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Abstract

Inits simplest form, the competitive exclusion principle states that a number of species
competing for a smaller number of resources cannot coexist. However, it has been
observed empirically that in some settings it is possible to have coexistence. One
example is Hutchinson’s ‘paradox of the plankton’. This is an instance where a large
number of phytoplankton species coexist while competing for a very limited number of
resources. Both experimental and theoretical studies have shown that temporal fluctua-
tions of the environment can facilitate coexistence for competing species. Hutchinson
conjectured that one can get coexistence because nonequilibrium conditions would
make it possible for different species to be favored by the environment at different
times. In this paper we show in various settings how a variable (stochastic) environ-
ment enables a set of competing species limited by a smaller number of resources or
other density dependent factors to coexist. If the environmental fluctuations are mod-
eled by white noise, and the per-capita growth rates of the competitors depend linearly
on the resources, we prove that there is competitive exclusion. However, if either the
dependence between the growth rates and the resources is not linear or the white
noise term is nonlinear we show that coexistence on fewer resources than species is
possible. Even more surprisingly, if the temporal environmental variation comes from
switching the environment at random times between a finite number of possible states,
it is possible for all species to coexist even if the growth rates depend linearly on the
resources. We show in an example (a variant of which first appeared in Benaim and
Lobry ’16) that, contrary to Hutchinson’s explanation, one can switch between two
environments in which the same species is favored and still get coexistence.

Keywords Competitive exclusion - Reversal - Ergodicity - Lotka—Volterra -
Lyapunov exponent - Stochastic environment

Mathematics Subject Classification 92D25 - 37H15 - 60H10 - 60J05 - 60J99

Extended author information available on the last page of the article

Published online: 10 January 2020 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01464-y&domain=pdf

A. Hening, D. H. Nguyen

1 Introduction

The competitive exclusion principle (Volterra 1928; Gause 1932; Hardin 1960; Levin
1970) loosely says that when multiple species compete with each other for the same
resource, one competitor will win and drive all the others to extinction. Nevertheless, it
has been observed in nature that multiple species can coexist despite limited resources.
For example, phytoplankton species can coexist even though they all compete for a
small number of resources. This apparent violation of the competitive exclusion prin-
ciple has been called by Hutchinson ‘the paradox of the plankton’ Hutchinson (1961).
Hutchinson gave a possible explanation by arguing that variations of the environment
can keep species away from the deterministic equilibria that are forecasted by the
competitive exclusion principle.

Hardin (1960) states the competitive exclusion principle as ‘complete competitors
cannot coexist.” Davis (1984) quoting Gause (1932), states it as ‘It is admitted that as
a result of competition two similar species scarcely ever occupy similar niches, but
displace each other in such a manner that each takes possession of certain peculiar
kinds of food and modes of life in which it has an advantage over its competitor.’
Chesson (2000) defines the niche as ‘A species’ niche is defined by the effect that a
species has at each point in niche space, and by the response that a species has to each
point.’

There has been continued debate regarding the competitive exclusion principle.
Some have argued that the principle is a tautology or that since all species have finite
population sizes they will eventually go extinct, therefore questioning the value of the
principle. Analysing the competitive exclusion principle mathematically for a large
class of models can guide us in this debate. Even though from a mathematical point of
view, coexistence means that no species goes extinct in finite time, we will interpret
this as providing evidence that no species will go extinct for a long period of time.
The first general deterministic framework for examining problems of competitive
exclusion appeared in Armstrong and McGehee (1980). This paper and the beautiful
proofs from Hofbauer and Sigmund (1998) inspired us to look into how a variable
environment enables a set of species limited by a smaller number of resurces or other
density dependent factors to coexist.

