

Title: Disease hotspots or hot species? Infection dynamics in multi-host metacommunities controlled by species composition, not source location

Running title: Maintenance species and metacommunities

Authors: Mark Q. Wilber^{1,a}, Pieter T. J. Johnson^{2,b}, Cheryl J. Briggs^{1,c}

Author affiliations:

¹Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106

²Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, 80309

^amark.wilber@lifesci.ucsb.edu

^bpieter.johnson@colorado.edu

^cbriggs@lifesci.ucsb.edu

Corresponding author: Mark Q. Wilber, 505-321-5381, mark.wilber@lifesci.ucsb.edu

Keywords: maintenance species; reservoir species; source-sink dynamics; metacommunity; metapopulaton; *Batrachochytrium dendrobatidis*; endemic; *Pseudacris regilla*; hotspots; chytrid fungus

Article Type: Letter

Statement of authorship: PJ and CB collected data. MW wrote the first draft of the manuscript. All authors contributed substantially to the conceptual development of the model and to revisions of the manuscript.

Data accessibility statement: Should the manuscript be accepted, the supporting results will be made available in an appropriate public repository.

Abstract: 149 words

Main text: 4975 word

References: 51

Figures and tables: 6

1 **Abstract**

2 Pathogen persistence in host communities is influenced by a hierarchy of heterogeneities from individual host
3 to landscape-level attributes, but isolating the relative contributions of these heterogeneities is challenging.
4 We developed theory to partition the influence of host species, habitat patches, and landscape connectivity
5 on pathogen persistence within host-pathogen metacommunities. We used the framework to quantify the
6 contributions of host species composition and habitat patch identity on the persistence of an amphibian
7 pathogen across the landscape. By sampling over 11,000 hosts of six amphibian species, we found that a
8 single host species could maintain the pathogen in 91% of the metacommunities we observed. Moreover, this
9 dominant maintenance species contributed, on average, twice as much to landscape-level pathogen persistence
10 compared to the most influential source patch in a metacommunity. Our analysis demonstrates substantial
11 inequality in how species and patches contribute to pathogen persistence, with important implications for
12 targeted disease management.

13 **Introduction**

14 Many pathogens of conservation and health concern infect multiple host species and occur on landscapes
15 composed of interacting host communities (i.e. ‘disease metacommunities’; Paull *et al.* 2012; Miller *et al.* 2013;
16 Johnson *et al.* 2015). Heterogeneity among individuals within a species, among species within a community,
17 and among communities on a landscape can interact in non-additive ways to influence pathogen invasion
18 and persistence (Keeling 1999; Lloyd-Smith *et al.* 2005; Johnson *et al.* 2015; North & Godfray 2017). At the
19 population-scale, individual-level heterogeneity in contacts and susceptibility can result in ‘super-spreaders’
20 that contribute disproportionately to pathogen spread (Lloyd-Smith *et al.* 2005). At the community-scale,
21 host species-level differences in population densities, contact rates, and shedding rates dictate contributions
22 to infection dynamics within the community (Mihaljevic *et al.* 2014; Fenton *et al.* 2015; Webster *et al.* 2017).
23 At the landscape-scale, the characteristics of habitat patches and their degree of connectivity can influence
24 pathogen invasion success and persistence (McCallum 2008; Schreiber & Lloyd-Smith 2009; Arino 2009). This
25 creates a challenging yet foundational question: from a control standpoint, what are the relative contributions
26 of heterogeneities across scales in determining pathogen persistence (McCallum & Dobson 2002; Paull *et al.*
27 2012)? For instance, whether disease management should prioritize strategies such as quarantine, culling,
28 habitat modification, or targeted vaccination will depend critically on the relative influence of specific sites
29 (hotspots) versus specific species (maintenance or amplification hosts).

30 While both variation among host species and across spatial patches influence pathogen invasion and
31 persistence, how these factors interact remains unknown. In a single-patch, multi-host system, ‘maintenance’
32 host species are those that can independently maintain a pathogen and contribute to its spillover into other
33 host species (De Castro & Bolker 2005; McCallum 2012; Webster *et al.* 2017). However, in a multi-patch,
34 multi-host system, labeling species as maintenance or spillover hosts is made challenging by the added
35 influence of habitat patch heterogeneity – a species’ maintenance potential may vary among habitats due
36 to changes in community structure or the physical environment (Haydon *et al.* 2002; Paull *et al.* 2012;
37 Rudge *et al.* 2013). This context-dependent variability in species’ maintenance potentials further leads to
38 variability in source potential of individual patches, including whether they are ‘source’ patches capable of
39 independently maintaining a pathogen in isolation from all other patches (McCallum 2008; Schreiber & Lloyd-
40 Smith 2009). As a result, how a pathogen spreads across the landscape will depend on the degree to which
41 host species’ maintenance potentials are independent of patch location, are determined by patch location,
42 or are moderated by patch location. While there is a growing theoretical understanding of how community
43 composition can augment or dilute disease risk in host communities (Keesing *et al.* 2006; Mihaljevic *et al.*
44 2014) and how patch connectivity can promote or inhibit pathogen invasion (Schreiber & Lloyd-Smith 2009;

45 North & Godfray 2017), few studies have attempted to empirically quantify species' maintenance potential,
46 patch source potential, and their effects on landscape-level pathogen invasion and persistence. This is a
47 critical next step for understanding of the drivers of disease dynamics in multi-species, multi-patch disease
48 systems, which is arguably a common feature of many emerging infections of importance for conservation or
49 society.

50 The 'maintenance potential' and 'source potential' of a species and patch, respectively, can be defined
51 in terms of the fundamental recruitment number R_0 . For a single host species in a single patch, R_0 defines
52 the number of secondary infections produced over the lifetime of an average infected individual in a fully
53 susceptible population (Diekmann *et al.* 1990). When $R_0 > 1$, a pathogen can invade a fully susceptible
54 host population and the endemic prevalence (if it exists) is a function of R_0 (Keeling & Rohani 2008).
55 In a multi-species, multi-patch system, there is a hierarchy of R_0 values that describe pathogen invasion
56 and persistence: species-level R_0 , patch-level R_0 , and landscape-level $R_{0,L}$ (Fig. 1A). Maintenance species
57 within a patch have species-level $R_0 > 1$ and source patches within a metacommunity have patch-level
58 $R_0 > 1$. Landscape-level $R_{0,L}$ is a combination of species-level and patch-level R_0 values and when $R_{0,L} > 1$
59 a pathogen can deterministically invade a host metacommunity (Fig. 1A; Arino *et al.* 2005, but see Cross
60 *et al.* (2005); North & Godfray (2017)).

61 Theoretically, the species-level, community-level, and landscape-level R_0 values, coupled with species
62 connectivity and patch connectivity, provide all the information necessary to understand how variability in
63 species maintenance potential interacts with patch source potential to affect landscape-level pathogen inva-
64 sion and persistence. Empirically, however, the parameters required to calculate species-level, community-
65 level, and patch-level R_0 values can be difficult to estimate for a single species, much less for multiple species
66 across multiple patches. Fortunately, recent work indicates that many of these difficult-to-estimate param-
67 eters, such as the absolute values of transmission coefficients, can be replaced by more commonly estimated
68 parameters such as prevalence and parameter ratios (Rudge *et al.* 2013; Fenton *et al.* 2015). While these
69 approaches have been applied to understand the maintenance potential of hosts in multi-species systems
70 (Rudge *et al.* 2013; Fenton *et al.* 2015), they have yet to be extended to multi-species, multi-patch systems.

71 Here, we first develop multi-species, multi-patch models and then confront these models with commonly-
72 collected pathogen data to ask the question: do maintenance species contribute more than source patches to
73 pathogen persistence on the landscape? To quantify the contributions of species and patches on pathogen
74 persistence, we focused on interactions between amphibian host species and the fungal pathogen *Batra-*
75 *chochytrium dendrobatis* (Bd), which is the causative agent of the disease chytridiomycosis and declines
76 in over 500 amphibian species worldwide (Kilpatrick *et al.* 2010; Scheele *et al.* 2019). We compiled infec-
77 tion information on over 11,000 hosts comprising six species of amphibians persisting endemically with Bd

78 across 139 habitat patches to parameterize a multi-species, multi-patch model. We then used the model to
79 (1) identify the relative contributions of host species to pathogen persistence across patches, (2) quantify
80 the role of among patch connectivity on pathogen persistence, and (3) knockout maintenance species and
81 source patches from metacommunities to assess their relative contributions to landscape-level $R_{0,L}$. The
82 theory we develop provides a quantitative means to assess the contribution of species, patches, and connec-
83 tivity to pathogen persistence across scales in empirical host-pathogen metacommunities, which is essential
84 information for identifying and implementing effective management strategies.

