guidance and confirmation of validity. Hisdeath
is a great loss to us personally as well as to our mathematical world.

1. Projective modules

The early period of K-theory was led by Richard Swan and Hyman Bass, be-
ginning in the late 1950s. Much of this early work was very algebraic, though
motivation from topology and functional analysis played an important role. There

was experimentation of definitions of higher K-theory, questions of stability for
such groupsas E,(R) C ttL,(R), and much discussion about projective modules.

We recall that if R is an associative, unital ring and M is a (left) R-module,
then a (finitely generated) projective R-module P is a summand of afree module
R®N ;in other words, there is some R-module O and an isomorphism of R-modules
ReN C P@Q.

Andrei began his independent research as an undergraduate, solving special cases
of Serre’s problem which asks whether every finite generated projective module P
over a polynomial ring F [x1,... , x,] over a field F is free [57], following Serre’s
earlier proof that any such projective module is stably free (see [3]). Andrei, working
in relative isolation, first verified (in the affirmative) cases known to experts and
then, while still an undergraduate, verified new cases. In 1976, Andrei and Daniel
Quillen independently and essentially simultaneously proved the following theorem,
at the time the most famous problem of commutative algebra.

Theorem 1.1 ([56], [59]). Let S bea finitely generated polynomial algebra over a field
F, sothatS = F [x1,... , xq] for some d. Then every finitely generated projective S-
module P (i.e., any direct summand P of some free S-module M ) is a free S-module.

Andrei’s proof of Theorem 1.1 proceeds by induction on d. Thanks to the stable
freeness of projective S-modules proved earlier by Serre, it suffices to prove the
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cancellation property for a finitely generated projective S-module: given an iso-

morphism P & S ¢ S®” forsome n > 0, then P is isomorphic to S®”~!. Andrei

observes that this is equivalent to proving that the group #zL,(S) acts transitively
on the set of unimodular rows Ump(S) of length n, where a row is unimodular if its
entries generate S as an S-module.

The key step in Andrei’s proof is the following elementary algebraic fact designed
for his goal: Let R be a commutative ring, and set f = (f1, f2) € R[£]®? (not
necessarily unimodular). Let c €R N(f1R[¢]+ f2R[¢]). Then forany commutative
R-algebra 4 and a, a" €4 suchthat a = a" modulo c4, wehave that /' (a) and /' (a")
are conjugate by an element of ¢¢L,(4). This is a remarkable piece of ingenuity!

As seen especially in Quillen’s proof, Serre’s problem can be usefully considered as
a question of extendability : under what conditions can one say that a projective
module for R[x] arises by extension from a projective module for R? Quillen’s proof
relied on earlier work of Geoffrey Horrocks [33] and was somewhat more geometric in
nature than Andrei’s. Andrei preferred Quillen’s approach, and this might have led
him into more geometric considerations of algebraic problems.

During the 1970s, Andreirefined and extended the above theorem with many
other cancellation results (see, for example, [60]). These studies appeared to have led
Andrei to consider other aspects of algebraic groups, in particular related ques- tions
of algebraic K-theory. Other algebraic constructions occupied Andrei in this period,
including considerations of division algebras, which appeared repeatedly in his work
in the 1980s. We mention one beautiful result of Andrei’s concerning unimodular
rows whose proof involved elaborate algebraic arguments.

Theorem 1.2 ([61]). Let m\, m2,... , mp be positive integers. Given a unimodular
row (xi, x2,... ,xp) over a commutative ring R, the unimodular row
(x{1, x72,...,xMn) can always be completed to an invertible n X n matrix over

R if and only if the productmm, ---mp is divisible by (n — 1)!.

2. K; of fields and the Brauer group

In this section, we discuss Andrei’s role in revealing how important Quillen’s
foundations for algebraic K-theory [55] proved to be in the study of the Galois
cohomology of fields. Andrei developed much of this mathematics in the 1980s. The
remarkable Merkurjev—Suslin theorem (Theorem 2.2) has had a tremendous
influence on the study of division algebras; it also paved the way for Vladimir
Voevodsky’s proof of Theorem 5.3, usually referred to as the Bloch—Kato conjecture.
We begin with the definition of the Grothendieck group K((R) of an associa- tive,
unital ring R. This group is the free abelian group generated by isomorphism classes
[P] of finitely generated projective left R-modules P , which we denote by
Z{[P 1}, modulo the relations {[P; & P>] = [P1] +[P.]}. This construction (ex-
tended to locally free, coherent sheaves on a scheme) was introduced by Alexander
Grothendieck in formulating his Riemann—Roch theorem [g]. Grothendieck’s intro-
duction of Ko (R) was soon followed by work of Michael Atiyah and Fritz Hirzeburch
[1], who adapted Grothendieck’s construction to the context of algebraic topology.
Ever since, algebraic geometers have tried to establish fundamental properties for
algebraic K-theory analogous to those established by Atiyah and Hirzebruch for
topological K-theory.
Various important questions in algebraic number theory and the structure of
algebraic groups have formulations in terms of low degree algebraic K-theory. As
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mentioned above, Grothendieck launched the subject with his definition of Ky; Bass

[3] extensively considered K of a ring, in some sense viewing K ; (R) as units R* of R
modulo algebraic homotopies. In his remarkable book [46], John Milnor defined
K>(R) and proved certain exact sequences giving us the sense that a general theory
with good properties lurked amonst these groups.

There is a natural product map R* ® RX — K,(R) for a commutative ring R
which can be viewed as the universal symbol, one of the many connections between
algebraic number theory and algebraic geometry. Hideya Matsumoto gave a pre-
sentation of K»(F ) as a quotient of F % ® F * [39], which led Milnor to define the
Milnor K-theory of a field: KM, (F)is defined to be the tensor algebra T *(F *)
modulo the relations{ ¢« ® (1 —a):0,1 f a

€)) KM(F) := TAF X)/{a®(€1}i}c’z):o,1=_faeF}.

The class of the tensor a; ® ---® a, in KM(F)is denotedby{ a, ... , a,}.

These developments encouraged various mathematicians to formulate K;(R) for
all ;i > 0. Quillen gave a definition of K« (R) in terms of the Quillen plus con-
struction applied to #7L . (R) [54]. Perhaps to the despair of algebraists, Quillen’s
K-groups were defined as the homotopy groups of a topological space; homotopy
groups are notoriously difficult to compute. Quillen followed his plus construction
definition with a more general, more widely applicable definition using what we now
call Quillen’s Q-construction [55]. Very quickly, Andrei recognized the power and
potential of the theoretical tools and many new results that Quillen introduced.

