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Abstract

Entity linking is the task of linking mentions of named
entities in natural language text, to entities in a curated
knowledge-base. This is of significant importance in the
biomedical domain, where it could be used to semantically
annotate a large volume of clinical records and biomedical
literature, to standardized concepts described in an ontology
such as Unified Medical Language System (UMLS). We ob-
serve that with precise type information, entity disambigua-
tion becomes a straightforward task. However, fine-grained
type information is usually not available in biomedical do-
main. Thus, we propose LATTE, a LATent Type Entity
Linking model, that improves entity linking by modeling
the latent fine-grained type information about mentions and
entities. Unlike previous methods that perform entity link-
ing directly between the mentions and the entities, LATTE
jointly does entity disambiguation, and latent fine-grained
type learning, without direct supervision. We evaluate our
model on two biomedical datasets: MedMentions, a large
scale public dataset annotated with UMLS concepts, and a
de-identified corpus of dictated doctor’s notes that has been
annotated with ICD concepts. Extensive experimental evalu-
ation shows our model achieves significant performance im-
provements over several state-of-the-art techniques.

1 Introduction
With the advancements in the healthcare domain, we have
witnessed a considerable increase in the amount of biomed-
ical text, including electronic health records, biomedical
literature and clinical trial reports (Reddy and Aggarwal
2015). To successfully utilize the wealth of knowledge con-
tained in these records, it is critical to have automated se-
mantic indexing techniques. Entity linking refers to the pro-
cess of automatically linking mentions of entities in raw text,
to a standardized list of entities in a knowledge-base. This
process typically requires two steps. First, all the mentions
of entities in the raw text are annotated using a standard
Named Entity Recognition (NER) technique (Lample et al.
2016). Next, the extracted mentions are linked to the cor-
responding entities in the entity disambiguation stage. Al-
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though a significant amount of work has been done in the
domain of entity linking for text found on the web, where
the objective is to link the mentions to standard knowledge-
bases such as Freebase (Bollacker et al. 2008), most of the
techniques cannot be directly transferred to biomedical do-
main, which poses a number of new challenges to the entity
linking problem.

Figure 1: An example of biomedical entity linking. Phrase
shown in red is the extracted mention, the orange boxes refer
to the top candidate entities retrieved from the biomedical
knowledge-base, and the green box is the ground truth entity
for this mention.

Biomedical entity linking is the task of linking mentions
in biomedical text, such as clinical notes, or biomedical lit-
erature, to medical entities in a standard ontology such as
Unified Medical Language System (UMLS) (Bodenreider
2004). In the healthcare domain, accurate entity disambigua-
tion is crucial to the understanding of biomedical context.
Many distinct biomedical concepts can have very similar
mentions, and failure in disambiguation will lead to incor-
rect interpretation of the entire context. This will introduce
huge risks in medical-related decision making. Moreover,
biomedical entity linking can be useful in many other ap-
plications, which require automatic indexing of the text. For
instance, it can be used by healthcare providers to automat-
ically link the medical records of patients to different med-
ical entities, which can then be used for downstream tasks
such as diagnosis/medication decision making, population
and health analytics, predictive modeling (Jin et al. 2018),



medical information retrieval, information extraction (Hoff-
mann et al. 2011), and question answering (Yih et al. 2015).

Entity linking on biomedical text differs from that on
other general domains of text, such as web documents, in
many ways. Consider the example in Figure 1, where cardio-
vascular disorders is a mention of the entity Cardiovascular
Diseases, and others are the top candidate entities retrieved
from UMLS.
• First, the mentions can be ambiguous. In this example,

almost all the other candidates have words that exactly
match those in the mention. If we only use surface level
features, it will be hard to link the mention to the correct
entity. This requires the model to have a good semantic
understanding of the mention and its context.

• Second, the candidates can be similar with each other,
not only in surface, but also in semantic meaning. In
many cases it requires additional information, such as
fine-grained types, to distinguish the correct entity.