85 Materials and Methods

86 Study system and data collection

87 Between 2013 and 2018, we examined the within-season Bd maintenance potential of six amphibian species
88 found in 77 metacommunities in the East Bay Region of California (Contra Costa, Alameda, and Santa Clara
89 counties). We considered six species of wetland-breeding amphibians: *Pseudacris regilla* (PSRE), *Anaxyrus*
90 *boreas* (ANBO), *Rana catesbeiana* (RACA), *Rana draytonii* (RADR), *Taricha torosa* (TATO), and *Taricha*
91 *granulosa* (TAGR). Adult amphibians of all species typically breed in ponds from January to late spring
92 and co-occur as larvae and metamorphs between May and August (Fig. S1, Stebbins & McGinnis 2012).
93 The length of the larval period varies among species (Fig. S1, Johnson *et al.* 2012). PSRE, ANBO, TAGR,
94 and TATO larvae typically mature and leave the pond within the same year, while RACA and RADR can
95 overwinter as larvae (Stebbins & McGinnis 2012). Amphibian communities persist endemically with Bd
96 across multiple interconnected ponds and wetlands with little evidence of Bd epidemics. Moreover, the
97 biology of the amphibian species in these communities is well-understood and the communities are amenable
98 to standardized sampling protocols for Bd infection and host density (e.g. Johnson *et al.* 2012; Joseph *et al.*
99 2016; Stutz *et al.* 2018). These attributes make this amphibian-Bd system ideal to link with multi-species,
100 multi-patch pathogen models.

101 We defined a metacommunity as a potentially interconnected network of ponds and wetlands among which
102 amphibians could move. Each pond represented a patch in the metacommunity. We defined metacommunities
103 such that they closely corresponded to administratively delineated parks and properties (Johnson *et al.* 2016).
104 Our rationale was that properties provided a connected stretch of habitat within which amphibians could
105 potentially disperse. In addition, we considered the same spatial metacommunity sampled over multiple years
106 as different spatio-temporal metacommunities. We assumed that between season amphibian migrations
107 and pond dynamics (e.g. ponds drying) largely uncoupled pathogen dynamics between years. The 77

108 metacommunities were comprised of between one to 26 ponds and there were 139 unique ponds sampled
109 across six years (496 unique pond by year combinations).

110 From May through August in 2013-2018, crews sampled amphibian larvae and metamorphs using stan-
111 dardized dip net surveys (for details see Johnson *et al.* 2013). Standardized skin swabs were taken from each
112 sampled amphibian to assess Bd infection status and Bd load using quantitative polymerase chain reaction
113 (qPCR, Boyle *et al.* 2004). qPCR for Bd was run on each sample in triplicate to quantify measurement
114 error (DiRenzo *et al.* 2018). Additional dip net surveys were conducted to estimate density of amphibian
115 larvae and metamorphs (Joseph *et al.* 2016). As the Bd and density sampling was all within a season, we
116 focused our analysis on within season Bd dynamics and not between season dynamics. Moreover, while
117 adult amphibians were present and occasionally captured in dip net sweeps, the surveys were not designed
118 to sample adult amphibians. We discuss the implications of excluding adults in Appendix S1.

119 A multi-species, multi-patch model of pathogen dynamics

120 We used a dynamic model to (1) compute species-level maintenance potential and patch-level source poten-
121 tial in order to (2) decompose how species and patches contributed to Bd persistence on the landscape within
122 a season. We considered a multi-species, multi-patch (S)usceptible-(I)nfected-(S)usceptible model with in-
123 fection from an environmental zoospore pool Z for host species $s = 1, \dots, H$ and patches $p = 1, \dots, P$ (Fig.
124 1B). Bd is transmitted between hosts via a motile, aquatic zoospore stage (Longcore *et al.* 1999). Consistent
125 with previous Bd models, we assumed that amphibians acquired infection directly from an aquatic zoospore
126 pool into which infected amphibians shed Bd zoospores (Mitchell *et al.* 2008; Briggs *et al.* 2010). We did
127 not consider a load-dependent model of the pathogen dynamics within the host (e.g., Briggs *et al.* 2010).
128 As there was little evidence in this system of load-dependent Bd-induced mortality occurring at a rate that
129 affected host population dynamics, we chose to use a simpler model that did not directly account for Bd
130 load. We did, however, use Bd load as a proxy for shedding rates of infectious zoospores, as described below.

131 The multi-species, multi-patch model we consider is (Fig. 1B)

$$\begin{aligned} \frac{dS_{sp}}{dt} &= f(N_{sp}) - d_{sp}S - \beta_{sp}S_{sp}Z_p + \nu_{sp}I_{sp} + \phi_s \sum_{j \in P} (-c_{jp}S_{sp} + c_{pj}S_{sj} \frac{A_j}{A_p}) \\ \frac{dI_{sp}}{dt} &= \beta_{sp}S_{sp}Z_p - (\nu_{sp} + d_{sp})I_{sp} + \phi_s \sum_{j \in P} (-c_{jp}I_{sp} + c_{pj}I_{sj} \frac{A_j}{A_p}) \\ \frac{dZ_p}{dt} &= \sum_{i \in S} \lambda_{ip}I_{ip} - \gamma_p Z_p \end{aligned} \quad (1)$$

132 where S_{sp} and I_{sp} are the densities of susceptible and infected hosts, respectively, of species s in patch p .
133 Z_p is the density of zoospores in the zoospore pool in patch p . The term $\beta_{sp}Z_p$ is the force of infection for

134 species s in patch p . λ_{sp} is the species- and patch-specific shedding rate of Bd zoospores into the environment
 135 and γ_p is the patch-specific decay rate of the zoospores in the environment. We assumed all hosts in a patch
 136 share the same pathogen pool and that the pathogen pool is well-mixed. The parameter ν_{sp} is the species
 137 and patch-specific recovery rate of an infected host. Host birth rate is given by the generic function $f(N_{sp})$
 138 where $N_{sp} = S_{sp} + I_{sp}$ and is species and patch specific. We assumed that Bd infection does not affect host
 139 reproduction. Host death rate is given by d_{sp} and is species and patch specific.

140 The parameter ϕ_s is the within-season species-specific dispersal rate (i.e. the rate at which individuals
 141 of species s left a patch) and c_{jp} is the probability that a host moves from patch p to patch j . We let
 142 $c_{jj} = 0$ such that a species does not remain in the same patch if it moves. The $P \times P$ matrix \mathbf{C} contains c_{jp}
 143 movement probabilities and is irreducible – all patches were accessible to all other patches in a finite time
 144 (Arino 2009). We assumed that both infected and susceptible individuals can disperse, that infection does
 145 not affect dispersal, and that infection status does not change during dispersal. Finally, A_p is the area of
 146 patch p .

147 **Species-level $R_{0,s,p}$**

148 Given equation 1, species-level $R_{0,s,p}$ of species s in patch p is given by $R_{0,s,p} = \frac{\beta_{sp}\lambda_s S_{sp}^*}{b_{sp}\gamma_p}$, where S_{sp}^* is the
 149 density of susceptible hosts of species s in patch p before infection arrives and $b_{sp} = d_{sp} + \nu_{sp}$ (Fig. 1B).
 150 Note that if we included Bd-induced mortality at some constant rate α_{sp} , this would be additively included
 151 into b_{sp} .

152 If equation 1 is at equilibrium, we can re-write $R_{0,s,p}$ as

$$R_{0,s,p} = \frac{\beta_{sp}\lambda_s N_{sp}^*}{b_{sp}\gamma_p} = \frac{1 + \frac{\phi_s}{b_{sp}} \sum_{j \in \text{Patches}} (c_{jp} - c_{pj} \frac{A_j}{A_p} \frac{\Pi_{sp}^*}{\Pi_{sp}^*} \frac{N_{sj}^*}{N_{sp}^*})}{(1 - \Pi_{sp}^*) (\sum_{i \in \text{Species}} \frac{\lambda_{ip}}{\lambda_{sp}} \frac{\Pi_{ip}^*}{\Pi_{sp}^*} \frac{N_{ip}^*}{N_{sp}^*})} \quad (2)$$

153 The variable Π_{sp}^* is the equilibrium Bd prevalence and N_{sp}^* is the equilibrium density of species s in patch
 154 p . If it holds, the equilibrium assumption is useful because one can calculate $R_{0,s,p}$ without needing hard-
 155 to-estimate parameters such as species-specific absolute transmission rates (Rudge *et al.* 2013; Fenton *et al.*
 156 2015). One can instead use more commonly collected parameters such as host density, Bd prevalence and
 157 Bd infection load.

158 A useful property of equation 2 is that the ratio between two species-level $R_{0,s,p}$ values from the same
 159 patch p depends only on the parameters relating to the two species being compared (Appendix S1). In this
 160 case, if one does not have the necessary data on other community members that are potentially important
 161 for the persistence of Bd, one can still analyze the contribution of each species to persistence, relative to the
 162 other species that have been sampled.

