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Abstract
In its simplest form, the competitive exclusion principle states that a number of species
competing for a smaller number of resources cannot coexist. However, it has been
observed empirically that in some settings it is possible to have coexistence. One
example is Hutchinson’s ‘paradox of the plankton’. This is an instance where a large
number of phytoplankton species coexist while competing for a very limited number of
resources. Both experimental and theoretical studies have shown that temporal fluctua-
tions of the environment can facilitate coexistence for competing species. Hutchinson
conjectured that one can get coexistence because nonequilibrium conditions would
make it possible for different species to be favored by the environment at different
times. In this paper we show in various settings how a variable (stochastic) environ-
ment enables a set of competing species limited by a smaller number of resources or
other density dependent factors to coexist. If the environmental fluctuations are mod-
eled by white noise, and the per-capita growth rates of the competitors depend linearly
on the resources, we prove that there is competitive exclusion. However, if either the
dependence between the growth rates and the resources is not linear or the white
noise term is nonlinear we show that coexistence on fewer resources than species is
possible. Even more surprisingly, if the temporal environmental variation comes from
switching the environment at random times between a finite number of possible states,
it is possible for all species to coexist even if the growth rates depend linearly on the
resources. We show in an example (a variant of which first appeared in Benaim and
Lobry ’16) that, contrary to Hutchinson’s explanation, one can switch between two
environments in which the same species is favored and still get coexistence.
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1 Introduction

The competitive exclusion principle (Volterra 1928; Gause 1932; Hardin 1960; Levin
1970) loosely says that when multiple species compete with each other for the same
resource, one competitor will win and drive all the others to extinction. Nevertheless, it
has been observed in nature that multiple species can coexist despite limited resources.
For example, phytoplankton species can coexist even though they all compete for a
small number of resources. This apparent violation of the competitive exclusion prin-
ciple has been called by Hutchinson ‘the paradox of the plankton’ Hutchinson (1961).
Hutchinson gave a possible explanation by arguing that variations of the environment
can keep species away from the deterministic equilibria that are forecasted by the
competitive exclusion principle.

Hardin (1960) states the competitive exclusion principle as ‘complete competitors
cannot coexist.’ Davis (1984) quoting Gause (1932), states it as ‘It is admitted that as
a result of competition two similar species scarcely ever occupy similar niches, but
displace each other in such a manner that each takes possession of certain peculiar
kinds of food and modes of life in which it has an advantage over its competitor.’
Chesson (2000) defines the niche as ‘A species’ niche is defined by the effect that a
species has at each point in niche space, and by the response that a species has to each
point.’

There has been continued debate regarding the competitive exclusion principle.
Some have argued that the principle is a tautology or that since all species have finite
population sizes they will eventually go extinct, therefore questioning the value of the
principle. Analysing the competitive exclusion principle mathematically for a large
class of models can guide us in this debate. Even though from a mathematical point of
view, coexistence means that no species goes extinct in finite time, we will interpret
this as providing evidence that no species will go extinct for a long period of time.
The first general deterministic framework for examining problems of competitive
exclusion appeared in Armstrong and McGehee (1980). This paper and the beautiful
proofs from Hofbauer and Sigmund (1998) inspired us to look into how a variable
environment enables a set of species limited by a smaller number of resurces or other
density dependent factors to coexist.

It iswell documented that one has to look carefully at both the biotic interactions and
the environmental fluctuations when trying to determine criteria for the coexistence
or extinction of species. Sometimes biotic effects can result in species going extinct.
However, if one adds the effects of the environment, extinction might be reversed
into coexistence. These phenomena have been seen in competitive settings as well
as in settings where prey share common predators—see Chesson and Warner (1981),
Abrams et al. (1998), and Holt (1977). In other instances, deterministic systems that
coexist become extinct once one takes into account environmental fluctuations—see
for exampleHening andNguyen (2018). One successfulway of analyzing the interplay
between biotic interactions and temporal environmental variation is by modelling the
populations as discrete or continuous-time Markov processes. The problem of coex-
istence or extinction then becomes equivalent to studying the asymptotic behaviour
of these Markov processes. There are many different ways of modeling the random
temporal environmental variation. One way that is widely used is adding white noise
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to the system and transforming differential equations into stochastic differential equa-
tions (SDE). However, for many systems, the randomness might not be best modelled
by SDE Turelli (1977). Because of this, it is relevant to see how the long term fate
of ecosystems is changed by different types of temporal environmental variation. The
idea that extinction can be reversed, due to environmental fluctuations, into coexistence
has been revisited many times since Hutchinson’s explanation. A number of authors
have shown that coexistence on fewer resources than species is possible as a result of
interactions of species with temporal environmental variation (Chesson and Warner
1981; Chesson 1982, 1994; Li and Chesson 2016). Our contribution to the literature
of competitive exclusion is two-fold: (1) We develop powerful analytical methods for
studying this question. (2) We prove general theoretical results and provide a series of
new illuminating examples.

2 The deterministic model

Volterra’s original model Volterra (1928) assumed that the dynamics of n competing
species can be described using a systemof ordinary differential equations (ODE).Most
peoplewho have studied the competitive exclusion principlemathematically have used
ODE models. This is a key assumption and we will adhere to it in the current paper.
Suppose we have n species xi , i = 1, . . . , n and denote the density of species i at
time t ≥ 0 by xi (t). Each species uses m possible resources whose abundances are
R j , j = 1, . . . ,m. The resources themselves depend on the species densities, i.e.
R j = R j (x) is a function of the densities of the species x(t) = (x1(t), . . . , xn(t).
We assume that the per-capita growth rate of each species increases linearly with the
amount of resources present. Based on the above, the dynamics of the n species is
given by

dxi (t) = xi (t)

⎛
⎝−αi +

m∑
j=1

bi j R j (x(t))

⎞
⎠ dt, i = 1, . . . , n (2.1)

where −αi ≤ 0 is the rate of death in the absence of any resource, Rk ≥ 0 is the
abundance of the kth resource, and the coefficients bik describe the efficiency of the
i th species in using the kth resource. A key requirement is that the resources Rk all
eventually get exhausted. In mathematical terms this means that

Rk(x) = Rk − Fk(x) (2.2)

where the Fk’s are unbounded positive functions of the population densities xi with
Fk(0, . . . , 0) = 0. Thiswill make it impossible for the densities xi to grow indefinitely,
and will be a standing assumption throughout the paper.

In the special case when the resources depend linearly on the densities, so that
Fk(x) = ∑n

i=1 xiaki for constants aki ≥ 0, Eq. (2.2) becomes
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Rk(x) = Rk −
n∑

i=1

xiaki (2.3)

and the system (2.1) is of Lotka–Volterra type. The model given by (2.1) and (2.2)
is called by Armstrong and McGehee (1980) a linear abiotic resource model. The
linearity comes from (2.1) which intrinsically assumes that the per capita growth rates
of the competing species are linear functions of the resource densities. The resources
are abiotic because they regenerate according to the algebraic equation (2.2), in contrast
to being biotic and following systems of differential equations themselves.