• Another challenge in medical entity linking is that the
mentions and the context are usually longer in length, as
compared to general domain. This makes the traditional
entity linking techniques less effective on medical text.

• Finally, medical text contains many domain specific ter-
minologies as well as abbreviations and typos. Thus,
many terms cannot be found in standard pre-trained em-
beddings such as GloVe (Pennington, Socher, and Man-
ning 2014), and it makes neural models less effective due
to a large number of out-of-vocabulary words.

Figure 2: Examples of biomedical entity linking with type
information.

A key observation in the process of entity linking is that
if we have the fine-grained types of mentions in the raw
text, and types of entities in the knowledge-base, entity dis-
ambiguation becomes much easier. For example, in Figure
2(a), each candidate entity has different semantic type from
UMLS Semantic Network (McCray 1989). If we can infer
the correct mention type, which in this case most likely is
Disease or Syndrome, we can make the correct linking deci-
sion with no further effort. However, the type information in
biomedical domain is not always available, and the available
ones are usually far from fine-grained.

Taking into account all these challenges, in this work,
we propose LATTE (Latent Type Entity Linking model),
a novel neural network based model for entity linking in the
biomedical text. LATTE introduces the concept of latent-
type modeling for entities and their mentions. The latent
types refer to the implicit attributes of each entity. To
guide the training process, we also use the coarse-grained
known entity types as auxiliary supervision. To further en-
able our model to link the mentions with the entities from the
knowledge-base, we use an attention-based mechanism, that
equips the model to rank different candidate entities for a
given mention, based on their semantic representations. We
evaluate the performance of our model using a large scale
entity linking dataset from the biomedical domain and a de-
identified corpus of doctor’s notes, against several state-of-
the-art baselines.

The rest of this paper is organized as follows: Section
2 provides an overview of some of the existing techniques
related to our model. In Section 3, we describe our pro-
posed model along with the details about the optimization
and training process. In Section 4, we give the details about
our experimental results including the evaluation metrics
and baseline models. Finally, Section 5 concludes the paper
with possible directions for future work.

2 Related Work
Neural Entity Linking
Neural entity linking has attracted significant interest from
researchers for many years. Most of the existing techniques
in this domain can broadly be classified into three cate-
gories. Context modeling approaches model the context of
mentions and the candidate entities at different levels of
granularity to get the similarity between them. An example
of such approaches is (Francis-Landau, Durrett, and Klein
2016), which uses a set of vectors that include mention, men-
tion context and the document that mention appears in, and
vectors from entity article title and document, to compute
the mention and entity representations, respectively. (Gupta,
Singh, and Roth 2017) also extensively makes use of context
information in the entity linking process. Type modeling ap-
proaches make use of the entity types in the linking process.
This is based on the observation that if the entity types are
known, entity linking performance can be improved signif-
icantly (Raiman and Raiman 2018). Relation modeling ap-
proach models the latent relations between different men-
tions without direct supervision (Le and Titov 2018). These
relations can be used as a measure of coherency of the link-
ing decisions, and can ultimately guide the entity linking
process.

Neural Network Models for Text Matching
With the success of deep learning, many neural network
based models have been proposed for semantic matching,
and document ranking. Models such as ARC-I (Hu et al.
2014) first compute the representation of the two sentences,
and then compute their relevance. The representations com-
puted in this manner cannot incorporate the pairwise word-
level interactions between the sentences. Interaction based



models, such as Deep Relevance Matching Model (DRMM)
(Guo et al. 2016) and MatchPyramid (Pang et al. 2016),
compute the interactions between the words from two se-
quences, and then compute the relevance based on these
features. The models proposed in (Xiong et al. 2017) and
(Dai et al. 2018) use kernel pooling on interaction features
to compute similarity scores, followed by convolutional lay-
ers to compute the relevance score. The HAR model (Zhu
et al. 2019) uses a hierarchical attention mechanism to rank
answers for healthcare-related queries.