163 **The endemic equilibrium assumption**

164 In this study, we had snapshots of data from each pond during each season and thus could not conclusively
165 test whether or not particular sites were in approximate equilibrium within a season. However, Fenton
166 *et al.* (2015) showed that calculations of R_0 using this approach are relatively robust to deviations from
167 the equilibrium assumption if prevalence and host density are fluctuating about a mean value through time.
168 Biologically, our sampling period was generally after the influx of adult amphibians for breeding and before
169 the efflux of metamorphs from the pond, such that we did not expect densities to vary drastically within the
170 sampling period. Moreover, pooling prevalence estimates across the sampled months showed no consistent
171 peaks in prevalence during the sampling season for the six species considered (Fig. S2), suggesting that an
172 approximate endemic equilibrium assumption is not strongly violated for this system.

173 **Linking empirical data and $R_{0,s,p}$**

174 We fitted statistical models that accounted for measurement and observation error to estimate Bd load, Bd
175 prevalence Π_{sp}^* and host density N_{sp}^* for species s in patch p (models described in Appendix S2; Miller *et al.*
176 2012; Joseph *et al.* 2016; DiRenzo *et al.* 2018). We assumed that host shedding rate was proportional to Bd
177 load (DiRenzo *et al.* 2014) and estimated the shedding rate ratios $\frac{\lambda_{ip}}{\lambda_{sp}}$ for species s and i in patch p as the
178 ratio between estimated mean Bd loads for species s and i in patch p . We calculated $R_{0,s,p}$ using equation
179 2, propagating the uncertainty in the parameter estimates. The results we present use the median $R_{0,s,p}$
180 estimates.

181 **Contributions of host species and habitat patches in unconnected metacommunities**

183 We began our analysis with the assumption that patches were unconnected on the landscape (i.e. $\phi_s = 0$).
184 We made this assumption so that we could compare how including connectivity changed species maintenance
185 potential and patch source potential. Under this assumption, the only parameters needed to calculate species-
186 specific $R_{0,s,p}$ are Bd prevalence, relative density, and relative shedding rates for the different amphibian
187 species within a patch (equation 2). Moreover, because our model assumed that amphibians were sharing
188 the same pool of zoospores, patch-level $R_{0,p}$ could be directly calculated as $R_{0,p} = \sum_{s \in \text{Species}} R_{0,s,p}$ (Rudge
189 *et al.* 2013). We calculated relative and absolute $R_{0,s,p}$ values for our analysis of unconnected patches.

190 **Contributions of host species and habitat patches in connected metacommunities**

191 Our study contained 77 metacommunities within which amphibian species could move. Equation 2 shows
192 that accounting for the connectivity of the metapopulations can change our conclusions about the nature
193 of species maintenance potential and patch source potential. Here we give a summary of how we included
194 connectivity into our model. The complete methods are described in Appendix S3.

195 Given a metacommunity of connected patches, there were multiple connectivity parameter sets that were
196 equally “plausible” given observed patterns of prevalence, Bd loads, and host density. By “plausible” we mean
197 that $R_{0,s,p} \geq 0$ for all species and patches in the metacommunity. To address this challenge, we explored the
198 plausible set of connectivity parameters to determine how the maintenance potential of a species and source
199 potential of a patch varied over the plausible parameter space. The key unknown connectivity parameter
200 in the model was the ratio between species-specific dispersal rate and the loss rate from the infected class,
201 $r_{sp} = \phi_s/b_{sp}$. This parameter gives the expected number of patches to which an infected individual of
202 species s that disperses from patch p moves to over its time infected. As this parameter could not be
203 uniquely inferred from snapshot data, we instead allowed r_{sp} to vary across all species and patches within a
204 metacommunity and explored how species maintenance potential and patch source potential changed across
205 plausible values of r_{sp} , compared to an assumption of no dispersal (i.e. $r_{sp} = 0$).

206 For each metacommunity with H species and P patches, we randomly drew $H \times P r_{sp}$ parameters and
207 computed the species-level $R_{0,s,p}$ for all species and patches in a metacommunity using equation 2 (Appendix
208 S3). For a single parameter set of $H \times P r_{sp}$ values, each vector $R_{0,s,\cdot}$ of length P was associated with P
209 r_{sp} values, one entry for each patch occupied by species s in the metacommunity. If any $R_{0,s,\cdot} < 0$, this
210 indicated that the parameter vector r_s was not plausible given the model and data. Using a rejection
211 algorithm, we identified which parameter sets were plausible and computed species-level and patch-level
212 absolute and relative R_0 values for these parameter sets and compared them to species- and patch-level
213 R_0 values calculated with no connectivity. We repeated this 100,000 times for each metacommunity. The
214 plausible connectivity parameter sets were the subset of the 100,000 parameter sets that were not rejected.
215 We defined the most connected plausible parameter set as the set where the mean r_{sp} was maximized across
216 habitat patches for species s in a metacommunity.

217 **Simulated knockouts: The effect of removing maintenance species and source
218 patches on landscape-level $R_{0,L}$**

219 In our final analysis, we sought to directly answer the question: how much does landscape-level $R_{0,L}$ change
220 when we remove a particular species in the metacommunity compared to when we remove the most influential

source patch? Up to this point, our calculations of $R_{0,s,p}$ and $R_{0,p}$ did not require any assumptions about the loss rate of hosts from the infected class, b_{sp} . However, calculating landscape-level $R_{0,L}$ for an amphibian metacommunity required the ratios between the rates at which hosts left the infected class (i.e. b_{ij}/b_{sp} for $i, s = 1, \dots, S, j, p = 1, \dots, P$, Appendix S4). We made the following two assumptions about the relative values of b_{sp} . First, we assumed that recovery rates from Bd infection were inversely related to load, such that individuals with higher loads had a lower probability of clearing infection (Wilber *et al.* 2016; Ohmer *et al.* 2017). Second, we assumed loss of infection ν_{sp} occurred at a faster rate than background host mortality d_{sp} such that we could approximate b_{ij}/b_{sp} as a ratio of estimated mean Bd loads for species s in patch p μ_{sp} : $\frac{b_{ij}}{b_{sp}} = \frac{1/\mu_{ij}}{1/\mu_{sp}} = \frac{\mu_{sp}}{\mu_{ij}}$. In Appendix S4, we considered different assumptions about the magnitude of background mortality rate and our overall results were insensitive to our assumptions.

Over the plausible connectivity space, we calculated how much landscape-level $R_{0,L}$ changed when we removed a particular species in the metacommunity compared to when we removed the most influential source patch. We defined the most influential source patch in a metacommunity as the patch with the largest $R_{0,p}$, given a set of plausible connectivity parameters. We performed this *in silico* removal experiment on 61 metacommunities that had more than one habitat patch and more than one amphibian species (Appendix S4).

Results

Patterns of host density, Bd prevalence, and Bd load across patches

PSRE hosts were observed in 82% of patch by year combinations (405 / 496), TATO in 67% (334 / 496), TAGR in 28% (137 / 496), ANBO in 28% (139 / 496), RADR in 13% (65 / 496), and RACA in 12% (60 / 496). PSRE and TATO were present in 74 and 70 out of 77 metacommunities, respectively. RADR, TAGR, BUBO, and RACA were all found in less than 50% of the 77 metacommunities (37, 36, 32, and 27 metacommunities, respectively). PSRE and TATO had higher estimated median amphibian densities per sweep than RADR, ANBO, TAGR, and RACA, although density estimates showed substantial variation across years (Fig. 2A).

Bd was detected in 73% of patches that were sampled from 2013-2018. Conditional on a host being present at a patch, RADR generally had the highest Bd prevalence, followed by PSRE and ANBO (Fig. 2B). Observed prevalence was the lowest for TATO and TAGR (Fig. 2B). Prevalence estimates varied across years, with 2014 showing a substantially lower non-zero prevalence for PSRE, RADR, and ANBO (Fig. 2B). Within a year, mean Bd load given infection was generally significantly higher in ANBO, PSRE, and BUBO

251 compared to TAGR and TATO (95% credible intervals of log load differences between these species were
252 significantly different than 0, but not in year 2014; Fig. 2C). RACA loads given infection were generally not
253 significantly higher or lower than other species.

254 **Species maintenance potential and patch source potential in amphibian meta-
255 communities**

256 **Within a patch, PSRE was the most important amphibian host species for the persistence of
257 Bd:** The relative $R_{0,s,p}$ of PRSE was larger than other amphibian species in 81% of the patches in which
258 the amphibian species co-occurred (488 / 604 instances of PSRE co-occurring with other amphibian species
259 within a patch; Fig. 3). Of the 116 instances where PSRE had a lower relative $R_{0,s,p}$ to another species in
260 the community, 36% were with ANBO, 27% were with TATO, 18% were with RADR, and 11% were with
261 RACA.