Galois cohomology groups provide a powerful tool in the study of fields, especially
in class field theory, which can be viewed as an early forerunner of algebraic K-
theory. Let I'r be the absolute Galois group of afield F,ie.,I'r= Gal(Fsp/F ),
where Fe), is a separable closure of /. Then I'r acts on the multiplicative group F*,,
of nonzero elements of F'sp, typically denoted G,. Thus the cohomology groups

HY(F, Gm) := HU(TF, FXy)

are defined for everyd > 0, and are viewed (following Grothendieck) as the ’etale

cohomology of Spec F' with coefficients in the associated sheaf (also denoted G,),
HI(F, G,) ¢ HY(SpecF, G,).

Theorem 2.1. Let F bea field.
- HY(F, Gp) F %,

- H'(F, Gm) =0, Hilbert’s Theorem 90.
- H*(F, Gy) =Br(F), the Brauer group of F.

The vanishing of H!(F, Gn) is “essentially equivalent” to the exactness of the
sequence

Norm, , ¢

K, (L) =%K (L)

K (F)

for a cyclic field extension L/F with ¢ denoting a generator of Gal(L/F ) (frequently
referred to as Hilbert's Theorem 90 ). This is an early appearance of norm maps in
algebraic K-theory.

The only finite groups isomorphic to I'r for some field F are the trivial group and
Z/2. Further restrictions on I'r are implicit in some of the results we proceed to
discuss. Let M be a Galois module over F (i.e., M isa discrete I'r -module with
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a continuous action) and consider the graded cohomology ring

H*(F,M®%) := H(F, M®").
i=0
If m isaninteger primeto char(# ) and M = up, isthe I'r -module of mth roots
of unity in Ficp, then the cohomology ring H*(F, 1%,,*) is related to the Milnor ring
KY¥ (F)of F viathe norm residue homomorphism defined as follows. The Kummer
exact sequence of Galois modules

1—uy, —» FX FX —1

sep sep

yields a connecting homomorphism /: F * = H(F, Fy) — H'(F, um). The cup-
product in Galois cohomology yields a homomorphism (7 *) ®" — H"(F, u2") for
every n > 0 sending the tensora; ® -+ ® aptol(a;) U ---Ul(an). One shows that
this determines the norm residue homomorphism (so named, presumably, because of
the Hilbert symbol taking values in the Brauer group)

(2 hy : KM (F)mKM (F) — H"(F, u2").

If ' contains a primitive mth root of unity, we have um = Z/mZ, so that in this case
H*(F, 18,5 = H*(F,Z/m).

Theorem 2.1 suggests that one investigates Br(F ) := H2(F, Gp,). Miraculously,
Br(F) is naturally isomorphic to the group of Brauer equivalence classes of simple F
-algebras with center F with the group operation given by the tensor product over
F . Thus, the Brauer group can be studied by means of the theory of noncommuta-
tive associative algebras and the study of the algebraic geometry of Severi—Brauer
varieties. (The Severi—Brauer variety of a central simple algebra 4 of dimension 7?2 is
the variety of right ideals in 4 of dimension n. It is a twisted form ofthe
projective space P"~1.) Conversely, simple algebras can be studied with the help of
Galois cohomology.

Let F be a field. A central simple F -algebra (c.s.a.) is an (associative) finite-
dimensional F -algebra with center ' and no nontrivial (two-sided) ideals. By
Weddenburn’s theorem, every c.s.a. 4 over F is isomorphic to the matrix algebra
M (D) over a unique (up to isomorphism) central division F -algebra D (called the
underlying division algebra of 4). Two c.s.a.s A and B over F are Brauer equivalent
if Ms(4) ¢ M:(B) forsome s and ¢, or, which is the same, the underlying division
algebra of 4 and B are isomorphic. The tensor product over /' endows the set Br(F')
of equivalence classes of all c.s.a.s over F a group structure called the Brauer group of
F . The Brauer group Br(F ) is an abelian torsion group. Weddenburn’s theorem
establishes a bijection between Br(F ) and the set of isomorphism classes of central
finite-dimensional division F -algebras. Moreover, two c.s.a.s over F are isomorphic if
and only if the classes of 4 and B inBr(F ) areequaland dim(4) = dim(B).

The first computations one typically encounters include Br(Fg) = oforany finite
field Fyand Br(R) ¢ Z/2, generated by the class of the classical quaternion alge-
bra. Work of Adrian Albert, Richard Brauer, Helmut Hasse, and Emmy Noether
determined Br(F ) for any number field F , showing that every c.s.a. over F is cyclic,
namely constructed as follows.

Let L/F be a cyclicfield extension of degree m and o a generator of the Galois
group and b € F *. We introduce an F -algebra structure on the m-dimensional
vector space C(L/F, o, b)over L withbasis1, u, u?,..., u™~ ! byu™ = band
(xu)(yu)) = xo'(y)u'*/ with x, y € L. Then C(L/F, o, b) is a c.s.a. over F of
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dimension m?. An F -algebra isomorphic to C(L/F, o, b)forsomeL/F , ¢ and bis
called a cyclic algebra. If F contains a primitive mth root of unity &, then L = F (a)
wherea = a'/™ and o(a) = Ca forsomea €F X. Wewrite C(a, b)¢forthe algebra
C(L/F, o, b). This algebra is generated over F by two elements v and u subject to
the relations v = aq, u™ = b andvu = uv.

Possibly the most well known and most influential work of Andrei’s concerns this
norm residue homomorphism. First, Merkurjev proved that %, is an isomorphism if
m = 2, answering a long-standing question of Adrian Albert. This work was
much influenced by Andrei and it utilized Andrei’s paper [62].

Here is the famous Merkurjev—Suslin theorem.

Theorem 2.2 ([42]). Let F beafield, let m bean integer prime to char(F), and let ¢
€ F bea primitive mth root of unity. Then the norm residue homomorphism

(3) hy=hey :KMF)Y mKMF) - HAF, up). {a b} > Cla, b

is an isomorphism, where H*(F, um) = Br(F)Im] C Br(F ) consists ofall
elements of whose exponent divides m. In particular, the subgroup Br(F )[m] of the
Brauer group is generated by the classes of cyclic algebras C(a, b)sfora, b€ F *.

We remark that a tensor product of two cyclic algebras is not necessarily cyclic.
There are c.s.a.s that are not tensor products of cyclic algebras (see [75]).