3 The Proposed Model
Motivation
We already showed in section 1, that with precise entity
type information (Figure 2(a)), entity disambiguation
becomes a straightforward task. However, such detailed
information is not usually available. For example, in the
UMLS Semantic Network (McCray 1989), there are only
127 types in total, while UMLS has about 900,000 unique
entities (Bodenreider 2004). In general, most known types
are far from fine-grained. Furthermore, manually labeling
all the entities for precise types requires significant amount
of resources and can be a daunting task. Therefore, we are
motivated to model the latent fine-grained types for all the
entities in the knowledge-base without direct supervision.

Latent Fine-grained Types: We argue that fine-grained
types do exist. For example, the entities Type 2 Diabetes
Mellitus and Parkinson Disease both have the semantic type
Disease or Syndrome, but the former is a metabolic disorder,
while the latter is a nervous system disorder. In this case,
the finer-grained type can be the body system where the
disease occur. Similarly, in Figure 2(b), for mention long
bone fractures, all the candidates share the same semantic
type Finding, yet they still have different intrinsic attributes
which can be used to distinguish them from others. Here we
see the intrinsic attributes as finer-grained types for each
entity. Moreover, since there is no fixed set of fine-grained
types, we do not have ground truth labels for them. This
motivates us to model the fine-grained types as latent
variables, and we model them using different constraints.

Binary Pairwise Relation Constraint: One constraint
is the binary pairwise relation between mention and each
candidate entity. Specifically, if one candidate is the ground
truth entity for a given mention, the relation between them is
labeled as 1; otherwise 0. We can learn the latent types from
this pairwise information, as a mention and its ground truth
candidate should share the same latent type distribution.
Alternatively, we can see the pairwise relation label as a
similarity measure between the mention and the candidates,
and we can infer how similar the latent types of a mention
and a candidate are from this similarity measure.

Type Hierarchy Constraint: Additionally, we can make
use of the coarse-grained known types. Note that (1) known
types can be of any kind and not necessarily semantic
types from the UMLS Semantic Networks; (2) regardless of

the number of known types, we consider them as coarse-
grained, as we can always model finer-grained types. The
known types are usually generic in nature, and they can be
further divided into sub-types. We can view these sub-types
as the previously mentioned latent fine-grained types. Thus
we introduce a hierarchy in the types: the known types
are the top-level nodes in the hierarchy, and the latent
fine-grained types are the low-level nodes. Therefore, we
can supervise on the known types to model the latent types.

Multi-tasking of Entity Linking and Type Classification:
To model the latent types with both the Pairwise Constraint
and the Type Hierarchy, we simultaneously optimize for
both entity linking and type classification in our model. The
entity linking module uses attention mechanism to obtain
a similarity score between a mention-candidate pair, and is
supervised on the pairwise relation labels. The type classifi-
cation module consists of two type classifiers: one for men-
tion, and the other for candidates. Both classifiers are super-
vised on the known type labels, and the weights are shared
between them. The similarity of the two output latent type
distributions is used as another mention-candidate similarity
score. This score is combined with the previous score to ob-
tain the final similarity score. By jointly optimizing the two
tasks, we expect the entity linking performance to improve.

Problem Statement
Given a mention phrase (mention with context) p from a text
in the biomedical domain, and a set of candidate entities
C = {c1, .., cl } from a knowledge-base, the model com-
putes a relevance score rp,c for each entity in C, based on its
relevance with the mention.

Model Architecture
Various components of our model are described in detail
below. The overall architecture of the model is illustrated
in Figure 3. For all notations, we use the superscripts p
and c for mention and candidate sequences respectively,
where m and n denote their corresponding sequence lengths.

Embedding Layer: The first layer in our model is the
embedding layer. This layer takes as input the word tokens
{wpi }mi=1 and {wci }ni=1 for the mention and the candidate
sequences respectively, and returns the embedding vectors
{epi }mi=1 and {eci}ni=1 for each word token. To overcome the
problem of out-of-vocabulary words, we use a combination
of word and character embeddings. First, the character
embeddings for each character in a word are concatenated
and passed through a convolutional neural network. The
resultant vector is then concatenated with the word em-
bedding, obtained from pre-trained embeddings like GloVe
(Pennington, Socher, and Manning 2014) to get the word
representation.