262 We also examined the absolute values of species-specific R_0 across habitat patches, given the assumption
263 that metamorphs and tadpoles are the primary contributors to Bd dynamics within a season. Absolute
264 values of R_0 were highest for PSRE (median $R_{0,s,p} = 1.09$), followed by RADR ($R_{0,s,p} = 0.36$), ANBO
265 ($R_{0,s,p} = 0.35$), RACA ($R_{0,s,p} = 0.17$), TATO ($R_{0,s,p} = 0.02$), and TAGR ($R_{0,s,p} = 0.006$) (Fig. 4). The
266 ranking of species-level $R_{0,s,p}$ values were largely consistent across years, though median magnitudes changed.

267 **The majority of host communities had at least one maintenance host species and PSRE was
268 almost always a maintenance host when it was present:** Of the 496 patch-year combinations sampled,
269 125 had median R_0 estimates where all species-specific $R_{0,s,p}$ values were less than one, but community-level
270 R_0 was greater than one (i.e. an obligate host community, Fig. 5). In 65 of these 125 obligate host
271 communities, Bd was not empirically observed, but low levels of Bd load and prevalence were inferred given
272 a non-zero probability of Bd detection error from the Bd load model (see Appendix S2, Fig. 5). Of the 371
273 non-obligate host communities, 9% had multiple host species with $R_{0,s,p} > 1$ (i.e. facultative communities).
274 Eighty-eight percent of facultative communities were comprised of PSRE and either ANBO or RADR. The
275 other 91% of non-obligate communities (339 communities) had only one species with $R_{0,s,p} > 1$ (i.e. spillover
276 communities) and all other species (if any were present) had $R_{0,s,p} < 1$. In the non-obligate communities
277 where PSRE was present, PSRE was a maintenance host 88% of the time (265 / 301; Fig. 5).

278 **Under plausible levels of connectivity, multiple source patches contributed to Bd persistence
279 and PSRE was the dominant maintenance host:** Under the assumption of no connectivity, all patches
280 within a metacommunity had to be, by definition, source patches – if Bd was present and endemic and the

281 patch was not connected to any other patch then it must be a source patch. However, connectivity can alter
282 the relative maintenance and source potential of a species and patch, respectively. We found that across the
283 plausible parameter space of connectivity, the importance of PSRE as a maintenance host within patches
284 was largely unchanged (Fig. 3, Fig. 4). Considering the median $R_{0,s,p}$ values predicted from the plausible
285 parameter space for r_{sp} for each species in each of the 77 metacommunities, the relative $R_{0,s,p}$ of PRSE was
286 larger than other amphibian species in 80% (482 / 604 combinations) of the patches in which the amphibian
287 species co-occurred (Fig. 3).

288 While species maintenance potential did not change over the plausible connectivity space, patch source
289 potential did (e.g. Fig. 5). However, even under the most connected plausible parameter scenario 53 of
290 the 61 metacommunities with more than one patch had two or more source patches contributing to Bd
291 persistence (e.g. Fig. 5).

292 **Removing PSRE from metacommunities led to larger decreases in landscape-level $R_{0,L}$ than**
293 **removing the most influential source patch:** Over the plausible range of connectivity, removing PSRE
294 led to, on average, a 43% larger reduction in landscape-level $R_{0,L}$ compared to removing the largest source
295 patch (95% confidence interval from single sample t-test: [10%, 63%], Fig. 6). In contrast, removing any of
296 the other five amphibian species was significantly less effective, on average, at reducing landscape-level $R_{0,L}$
297 than removing the the most influential source patch (Fig. 6). In five of the 61 metacommunities with more
298 than one patch and one species, removing the most influential source patch reduced landscape-level $R_{0,L}$
299 more than removing any particular species (Fig. 6).

300 Discussion

301 Understanding how multiple levels of heterogeneity in host-parasite systems interact can improve the effi-
302 ciency of managing human and wildlife diseases (Lloyd-Smith *et al.* 2005; Paull *et al.* 2012; Webster *et al.*
303 2017). By focusing management on super-spreading individuals (Lloyd-Smith *et al.* 2005), highly competent
304 host species (Kilpatrick *et al.* 2006), or source patches on the landscape (Paull *et al.* 2012), the effort required
305 to mitigate pathogen impacts can be greatly reduced. In this study, we used a widely-applicable theoretical
306 framework to isolate different levels of heterogeneity leading to pathogen persistence in multi-species, multi-
307 patch host-pathogen systems. We linked this framework to empirical pathogen data from over 11,000 hosts
308 comprising six species across 77 metacommunities to identify to roles of species, patches and connectivity on
309 pathogen persistence at the landscape-level. We found that pathogen persistence in multi-species, multi-patch
310 metacommunities was primarily driven by a single maintenance host species, rather than particular source

311 patches and among patch connectivity. Our study contributes to broader theory on host-pathogen dynamics
312 by illustrating that even in host-pathogen systems with multiple levels of heterogeneity (e.g. species-level
313 and patch-level heterogeneity), a single-level of heterogeneity can disproportionately contribute to pathogen
314 persistence.

315 In our study, we found that the Pacific tree frog (PSRE) was generally the dominant maintenance host
316 across patches. This was reflected in both higher absolute values of species-level $R_{0,s,p}$ for PSRE and higher
317 or equal relative values of $R_{0,s,p}$ when PSRE co-occurred with other amphibian species. However, a key
318 challenge that multi-species communities pose for disease management is that the identity of maintenance
319 species can vary across communities, making pathogen management strategies habitat-dependent (Rudge
320 *et al.* 2013; Webster *et al.* 2017). While the dominant community type that we observed was one where
321 PSRE was a maintenance host, we also found that in some observed communities other amphibians species
322 were predicted to be maintenance hosts. Of particular interest in amphibian-Bd systems is the effect that
323 the invasive American bullfrog RACA has on Bd persistence (Garner *et al.* 2006; Adams *et al.* 2017). We
324 found that, while infected with Bd in this system, bullfrogs were not consistently more important relative
325 maintenance hosts than PSRE, ANBO, or RADR when these species co-occurred. Moreover, while bullfrogs
326 were predicted to be maintenance hosts in 20 patches under a no connectivity scenario, bullfrogs did not
327 remain a maintenance host in seven of these source patches when we included patch connectivity. This was
328 in contrast to the patches where ANBO and RADR were maintenance hosts and remained maintenance hosts
329 with or without connectivity. Taken together, our results suggest that bullfrogs are not disproportionately
330 more influential on within-season Bd dynamics in an average patch than other amphibian species found in
331 this system. However, given the multi-year tadpole stages of bullfrogs we cannot rule out the importance of
332 bullfrogs in between-season Bd dynamics.

333 Empirical studies often identify host maintenance potential using independent comparisons of host char-
334 acteristics such as prevalence, pathogen load, disease-induced mortality, and host density (e.g. Reeder *et al.*
335 2012; Stockwell *et al.* 2016; Brannelly *et al.* 2018; Hudson *et al.* 2019). While a useful approach, the chal-
336 lenge with independently using these characteristics to identify maintenance hosts is that it becomes hard
337 to compare maintenance potential among multiple species within a community. For example, is a host with
338 higher density and lower prevalence a more important maintenance host than a host with lower density
339 and higher prevalence? Previous work in multi-species systems has shown how these commonly-collected
340 characteristics can be linked to an established quantitative measure of maintenance potential, R_0 (Rudge
341 *et al.* 2013; Fenton *et al.* 2015), and we generalized this approach to multi-species, multi-patch host-pathogen
342 systems. Note that computing R_0 within and across habitat patches does require assumptions that need to
343 be checked (Keeling & Rohani 2008; Fenton *et al.* 2015). However, when done systematically it provides

344 an unambiguous way to relate characteristics that are suggestive of a maintenance host to a quantitative
345 measure of maintenance potential across species and patches.

346 Identifying host maintenance potential in multi-host communities can have important conservation im-
347 plications for managing disease impacts. While Bd was not a cause of conservation concern in our system,
348 it is in many other multi-species amphibian communities (Scheele *et al.* 2019). In Central and South Amer-
349 ica, for example, amphibians have experienced drastic Bd-induced declines and particular species have been
350 implicated as disproportionately contributing to infection risk (Schloegel *et al.* 2010; DiRenzo *et al.* 2014).
351 However, we are not aware of any studies in amphibian-Bd systems that have quantified maintenance hosts
352 by synthesizing the multiple dimensions of host and pathogen characteristics into a single, theoretically-
353 supported metric of maintenance potential: species-level R_0 (see Canessa *et al.* 2019, for an example with
354 the pathogen *Batrachochytrium salamandrivorans*). The approach developed in Fenton *et al.* (2015) and
355 extended here provides a feasible way to use data often collected in amphibian-Bd systems with multiple
356 host species to promote theoretically informed amphibian management where Bd is a conservation concern.