Itis well documented that one has to look carefully at both the biotic interactions and
the environmental fluctuations when trying to determine criteria for the coexistence
or extinction of species. Sometimes biotic effects can result in species going extinct.
However, if one adds the effects of the environment, extinction might be reversed
into coexistence. These phenomena have been seen in competitive settings as well
as in settings where prey share common predators—see Chesson and Warner (1981),
Abrams et al. (1998), and Holt (1977). In other instances, deterministic systems that
coexist become extinct once one takes into account environmental fluctuations—see
for example Hening and Nguyen (2018). One successful way of analyzing the interplay
between biotic interactions and temporal environmental variation is by modelling the
populations as discrete or continuous-time Markov processes. The problem of coex-
istence or extinction then becomes equivalent to studying the asymptotic behaviour
of these Markov processes. There are many different ways of modeling the random
temporal environmental variation. One way that is widely used is adding white noise
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to the system and transforming differential equations into stochastic differential equa-
tions (SDE). However, for many systems, the randomness might not be best modelled
by SDE Turelli (1977). Because of this, it is relevant to see how the long term fate
of ecosystems is changed by different types of temporal environmental variation. The
idea that extinction can be reversed, due to environmental fluctuations, into coexistence
has been revisited many times since Hutchinson’s explanation. A number of authors
have shown that coexistence on fewer resources than species is possible as a result of
interactions of species with temporal environmental variation (Chesson and Warner
1981; Chesson 1982, 1994; Li and Chesson 2016). Our contribution to the literature
of competitive exclusion is two-fold: (1) We develop powerful analytical methods for
studying this question. (2) We prove general theoretical results and provide a series of
new illuminating examples.

2 The deterministic model

Volterra’s original model Volterra (1928) assumed that the dynamics of n competing
species can be described using a system of ordinary differential equations (ODE). Most
people who have studied the competitive exclusion principle mathematically have used
ODE models. This is a key assumption and we will adhere to it in the current paper.
Suppose we have n species x;,i = 1,...,n and denote the density of species i at
time ¢ > 0 by x;(¢). Each species uses m possible resources whose abundances are
R;,j = 1,...,m. The resources themselves depend on the species densities, i.e.
R; = Rj(x) is a function of the densities of the species x(1) = (x1(?), ..., x,(1).
We assume that the per-capita growth rate of each species increases linearly with the
amount of resources present. Based on the above, the dynamics of the n species is
given by

dxi(t) = xi(0) [ —a; + D by Rj(x() | dr, i=1,....n 2.1)
j=1

where —a; < 0 is the rate of death in the absence of any resource, Ry > 0 is the
abundance of the kth resource, and the coefficients b;; describe the efficiency of the
ith species in using the kth resource. A key requirement is that the resources Ry all
eventually get exhausted. In mathematical terms this means that

Ry (x) = Ry — Fi(x) 2.2

where the Fj’s are unbounded positive functions of the population densities x; with
Fx (0, ..., 0) = 0. This will make it impossible for the densities x; to grow indefinitely,
and will be a standing assumption throughout the paper.

In the special case when the resources depend linearly on the densities, so that
Fr(x) = >_!'_| xiax; for constants ag; > 0, Eq. (2.2) becomes
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n
Ri(x) = R — ) _ xiayi 2.3)
i=1

and the system (2.1) is of Lotka—Volterra type. The model given by (2.1) and (2.2)
is called by Armstrong and McGehee (1980) a linear abiotic resource model. The
linearity comes from (2.1) which intrinsically assumes that the per capita growth rates
of the competing species are linear functions of the resource densities. The resources
are abiotic because they regenerate according to the algebraic equation (2.2), in contrast
to being biotic and following systems of differential equations themselves.

The following result is a version of the competitive exclusion principle—see Hof-
bauer and Sigmund (1998) for an elegant proof.

Theorem 2.1 Suppose n > m, the dynamics is given by (2.1), and the resources
eventually get exhausted. Then at least one species will go extinct.

Assumption 2.1 It is common to make the following assumptions when studying the
competitive exclusion principle Armstrong and McGehee (1980).