The idea of the proof of Theorem 2.2 is as follows. Injectivity of %, is proved by
induction on the number of symbols in the presentation of an element in K, asa sum
of symbols, using the passage to the function field of a Severi—Brauer variety
splitting a cyclic algebra C(a, b)¢and hence the symbol{a, 5} modulo m. To prove
surjectivity of 4, it suffices to construct a field extension F '/F such that

(1) K2(F ") = mK,(F ") and Br(F ")[m] = 0,80 AiF t  is an isomorphism triv-
ially.
(2) The natural homomorphism Coker(4g,) — Coker(ir: ;) isinjective.

In fact, we may assume that m is prime and ¢ € F. The property (1) implies
that every symbol u = {a, b} witha, b € F * is contained in mK,(F "). There is a
generic way to make u divisible by m over a field extension: as in the proof of injec-
tivity, one passes to the function field F (X) of the Severi-Brauer variety X of the
algebra C(a, b)e. The dimensionof X' equalsm — 1; sincem is assumed to be prime,
(m — 1)! isrelatively prime to m which is useful in applying the Riemann—Roch the-
orem. Quillen’s computation of higher K-theory of X, the Brown—Gersten spectral
sequence [10], and Grothendieck’s Riemann—Roch theorem yield the surjectivity of
Coker(hr,m) — Coker(he (xy,m)-

Iterating this passage to the function fields of Severi—Brauer varieties forvar-
ious cyclic algebras, we find a field extension F /F satisfying (2) and suchthat
K>(F ")/mK,(F ") = o. Finally, one shows that Br(# ") = oand hence (1).

Theorem 2.2 quickly led to various new algebro-geometric results, typically
guided by Andrei. One such development was the following theorem of Andrei’s
(occurring as Theorem 24.8 in the somewhat difficult to access paper [66]). This
theorem partially answered a question of Serre, who asked whether H'(F, ¢¢) = o for
every simply connected semi-simple algebraic group ¢z over a field F of co-
homological dimension < 2. In other words, such ¢/ have no nontrivial principal
homogeneous spaces over F . This is known informally as Serre’s Conjecture 1II.
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Theorem 2.3 ([66]). LetF' be a field of cohomological dimension < 2. Then the
reduced norm homomorphism Nrd : A* — F > is surjective for every central

simple algebra A over F of degreen. This implies that Serre’s Conjecture Il is valid

for simply connected groups of inner type An_1.

Andrei proved this theorem by first reducing to the case when n is a prime
number and 4 is a central simple algebra of degree n. Using calculations of certain K
cohomology and “etale cohomology groups of the Severi—Brauer variety of 4,
Andrei proved that an element ¢ € F* is in the image of the reduced norm map if
and only if /(a) U[A] = oin H3(F, 12,%2), where [4]is the class of the algebra 4 in
the subgroup H2(F, un) = Br(F )[n] of the Brauer group of F.

Some years later, Theorem 2.3 was much improved by Eva Bayer-Fluckiger and
Raman Parimala in [4]. A recent survey of work on Serre’s Conjecture II by Phillipe
Gilleis given in [29].

Another outcome of [66] was progress on the Grothendieck—Serre conjecture that
H! (R tt) — H! (K, ti )isinjective for any flat reductive group scheme 7 over a
regular local ring R with field of fractions K. In[51], Andrei and Ivan Panin proved
a special case of this conjecture (for /1 = SL; p with D an Azumaya algebra over
R). This was the starting point of the recent proof of the Grothendieck—Serre
Conjecture by Roman Fedorov and Panin in [18].

3. Milnor K-theory versus algebraic K-theory

By Matsumoto’s theorem, Milnor K-theory KM, (F) of afield F agreesin degree
2 with K, (F ). However, beginning in degree 3, K;{F ) can be quite different from
Ki(F ); for example, K3(F) is nonzero for a finite field Fq, whereas KM, (Fq) = o.
Much of Andrei’s work in the 1980s following the Merkurjev—Suslin theorem (which
concerns K,(F )) was dedicated to exploring the relationship between K™, (F ) and
K+«(F ). In this section, we review some of Andrei’s results obtained during this
period.

We define the indecomposable group K {F) ,q as the cokernel of K MF) —
K;3(F ). Using the definition of K ﬁ:’ (F ) as an explicit quotient of the tensor al-
gebra T *(F *), one can show that groups K,(F ) and K3(F ),q may contain large,
uniquely divisible subgroups that cannot be detected by torsion and cotorsion. On
the other hand, the following theorem of Merkurjev and Suslin determines the tor-
sion and cotorsion of X,(F ), extending Theorem 2.2.

Theorem 3.1 ([44], see also [37]). Let m be an integer prime to char(F ). Then there
is an exact sequence

0— HO(F, u8?) — K{F) g ™ K3(F)yq — H'(F, %)
- K,(F)™=K,(F) — H(F,u®") —o.
If p = char(F) > o, then the group K5 (F )na is uniquely p-divisible.

Theorem 3.1 implies that the group K3(F )nq is never trivial! The theorem is
proved using the analogue of Hilbert’s Theorem 9o for relative K,-groups of ex-
tensions of semilocal principal ideal domains. We remark that the motivic spectral
sequence of Theorem 5.1 (constructed considerably later than the appearance of
Theorem 3.1) yields an isomorphism Ky(F) 4 ¢ H,(F, Z(2)).

One application of Theorem 3.1 is the computation that K3(Q)aqis a cyclic
group of order n, where n is the largest integer such that i2 — 1 is divisible by
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n for all i prime to n. This integer n equals 24. One can deduce from this that
K3(Q) = Z/48Z, a well-known result of Ronnie Lee and Robert Szczarba [35].

Let F be a field of characteristic not 2, and let W (F ) be the Witt ring of F . By
definition, W (F ) is the factor ring of the Grothendieck ring of the category of non-
degenerate quadratic forms over F by the ideal of hyperbolic forms. Write 7(F ) for
the fundamental ideal in W (F ) consisting of the classes of even-dimensional forms.
For any n the nth power I/(F )" of the fundamental ideal is generated by the classes
of Pfister forms

(a1, az,...,an)) = (1, —a)® (1, —a2) ® -+ ® (1, —an)

with ay, az,...,ap EF*.