357 While our study primarily focused on the dominant maintenance host across communities, community
358 assembly and composition can also affect community-level disease risk (e.g. $R_{0,p}$, Dobson 2004; Keesing
359 *et al.* 2006). In this study, we made the assumption that pathogen transmission occurred from a well-
360 mixed environmental zoospore pool, amphibians had equal access to the pool, and gaining an infection did
361 not deplete the pool. This assumption meant that, given species-level $R_{0,s,p}$ values, patch-level $R_{0,p}$ was
362 simply a summation of these values. More generally, however, moving from species-level $R_{0,s,p}$ values to
363 patch-level $R_{0,p}$ values requires understanding inter-specific overlap in direct or indirect contact and the
364 dynamics of pathogen depletion in the environment (Fenton *et al.* 2015). When these factors are important
365 for the pathogen dynamics of a system, the relationship between community composition, species-level $R_{0,s,p}$
366 values, and patch-level $R_{0,p}$ values can be non-additive, with changes in the species composition of a patch
367 augmenting or diluting patch-level $R_{0,p}$ (Dobson 2004).

368 When habitat patches are unconnected, identifying species maintenance potential is key for understanding
369 pathogen dynamics within a patch (Fenton *et al.* 2015). However, when patches are connected, variability in
370 species maintenance potential across habitat patches can make patch-level heterogeneity a more important
371 driver of pathogen dynamics than species-level heterogeneity. Thus, the major question that we wanted to
372 answer in this study was: do species contribute more than patches to the persistence of a pathogen on the
373 landscape? Answering this question is important as most empirical applications of epidemiological theory
374 have considered the role of heterogeneity on disease dynamics at a single scale (Bansal *et al.* 2007; Schreiber &
375 Lloyd-Smith 2009; Rudge *et al.* 2013), but few studies consider how different scales of heterogeneity interact
376 to affect pathogen persistence (Paull *et al.* 2012). An advantage of our theoretical framework is that at

377 endemic equilibrium species-level $R_{0,s,p}$ and patch-level $R_{0,p}$ can be linked to landscape-level $R_{0,L}$ entirely
378 through unitless parameter ratios and probabilities (Appendix S4). Just as with the multi-species models
379 that our approach extends (Rudge *et al.* 2013; Fenton *et al.* 2015), this is useful because hard-to-estimate
380 rates such as transmission rates, pathogen decay rates, and dispersal rates are not needed. Therefore, multi-
381 patch, multi-species models can be more easily linked with commonly-collected empirical data to identify
382 how different scales of heterogeneity affect pathogen persistence.

383 Using our theoretical framework, we found that 85% of the amphibian-Bd metacommunities observed in
384 this system were most consistent with a weakly connected network of source patches. To understand the
385 implications of this metacommunity structure on pathogen persistence at the landscape-level, we system-
386 atically removed either the dominant maintenance species or source patch in a metacommunity, *in silico*.
387 Over the plausible range of connectivity, knocking out the dominant maintenance species on average reduced
388 landscape-level $R_{0,L}$ twice as much as knocking out the primary source patch in the metacommunity. As
389 PSRE was the dominant maintenance species in most metacommunities, knocking out PSRE was the most
390 effective strategy for reducing landscape-level $R_{0,L}$ for Bd. In contrast, knocking out RACA was gener-
391 ally less effective for reducing landscape-level $R_{0,L}$ than removing the most influential source patch. Note
392 that our *in silico* removal of a species does not necessarily mean killing the species. Any mechanism that
393 removed the potential for a species to contribute to Bd transmission, such as treatment, could similarly
394 affect landscape-level $R_{0,L}$. Overall, we found that despite heterogeneity in species maintenance poten-
395 tial across habitat patches, patch-level heterogeneity was less important than species-level heterogeneity for
396 landscape-level pathogen persistence.

397 By partitioning the contributions of two levels of heterogeneity, species and patch heterogeneity, to
398 landscape-level pathogen persistence, this study takes an important step toward understanding the effects
399 of heterogeneity across scales on pathogen dynamics (Paull *et al.* 2012). The model we develop is applicable
400 to other multi-species, multi-patch systems and is amenable to asking additional theoretical questions to
401 further unravel the hierarchy of heterogeneities driving host-pathogen dynamics.

402 Acknowledgments

403 For host sampling and fieldwork, we thank T. McDevitt-Galles, W. Moss, D. Calhoun, T. Riepe, K. Leslie,
404 and the many other individuals who helped with data collection. Access to properties and wetlands was
405 kindly provided by East Bay Regional Parks District, East Bay Municipal Utility District, Santa Clara
406 County Parks, and multiple private landowners. M. Hamilton and Z. Harlow of the Blue Oak Ranch Reserve
407 (University of California) provided logistical support, laboratory space, and housing for field sampling. We

408 thank Renwei Chen for her work processing qPCR samples. Funding was provided by the David and Lucile
409 Packard Foundation, the National Science Foundation (DEB 1149308 and DEB 1754171), the National In-
410 stitutes of Health (R01GM109499), and the NIH/NSF Ecology and Evolution of Infectious Diseases program
411 (R01GM135935).

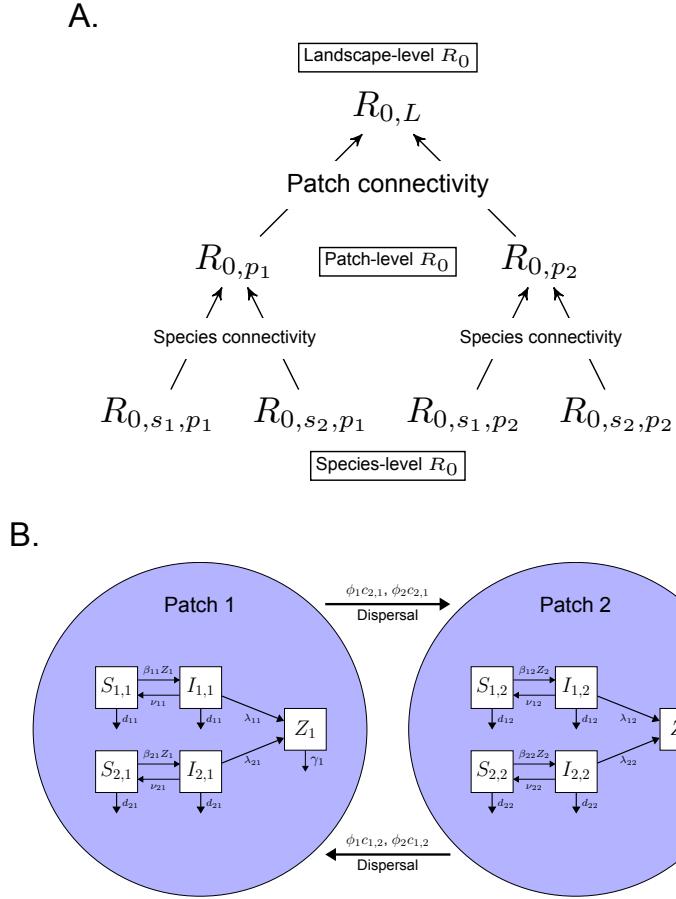


Figure 1: **A.** The partitioning of a multi-species, multi-patch system into species-level $R_{0,s,p}$, patch-level $R_{0,p}$, landscape-level $R_{0,L}$, species connectivity (e.g. the off-diagonals of a Who-Acquired-Infection-From-Whom (WAIFW) matrix, Dobson 2004), and patch connectivity. In this example, there are two species and two patches on the landscape. **B.** The multi-species, multi-patch pathogen model used to partition the importance of maintenance species and source patches on pathogen persistence in a metacommunity (equation 1). The diagram uses two species and two patches as an example.