Encoder: To get a contextual representation of the
words, we use a multi-layer Bidirectional LSTM (Hochre-
iter and Schmidhuber 1997) encoder for both the mention
and the candidate sequences. This layer takes the word
representations from the embedding layer as the input, and



Figure 3: The overall architecture of the proposed LATTE model for biomedical entity linking. Table (a) shows part of the
UMLS Semantic Types, which we use as the known types. Table (b) shows the type information of the mention and candidates
in the given example.

returns the contextual representations {upi }mi=1 and {uci}ni=1
of words in the two sequences. The resultant vectors have
the contextual information from both the backward and the
forward context encoded in them.
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Cross-Attention Layer: This layer computes the interac-
tion between the mention and the candidate vectors. It takes
their encoded representations as the input, and computes the
relevance between each pair of the mention and candidate
word vectors, generated by the encoder layer. We use a bidi-
rectional attention mechanism, as proposed in (Seo et al.
2017), for this layer. Specifically, we first compute the sim-
ilarity matrix S ∈ Rm×n between {upi }mi=1 and {uci}ni=1.
Each element sij of this matrix is calculated as follows:

sij = wTa ·[uci ;u
p
j ;u

c
i � upj ] (2)

After this, we compute the mention-to-candidate attention
Sα, and candidate-to-mention attention Sβ as

Sα = softmax
row

(S),

S̄β = softmax
col

(S), and Sβ = Sα · S̄β
T

.
(3)

Finally, attended vectors {xj}nj=1 can be computed as

aαj =
∑
i

sαiju
c
i , aβj =

∑
i

sβiju
p
i ,

xj = [upj ; a
α
j ;upj � aαj ;ucj � aβj ].

(4)

All the attended vectors from the cross-attention layer are
then concatenated to form X = [x1; .., xn], and fed into
a multi-layer feed-forward network, to obtain the attention-
based relevance score f between the two sequences,

f = ReLU(wf ·X + bf ). (5)

Latent Type Similarity: This layer takes the output states
of the encoder layer, and then concatenates them to form
a fixed-dimensional vector up = [up1; ..;upm] for the men-
tion, and uc = [uc1; ..;ucn] for the candidate. The two vectors
are then passed through feed-forward layers, followed by a
softmax layer to obtain two probability distributions over k
latent types. It then computes the similarity g between the
two distributions of the mention and the candidate using a
standard distance metric like cosine similarity:

vp = wl · up + bl, v̂p = softmax(vp),

vc = wl · uc + bl, v̂c = softmax(vc),

g =
v̂p · v̂c

||v̂p|| ||v̂c||
.

(6)



Known Type Classifier: To incorporate the known type in-
formation and to indirectly supervise the latent type mod-
eling, we introduce known type classifier, which is trained
to predict the entity types of both the mention and candidate
vectors. It takes the encoded representations vp and vc of the
latent types, and then uses a feed-forward network with Rec-
tifier Linear Unit (ReLU) activation, to predict their known
types yp and yc, respectively.

yp = ReLU(wk · vp + bk)

yc = ReLU(wk · vc + bk)
(7)

Ranking Layer: After computing the interaction score f ,
and the latent type similarity g, we use the ranking layer
to obtain the relevance score between the mention and the
candidate sequences. This module performs a weighted-
combination of the two relevance scores, to compute the fi-
nal relevance score r.

r = wfr · f + wgr · g (8)

Here, wfr and wgr are learnable weights.

Optimization
Our model incorporates two objectives, one for the type
prediction, and another for candidate scoring. We jointly
optimize these two objectives during our training process.