The Milnor K-theory of F is related to the Witt ring of 7 by the homomorphisms

spiK MF)/2K MF) — I(F )"I(F )"
taking a symbol{ai, a»,... , an} to the class of the Pfister form ((ai, az,... , an)).
Milnor conjectured in [47]that s, is always an isomorphism. Another application of
Theorem 3.1 is the verification of this conjecture of Milnor for n = 3, proved by

showing that Andrei’smapK (F) — K MF ) (see Theorem 3.4) istrivial modulo
2,

Theorem 3.2 ([43], see also [2]). Let F bea field whose characteristic is not 2. Then
Milnor’s map

sy K M(F)/2KM(F) — I(F)YI(F)*
is an isomorphism.

Here is the impressive theorem of Dimitri Orlov, Alexander Vishik, and Vladimir
Voevodsky [50] proving the validity of Milnor’s conjecture for all n.

Theorem 3.3 ([50]). LetF be a field of characteristic not equal to 2, let W (F)
denote the Witt ring of equivalence classes of nondegenerate symmetric quadratic
forms overF, andlet I(F ) C W (F) denote the ideal of even forms. ThenMilnor’s
mapping (F*)"to I(F)"/I(F)""! sending (ai,...,an) to ((a1,..., an)) induces an
isomorphism from the Milnor K-theory of F to the associated graded ring (with
respect to I(F )) of the Witt ring of F,

s« K MF)2 — gr(W (F)).
Theorem 3.3 is a fairly direct consequence of Voevodsky’s proof of the mod-2
Bloch—Kato conjecture (see Theorem 5.3) established by Voevodsky in [8o] and [81].
The relationship between the Milnor K-theory K™, (F) and the algebraic K-
theory K«(F ) of F is of great interest. The next theorem of Andrei’s gives con-

siderable information about this relationship, showing it is closely related to the
homological stability for #zLp.

Theorem 3.4 ([61], [65]). If F is an infinite field, then
Hp(ttLn(F )) —Hp(ttLo(F ),
Hn(ttL §F))/ im{H, (ttL,(F))} ¢ KM(F).
Moreover, the natural composition
KM(F)— K,(F)— Hy(ttL o(F)) ¢ H fttL (F)) — K MF)
is multiplication by (n —1)!.
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This is a somewhat remarkable result, for Milnor K-theory is defined by genera-
tors and relations, whereas K+(F ) is defined as homotopy groups of someinfinite-
dimensional space and thus seemingly very inaccessible to computations.

One consequence of the preceding theorems is another result of Andrei’s.

Corollary 3.5. The image of K;(F) — KM (F) coincides with the kernel of
KM(F)— I(F)YI(F )4 and hence coincides with 2K {F) by the bijectivity of

S3.

Using the previous theorem, Andrei together with Yuri Nesterenko proved the
following theorem relating Milnor K-theory to motivic cohomology. As discussed in
Section 4, motivic cohomology was first formulated by Bloch as higher Chow groups
in [8], and it was then reformulated and developed into a powerful theory by Suslin
and Voevodsky. Shortly after the following theorem appeared, a new proof was
given by Burt Totaro [78].

Theorem 3.6 ([49)). LetF bea field, andlet H {F, Z(q)) denote Bloch’s  higher
Chow group CHY(F, 2g — p) of F.  Then

HE(F, Z(n) © KM(F).

This too is a somewhat surprising theorem, for Milnor K-theory has an explicit,
naive description, whereas motivic cohomology involves sophisticated constructions.

4. K-theory and cohomology theories

In this section we discuss two further important theorems of Andrei’s from the
1980s: Theorem 4.1 computes the torsion and cotorsion of the algebraic K-theory in
all degrees of an algebraically closed field, and Theorem 4.2 provides an alter- nate
approach to producing ‘efale homology. These theorems are of considerable interest in
their own right. In addition, they introduced important insights for the formulation
of Suslin—Voevodsky motivic cohomology; namely, Suslin rigidity and the
consideration of (Suslin) complexes.

BeT1linson, Bloch, Lichtenbaum, and Soul’e all contributed to a grand vision of the
role of algebraic K-theory in arithmetic algebraic geometry. Algebraic K-theory
should be some sort of universal cohomology theory with realizations in famil- iar
cohomology theories, it should carry much arithmetic information, it should be
determined by ’etale cohomology in high degrees, and it should have properties anal-
ogous to those of topological K-theory. These have been codified as the Be’ilinson
conjectures [5].

In the early 1970s, Quillen and Lichtenbaum proposed a close relationship be-
tween algebraic K-theory and “etale cohomology. Of particular interest was K« (F )
for a field F. Quillen formulated algebraic K-theory so that K»i(Fg) = o
Kyi-1(Fq) =2Z/q" —1for any i > 0 and any prime power ¢ = p% this deter-
mines the algebraic K-theory of the algebraic closure of a finite field which has close
similarities to the topological K-theory of a point.

Since an algebraically closed field F appears as a point in the “etaletopol- ogy, the
Quillen-Lichtenbaum conjecture for 7 predicts a similar computation for
K«(F, Z/n). Andrei proved this as stated below. (When he announced this theo-
rem and gave its proof at a meeting in Paris, his mathematical audience vigorously
applauded.)
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Theorem 4.1 ([63], [64]). Let F bean algebraically closedfield, and let n bea positive
integer invertible in F. Then

Kyi(F, Z/n) = Z/n, Kri+1(F,Z/n) =0, i=0.

Andrei’s proof of this theorem proceeded as follows, extending the known compu-
tation of K«(—, Z/n) for the algebraic closure of F, to any algebraically closed field
F of characteristic p. Consider a smooth, connected curve over the algebraically
closed field F with field of fractions E = F (C). Andrei constructs a specialization
map K« (E, Z/n) — K«(F, Z/n) using a local parameter at an F -rational point
of the curve C. Suslin’s rigidity theorem, which requires properties of the trans- fer
map for algebraic K-theory and the divisibility of Pic’(C), tells us that this
specialization map is independent of the point ¢ € C. This leads quickly to the
statement that if X = Spec 4 is a smooth, connected variety over F andx, x" are
F -rational points of X, then the two induced maps K« (4, Z/n) — K«(F, Z/n) are
equal. Andrei’s proofthat K«(F, Z/n) — K« (L, Z/n) is completed using a “trick”
to base change from F to L and comparing maps induced by 4 — F — L and
A C frac(4) CL.

Subsequently, Andrei verified in [64] the conjecture for algebraically closed fields
of characteristic 0 using an argument of Ofer Gabber.