The following result is a version of the competitive exclusion principle—see Hof-
bauer and Sigmund (1998) for an elegant proof.

Theorem 2.1 Suppose n > m, the dynamics is given by (2.1), and the resources
eventually get exhausted. Then at least one species will go extinct.

Assumption 2.1 It is common to make the following assumptions when studying the
competitive exclusion principle Armstrong and McGehee (1980).

(i) The populations are unstructured and as such the system can be fully described
by the densities of the species.

(ii) The n species interact with each other only through the resources. This way the
growth rates of the species only depend on the resources Rk, k = 1, . . . ,m and
not directly on the densities xi , i = 1, . . . , n.

(iii) The resources all eventually get exhausted.
(iv) The growth rates of the species depend linearly on the resources that are available.

Note that this is implicit in (2.1).
(v) The system is homogenous in space and the resources are uniform in quality.
(vi) There is no explicit time dependence in the interactions.
(vii) There is no random temporal environmental variation that can affect the resources

and species.

When one or more of the assumptions (i)–(vi) are violated the coexistence of all
species is possible. For example, if assumption (i) is violated it has been shown by
Haigh and Smith (1972) that two predators can coexist competing for the same prey
if they eat different life stages (larval vs adult) of the prey. Similarly, two herbivores
eating one plant can survive if they eat different parts of the plant. If (vi) is violated
and the environment is time-varying it has been showcased by Stewart and Levin
(1973), and Koch (1974a) that multiple species can coexist using a single resource.
In the more general setting of competition, without specifying the dependence on
resources, it has been shown by Cushing (1980), and De Mottoni and Schiaffino
(1981) how deterministic temporal environmental variation can create a rescue effect
and promote coexistence. If the linear dependence on the resources (iv) does not hold
several results Koch (1974b), Zicarelli (1975), Armstrong and McGehee (1976a, b),
Kaplan and Yorke (1977), McGehee and Armstrong (1977), Armstrong andMcGehee
(1980) have shown that the coexistence of n species competing for m < n resources
is possible.
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2.1 Competitive exclusion without Assumption 2.1 (iv)

Armstrong andMcGehee (1980) have relaxed the linearity constraint fromAssumption
2.1 (iv) and studied general systems of n species competing for m abiotic resources.
The dynamics is then given by

dxi (t)

dt
= xiui (R1, . . . , Rm), i = 1, . . . , n

R j = R j − Fj (x1, . . . , xn), j = 1, . . . ,m,

(2.4)

where ui (R1, . . . , Rm) is the per-capita growth rate of species i when the resources are
(R1, . . . , Rm). The R j ’s are considered resources, so it is assumed that species growth
rates will increase with resource availability, while resource densities will decrease
with species densities. These conditions can be written as

∂ui
∂R j

≥ 0 and
∂Fj

∂xi
≥ 0, i = 1, . . . , n, j = 1, . . . ,m (2.5)

where the equalities hold if any only if species i does not use resource j .
Volterra Volterra (1928) proved that n > 1 species cannot coexist if they compete

for one abiotic resource. However, Volterra assumed as many others, that the ui s from
(2.4) are linear, i.e. the growth rates depend linearly on the resources. If one assumes
there is only one resource, surprisingly, the linearity assumption is not necessary. The
conditions from (2.5) are enough to force all but one species to go extinct. Only the
species which can exist at the lowest level of available resource will persist and the
following version of the competitive exclusion principle (seeArmstrong andMcGehee
(1980)) holds.

Theorem 2.2 Suppose there are n > 1 species competing for one abiotic resource R.
If the dynamics is given by (2.4) and the monotonicity conditions (2.5) are satisfied
then one species persists and all the others go extinct.

We will study what happens when assumptions (i)–(vi) hold and assumption (vii)
does not as well as how white noise interacts with the system when assumption (iv)
fails.

3 Stochastic coexistence theory

In this section we describe some of the general stochastic coexistence theory that
has been developed recently. We start by defining what we mean by extinction and
coexistence in the stochastic setting. Assume (�,F ,P) is a probability space and let
(X(t)) = (X1(t), . . . , Xn(t)) denote the densities of the n species at time t ≥ 0. We
will assume that (�,F ,P) satisfies all the natural assumptions and thatX is a Markov
process. We will denote by Py(·) = P( · | X(0) = y) and Ey[·] = E[ · | X(0) = y]
the probability and expected value given that the process starts at X(0) = y. Let
∂Rn+ = [0,∞)n \ (0,∞)n be the boundary of the positive orthant.
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Definition 3.1 Species Xi goes extinct if for any initial species densities X(0) ∈
(0,∞)n we have with probability 1 that

lim
t→∞ Xi (t) = 0.

We say that at least one species goes extinct if the process X(t) converges to the
boundary ∂Rn+ in the following sense: there exists α > 0 such that for any initial
densities X(0) ∈ (0,∞)n with probability 1

lim sup
t→∞

ln
(
d

(
X(t), ∂Rn+

))

t
≤ −α,

where d(y, ∂Rn+) = min{y1 . . . , yn} is the distance from y to the boundary ∂Rn+.

Definition 3.2 The species X j is persistent in probability if for every ε > 0, there
exists δ > 0 such that for any X(0) = y ∈ (0,∞)n we have that

lim inf
t→∞ Py

{
X j (t) > δ

} ≥ 1 − ε.

If all species X j for j = 1, . . . , n persist in probability we say the species coexist.

This definition has first appeared in work by Chesson (1978, 1982). There is a gen-
eral theory of coexistence for deterministic models (Hofbauer 1981; Hutson 1984;
Hofbauer and So 1989; Hofbauer and Sigmund 1998; Smith and Thieme 2011). It
can be shown that a sufficient condition for coexistence is the existence of a fixed
set of weights associated with the interacting populations, such that this weighted
combination of the populations’s invasion rates is positive for any invariant measure
supported by the boundary (i.e. associated to a sub-collection of populations)—see
work by Hofbauer (1981). This coexistence theory has been generalized to stochastic
difference equations in a compact state space (Schreiber et al. 2011), stochastic dif-
ferential equations (Schreiber et al. 2011; Hening and Nguyen 2018a), and recently
to general Markov processes (Benaim 2018).

The intuition behind the stochastic coexistence results is as follows. Let μ be an
invariant probability measure of the processX that is supported on the boundary ∂Rn+.
Loosely speaking μ describes the coexistence of a sub-community of species, where
at least one of the initial n species is absent. If the processX spends a lot of time close
to (the support of) μ then it will get attracted or repelled in the i th direction according
to the invasion rate �i (μ). This quantity can usually be computed by averaging some
growth rates according to the measure μ. The invasion rate �i (μ) quantifies how
the i th species behaves when introduced at a low density into the sub-community
supported by the measure μ. If the invasion rate is positive, then the i th species tends
to increase when rare, while if it is negative, the species tends to decrease when rare.
We will use the following stochastic coexistence criterion for n = 2 species.