Type Classification loss: To incorporate the knowledge
about the known categorical types into the semantic rep-
resentation of mentions and the entities, we minimize the
categorical cross-entropy loss. Given the known type y ∈
{yp, yc} of a mention or a candidate, and its predicted type
distribution ŷ, the loss is calculated as follows:

Ltype = −
K∑
j=1

yj log(ŷj) (9)

Mention-Candidate Ranking loss: For a given mention,
we want to ensure that the correct candidate cpos gets a
higher score compared to the incorrect candidates cneg .
Hence, we use max-margin loss as the objective function
for this task. Given the final scores rp,cpos and rp,cneg of p
with respect to cpos and cneg respectively, the ranking loss
is calculated as follows:

Lrank = max{0,M − rp,cpos + rp,cneg
} (10)

4 Experimental Results
Datasets
We use two datasets to evaluate the performance of the pro-
posed model. MedMentions (Mohan and Li 2019) contains
4392 abstracts from PubMed, with biomedical entities anno-
tated with UMLS concepts. It also contains up to 127 seman-
tic types for each entity from the UMLS Semantic Network
(McCray 1989), which we use for the known type classifica-
tion. We also use a de-identified corpus of dictated doctor’s
notes, which we refer to as 3DNotes. It is annotated with
problem entities related to signs, symptoms and diseases.

These entities are mapped to the 10th version of Interna-
tional Statistical Classification of Diseases and related health
problems (ICD-10), which is part of UMLS. The annotation
guidelines are similar to the i2b2 challenge guidelines for
the problem entity (Uzuner et al. 2011). We use the top cate-
gories in the ICD-10 hierarchy as the known types. For both
datasets, we take 5 words before and after a mention as the
mention context.

Dataset Statistics Train Dev Test

Med
Mentions

#Documents 2,635 878 879
#Mentions 210,891 71,013 70,364
#Entities 25,640 12,586 12,402

3DNotes
#Documents 2,133 525 745
#Mentions 22,266 5,373 8,065
#Entities 2,026 1,030 1,209

Table 1: Statistics of the datasets used. Note that the ”#Enti-
ties” refers to the number of unique entities.

Candidate Generation
For MedMentions, we follow the approach of candidate gen-
eration described in (Murty et al. 2018). We take only the top
9 most similar entities (excluding the ground truth entity) as
the negative candidates. In addition, the ground truth entity
will be considered as the positive candidate, thus forming a
set of 10 candidates for each mention. For 3DNotes, we use
a similar approach to generate candidates from ICD-10.

Evaluation Metrics
To evaluate the proposed model, we measure its perfor-
mance against the baseline techniques using Precision@1
(the precision when only one entity is retrieved) and Mean
Average Precision (MAP). These metrics were chosen con-
sidering the fact that our problem setup is a ranking prob-
lem. Note that, in our case, since each mention has only one
correct candidate entity, Precision@1 is also equivalent to
Recall@1.

Implementation Details
We implemented our model and all other baselines in Py-
Torch (Paszke et al. 2017). The model was trained using
Adam optimizer (Kingma and Ba 2015), with a learning
rate of 10−4. We used GloVe embeddings with 300 dimen-
sions as the input word vectors, and the output dimension
of the character CNN was 512, making each word a 812-
dimensional vector. The encoders used two Bi-LSTM lay-
ers, where the output dimension of each individual LSTM
layer was 512. The number of latent types, k, is set to 2048.
The hyperparameter values were obtained based on the ex-
perimental results on the validation set.

Baselines
For the quantitative evaluation of the proposed LATTE
model, we use the following state-of-the-art baseline meth-
ods for comparison.



• TF-IDF: This is a standard baseline for NLP tasks. Here,
we use character level n-grams as the terms, with n ∈
{1, 2, 3, 4, 5} and cosine-similarity for obtaining the can-
didate scores.

• ARC-I (Hu et al. 2014): This is a semantic matching
model that uses CNN layers to compute the representa-
tion of the source and the candidate sequence, and then
uses a feed-forward network to compute their similarity.

• ARC-II (Hu et al. 2014): This is an extension of ARC-
I, which instead computes the interaction feature vector
between the two sequences using CNN layers.

• MV-LSTM (Wan et al. 2016): It is a neural semantic
matching model that uses Bi-LSTM as encoder for both
mention and candidate, and then computes an interaction
vector using cosine similarity or a bilinear operation.