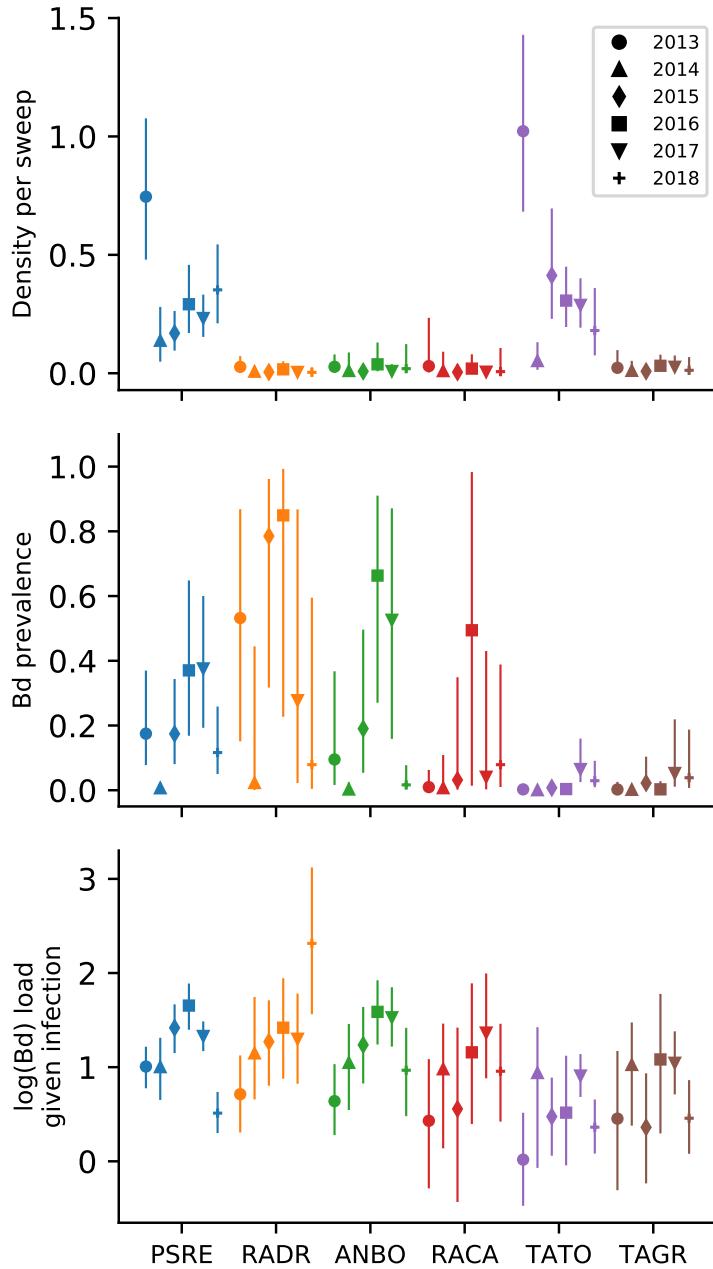


Figure 2: **A.** Median estimated amphibian density per net sweep after accounting for false absences across six years, 139 sites and six amphibian species. **B.** Median estimated prevalence after accounting for false detection and measurement error. **C.** Median estimated mean $\log(Bd)$ load conditional on infection after accounting for detection error. For all figures, the error bars are 95% credible intervals about the estimated median. Different shapes represent different years.

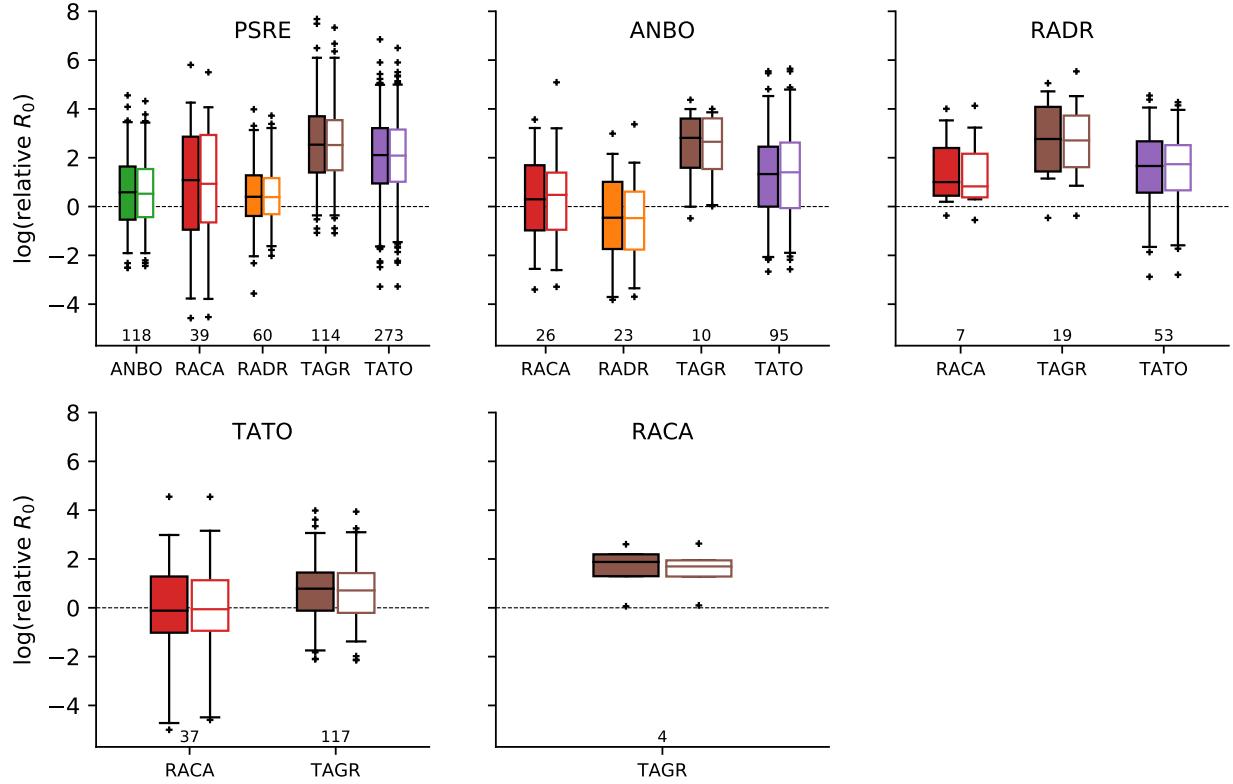


Figure 3: Relative species-level R_0 values within a patch calculated using equation 2 with $r_{sp} = 0$ (filled boxplots) and using the median $R_{0,s,p}$ from the plausible set of dispersal rate to loss of infected rate ratios r_{sp} (unfilled boxplots). As an example of the labeling, the “ANBO” x-label of the plot titled “PSRE” shows the distribution of the ratios of PSRE $R_{0,s,p}$ values to ANBO $R_{0,s,p}$ values for patches where PSRE and ANBO were both present. A value larger than zero indicates that the relative maintenance potential of PSRE is greater than ANBO for that comparison. The numbers on the plots give the number of patches where both species were found. The bars give the medians, the boxes give the upper and lower quartiles, the whiskers give the 2.5 and 97.5 percentiles, and “+”s show points outside of these percentiles.

Figure 4: The absolute species-level $R_{0,s,p}$ values calculated using equation 2 when there was no connectivity (i.e. dispersal rate to loss of infected rate ratio was $r_{sp} = 0$, filled boxplots). The median species-level $R_{0,s,p}$ values under plausible connectivity (unfilled boxplots). The bars give the medians, the boxes given the upper and lower quartiles, the whiskers give the 2.5 and 97.5 percentiles, and “+”s show points outside of these percentiles. The sample sizes give the number of patch by year combinations where a species was found. The most noticeable difference between no connectivity and connectivity predictions is that the distribution of absolute $R_{0,s,p}$ values for PSRE shifts down as fewer patches are source patches in the plausible connectivity scenario.