Theorem 3.1 Suppose species X1 survives on its own and has the unique invariant
measure μ1 on (0,∞). Similarly, assume species X2 survives in the absence of X1
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and has the unique invariant measure μ2 on (0,∞). Assume furthermore that the
invasion rates of the two species are strictly positive, i.e. �x1 := �1(μ2) > 0 and
�x2 := �2(μ1) > 0. Then the two species coexist.

A variant of this theorem appeared in work by Chesson and Ellner (1989) in the set-
ting of monotonic stochastic difference equations and then improved to more general
stochastic difference equations byEllner (1989).Moreover, Chesson andEllner (1989)
develop specific conditions for coexistence in variable environments when there is but
a single competitive factor, such as a single resource. This makes it a particularly rele-
vant paper to our work. For proofs of this theorem for stochastic differential equations
see Hening and Nguyen (2018a) [Theorem 4.1 and Example 2.4] as well as Benaim
(2018) [Theorem 4.4 and Definition 4.3]. In the setting of PDMP see Benaïm and
Lobry (2016) and Benaim (2018) [Theorem 4.4 and Definition 4.3]. Other related per-
sistence results have been shown by Turelli and Gillespie (1980), Kesten and Ogura
(1981), Evans et al. (2015), Schreiber et al. (2011), Hening and Nguyen (2018a),
Benaim (2018).

4 Stochastic differential equations

4.1 Growth rates depend linearly on resources

One way of adding stochasticity to a deterministic system is based on the assumption
that the environment mainly affects the vital rates of the populations. This way, the
vital rates in an ODE (ordinary differential equation) model are replaced by their aver-
age values to which one adds a white noise fluctuation term; see the work by Turelli
(1977), Braumann (2002), Gard (1988), Evans et al. (2013), Schreiber et al. (2011),
Gard (1984), Hening et al. (2018) formore details.We note that just adding a stochastic
fluctuating term to a deterministic model has some short comings because it does not
usually explain how the biology of the species interacts with the environment. Instead,
following the fundamental work by Turelli (1977) we see the SDEmodels as “approx-
imations for more realistic, but often analytically intractable, models”. Moreover, as
described by Turelli (1977), the Itô interpretation (and not the Stratanovich one) of
stochastic integration is the natural choice in the context of population dynamics. The
general SDE model will be given by

dxi (t) = xi (t) fi (x(t)) dt + xi (t)gi (x(t)) dEi (t), i = 1, . . . , n (4.1)

where E(t) = (E1(t), . . . , En(t))T = ��B(t) for an n × n matrix � such that
��� = 	 = (σi j )n×n , B(t) = (B1(t), . . . , Bn(t))T is a vector of independent
standard Brownian motions, and fi , gi : [0,∞)n → R are continuous functions that
are continuously differentiable on (0,∞)n . In this setting, if one has a subcommunity
M ⊂ {1, . . . , n} of species which has an invariant measure μ the invasion rate of the
i th species is given by
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�i (μ) :=
∫

∂Rn+

(
fi (x) − g2i (x)σi i

2

)
dμ. (4.2)

This expression can be seen as the average of the stochastic growth rate fi (x)− g2i (x)σi i
2

with respect to the measure μ.
We will first assume that the growth rates of the species depend linearly on the

resources. In this setting the system (2.1) becomes

dxi (t) = xi (t)

⎛
⎝−αi +

m∑
j=1

bi j R j (x(t))

⎞
⎠ dt + xi (t)gi (x(t)) dEi (t), i = 1, . . . , n.

(4.3)

Under appropriate smoothness and growth conditions, this system has unique solu-
tions and (0,∞)n is an invariant set for the dynamics, i.e. if the process starts in
(0,∞)n it will stay there forever.

The following stochastic version of the competitive exclusion principle holds.

Theorem 4.1 Suppose n species compete with each other according to (4.3), the num-
ber of species is greater than the number of resources n > m, the resources depend on
the species densities according to (2.2) so that they eventually get exhausted and the
random temporal environmental variation is linear, i.e. gi (x) = 1 for all x ∈ [0,∞)n

and all i = 1, . . . , n. Then for any initial species densities x(0) ∈ (0,∞)n with
probability one at least one species will go extinct.

We note that even though according to Theorem 4.1 white noise terms that are
linear cannot facilitate coexistence, they can change which species go extinct and
which persist as the next two-species example shows.

Example 4.1 (Two dimensional Lotka–Volterra SDE) Assume for simplicity we have
two species x1, x2 competing for one resource R. Then if we assume the resource
depends linearly on the species densities (2.3) and we set bi := bi1, μi = −αi +
bi R, βi j = bia j , and gi (·) = 1 then the system (4.3) becomes

dx1(t) = x1(t)(μ1 − β11x1(t) − β12x2(t)) dt + x1(t)dE1(t)

dx2(t) = x2(t)(μ2 − β21x1(t) − β22x2(t)) dt + x2(t)dE2(t).
(4.4)

Suppose 	 = diag(σ 2
1 , σ 2

2 ), μ2 − σ 2
2
2 > 0, and μ1 − σ 2

1
2 > 0 so that, according

to the result by Hening and Nguyen (2018a), none of the species go extinct on their
own, as well as b1

μ1
< b2

μ2
such that in the absence of random temporal environmental

variation species x1 dominates species x2, i.e. x1 persists while x2 goes extinct. The
following scenarios are possible (Turelli and Gillespie 1980; Kesten and Ogura 1981;
Hening and Nguyen 2018a; Evans et al. 2015; Hening and Nguyen 2018b)

• If b1
μ1

< b2
μ2

1− σ21
2μ1

1− σ22
2μ2

then with probability one x1 persists and x2 goes extinct.
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• If b1
μ1

> b2
μ2

1− σ21
2μ1

1− σ22
2μ2

then with probability one x2 persists and x1 goes extinct.

The random temporal environmental variation acts on the dominance criteria according

to the term
1− σ21

2μ1

1− σ22
2μ2

. As a result, we can get reversal in certain situations. Nevertheless,

just as predicted byTheorem4.1, one specieswill always go extinct and the competitive
exclusion principle holds.

This shows the competitive exclusion principle will hold when one models the
environmental stochasticity by a white noise term of the form xi (t)dEi (t) and if one
assumes the growth rates of the species depend linearly on the resources. The linear
random temporal environmental variation increases the expected resource level for
each isolated species. The problem is that it also increases the death rates from αi to

αi + σ 2
i
2 , therefore making coexistence impossible. A similar explanation was given

by Chesson and Huntly (1997) who studied the competition for a single resource in a
variable environment and showed that a species might be subject to less competition
when there is higher average mortality, but the higher average mortality counteracts
the advantage of lower competition.

However, if the random temporal environmental variation term is not linear, the
next result shows this need not be the case anymore.

Theorem 4.2 Assume that two species interact according to

dx1(t) = x1(t) (−α1 + b1R(x(t))) dt + x1(t)
√

β1x1(t) dB1(t)

dx2(t) = x2(t) (−α2 + b2R(x(t))) dt + x2(t)
√

β2x2(t) dB2(t)
(4.5)

and the resource R depends linearly on the species densities, i.e. (2.3) holds.

(i) Suppose that bi R > αi , i = 1, 2. Then each species i ∈ {1, 2} can survive on its
own and has a unique invariant probability measure μi on (0,∞).