• MatchPyramid (Pang et al. 2016): This model com-
putes pair-wise dot product between mention and candi-
date to get an interaction matrix. The matrix is then passed
through CNN layers with dynamic pooling to compute the
similarity score.

• KNRM (Xiong et al. 2017): This is a neural ranking
model which first computes the cosine similarity between
each query word and document words. It then performs
kernel pooling to compute the relevance score.

• Duet (Mitra, Diaz, and Craswell 2017): It is a hybrid
neural matching model that uses the word-level interac-
tion and document-level similarity in a deep CNN archi-
tecture, to compute the similarity score.

• Conv-KNRM (Dai et al. 2018): This model is an exten-
sion of KNRM, which instead uses convolutional layers
to get n-gram representations of mention and candidates.

MedMentions 3DNotes
Model name P@1 MAP P@1 MAP
TF-IDF 61.39 67.74 56.89 69.45
ARC-I 71.50 81.78 84.73 90.35
ARC-II 72.56 82.36 86.12 91.38
KNRM 74.92 83.47 84.32 90.04
Duet 76.19 84.92 86.11 91.19
MatchPyramid 78.15 86.31 85.97 91.32
MV-LSTM 80.26 87.58 87.90 92.44
Conv-KNRM 83.08 89.34 86.92 92.08
LATTE-NKT 86.09 91.27 86.40 91.09
LATTE 88.46 92.81 87.98 92.49

Table 2: Comparison of LATTE with other baseline mod-
els on MedMentions and 3DNotes dataset. LATTE-NKT is
trained without the supervision of known types classifica-
tion. P@1 is short for Precision@1.

Results
Quantitative Results Table 2 shows the performance of
LATTE against the state-of-the-art baselines. On MedMen-
tions, LATTE outperforms the baselines by a wide margin.
On 3DNotes, paired t-tests indicate that LATTE outperforms

the strongest baseline with confidence level of 90% (experi-
mented with 5 different random seeds).
Effect of using interaction-based method: We can observe
that TF-IDF and ARC-I, which compute the semantic repre-
sentations of the mention and the candidate sequences inde-
pendently, have lower performance as compared to all the
other baselines. LATTE, as well as other models, use some
form of interaction-based semantic representation of the two
sequences. The interaction mechanism can model the pair-
wise relevance between the words from the two sequences,
and hence, can uncover the relationship between them more
effectively.
Type modeling for entity linking: We can see that all the
other baselines, including LATTE-NKT, which is a version
of our model without known type modeling, have lower per-
formance than the full LATTE model. This shows that multi-
tasking with type classification has strong positive effect
on entity liking. Moreover, supervision on the known types
guides the latent type modeling, which also contributes to
the superior performance of LATTE.
Performance on datasets with different distributions:
MedMentions is from PubMed articles, which are more lit-
erary; 3DNotes is from dictated doctor’s notes, which makes
it colloquial in nature. The different distributions of the two
datasets are also reflected in the out-of-vocabulary (OOV)
words rate. Using GloVe embeddings, 3DNotes has 10.46%
OOV words, while MedMentions has 58.34%. When the
OOV rate is high, 1) character embeddings can help miti-
gate this problem as it captures the lexical similarity between
words. 2) type information provides an extra link between
a mention and the corresponding entity, which is beyond
lexical and semantic matching. This explains why LATTE
performs better on MedMentions than 3DNotes. Since typi-
cal biomedical datasets tend to have high OOV rate, we ex-
pect that the performance of LATTE on MedMentions can
be generalized to that on other biomedical datasets.

MedMentions 3DNotes
Model name P@1 MAP P@1 MAP
LATTE base 80.02 86.94 84.08 90.15
LATTE base+LT 86.09 91.27 86.40 91.09
LATTE base+KT 87.73 92.33 87.80 92.66
LATTE 88.46 92.81 87.98 92.49

Table 3: Performance comparison of LATTE and its variants
on MedMentions and 3DNotes Datasets.