As Suslin first observed, and various other mathematicians have employed, this
technique of Suslin rigidity applies to various other cohomology theories and K-
theories, applies with the base field F replaced by a smooth scheme over 7, and
even applies with smoothness dropped if K«(—, Z/n) is replaced by K* $—, Z/n).
This proof typifies both Andrei’s originality and his considerable algebraic prowess,
motivated by geometric insight.

In 1987, Andrei introduced the Suslin complex Suss(X) associated to a variety
X overafield F :

Sus(X) = n>— Hom(A,( S9X))™).
d=0

Here, S9(X) is the d-fold symmetric product of &X, the quotient of X*? by the
symmetric group X 4; A" := Speckltqy... , tn]/ ?:o ti = 1) is the algebraic n-
simplex over k; Hom(—, —) in this formula designates morphisms of varieties over F .
Motivation for this definition comes from the Dold—Thom theorem [14] in algebraic
topology, which asserts that the homotopy groups of the simplicial abelian group
Sing( 20:0 S4T))") can be naturally identified with the integral homology ofa
CW complex 7. One might not expect this definition to be useful because many
varieties X admit few maps from affine spaces; Andrei’s insight wasthat symmetric
powers of a variety X do admit many maps from the affine space A? ¢ AQ,

Using this definition, Suslin and Voevodsky proved the following remarkable
theorem. In some sense, they achieved a primary goal of Grothendieck for ‘etale
cohomology using Andrei’s “naive” Suslin complex. They also prove a similar
statement for varieties over an algebraic closed field of characteristic p > 0 provided
that p does not divide n. Their proof uses Suslin rigidity and various Grothendieck
topologies introduced by Voevodsky.

Theorem 4.2 ([73]). If X is a quasi-projective variety over C, then the natural map

mi(Sus«(X), Z/n) — Hi(X(C)a", Z/m), i =0,
is an isomorphism.

License or copyright restrictions may apply to redistribution: seehttps://www.ams.org/journal-terms-of-use



http://www.ams.org/journal-terms-of-use

THE MATHEMATICS OF ANDREI SUSLIN 11

For the understanding of the algebraic K-theory of a scheme X which is “not
equivalent to a point” in the “etale topology, one must incorporate more information
about X. This was made clear by Grothendieck at the inception of K-theory. A fun-
damental theorem of Grothendieck [9] (a consequence of Grothendieck’s Riemann—
Roch theorem) asserts that the Chern character

@ chy:Ko(X) ® Q — CH*(X)  Q

is a ring isomorphism for any smooth, connected algebraic variety X over a field 7,
where CH'(X) denotes the Chow group of rational equivalence classes of algebraic
cycles on X of codimension i. These Chow groups are not simply “etale cohomology
groups.

A difficult theorem of Robert Thomason [77] established a convergent spectral
sequence whose E>-page involved the “etale cohomology of a smooth variety with Z/n-
coefficients and which converged to K« (X, Z/n)[1/8], the localization of al-
gebraic K-theory obtained by inverting the Bott element § € K,(X, Z/n). Etale
K-theory, formulated by Dwyer and Friedlander [16], provided the abutment for a
spectral sequence whose FE,-term was “etale cohomology. Nevertheless, it became
clear that one required a more elaborate cohomology theory than “etale cohomology
to “approximate” algebraic K-theory. Be”llinson’s conjectures encompassed the ex-
istence of a well-behaved cohomology theory involving complexes of sheaves which
could serve as a suitable refinement of “etale cohomology and which would relate to
algebraic K-theory through a motivic spectral sequence.

In [8], Bloch formulated bigraded higher Chow groups which are related to
K«(X). For each n = 0o, Bloch introduced CH (X, ), defined in terms of the
nth homology group of the complex of codimension i cycleson X X A*. Rationally,

CH/(X, n) is the ith weighted piece of K ,(X); more generally, Bloch anticipated a

spectral sequence relating his higher Chow groups to algebraic K-groups. Bloch’s
higher Chow groups proved to be a major step towards realizing Be™1ilinson’s vision.
Since groups of equivalence classes of algebraic cycles are so closely related to
algebraic K-groups, we briefly outline Grothendieck’s proof (see (4)) that the Chern
character ch of (4) is an isomorphism.

For a scheme X, write K« (X) for the K-groups of the exact category of vector
bundles over X. Thisis a graded ring cohomology theory, contravariant in X. If
X is Noetherian, we define K', (X) as the K-groups of the abelian category M (.X)
of coherent Ox -modules. The assignment X >— K (X) is a homology theory,
covariant with respect to proper morphisms. Foranyi > o, let M(X) () be the full
subcategory of M (X) consisting of all Ox -modules with codimension of support
at least i. The images K r*(X ) of the natural homomorphisms K« (M(X)(®) —
K" (X) form a topological fitration on K'(X).

Assume now that X is a regular scheme. Then the natural homomorphism
K4«(X) - K% (X) isanisomorphism. Thus, K« (X) is a graded ring together  with
the topological filtration by the ideals K (X)) := K (X)) with the subsequent
factor groups K« (X)(/i*1), There is a well-defined surjective graded ring homo-
morphism

g1 : CHF(X) = Ko/

taking a class [Z] of a codimension i closed subvariety Z C X to [Oz]in
Ko(X)U/i+1) " the class of the structure sheaf of Z.
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In order to construct homomorphisms in the opposite direction, Grothendieck
constructed Chern classes:

¢i:Ko(X) — CH(X), ixo.

These are maps (not necessagﬂy homomorphisms), functorial in X. The class ¢
sends all of Ko(X) to 1 € CH (X). Th{e map c; takes the class of a vector bundle
E over X to det(£) € Pic(X) = CH (X). These properties together with the
Whitney sum formula c¢p(a + 5) = i+j=n ci(a)cj(b) and the splitting principle
uniquely determine the Chern classes. For every i > 0, the restriction of ¢;to
K+ (X)) is a group homomorphism trivial on K 4« (X)(*1). Hence, c; yields a group
homomorphism
pi:Ko(X)D — CH'(X).

Grothendieck’s Riemann—Roch theorem implies that both compositions ¢; o y; and
wi © ¢; are multiplication by (—1)~1(i — 1)!. For certain classes of varieties (for
example for Severi—Brauer varieties of dimension / — 1, / prime, used in the proof
of Theorem 2.2) ¢, is an isomorphism, so that computations of the topological
filtrations on the Grothendieck group Ko(X) are particularly useful for the study of
the Chow ring CH*(X).