(ii) Suppose in addition that the coefficients are such that the invasion rates are strictly
positive, i.e.

�x2 =
∫ ∞

0

(−α2 + b2(R − a1x)
)
μ1(dx) = (b2R − α2) − b2a1

b1R − α1

b1a1 + β1
> 0

and

�x1 =
∫ ∞

0

(−α1 + b1(R − a2x)
)
μ2(dx) = (b1R − α1) − b1a2

b2R − α2

b2a2 + β2
> 0.

Then the two species coexist.

Remark 4.1 We note that, as remarked by Peter Chesson, it is not clear how to interpret
this result biologically. This is due to the fact that the x3/2dB noise term has the
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effect of strongly increasing the intraspecific density-dependence without revealing a
biologically coherent mechanism. One way of looking into this mechanism would be
the following. By Turelli (1977) an Itô stochastic differential equation of the form

dXt = Xt f (Xt ) dt + Xt g(Xt ) dBt (4.6)

can be seen as a scaling limit N → ∞ of XN (t) = X (N )
	Nt
 where X (N )

n is the solution
of the stochastic difference equations

X (N )
n+1 − X (N )

n = fN
(
X (N )
n

) 1

N
+ gN

(
X (N )
n

) η
(N )
n+1√
N

(4.7)

where for each N ,
(
η

(N )
k

)
k∈N is a sequence of i.i.d random variables with mean 0 and

variance 1, fN (x) and gN (x) agree with x f (x) and xg(x) for x less than some large
value CN , and CN → ∞ as N → ∞. As a consequence, one can interpret (4.6) by
looking at (4.7).

The nonlinear random temporal environmental variation terms create a nonlinearity
when computing the expected values of the resource when each species is on its own.
This breaks the symmetry when computing the invasion rates and allows to have
both invasion rates be strictly positive. One example of parameters for which we get
coexistence is presented in Fig. 1.

Fig. 1 Example showing the coexistence of the species x1 and x2 in the SDE setting from Theorem 4.2.
The paramters are α1 = 0.5, β1 = 4, α2 = 0.6, β2 = 4, R = 3, a1 = a2 = 1, and the invasion rates
�x2 = 1.9,�x1 = 2.02
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4.2 Non-linear dependence on the resources.

If the assumption that the dependence of the per-capita growth rates on the resources is
linear is dropped like in Theorem2.2 and the random temporal environmental variation
is modeled by linear white noise multiple species can coexist while competing for one
resource. The nonlinear dependence on resources falls under the coexistence mecha-
nism described by relative nonlinearity. This is amechanismwhichmakes coexistence
possible via the different ways inwhich species use the available resources (Armstrong
andMcGehee 1980). In stochastic environments this effect has been studied in discrete
time by Chesson (1994), and Yuan and Chesson (2015).

Theorem 4.3 Suppose the dynamics of the two species is given by

dx1(t) = x1(t)(−α1 + f (R − a1x1(t) − a2x2(t))) dt + σ1x1dB1(t)

dx2(t) = x2(t)(−α2 + (R − a1x1(t) − a2x2(t))) dt
(4.8)

where f is a continuously differentiableLipschitz function satisfying limx→−∞ f (x) =
−∞,

d f (x)

dx
> 0,

d2 f (x)

dx2
≤ 0 for all x ∈ R and

d2 f (x)

dx2
< 0 for x in some subinter-

val of
(
−∞, R

a1

)
. Let a1, a2, σ1, α1, σ1, R be any fixed positive constants satisfying

f (R) > α1 + σ 2
1

2
. Then there exists an interval (c0, c1) ⊂ (0,∞) such that the two

species coexist for all α2 ∈ (c0, c1).

Remark 4.2 A particular example is the following. Let R = 5, a1 = a2 = 2; σ1 =
1, α1 = 0.5, α2 = 0.4 and the function f = f ∗ for

f ∗(x) =
{
ln (x + 3) x ≥ −2
x + 2 x ≤ −2.

Then the two species modelled by (4.8) coexist (Fig. 2).

The intuition is as follows: Consider (4.8) for an arbitrary function f . One can
show that if one considers the species x1 in the absence of species x2, i.e.

dx(t) = x(t)(−α1 + f (R − a1x(t))) dt + σ1xdB1(t).

then, under certain conditions, the process (x(t)) has a unique stationary distribution

μ on (0,∞). Ergodic theory then implies α1 + σ 2
1
2 = ∫ ∞

0 f (R − a1x)μ(dx). If the
function f is concave then by Jensen’s inequality and taking inverses

∫ ∞

0
(R − a1x)μ(dx) > f −1

(
α1 + σ 2

1

2

)
. (4.9)
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Fig. 2 Example showing the coexistence of the species x1 and x2 in the SDE setting from Remark 4.2. The
invasion rates are �x2 = 0.192 and �x1 = 0.147

The concavity of f increases the expected value of the resource R. However, in the
deterministic setting or if f is linear and there is no random temporal environmental
variation, one would have equality

∫ ∞

0
(R − a1x)μ(dx) = f −1

(
α1 + σ 2

1

2

)
.

This is the main intuition behind the counterexample (4.8). Because f ∗ is concave,
we can see that there will be by (4.9) an increase in the expected value of the resource.
This will in turn make coexistence possible. If f is linear or σ1 = 0, i.e. the system
is deterministic, this cannot happen, and we always have competitive exclusion by
Theorems 2.2 or 4.1.

5 Piecewise deterministic Markov processes

The basic intuition behind piecewise deterministic Markov processes (PDMP) is that
due to different environmental conditions, the way species interact changes. For exam-
ple, in Tyson and Lutscher (2016), it has been showcased that the predation behavior
can varywith the environmental conditions and therefore change predator–prey cycles.
Since the environment is random, its changes (or switches) cannot be predicted in a
deterministic way. For a PDMP, the process follows a deterministic system of dif-
ferential equations for a random time, after which the environment changes, and the
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process switches to a different set of ordinary differential equations (ODE), follows the
dynamics given by this ODE for a random time and then the procedure gets repeated.
This class of Markov processes was first introduced in the seminal paper of Davis
(1984) and has been used in various biological settings (Cloez et al. 2017), from pop-
ulation dynamics (Benaïm and Lobry 2016; Hening and Strickler 2019; Benaim 2018;
Du and Dang 2011, 2014) to studies of the cell cycle (Lasota and Mackey 1999), neu-
robiology (Ditlevsen and Löcherbach 2017), cell population models (Bansaye et al.
2011), gene expression (Yvinec et al. 2014) and multiscale chemical reaction network
models (Hepp et al. 2015).