Ablation Analysis To study the effect of different compo-
nents used in our model architecture, on the overall model
performance, we also compare the performance of LATTE
against its different variants (see Table 3).

• LATTE base: This is the simplest variant of our model,
which only contains the word embedding layer, encoder,
the element-wise dot product as the similarity measure,
and a feed-forward network to get a similarity score.

• LT: This module includes the latent type encoder, soft-
max and the distribution similarity measure. From this



Figure 4: Examples of entity linking result comparison between LATTE and a state-of-the-art baseline model (Conv-KNRM).
Note that the red words are the mentions, and the green boxes are ground truth known types and candidates. (a) When candi-
dates have different types, information of the correct mention type makes entity linking straightforward. LATTE learns how to
classify mention types while doing entity linking. (b) When the mention or candidate words are out-of-vocabulary, measuring
mention-candidate similarity becomes much harder. Character encoding and type classification mitigate this problem. (c) When
candidates have the same type, LATTE is still capable of distinguishing the correct candidate from others.

step, character embedding is included and the mention-
candidate interaction is switched to cross-attention.

• KT: This module consists of the two known type classi-
fiers, for mention and candidate respectively, depicted as
the Known Type Classification layer in Figure 3. Note that
during test, we do not have the known type labels.

As shown in Table 3, introducing latent type model-
ing with cross-attention boosts Precision@1 on MedMen-
tions and 3DNotes by 6.07% and 2.32% respectively, which
shows that matching mention and candidates have similar la-
tent type distribution, and modeling this similarity improves
the entity linking task. It also shows that the cross-attention
mechanism is strong in capturing the semantic similarity be-
tween mention and candidates. Instead, if we add the known
type supervision, there are 7.71% and 3.72% gains in Pre-
cision@1 with respect to the two datasets. This shows that
multi-tasking with known type classification has strong pos-
itive effect on the entity linking task. Finally, adding latent
type modeling along with know type classification further
improves the Precision@1. This proves that the hierarchical
type modeling improves the entity linking task.

Qualitative Analysis Example in Figure 4(a) is a com-
mon case in biomedical domain, where the mention is an
abbreviated form of the entity name. Such cases are chal-
lenging for traditional text matching methods since the ab-
breviation has very few common features with the complete
name. Moreover, biomedical terms usually appear at a much
lower frequency, and hence it is hard for models to learn the
mapping through training. LATTE overcomes this problem
by exploiting the type information. Although the mention
may have a lower frequency, each type has a large amount
of samples to train the type classifiers. Therefore our model
can classify the mention type with higher confidence. If the
candidates have different types, entity linking decision can
be made with the knowledge of the type classification re-
sult. Note that, instead of direct usage, the type classifica-
tion result is incorporated in the similarity computation. Fig-

ure 4(b) shows the case when the mention has OOV words.
OOV words problem is a major challenge in the biomedi-
cal domain. Many biomedical terms do not have pre-trained
word embeddings, without which the text matching becomes
clueless. This is also why the retrieved result of the baseline
model is incorrect. The character encoding and type match-
ing in LATTE address this problem effectively. Figure 4(c)
shows that when the candidates have the same type, LATTE
can successfully distinguish the correct entity from other
candidates. This is because: 1) the cross-attention mecha-
nism is powerful in matching the mention and candidates
text and 2) as discussed in previous sections, the latent types
can be different even when the candidates share the same
known type. Therefore the latent type modeling of LATTE
works effectively in this case.

5 Conclusion
We proposed a novel methodology, which models the la-
tent type of mentions and entities, to improve the biomed-
ical entity linking task. We incorporate this methodology
in LATTE, a novel neural architecture that jointly performs
fine-grained type learning and entity disambiguation. To the
best of our knowledge, this is the first work to propose the
idea of latent type modeling and apply it to biomedical entity
linking. Our extensive set of experimental results shows that
latent type modeling improves entity linking performance,
and outperforms state-of-the-art baseline models. The idea
of latent type modeling can be useful to a wider range, such
as in other text matching tasks, and other non-biomedical
domains. These can be possible directions for future work.
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