Chern classes with values in the Chow groups are a special case of more gen- eral
constructions of Chern classes with values in an arbitrary oriented generalized
cohomology theory. The Chern classes can also be extended to higher K-groups
K« (X) with values in certain groups of “etale cohomology (see [58] and [30]) or
motivic cohomology (see [31] and [52]).

5. Motivic cohomology and K-theories

In the 1990s, Andrei enabled many of the foundational results for Suslin—
Voevodsky motivic cohomology [40], whose origins can be traced to the Suslin
complex Sus«(X) and Suslin rigidity discussed in the previous section. As shown
by Andrei in Theorem 5.4 below, Bloch’s higher Chow groups CH*(X, %) (further
studied by Levine; see [38]) often agree with Suslin—Voevodsky motivic cohomol- ogy
Hjf(X, Z). In contrast with Bloch’s higher Chow groups, Suslin—Voevodsky motivic
cohomology is more amenable to arguments using functoriality and local behavior;
moreover, Hy;* (X, Z) fits into the general framework of A'-homotopy theory of
Fabien Morel and Voevodsky [48], enabling Voevodsky to prove many of the
conjectures (now theorems) we have discussed: Milnor’s conjecture, the Quillen—
Lichtenbaum conjecture, the Be linson—Lichtenbaum conjectures, and the Bloch—
Kato conjecture.

In this section we discuss numerous foundational results for motivic cohomology
proved by Andrei. We also return to the norm residue homomorphism, briefly
discussing Voevodsky’s dramaticresults.

Voevodsky introduced important innovations into the study of algebraic varieties,
continuing the historical development of the subject following work of Grothendieck.
The first was to enlarge the set of morphisms from X to Y to include finite cor-
respondences from X to Y . Another innovation was to focus on presheaves ¢ on the
category of smooth varieties and finite correspondences which are homotopy
invariant: the projection X X A! — X induces an isomorphism ¢ (X) — ¢(X X Al)
for any smooth variety X. Yet another innovation was Voevodsky’s introduction of
new Grothendieck topologies, especially the Nisnevich topology.
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The graph of a morphism X — Y of varieties over F can be viewed as acor-
respondence (a cycle on X X Y) that projects isomorphically onto X. A finite
correspondence from some smooth, connected X to ¥ is acyclea on X X Y such
that every prime component of a is finite and surjective over X. For example, if Y is
also irreducible, then a finite, surjective morphism from Y to X can be viewed as a
finite correspondence from X to Y . We have the category Cor(F ) of finite
correspondences: the objects are smooth varieties over 7 and morphisms from X to
Y are finite correspondences from X to Y . A presheaf of abelian groups with
transfers is a contravariant functor 4 from Cor(F ) to abelian groups. Thus, if 4 is
a presheaf with transfers, then a finite, surjective morphism ¥ — X with ¥ irre-
ducible is equipped with a transfer (norm) homomorphism 4(Y ) — 4(X). The role
of Suslin rigidity arises in establishing the homotopy invariance of cohomological
complexes associated to presheaves with transfers.

There are motivic complexes of “etale sheaves with transfers Z(g) for ¢ > 0.In
fact, Z(0) and Z(1) are quasi-isomorphic to the sheaves Z and G, placed in degree o
and 1, respectively. One defines the motivic and ‘etale motivic cohomology groups of
a smooth variety X with coefficients in an abelian group A4 by

HY (X, A(q)) :=Hf (X, 4 ®2Z(q)), HHAX A(q)) :=HAX, 4 ® Z(q)).

Zar

The formulation of motivic cohomology by Suslin and Voevodsky led to much
progress on conjectures made a decade earlier by Be™1linson, Bloch, Lichtenbaum, and
Soul’e. For example, the following theorem provides the analogue for algebraic K-
theory of the Atiyah—Hirzeburch spectral sequence for topological K-theory. Al-
though many mathematicians contributed to the proof of this result, Andrei did
most of the “heavy lifting.”

Theorem 5.1 ([68], [27]). Let X bea smooth quasi-projective variety over a field.
Then there is a strongly convergent spectral sequence

(5) EYI=HY (X Z(-q) = K_pqX).

One sees more clearly the interplay between Milnor K-theory and algebraic K-
theory with the help of motivic cohomology (and the above spectral sequence;
see Theorem 3.6). We start with the observation that #'\(F, Z(1)) = Gu(F ) =
F*. The product in motivic cohomology yields a homomorphism (F *)®F —
HP (F, Z(p)). The image of a tensor @ | ® - ® a pls trivial ifa + a j=1 for
some i f=j. Hence we get a homomorphism K A/’ (F) — H(F, Z(p)) which is an
isomorphism by Theorem 3.6. The norm maps for Milnor K-groups correspond to the
norm maps in motivic cohomology created by the structure of presheaves with
transfers.

There is a natural homomorphism
Hy (X, Z(9)) — HE(X, Z(q)).

The integral Be“ilinson—Lichtenbaum conjecture asserts that thisisan isomorphism
when p < ¢ and a monomorphism when p = ¢+ 1. Replacing Z(q) by Z/4(q) for
some prime 4, we obtain the mod-4 Be"ilinson—Lichtenbaum conjecture which has an
equivalent formulation (used in the statement of Theorem 5.2) asserting that for
every prime A4 the natural homomorphism

HP (X, Z/A(q)) — HE, (X, pig )

t
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is an isomorphism if p < ¢ and a monomorphism ifp = ¢+ 1. The mod-4 Be"1linson—
Lichtenbaum conjecture is now a theorem proved by Voevodsky (see Theorems 5.2
and 5.3).
The mod-4 Bloch—Kato conjecture asserts that the norm residue homomorphsm
hn:K MF Y4 — H"(F,u3")

is an isomorphism for all n, provided 4 is invertible in the field F . We state an
important theorem of Suslin and Voevodsky which closely links this conjecture to
the Be™ilinson-Lichtenbaum conjecture. The paper [74] not only gives a carefully
written, well organized presentation of the proof of this important link, but it also
presents details of various key results of Voevodsky.