Suppose (r(t)) is a process taking values in the finite state spaceN = {1, . . . , N }.
This process keeps track of the environment, so if r(t) = i ∈ N this means that at time
t the dynamics takes place in environment i . Once one knows in which environment
the system is, the dynamics are given by a system of ODE. The PDMP version of (2.1)
therefore is

dxi (t) = xi (t)

⎛
⎝−αi (r(t)) +

m∑
j=1

bi j (r(t))R j (x(t), r(t))

⎞
⎠ dt . (5.1)

In order to have a well-defined system one has to specify the switching-mechanism,
e.g. the dynamics of the process (r(t)). Suppose that the switching intensity of r(t) is
given as follows

P{r(t + 
) = j | r(t) = i, x(s), r(s), s ≤ t} = qi j
 + o(
) if i 
= j and
P{r(t + 
) = i | r(t) = i, x(s), r(s), s ≤ t} = 1 + qii
 + o(
)

(5.2)

where qii := −∑
j 
=i qi j . Here, we assume that the the matrix Q = (qi j )N×N is

irreducible. It is well-known that a process (X(t), r(t)) satisfying (5.1) and (5.2) is a
strong Markov process Davis (1984) while (r(t)) is a continuous-time Markov chain
that has a unique invariant probability measure ν on N .

We define for u ∈ N the uth environment, Eu . This is the deterministic setting
where we follow (5.1) with r(t) = u for all t ≥ 0, i.e.

dxui (t) = xui (t)

⎛
⎝−αi (u) +

m∑
j=1

bi j (u)R j (xu(t), u)

⎞
⎠ dt . (5.3)

The dynamics of the switched system can be constructed as follows: We follow
the dynamics of Eu and switch between environments Eu and Ev at the rate quv . It is
interesting to note that in the limit casewhere the switching between the different states
is fast, the dynamics can be approximated (Cloez et al. 2017; Benaïm and Strickler
2019) by the ‘mixed’ deterministic dynamics

dxi (t) = xi (t)
∑
u∈N

νu

⎛
⎝−αi (u) +

m∑
j=1

bi j (u)R j (x(t), u)

⎞
⎠ dt . (5.4)
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If the number of species is strictly greater than the number of resources, n > m,
for any u ∈ {1, . . . , N } the system

n∑
i=1

ci (u)bi j (u) = 0, j = 1, . . . ,m (5.5)

admits a nontrivial solution (c1(u), . . . , cn(u)). We can prove the following PDMP
version of the competitive exclusion principle. A related result has been stated infor-
mally in the discrete-time work by Chesson and Huntly (1997).

Theorem 5.1 Assume the dynamics of n competing species is given by (5.1) and
(5.2), there are fewer resources than species m < n, and all resources eventually
get exhausted. In addition, suppose that

lim‖x‖→∞

⎛
⎝−αi (u) +

m∑
j=1

bi j (u)R j (x, u)

⎞
⎠ < 0, i = 1, . . . , n, u = 1, . . . , N .

and there exists a non-zero vector (c1, . . . , cn) that is simultaneously a solution of
the linear systems (5.5) for all u ∈ {1, . . . , N }. Then, with probability 1, at least one
species goes extinct except possibly for the critical case when

n∑
i=1

ci

N∑
k=1

αi (k)νk = 0,

where (νk)k∈N is the invariant probability measure of the Markov chain (r(t))..

This shows that competitive exclusion holds if there is some kind of ‘uniformity’ of
solutions of (5.5) in all the different environments. However, the next example shows
coexistence on fewer resources than species is possible for PDMP.

Suppose we have two species, two environments, one resource and the dependence
of the resource on the population densities is linear, i.e. (2.3) holds. In environment
Eu, u ∈ {1, 2} the system is modelled by the ODE

dxui (t) = xui (t)

(
−αi (u) + bi (u)

[
R(u) −

2∑
i=1

xui (t)ai (u)

])
dt

and therefore the switched system is given by

dxi (t) = xi (t)

(
−αi (r(t)) + bi (r(t))

[
R(r(t)) −

2∑
i=1

xi (t)ai (r(t))

])
dt . (5.6)
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If we define μi (u) = −αi (u) + bi (u)R(u), βi j (u) = bi (u)a j (u) we get the well
known two-dimensional competitive Lotka–Volterra system

dx1(t) = x1(t)μ1(r(t))

(
1 − β11(r(t))

μ1(r(t))
x1(t) − β12(r(t))

μ1(r(t))
x2(t)

)
dt

dx2(t) = x2(t)μ2(r(t))

(
1 − β21(r(t))

μ2(r(t))
x1(t) − β22(r(t))

μ2(r(t))
x2(t)

)
dt .

(5.7)

By the deterministic competitive exclusion principle from Theorem 2.1 we know
that in each environment Eu, u ∈ {1, 2} one species is dominant and drives the other
one extinct.

Theorem 5.2 Suppose two species compete according to (5.6). There exist environ-
ments E1, E2 for which the maximal resource is equal R(1) = R(2) such that

(1) in both environments E1, E2 species x1 persists and species x2 goes extinct, or
(2) in environment E1 species x1 persists and species x2 goes extinct while in environ-

ment E2 the reverse happens and x1 goes extinct while x2 persists,

and rates q12, q21 > 0 such that the process x(t) modelled by (5.6) converges to a
unique invariant measure supported on a compact subset K of the positive orthant
(0,∞)2. In particular, with probability 1 the two species coexist, and the competitive
exclusion principle does not hold.

Remark 5.1 Here, the results of Cushing (1980), andDeMottoni and Schiaffino (1981)
are related, even though deterministic. Li and Chesson (2016) investigate a version of
this model in which the environment can be deterministic or stochastic, with the sole
requirement of stationarity of the environment. Their work shows mechanistically and
biologically how coexistence occurs. They consider explicit resource dynamics, but
in the limit of fast resource dynamics, their model becomes a version of our model.

We emphasize that the maximal resource does not have to change with the
environment—in the above example the maximal resources in the two environments
E1 and E2 are equal. Two examples of systems satisfying Theorem 5.2 are given in
Figs. 3 and 4. For the environments given by the coefficients from Fig. 3 one notes that
species x1 persists and x2 goes extinct in E1 while the reverse happens in environment
E2. Even more surprisingly, for the environments given by the coefficients from Fig. 4
species x1 persists and x2 goes extinct in both environments. By spending time in both
environments there is a rescue effect which forces both species to persist. We note that
Theorem 5.2 can be proved using results by Benaïm and Lobry (2016).

6 Discussion

We have analyzed how environmental stochasticity influences the coexistence of n
species competing form < n abiotic resources. The assumptions wemake are the ones
that are common throughout the literature: the populations are unstructured, the species
compete through the resourceswhich eventually get exhausted, there is no explicit time
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Fig. 3 Example showing the coexistence of the species x1 and x2 when one switches between two envi-
ronments. Species x1 persists in E1 and goes extinct in E2 while the reverse happens for species x2.
The constants are α1(1) = α1(2) = 0.66, α2(1) = α2(2) = 1, R(1) = R(2) = 2, a1 = 1, a2 =
1, b1(1) = b1(2) = 1, b2(1) = 1, b2(2) = 5, q12 = 1, q21 = 5. The invasion rates of the two species are
�x1 ≈ 0.137,�x2 ≈ 0.1

dependence in the interactions and there is no environmental stochasticity. Another
common assumption is that the per-capita growth rates of the species depend linearly
on the resources. There are several papers which have looked at related problems. The
first of these Chesson (1994) develops a general theory of coexistence in a variable
environment. Chesson (2009) gives a simpler presentation of the coexistence theory.
Klausmeier (2010) studies coexistencewith the environment jumping between discrete
states, which is an issue taken up in the current manuscript. Li and Chesson (2016)
is a detailed discussion of Hutchinson’s paradox of the plankton. Finally, Chesson
(2018) is relevant as an overall review. We note that in most of the stochastic results
one of the main assumptions is that the random temporal fluctuations are small. In our
analysis, especially in the setting from Sect. 5, this is not true anymore—the random
fluctuations can, and will be, large. The small effects approximations in earlier papers
have provided explicit formulae for species coexistence in a number of useful cases
(Chesson 1994). In our work, explicit coexistence criteria are not as readily available
due to the more complicated underlying mathematical structure.