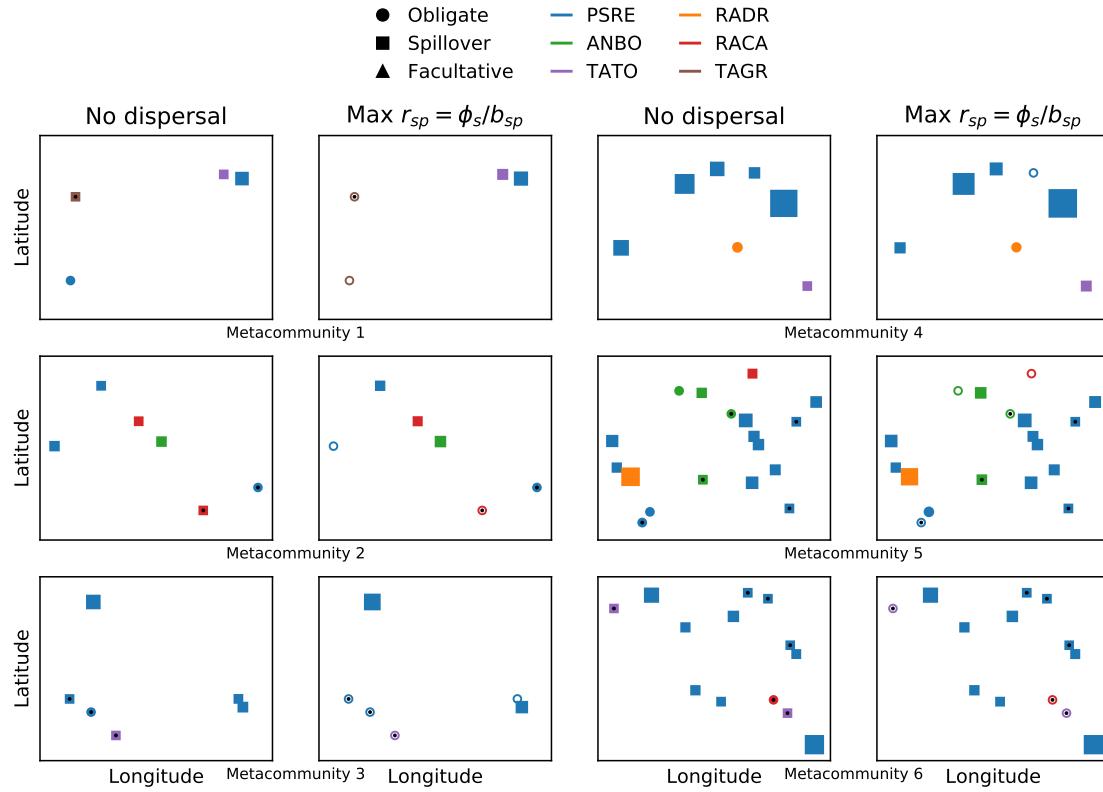


Figure 5: Six representative metacommunities and patch source potentials given no dispersal and maximum plausible connectivity for each species in a metacommunity ($\text{Max } r_{sp} = \phi_s/b_s$). Each point represents the spatial location of a patch within the metacommunity. The color of the point indicates which amphibian has the highest $R_{0,s,p}$ in the site. If the point is filled, the patch-level $R_{0,p}$ is greater than 1 and the patch is a source patch. If the point is not filled, the patch-level $R_{0,p}$ is less than 1 and the patch is a sink. The shape of the point indicates what type of community is found in the patch. Circle = an obligate community where $R_{0,s,p} < 1$ for all species, Square = a spillover community where $R_{0,s,p} > 1$ for only one species, and Triangle = a facultative community where $R_{0,s,p} > 1$ for more than one species. The size of the point represents a scaled measure of patch-level $R_{0,p}$ when patch-level $R_{0,p} > 1$. Finally, points with small black dots indicate patches where Bd was not observed for any species. Our statistical model for Bd load accounted for detection error, such that there was some probability that Bd was present, but at low prevalence in these patches. We used the model-predicted prevalence given detection error when making inference for these sites (Appendix S2).

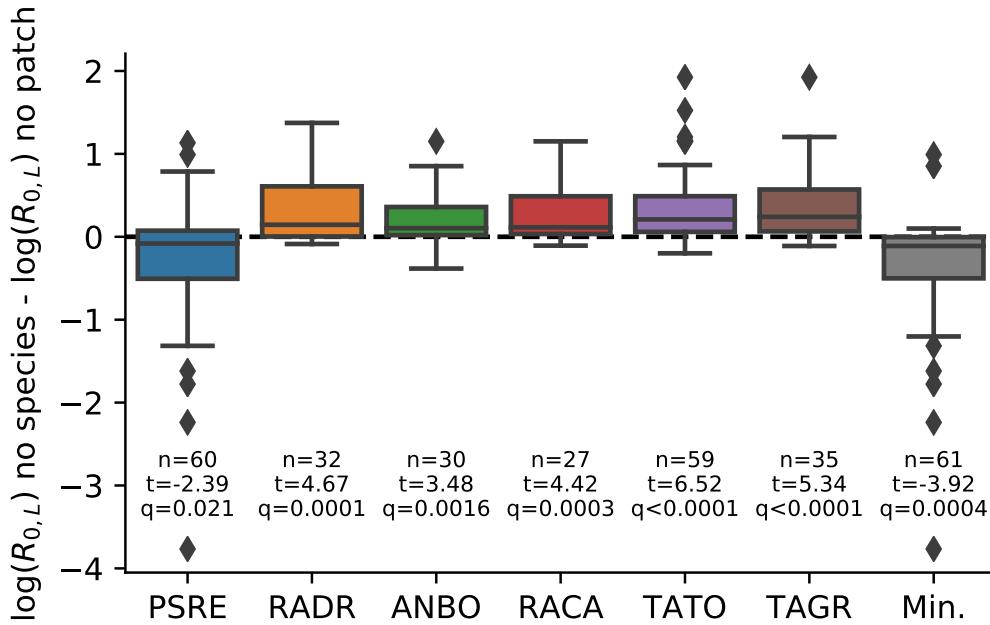


Figure 6: The effect of removing a species on landscape-level $R_{0,L}$ compared to removing the most influential source patch for 61 metacommunities with at least two patches and two species. Negative values indicate a larger reduction in landscape-level $R_{0,L}$ when a species is removed compared to when the most influential source patch is removed from the metacommunity. The sample sizes give the number of metacommunities out of 61 where a species was present. The t -statistics are from single sample t-tests testing the null hypothesis that the ratio $\log(\frac{R_{0,L}\text{no species}}{R_{0,L}\text{no patch}})$ is significantly different than zero. The q value is the significance value of the single sample t-test, after adjusting for multiple comparisons using the false discovery rate correction (Benjamini & Hochberg 1995). The gray boxplot “Min.” shows the minimum ratio $\log(\frac{R_{0,L}\text{no species}}{R_{0,L}\text{no patch}})$ across all species within a metacommunity. The dashed line indicates where removing a species and removing the most influential source patch had the same effect on landscape-level $R_{0,L}$.

412 References

413 Adams, A. J., Kupferberg, S. J., Wilber, M. Q., Pessier, A. P., Grefsrud, M., Bobzien, S., Vredenburg,
414 V. T. & Briggs, C. J. (2017). Extreme drought, host density, sex, and bullfrogs influence fungal pathogen
415 infection in a declining lotic amphibian. *Ecosphere*, 8, e01740.

416 Arino, J. (2009). Diseases in metapopulations. In: *Modeling the Dynamics of Infectious Disease, Series in*
417 *Contemporary Applied Mathematics* (eds. Ma, Z., Zhou, Y. & Wu, J.). World Scientific, Singapore, pp.
418 64–122.

419 Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M. & van den Driessche, P. (2005). A multi-species
420 epidemic model with spatial dynamics. *Math Med Biol*, 22, 129–142.

421 Bansal, S., Grenfell, B. T. & Meyers, L. A. (2007). When individual behaviour matters: Homogeneous and
422 network models in epidemiology. *J R Soc Interface*, 4, 879–891.

423 Benjamini, Y. & Hochberg, Y. (1995). Controlling the False Discovery Rate: A practical and powerful
424 approach to multiple testing. *J Roy Stat Soc B Met*, 57, 289–300.

425 Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. (2004). Rapid quantitative detection
426 of chytridiomycosis (*Batrachochytrium dendrobatidis*) in amphibian samples using real-time Taqman PCR
427 assay. *Dis Aquat Organ*, 60, 141–8.

428 Brannelly, L. A., Webb, R. J., Hunter, D. A., Cleemann, N., Howard, K., Skerratt, L. F., Berger, L. & Scheele,
429 B. C. (2018). Non-declining amphibians can be important reservoir hosts for amphibian chytrid fungus.
430 *Anim Conserv*, 21, 91–101.

431 Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. (2010). Enzootic and epizootic dynamics of the chytrid
432 fungal pathogen of amphibians. *P Natl Acad Sci USA*, 107, 9695–9700.

433 Canessa, S., Bozzuto, C., Pasman, F. & Martel, A. (2019). Quantifying the burden of managing wildlife
434 diseases in multiple host species. *Conserv Biol*, 33, 1131–1140.

435 Cross, P. C., Lloyd-Smith, J. O., Johnson, P. L. F. & Getz, W. M. (2005). Duelling timescales of host
436 movement and disease recovery determine invasion of disease in structured populations. *Ecol Lett*, 8,
437 587–595.

438 De Castro, F. & Bolker, B. (2005). Mechanisms of disease-induced extinction. *Ecol Lett*, 8, 117–126.

439 Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. (1990). On the definition and the computation of the
440 basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. *J Math Biol*,
441 28, 365–382.

442 DiRenzo, G. V., Campbell Grant, E. H., Longo, A. V., Che-Castaldo, C., Zamudio, K. R. & Lips, K. R.
443 (2018). Imperfect pathogen detection from non-invasive skin swabs biases disease inference. *Methods Ecol*
444 *Evol*, 9, 380–389.

445 DiRenzo, G. V., Langhammer, P. F., Zamudio, K. R. & Lips, K. R. (2014). Fungal infection intensity and
446 zoospore output of *Atelopus zeteki*, a potential acute chytrid supershedder. *PLoS ONE*, 9, 1–6.

447 Dobson, A. (2004). Population dynamics of pathogens with multiple host species. *Am Nat*, 164, 64–78.

448 Fenton, A., Streicker, D. G., Petchey, O. L. & Pedersen, A. B. (2015). Are all hosts created equal? Partitioning
449 host species contributions to parasite persistence in multihost communities. *Am Nat*, 186, 610–622.