(i) The populations are unstructured and as such the system can be fully described
by the densities of the species.
(i) The n species interact with each other only through the resources. This way the
growth rates of the species only depend on the resources Ry, k = 1, ..., m and
not directly on the densities x;,i = 1, ..., n.
(iii) The resources all eventually get exhausted.
(iv) The growth rates of the species depend linearly on the resources that are available.
Note that this is implicit in (2.1).
(v) The system is homogenous in space and the resources are uniform in quality.
(vi) There is no explicit time dependence in the interactions.
(vii) There is no random temporal environmental variation that can affect the resources
and species.

When one or more of the assumptions (i)—(vi) are violated the coexistence of all
species is possible. For example, if assumption (i) is violated it has been shown by
Haigh and Smith (1972) that two predators can coexist competing for the same prey
if they eat different life stages (larval vs adult) of the prey. Similarly, two herbivores
eating one plant can survive if they eat different parts of the plant. If (vi) is violated
and the environment is time-varying it has been showcased by Stewart and Levin
(1973), and Koch (1974a) that multiple species can coexist using a single resource.
In the more general setting of competition, without specifying the dependence on
resources, it has been shown by Cushing (1980), and De Mottoni and Schiaffino
(1981) how deterministic temporal environmental variation can create a rescue effect
and promote coexistence. If the linear dependence on the resources (iv) does not hold
several results Koch (1974b), Zicarelli (1975), Armstrong and McGehee (19764, b),
Kaplan and Yorke (1977), McGehee and Armstrong (1977), Armstrong and McGehee
(1980) have shown that the coexistence of n species competing for m < n resources
is possible.
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2.1 Competitive exclusion without Assumption 2.1 (iv)

Armstrong and McGehee (1980) have relaxed the linearity constraint from Assumption
2.1 (iv) and studied general systems of n species competing for m abiotic resources.
The dynamics is then given by

dx;i(t) (R Ry). Q=1
= X;U; e, ,i=1,...,n
dt s " 2.4)

Rj=Rj—Fj(x1,....x,), j=1,....m,

where u; (R1, ..., R),) is the per-capita growth rate of species i when the resources are
(R1, ..., Ry). The R;’s are considered resources, so it is assumed that species growth
rates will increase with resource availability, while resource densities will decrease
with species densities. These conditions can be written as

u; OF;
Mo 0and ZL >0, i=1,....n, j=1,....,m 2.5)
3Rj 3)6,'

where the equalities hold if any only if species i does not use resource j.

Volterra Volterra (1928) proved that n > 1 species cannot coexist if they compete
for one abiotic resource. However, Volterra assumed as many others, that the u; s from
(2.4) are linear, i.e. the growth rates depend linearly on the resources. If one assumes
there is only one resource, surprisingly, the linearity assumption is not necessary. The
conditions from (2.5) are enough to force all but one species to go extinct. Only the
species which can exist at the lowest level of available resource will persist and the
following version of the competitive exclusion principle (see Armstrong and McGehee
(1980)) holds.

Theorem 2.2 Suppose there are n > 1 species competing for one abiotic resource R.
If the dynamics is given by (2.4) and the monotonicity conditions (2.5) are satisfied
then one species persists and all the others go extinct.

We will study what happens when assumptions (i)—(vi) hold and assumption (vii)
does not as well as how white noise interacts with the system when assumption (iv)
fails.

3 Stochastic coexistence theory

In this section we describe some of the general stochastic coexistence theory that
has been developed recently. We start by defining what we mean by extinction and
coexistence in the stochastic setting. Assume (€2, F, P) is a probability space and let
X(1)) = (X1(t), ..., X, (t)) denote the densities of the n species at time ¢ > 0. We
will assume that (€2, F, P) satisfies all the natural assumptions and that X is a Markov
process. We will denote by Py(-) =P( - | X(0) =y) and Ey[-] =E[ - | X(0) =]
the probability and expected value given that the process starts at X(0) = y. Let
R = [0, 00)" \ (0, c0)" be the boundary of the positive orthant.
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Definition 3.1 Species X; goes extinct if for any initial species densities X(0) €
(0, 00)"* we have with probability 1 that

lim X;(7) = 0.
11— 00

We say that at least one species goes extinct if the process X(7) converges to the
boundary dRR’} in the following sense: there exists « > 0 such that for any initial
densities X(0) € (0, co)" with probability 1

1 X R%
lim sup . (d ( ©), 0 +)) < —q,
t—00 t

where d(y, R, ) = min{y; ..., y,} is the distance from y to the boundary dR’; .