Following Chesson (2000) we note that the response of a species to random envi-
ronmental fluctuations is part of the niche of the species. The coexistence ideas in
the current paper also involve niche differences. We are able to show that in certain
situations coexistence on fewer resources than species is possible as a result of the
species interacting with the random environment.
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Fig. 4 Example showing the coexistence of the species x1 and x2 when one switches between two
environments in both of which species x1 dominates and drives species x2 extinct. The constants are
α1(1) = 3, α1(2) = 0.2, α2(1) = 3.5, α2(2) = 0.8, R(1) = R(2) = 4, a1 = 1, a2 = 0.2, b1(1) =
1, b1(2) = 2, b2(1) = 1, b2(2) = 4, q12 = 1.4, q21 = 5. The invasion rates of the two species are
�x1 ≈ 0.00531,�x2 ≈ 0.00519

In the setting of stochastic differential equations, if we assume that the per-capita
growth rates of the species depend linearly on the resources and the white noise term is
linear, we prove the stochastic analogue of the competitive exclusion principle holds:
for any initial starting densities, at least one species will go extinct with probability 1.
The random temporal environmental variation can change which species persist and
which go extinct as well as drive more species towards extinction. This is in line with
Hening and Nguyen (2018,b) where we show that white noise of the form xi (t)dEi (t)
makes the coexistence of species in a Lotka–Volterra food chain less likely. In a sense,
this type of white noise is, on average, detrimental to the ecosystem if the interaction
between the species is linear enough.

However, if one drops the assumption that the per-capita growth rates of the species
depend linearly on the resources, then coexistence on fewer resources than species is
possible. We exhibit an example of two species competing for one resource where the
species coexist because of the linear white noise. More specifically, we look at the
interaction modelled by

dx1(t) = x1(t)(−α1 + f (R − a1x1(t) − a2x2(t))) dt + σ1x1dB1(t)

dx2(t) = x2(t)(−α2 + (R − a1x1(t) − a2x2(t))) dt .

The combination of random temporal environmental variation and non-linear depen-
dence on the resources make it possible for one species to get an increased expected
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value of the resource. This will in turn make it possible for the two species to coexist.
To glean more information, we look at the invasion rates of the two species, namely

�x2 = ε0 + f −1

(
α1 + σ 2

1

2

)
− α2,

and

�x1 = −α1 − σ 2
1

2
+ f (α2).

The constant ε0 is defined in theAppendix via equation (C.4) and involves the invariant
probability distribution μ of species x1. We note that the invasion rates are nonlinear
functions of the death rates of the species and the variance of the random temporal
fluctuations. This shows that the variance of the noise increases the invasion rate of x2
and decreases the invasion rate of x1, creating a type of relative nonlinearity (Ches-
son 1994; Yuan and Chesson 2015). This well known mechanism, in turn, promotes
coexistence. The conditions for coexistence in this setting are given by

f (R) > α1 + σ 2
1

2

and

α2 ∈
(
f −1

(
α1 + σ 2

1

2

)
, R ∧

(
f −1

(
α1 + σ 2

1

2

)
+ ε0

))
.

The first species needs to be efficient enough at using the resource, while the death rate
of the second species cannot be too low, as that would make the invasion of species 1
negative, nor can it be too high, as that would make its own invasion rate negative.

If instead, we drop the condition that the random temporal environmental variation
term is linear, we construct an example of two species

dx1(t) = x1(t) (−α1 + b1R(x(t))) dt + x1(t)
√

β1x1(t) dB1(t)

dx2(t) = x2(t) (−α2 + b2R(x(t))) dt + x2(t)
√

β2x2(t) dB2(t)

where the random temporal environmental variation looks like xi (t)3/2dEi (t) and the
per-capita growth rates of the species depend linearly on the resources in which the
two species coexist. The invasion rates in this setting are

�x2 = (b2R − α2) − b2a1
b1R − α1

b1a1 + β1
> 0

and

�x1 =
∫ ∞

0

(−α1 + b1(R − a2x)
)
μ2(dx) = (b1R − α1) − b1a2

b2R − α2

b2a2 + β2
> 0.
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Here there are two mechanisms that promote coexistence: relative nonlinearity
(the invasion rates are nonlinear functions of the competition parameters) and the
storage effect (density dependence of the covariance between the environment and
competition).

The above two examples show that in order to have competitive exclusion it is key
to assume both that the growth rates depend linearly on the resources and that the
white noise term is linear. If either one of these assumptions is violated we are able to
give examples of two species that compete for one resource and coexist, therefore vio-
lating the competitive exclusion principle. Nonlinear terms facilitate the coexistence
of species. Since there is no reason one should assume the interactions or the random
temporal environmental variation terms in nature are linear, this can possibly explain
coexistence in some empirical settings.

The second type of random temporal environmental variation we analyze is coming
from switching the environment between a finite number of states at random times,
and following a system of ODE while being in a fixed environment. This is related to
the concept of seasonal forcing, i.e. the aspect of nonequilibrium dynamics that looks
at the temporal variation of the parameters of a model during the year. This has been
studied extensively (Hsu 1980; Rinaldi et al. 1993; King and Schaffer 1999; Litchman
and Klausmeier 2001) and was shown to have significant impacts on competitive,
predator–prey, epidemic and other systems. However, much of the work in this area
has been done using simulation or approximation techniques and did not involve
any random temporal variation. We present some theoretical findings regarding the
coexistence of competitors, in the more natural setting when the forcing is random.
We prove that if the different environments are uniform, in the sense that there exists
a solution (c1, . . . , cn) that solves the system

n∑
i=1

ci bi j (u) = 0, j = 1, . . . ,m, (6.1)