450 Garner, T. W. J., Perkins, M. W., Govindarajulu, P., Seglie, D., Walker, S., Cunningham, A. A. & Fisher,
451 M. C. (2006). The emerging amphibian pathogen *Batrachochytrium dendrobatidis* globally infects introduced
452 populations of the North American bullfrog, *Rana catesbeiana*. *Dis Aquat Organ*, 2, 455–459.

453 Haydon, D. T., Cleaveland, S., Taylor, L. H. & Laurenson, M. K. (2002). Identifying reservoirs of infection:
454 A conceptual and practical challenge. *Emerg Infect Dis*, 8, 1468–1473.

455 Hudson, M. A., Griffiths, R. A., Martin, L., Fenton, C., Adams, S.-L., Blackman, A., Sulton, M., Perkins,
456 M. W., Lopez, J., Garcia, G., Tapley, B., Young, R. P. & Cunningham, A. A. (2019). Reservoir frogs:
457 Seasonality of *Batrachochytrium dendrobatidis* infection in robber frogs in Dominica and Montserrat. *PeerJ*,
458 7, e7021.

459 Johnson, P. T., De Roode, J. C. & Fenton, A. (2015). Why infectious disease research needs community
460 ecology. *Science*, 349, 1259504.

461 Johnson, P. T. J., Preston, D. L., Hoverman, J. T. & Richgels, K. L. D. (2013). Biodiversity decreases
462 disease through predictable changes in host community competence. *Nature*, 494, 230–233.

463 Johnson, P. T. J., Rohr, J. R., Hoverman, J. T., Kellermanns, E., Bowerman, J. & Lunde, K. B. (2012).
464 Living fast and dying of infection: Host life history drives interspecific variation in infection and disease
465 risk. *Ecol Lett*, 15, 235–242.

466 Johnson, P. T. J., Wood, C. L., Joseph, M. B., Preston, D. L., Haas, S. E. & Springer, Y. P. (2016). Habitat
467 heterogeneity drives the host-diversity-begets-parasite-diversity relationship: Evidence from experimental
468 and field studies. *Ecol Lett*, 19, 752–761.

469 Joseph, M. B., Stutz, W. E. & Johnson, P. T. (2016). Multilevel models for the distribution of hosts and
470 symbionts. *PLoS ONE*, 11, 1–15.

471 Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasions. *P Roy Soc B-Biol
472 Sci*, 266, 859–867.

473 Keeling, M. & Rohani, P. (2008). *Modeling Infectious Diseases in Humans and Animals*. Princeton University
474 Press, Princeton, New Jersey.

475 Keesing, F., Holt, R. D. & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. *Ecol Lett*, 9,
476 485–498.

477 Kilpatrick, A. M., Briggs, C. J. & Daszak, P. (2010). The ecology and impact of chytridiomycosis: An
478 emerging disease of amphibians. *Trends Ecol Evol*, 25, 109–118.

479 Kilpatrick, A. M., Daszak, P., Jones, M. J., Marra, P. P. & Kramer, L. D. (2006). Host heterogeneity
480 dominates West Nile virus transmission. *P Roy Soc B-Biol Sci*, 273, 2327–2333.

481 Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. (2005). Superspreading and the effect of
482 individual variation on disease emergence. *Nature*, 438, 355–359.

483 Longcore, J. E., Pessier, A. P. & Nichols, D. K. (1999). *Batrachochytrium dendrobatidis* gen. et sp. nov., a
484 chytrid pathogenic to amphibians. *Mycologia*, 91, 219–227.

485 McCallum, H. (2012). Disease and the dynamics of extinction. *Philos T Roy Soc B*, 367, 2828–39.

486 McCallum, H. & Dobson, A. (2002). Disease, habitat fragmentation and conservation. *P Roy Soc B-Biol
487 Sci*, 269, 2041–2049.

488 McCallum, H. I. (2008). Landscape structure, disturbance, and disease dynamics. In: *Infectious Disease
489 Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems* (eds. Ostfeld, R. S., Keesing, F.
490 & Eviner, V. T.). Princeton University Press, Princeton, New Jersey.

491 Mihaljevic, J. R., Joseph, M. B., Orlofske, S. A. & Paull, S. H. (2014). The scaling of host density with
492 richness affects the direction, shape, and detectability of diversity-disease relationships. *PLoS ONE*, 9,
493 e97812.

494 Miller, D. A. W., Talley, B. L., Lips, K. R. & Campbell Grant, E. H. (2012). Estimating patterns and drivers
495 of infection prevalence and intensity when detection is imperfect and sampling error occurs. *Methods Ecol*
496 *Evol*, 3, 850–859.

497 Miller, R. S., Farnsworth, M. L. & Malmberg, J. L. (2013). Diseases at the livestock-wildlife interface:
498 Status, challenges, and opportunities in the United States. *Prev Vet Med*, 110, 119–132.

499 Mitchell, K. M., Churcher, T. S., Garner, T. W. J. & Fisher, M. C. (2008). Persistence of the emerging
500 pathogen *Batrachochytrium dendrobatis* outside the amphibian host greatly increases the probability of
501 host extinction. *P Roy Soc B-Biol Sci*, 275, 329–334.

502 North, A. R. & Godfray, H. C. J. (2017). The dynamics of disease in a metapopulation: The role of dispersal
503 range. *J Theor Biol*, 418, 57–65.

504 Ohmer, M. E., Cramp, R. L., Russo, C. J., White, C. R. & Franklin, C. E. (2017). Skin sloughing in
505 susceptible and resistant amphibians regulates infection with a fungal pathogen. *Sci Rep-UK*, 7, 3529.

506 Paull, S. H., Song, S., McClure, K. M., Sackett, L. C., Kilpatrick, a. M. & Johnson, P. T. J. (2012). From
507 superspreaders to disease hotspots: linking transmission across hosts and space. *Front Ecol Environ*, 10,
508 75–82.

509 Reeder, N. M. M., Pessier, A. P. & Vredenburg, V. T. (2012). A reservoir species for the emerging amphibian
510 pathogen *Batrachochytrium dendrobatis* thrives in a landscape decimated by disease. *PLoS ONE*, 7,
511 e33567.

512 Rudge, J. W., Webster, J. P., Lu, D.-B., Wang, T.-P., Fang, G.-R. & Basanez, M.-G. (2013). Identifying
513 host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. *P*
514 *Natl Acad Sci USA*, 110, 11457–11462.

515 Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes,
516 P. A., Carvalho, T., Catenazzi, A., la Riva, I., Fisher, M. C., Flechas, S. V., Foster, C. N., Fr\'ias-\'Alvarez,
517 P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., Kolby, J. E., Kosch, T. A., La
518 Marca, E., Lindenmayer, D. B., Lips, K. R., Longo, A. V., Maneyro, R., McDonald, C. A., Mendelson, J.,
519 Palacios-Rodriguez, P., Parra-Olea, G., Richards-Zawacki, C. L., R\"odel, M.-O., Rovito, S. M., Soto-Azat,
520 C., Toledo, L. F., Voyles, J., Weldon, C., Whitfield, S. M., Wilkinson, M., Zamudio, K. R. & Canessa, S.
521 (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. *Science*, 363,
522 1459–1463.

523 Schloegel, L. M., Ferreira, C. M., James, T. Y., Hipolito, M., Longcore, J. E., Hyatt, A. D., Yabsley, M.,
524 Martins, A. M., Mazzoni, R., Davies, A. J. & Daszak, P. (2010). The North American bullfrog as a
525 reservoir for the spread of *Batrachochytrium dendrobatis* in Brazil. *Anim Conserv*, 13, 53–61.

526 Schreiber, S. J. & Lloyd-Smith, J. O. (2009). Invasion dynamics in spatially heterogeneous environments.
527 *Am Nat*, 174, 490–505.

528 Stebbins, R. C. & McGinnis, S. M. (2012). *Field Guide to Amphibians and Reptiles of California: Revised*
529 *Edition*. University of California Press, Berkeley, CA.

530 Stockwell, M. P., Bower, D. S., Clulow, J. & Mahony, M. J. (2016). The role of non-declining amphibian
531 species as alternative hosts for *Batrachochytrium dendrobatis* in an amphibian community. *Wildlife Res*,
532 43, 341–347.

533 Stutz, W. E., Blaustein, A. R., Briggs, C. J., Hoverman, J. T., Rohr, J. R. & Johnson, P. T. (2018). Using
534 multi-response models to investigate pathogen coinfections across scales: Insights from emerging diseases
535 of amphibians. *Methods Ecol Evol*, 9, 1109–1120.

536 Webster, J. P., Borlase, A. & Rudge, J. W. (2017). Who acquires infection from whom and how? Disentangling
537 multi-host and multimode transmission dynamics in the ‘elimination’ era. *Philos T Roy Soc B*, 372,
538 20160091.

539 Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., McCallum, H. I. & Briggs, C. J. (2016). Integral Projection
540 Models for host-parasite systems with an application to amphibian chytrid fungus. *Methods Ecol Evol*, 7,
541 1182–1194.