Theorem 5.2 ([74]). Let F be a field, and let A be a prime invertible in F. Then the
following assertions are equivalent for any smooth, quasi-projective variety X over
F:

(1) The mod-/ Bloch—Kato conjecture for F in weightn asserts that the norm
residue homomorphsm

ho:K MFY4 — H"(F, "

is an isomorphism;
(2) The mod-/ Be 1linson—Lichtenbaum conjecture in weights ¢ < n asserts that

HP (X, Z/4(q)) ¢ H (X, 159, p<q; HY'(X, Z/4(g)) — HI'(X, 139

We remark that the mod-4 Bloch—Kato conjecture is essentially the diagonal
portion of the mod-4 Be”1linson—Lichtenbaum conjecture, yet the inductive argument
for the mod-4 Bloch—Kato conjecture requires the verification of earlier nondiagonal
cases of the mod-4 Beilinson—Lichtenbaum conjecture. The Be”ilinson—Lichtenbaum
conjecture admits a precise formulation in terms of truncations of complexes; with
this formulation, the conjecture is a statement that a certain map of complexes is a
quasi-isomorphism.

With considerable input from Andrei, Markus Rost, Charles Weibel and others,
Voevodsky proved the following spectacular result, the mod-4 Bloch—Kato con-
jecture. Theorem 5.3 partially realizes the vision of Be™linson, closely related to
conjectures of Bloch, Lichtenbaum, and Soul’e, a vision which has served as a tem-
plate for much of the work on motivic cohomology. A detailed exposition of the proof
of this theorem is given in the book [32] by Christian Haesemeyer and Weibel.

Theorem 5.3 ([82]). Let F be afield, and let A be a prime invertible in F. For all
n =0,
KM (F)yd ¢ H (F,g").

Consequently, for any smooth variety over F,
HP (X, Z/A(g)) ¢ H X, u3) p<gq; HL'(X, Z/AQ) — HI'(X, 1379.

Voevodsky proves Theorem 5.3 with an argument which proceeds by induction on
n. A significant component of Voevodsky’s proof of Theorem 5.3 is the existence and
properties of suitable splitting varieties for symbols in Milnor K-groups of F. This
is foreshadowed by the role of the Severi—Brauer variety for a symbol
a = {a;, % }€ K (F) appearing in the proof of Theorem 2.2.

The existence of norm varieties (generic splitting varieties of dimension 4"~! — 1)
for an arbitrary symbol « = {a,a,... ,a,} € KM(F) modulo 4 was proved
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by Markus Rost. In a series of clear, detailed lectures (notes of which by Seva
Joukhovitski served as the basis for [72]), Andrei established the basic properties of
these norm varieties needed for Voevodsky’s proof. The proofs Andrei gives follow
Rost’s unpublished results, notably Rost’s degree formula and Rost’s chain lemma.
Let X be a norm variety of an n-symbol a modulo 4. Consider the simplicial
scheme X with X, = X"*!1 whose face maps are given by various projections.
The motive of X is independent of the choice of the norm variety of o modulo 4.
Voevodsky proved triviality of the motivic cohomologygroup H ,’\7/,“ (X, Z(n)); he
then used this vanishing to deduce the validity of the Bloch—Kato conjecture.
Somewhat surprisingly, the triviality of H""!(X , Z(n)) (together with the tools
used in Voevodsky’s proof) yields a computation of the motivic cohomology groups
HI,(X, Z(j)) foralli and; (see[45] and [84]).
The following theorem of Andrei’s makes explicit the close relationship of Bloch’s
higher Chow groups and Suslin—Voevodsky motivic cohomology.

Theorem 5.4 ([67]). Let X be an equidimensional quasi-projective scheme over an
algebraically closed field ' of characteristic 0. Assume thati > d := dimX. Then

(6) CH/(X, n; Z/4) = H29D""(X, Z/4(d - DY ;

in other words, the mod-A bigraded higher Chow groups of Bloch equal the mod-A
Suslin-Voevodsky bigraded motivic cohomology groups with compact supports.

Andrei’s last published paper extended results of Suslin—Voevodsky motivic co-
homology for smooth varieties over a perfect field F of characteristic p > o0 by
showing how to avoid the assumption that F is perfect. Andrei proves that one can
simply base change to the separable closure F» of ¥  and apply the existing theory
for varieties over F.. Step by step, Andrei verifies that the theory developed by
Suslin and Voevodsky applies without the assumption that F be perfect, provided
that one considers presheaves with transfers of Z[1/p]-modules. His primary goal is
to prove that every homotopy sheaf with transfers of Z[1/p]-modules is strictly
homotopy invariant, a key result for the Suslin—Voevodsky theory.

We state Andrei’s final theorem in his final paper, giving the flavor of the mathe-
matics involved. For those who wish precision, we mention that DM,,~(F ) appearing
in the statement of Theorem 5.5 is the full subcategory of the derived category of
bounded above complexes of Nisnevich sheaves with transfers of Z[1/p]-modules
consisting of those complexes whose cohomology sheaves are homotopy invariant.

Theorem 5.5 ([69]). Let E/F be an arbitrary field extension, and consider an
arbitrary A* € DM,,~(F ). For any smooth scheme X over F, there is a natural

isomorphism

Hom(Mp(X), 4°)e ¢ Hom(Mp(Xg), 4°g),
where the left-hand side is the basechangeto E of the internal Hom of DM,,~(F ), and
the right-hand side is the internal Hom of DM, (E).

It is interesting to observe that during the development of Suslin—Voevodsky
motivic cohomology there was a parallel development of semitopological theories
initiated by H. Blaine Lawson in [34] and continued in various papers by numerous
authors. We point out the formulation of morphic cohomology by Friedlander and
Lawson in [21] and the work of Friedlander and Mark Walker in [28]. In a paper by
Friedlander, Haesemeyer, and Walker [20] an interesting conjecture by Andrei was
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stated and investigated with the aim of relating morphic cohomology and singular
cohomology of complex algebraic varieties in the spirit of the Bloch—Lichtenbaum
conjecture. This conjecture is related to many classical conjectures. One result
concerning such relationships is given by Be1linson [7].

6. Modular representation theory

This mathematical subject is one that attracted Andrei’s attention late in his
career, but its appeal to him is natural. Andrei gave qualitative information about
the (Hochschild) cohomology of finite group schemes over a field k¢ of characteristic p
> 0, extending known results for finite groups, and he investigated the actions of
these finite group schemes on finite-dimensional vector spaces over & (in other words,
modular representations). On the one hand, Andrei answered general struc- tural
questions by developing new tools and by extending known techniques in a highly
nontrivial manner. On the other hand, Andrei’s algebraic insights provided
computations and examples that were previously inaccessible.

Andrei’s most cited paper, joint with Friedlander, proves the following theorem.
This is a generalization of a classical theorem of Leonard Evens [17] and Boris
Venkov [79].