simultaneously in an all environments then the competitive exclusion principle holds.
If this condition does not hold, we construct an example, based on the work by Benaïm
and Lobry (2016), with two species x1, x2 competing for one resource, and two envi-
ronments E1 and E2 such that in the switched system the two species coexist. We note
that in this setting we do have that the growth rates of the species depend linearly on
the resource. This example is interesting as it relates to Hutchinson’s explanation of
why environmental fluctuations can favor different species at different times and thus
facilitate coexistence (Hutchinson 1961; Li and Chesson 2016). We are able to find
environments E1 and E2 such that without the switching species x1 persists and species
x2 goes extinct in both environments. However, once we switch randomly between the
environments we get coexistence (see Fig. 4). This implies the surprising result that
species can coexist even if one species is unfavored at all times, in all environments.
We conjecture that in general if one has k environments and m resources, the coexis-
tence of n ≤ mk species will be possible if the environments are different, i.e. there is
no solution of (6.1) that is independent of the environments. If the environments are
different enough, each environment creates m niches for the species. However, if the
environments are too similar, i.e. (6.1) holds then coexistence is not possible.
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Our analysis shows that different types of random temporal environmental variation
interact differently with competitive exclusion according to whether the growth rates
depend linearly on the resources or not. As long as the random temporal environmental
variation is ‘smooth’ and ‘linear’ and changes the dynamics in a continuous way
and the growth rates are linear in the resources, the competitive exclusion principle
will hold. One needs nonlinear continuous random temporal environmental variation,
‘discontinuous’ random temporal environmental variation that abruptly changes the
dynamics of the system, or a nonlinearity in the dependence of the per-capita growth
rates on the resources in order to facilitate coexistence.
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Appendix A: Proof of Theorem 4.1

If the number of species is strictly greater than the number of resources, n > m, the
system

n∑
i=1

cibi j = 0, j = 1, . . . ,m (A.1)

admits a nontrivial solution (c1, . . . , cn).

Theorem A.1 Assume that lim‖x‖→∞ R j (x) = −∞, j = 1, . . . ,m. Suppose further
that n species interact according to (4.3), the number of species is greater than the
number of resources n > m and the resources depend on the species densities accord-
ing to (2.2) so that they eventually get exhausted. Suppose further that gi (x) = 1
and

0 < rm ≤ lim inf‖x‖→∞
|R j (x)|
|R1(x)| ≤ rM < ∞,

for j = 1, . . . ,m. Let (c1, . . . , cn) be a non-trivial solution to (A.1) and assume
that

∑n
i=1 ci

(
αi + σi i

2

) 
= 0. Then, for any starting densities x(0) ∈ (0,∞)n with
probability 1

lim sup
t→0

ln min{x1(t), . . . , xn(t)}
t

< 0.

Proof of Theorem 4.1 Suppose gi (x) = 1, i = 1, . . . , n and
∑

j bi j > bm > 0 for
any i and some bm > 0. Note that if

∑
j bi j = 0 then we can remove R j from the

equation. Assume that
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0 < rm ≤ lim inf‖x‖→∞
|R j (x)|
|R1(x)| ≤ rM < ∞.

Then, since lim‖x‖→∞ R j (x) = −∞, we have when |x| large that:

∑
i

⎛
⎝−xiαi + xi

∑
j

bi j R j (x)

⎞
⎠ ≤ −

∑
i

⎛
⎝xiαi + xi

∑
j

bi j |R j (x)|
⎞
⎠

≤ −
∑
i

⎛
⎝xiαi + xirm

∑
j

bi j |R1(x)|
⎞
⎠

≤ −rmbm

(∑
i

xi

)
|R1(x)|

≤ −rmbm
mRm

(∑
i

xi

) ∑
j

|R j (x)|

which together with the linearity of the diffusion part implies that Assumption 1.1
from the work by HN16 holds with c = (1, . . . , 1). As a result, for any starting point
x(0) ∈ (0,∞)n the SDE (4.3) has a unique positive solution and by Hening and
Nguyen (2018a) (equation (5.22)) with probability 1

lim sup
‖x‖→∞

ln ‖x‖
t

≤ 0. (A.2)

By possibly replacing all ci by−ci we can assume that
∑n

i=1 ci
(
αi + σi i

2

)
> 0. Using

this in conjunction with (4.3), (A.1) and Itô’s Lemma we see that

∑n
i=1 ci ln xi (t)

t
= −

n∑
i=1

ci
(
αi + σi i

2

)
+ 1

t

n∑
i=1

ci

∫ t

0
Ei (s) ds

Letting t → ∞ and using that limt→∞
∑n

i=1 ci Ei (t)

t
= 0 with probability 1, we

obtain that with probability 1

lim
t→∞

∑n
i=1 ci ln xi (t)

t
= −

n∑
i=1

ci
(
αi + σi i

2

)
< 0.

In view of (A.2) this implies that with probability 1

lim sup
t→∞

ln (min{x1(t), . . . , xn(t)})
t

< 0.

��
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Appendix B: Proof of Theorem 4.2

Theorem B.14 Assume two species interact according to

dxi (t) = xi (t) (−αi + bi R(x(t))) dt + xi (t)
√

βi xi (t) dBi (t), i = 1, 2,

the resource R depends linearly on the species densities

R(x) = R − a1x1(t) − a2x2(t)

and bi R > αi , i = 1, 2. Then there exist β1, β2 > 0 such that the two species coexist.

Proof Consider

dxi (t) = xi (t) (−αi + bi R(x(t))) dt + xi (t)
√

βi xi (t) dBi (t), i = 1, 2.

If the species x2 is absent species x1 has the one-dimensional dynamics

dx(t) = x(t)
(−α1 + b1(R − a1x(t))

)
dt + x(t)

√
β1x(t) dB1(t).

Since b1R > α1, we can use Hening and Nguyen (2018a) to show that the process x(t)
has a unique invariant measure on (0,∞), say μ1. Moreover, (Hening and Nguyen
2018a, Lemma 2.1 ) shows that

∫ ∞

0

(−α1 + b1(R − a1x) − β1x
)
μ1(dx) = 0

or

∫ ∞

0
xμ1(dx) = b1R − α1

b1a1 + β1
.

The invasion rate of x2 with respect to x1 can be computed by (4.2) as

�x2 =
∫ ∞

0

(−α2 + b2(R − a1x)
)
μ1(dx) = (b2R − α2) − b2a1

b1R − α1

b1a1 + β1
.

Similarly, one can compute the invasion rate of x1 with respect to x2 as

�x1 = (b1R − α1) − b1a2
b2R − α2

b2a2 + β2
.

Since bi R − αi > 0, one can easily see that �x2 > 0, and �x1 > 0 if β1 >

b2a1(b1R − α1)

b2R − α2
− b1a1. and β2 >

b1a2(b2R − α2)

b1R − α1
− b2a2. If both invasion rates

are positive we get by Hening and Nguyen (2018a) that the species coexist. ��
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Appendix C: Proof of Theorem 4.3

We construct an SDE example of two species competing for one abiotic resource
and coexisting. We remark that this happens solely because of the random temporal
environmental variation term.

Theorem C.1 Suppose the dynamics of the two species is given by

dx1(t) = x1(t)(−α1 + f (R − a1x1(t) − a2x2(t))) dt + σ1x1dB1(t)

dx2(t) = x2(t)(−α2 + (R − a1x1(t) − a2x2(t))) dt
(C.1)

where f is a continuously differentiableLipschitz function satisfying limx→−∞ f (x) =
−∞,

d f (x)

dx
> 0,

d2 f (x)

dx2
≤ 0 for all x ∈ R and

d2 f (x)

dx2
< 0 for x in some subinter-

val of
(
−∞, R

a1

)
. Let a1, a2, σ1, α1, σ1, R be any fixed positive constants satisfying

f (R) > α1 + σ 2
1

2
. Then there exists an interval (c0, c1) ⊂ (0,∞) such that the two

species coexist for all α2 ∈ (c0, c1).