Theorem 6.1 ([26]). Let ¢t be afinite group scheme over afield k. Then H*(tt, k)
is a finitely generated algebra overk.

Moreover, if M is a tt-module finite-dimensional over k, then H*(tt, M ) is a
finitely generated module over H* (tt, k).

This is a first suggestion that one can find a common context for finite groups, re-
stricted enveloping algebras of finite-dimensional restricted Lie algebras, and other
finite group schemes. The outline of proof for this theorem has been used in other
contexts (for example, in the recent paper by Friedlander and Cris Negron [22]). At
its heart, it requires a proof of the existence of certain cohomology classes which can
serve as generators. The existence proof of Theorem [26] explicitly constructs these
classes (in high degree) using extensions in the category of strict polynomial functors
(which are not actually functors).

These strict polynomial functors have led to numerous explicit calculations of Ext
groups by Andrei and others (e.g., [19]). Furthermore, Antoine Touze” and
Wilberd van der Kallen in [76] used this technology to prove that the subalgebra of
t--invariants of H*(¢t, A) is finitely generated, where ¢¢ is a reductive group over a
field and 4 is a finitely generated #-algebra; this extends the classical result that
the algebra of r-invariants H(¢7, 4) of A is finitely generated. As another example,
Christopher Drupeiski in [15] extended the arguments of the above theorem in order
to prove its generalization to finite supergroup schemes.

Theorem 6.1 is the foundational result enabling a theory of supports for represen-
tations of finite group schemes, providing a geometric interpretation of cohomologi-
cal invariants for such representations. Among the most geometric and informative
results in this theory of supports are those proved in two papers by Suslin, Fried-
lander, and Christopher Bendel [70], [71] concerning infinitesimal groups schemes.
The following theorem states central results of these two papers.

We remind the reader that an infinitesimal group scheme H over k is an affine
group scheme represented by a finitely dimensional, local k-algebra 4[#] (so that
k[#] is equipped with the structure of a Hopf algebra over £). An important
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example of infinitesimal group schemes is the rth Frobenius kernel of the addi- tive
group G, for some » > 0, usually denoted G,. The coordinate algebra

k[ Gacry] equals &[T r]/tpr with dual algebra kG 4y := (k[Gga(y])* isomorphic to
klug, ..., ur—11/(u?).

Theorem 6.2 ([70], [71]). Let ¢t be a connected affine group scheme over afield
k of positive characteristic, and let r be a positive integer. Then the  morphisms
Gan — tt of group schemes overk (i.e., the heightr, one-parameter subgroups of
tt) are the k-points of an affine scheme V,(tt).

There is a natural map of finitely generated commutative k-algebras

w  k[VA(t)] — H*(tt(r), k)
which induces a homeomorphism on prime ideal spectra.

Theorem 6.2 is reminiscent of Quillen’s description of the spectrum of the coho-
mology of a finite group in [53]; in the special case » = 1, this recovers a theorem of
Friedlander and Brian Parshall [23] and eliminates the condition on the prime p
required in that earlier paper.

Andrei’s computational power is clearly evident in [70] and [71], which provide a
qualitative description of the cohomology of infinitesimal group schemes. The
arguments required to prove the various results of Theorem 6.2 involve questions
already considered for ¢¢ a finite group (detection of cohomology classes modulo
nilpotents, characteristic classes) but formulated now in the more general context of
group schemes. Computations with characteristic classes become elaborate, but
fortunately one does not always need these computations in closed form. One can see
the origins of the theory produced in the foundational work of Jon Carlson for rank
varieties for elementary abelian groups [11] and of Friedlander and Parshall
[23] for restricted Lie algebras.

Considering the example of 1z = ¢¢Ly gives a flavor of the information provided
by Theorem 6.2. The scheme V (¢tLy ) is the scheme of r-tuples (By,... ,Br-1)
of pairwise commuting, p-nilpotent N X N matrices. Consequently, k[ V (¢tLy ]is
generated by elements {X/(4) : 1 <i, j <N, o< r} with explicit relations given
by the conditions that the B/’s are p-nilpotent and pairwise commuting.

The two papers [70] and [71] also provided a geometric interpretation of (co-
homological) support varieties of finite-dimensional modules for an infinitesimal
group scheme 7. Namely, the support of M is given as the closed subscheme of
one-parameter subgroups y : G, — ¢ such that y*(M ) has an explicit non-
projectivity property. One surprising aspect of these results is that no condition is
placed on p, the residue characteristic of the ground field «.

These papers led to the formulation of z-points of finite group schemes by Fried-
lander and Julia Pevtsova [24] which further extended certain aspects of the repre-
sentation theory of finite groups to all arbitrary finite group schemes.

In the next theorem, Andrei (together with Friedlander and Pevtsova) introduced
refined invariants of #~-modules, new even for finite groups. These invariants involve
Jordan types, the decomposition of a p-nilpotent operator into blocks of sizes < p.

Theorem 6.3 ([25]). Lettt be afinite group scheme, let M be a finite-dimensional
tt-module, and let x € Proj H*(¢t, k) correspond to a minimal homogeneous prime
ideal of H*(tt,k). Then this data naturally determines a natural partition of
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m := dim(M),

i=1
This partition arises from the Jordan type of any representative of the p-nilpotent
action of tt on M at the generic point x € Proj H*(tt, k).

The proof of this theorem is subtle, further evidence of Andrei’s ingenious in-
sights. Among other consequences, this theorem led to the interesting class of
modules of constant Jordan type introduced by Carlson, Friedlander, and Pevtsova in
[12]. The essential step of the proof is the following observation of Andrei’s
concerning Jordan types of commuting nilpotent elements a, g € t¢Ly (F ) for an
infinite field 7 and a positive integer N : the Jordan type of a is greater than or
equal to the Jordan type of a + ¢8 for all + € g if and only if the kernel of a is
contained in ¢ r«Ker(a + uf).

We mention one further paper on modular representation theory that Andrei
wrote with Carlson and Friedlander [13]. The title of the paper, “Modules for Z/px
Z/p”, is probably surprising to those unfamiliar with the complexities of modular
representations. Forp > 2, the category of finite-dimensional representations on -
vector spaces (with char(k) = p) for the finite group Z/p X Z/p is wild, which implies
that this category contains as a full subcategory the category of representations of
every finite-dimensional k-algebra. The paper [13] investigated various special
classes of Z/p X Z/p-modules, providing a wealth of details.
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