Proof The dynamics of species x1 in the absence of species x2 is given by the one-
dimensional SDE

dx(t) = x(t)(−α1 + f (R − a1x(t))) dt + σ1xdB1(t).

Since limx→∞ f (R − a1x) = −∞, and f (R) > α1 + σ 2
1

2
, this diffusion has a

unique invariant probability measure μ on (0,∞) whose density is strictly positive
on (0,∞) (see Borodin and Salminen (2016) or Mao (1997)). Moreover, by noting
that limt→∞ ln x(t)

t = 0 with probability 1 (using Lemma 5.1 of Hening and Nguyen
(2018a)) and using Itô’s formula one sees that

∫ ∞

0
f (R − a1x)μ(dx) = α1 + σ 2

1

2
. (C.2)

Since f is a concave function and
d2 f (x)

dx2
> 0 for all x in some subinterval of(

−∞, R
a1

)
we must have by Jensen’s inequality that

∫ ∞

0
f (R − a1x)μ(dx) < f

(∫ ∞

0
(R − a1x)μ(dx)

)
. (C.3)

The fact that the function f is strictly increasing together with (C.2) and (C.3) forces

ε0 :=
∫ ∞

0
(R − a1x)μ(dx) − f −1

(
α1 + σ 2

1

2

)
> 0, (C.4)
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where f −1 is the inverse of f—it exists because f is strictly increasing. As a result,
the invasion rate of species x2 with respect to x1, of the invariant probability measure
μ, can be computed using (4.2) as

�x2 = −α2 +
∫ ∞

0
(R − a1x)μ(dx) = ε0 + f −1

(
α1 + σ 2

1

2

)
− α2.

This implies that �x2 > 0 if and only if

α2 < ε0 + f −1

(
α1 + σ 2

1

2

)
. (C.5)

The dynamics of species x2 in the absence of species x1 is

dy(t) = y(t)(R − α2 − a2y(t))dt .

The positive solutions of this equation converge to the point y∗ = R − α2

a2
if and only

if

R > α2. (C.6)

The invasion rate of x1 with respect to x2 will be

�x1 = −α1 − σ 2
1

2
+ f (α2).

Note that since the function f is increasing we get �x1 > 0 if and only if

α2 > f −1

(
α1 + σ 2

1

2

)
. (C.7)

Note that f −1

(
α1 + σ 2

1

2

)
< R since by assumption f (R) > α1 + σ 2

1

2
. As a result,

making use of the inequalities (C.5), (C.6) and (C.7) we get that �x2 > 0,�x1 > 0 if
any only if

α2 ∈
(
f −1

(
α1 + σ 2

1

2

)
, R ∧

(
f −1

(
α1 + σ 2

1

2

)
+ ε0

))
.

This implies by Theorem 3.1 or by Benaim (2018) [Theorem 4.4 and Definition 4.3]
that the two species coexist. ��
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Appendix D: Proof of Theorem 5.1

Theorem D.2 Assume that

lim‖x‖→∞

⎛
⎝−αi (u) +

m∑
j=1

bi j (u)R j (x, u)

⎞
⎠ < 0, i = 1, . . . , n, u = 1, . . . , N . (D.1)

Suppose further that there exists a vector (c1, . . . , cn) that is simultaneously a solution
to the systems (5.5) for all u ∈ {1, . . . , N }. Then, with probability 1,

lim sup
t→0

ln min{x1(t), . . . , xn(t)}
t

< 0

except possibly for the critical case when

n∑
i=1

ci

N∑
k=1

αi (k)νk = 0, (D.2)

where (νk)k∈N is the invariant probability measure of the Markov chain (r(t)).

Proof Under the condition (D.1), there exists an M > 0 such that the set KM :=
{x ∈ R

n : ‖x‖ ≤ M} is a global attractor of (5.4). As a result, the solution to (5.4)
eventually enters and never leaves the compact set KM . In particular, this shows that
the process x(t) is bounded. Next, note that we can assume that

n∑
i=1

ci

N∑
k=1

αi (k)πk > 0. (D.3)

Otherwise, if
∑n

i=1 ci
∑N

k=1 αi (k)πk < 0, we can replace ci by −ci , i = 1, . . . , n
and then get (D.3). Using (5.1) and the fact that that ci ’s solve (5.5) simultaneously
we get

∑n
i=1 ci ln xi (t)

t
= −1

t

∫ t

0

n∑
i=1

ciαi (r(s))ds

Letting t → ∞ and using the ergodicity of the Markov chain (r(t)) we obtain that
with probability 1

lim sup
t→∞

∑n
i=1 ci ln xi (t)

t
= − lim inf

t→∞
1

t

∫ t

0

n∑
i=1

ciαi (r(s))ds

= −
n∑

i=1

ci

N∑
k=1

αi (k)πk < 0 a.s.
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Since x(t) is bounded, this implies that with probability 1

lim sup
t→∞

ln min{x1(t), . . . , xn(t)}
t

< 0.

��

Appendix E: Proof of Theorem 5.2

According to Benaïm and Lobry (2016), Malrieu and Zitt (2017), and Malrieu and
Phu (2016) it is enough to find an example for which the invasion rates �x1 ,�x2 are
positive. We will follow Benaïm and Lobry (2016) in order to compute the invasion
rates of the two species. Set for u = 1, 2 μu = −α1(u) + b1(u)R, νu = −α2(u) +
b2(u)R au = b1(u)a1(u)

μu
, bu = b1(u)a2(u)

μu
, cu = b2(u)a1(u)

νu
, d(u) = b2(u)a2(u)

νu
,

pu = 1

au
, qu = 1

du
, γ1 = q12

μu
, γ2 = q21

νu
. If p1 
= p2, suppose without loss of

generality that p1 < p2. Define the functions

θ(x) = |x − p1|γ1−1|p2 − x |γ2−1

x1+γ1+γ2

and

P(x) = a2 − a1
|a2 − a1|

[
ν2

μ2
(1 − c2x)(1 − a1x) − ν1

μ1
(1 − c1x)(1 − a2x)

]
.

By Benaïm and Lobry (2016) we have

�x2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

q12 + q21
(q21ν1(1 − c1 p) + q12ν2(1 − c2 p)) if p1 = p2 = p

p1 p2

∫ p2
p1

θ(x)P(x)dx∫ p2
p1

θ(x)dx
if p1 < p2

(E.1)

The expression for �x1 can be obtained by swapping μi and νi , (ai , ci ) with (di , bi ),
and pi with qi .

For the example from Figs. 3 and 4 we have used the integral equation from (E.1)
together with the numerical integration package ofMathematica in order to find�x1 >

0 and�x2 > 0. This implies by Theorem 3.1, Benaïm and Lobry (2016) or by Benaim
(2018) [Theorem 4.4 and Definition 4.3] that the two species coexist.
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