Definition 3.2 The species X ; is persistent in probability if for every ¢ > 0, there
exists § > 0 such that for any X(0) =y € (0, 00)" we have that

htrg(l)rgf}}”y {Xj(t) > 8} >1—c.

If all species X ; for j =1, ..., n persist in probability we say the species coexist.

This definition has first appeared in work by Chesson (1978, 1982). There is a gen-
eral theory of coexistence for deterministic models (Hofbauer 1981; Hutson 1984;
Hofbauer and So 1989; Hofbauer and Sigmund 1998; Smith and Thieme 2011). It
can be shown that a sufficient condition for coexistence is the existence of a fixed
set of weights associated with the interacting populations, such that this weighted
combination of the populations’s invasion rates is positive for any invariant measure
supported by the boundary (i.e. associated to a sub-collection of populations)—see
work by Hofbauer (1981). This coexistence theory has been generalized to stochastic
difference equations in a compact state space (Schreiber et al. 2011), stochastic dif-
ferential equations (Schreiber et al. 2011; Hening and Nguyen 2018a), and recently
to general Markov processes (Benaim 2018).

The intuition behind the stochastic coexistence results is as follows. Let u be an
invariant probability measure of the process X that is supported on the boundary JR .
Loosely speaking p describes the coexistence of a sub-community of species, where
at least one of the initial n species is absent. If the process X spends a lot of time close
to (the support of) i then it will get attracted or repelled in the ith direction according
to the invasion rate A;(u). This quantity can usually be computed by averaging some
growth rates according to the measure p. The invasion rate A;(x) quantifies how
the ith species behaves when introduced at a low density into the sub-community
supported by the measure w. If the invasion rate is positive, then the ith species tends
to increase when rare, while if it is negative, the species tends to decrease when rare.
We will use the following stochastic coexistence criterion for n = 2 species.

Theorem 3.1 Suppose species X| survives on its own and has the unique invariant
measure |11 on (0, 00). Similarly, assume species X, survives in the absence of X
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and has the unique invariant measure |1o on (0, 00). Assume furthermore that the
invasion rates of the two species are strictly positive, i.e. Ay, = A1(u2) > 0 and
Ay, := Ay(u1) > 0. Then the two species coexist.

A variant of this theorem appeared in work by Chesson and Ellner (1989) in the set-
ting of monotonic stochastic difference equations and then improved to more general
stochastic difference equations by Ellner (1989). Moreover, Chesson and Ellner (1989)
develop specific conditions for coexistence in variable environments when there is but
a single competitive factor, such as a single resource. This makes it a particularly rele-
vant paper to our work. For proofs of this theorem for stochastic differential equations
see Hening and Nguyen (2018a) [Theorem 4.1 and Example 2.4] as well as Benaim
(2018) [Theorem 4.4 and Definition 4.3]. In the setting of PDMP see Benaim and
Lobry (2016) and Benaim (2018) [Theorem 4.4 and Definition 4.3]. Other related per-
sistence results have been shown by Turelli and Gillespie (1980), Kesten and Ogura
(1981), Evans et al. (2015), Schreiber et al. (2011), Hening and Nguyen (2018a),
Benaim (2018).

4 Stochastic differential equations
4.1 Growth rates depend linearly on resources

One way of adding stochasticity to a deterministic system is based on the assumption
that the environment mainly affects the vital rates of the populations. This way, the
vital rates in an ODE (ordinary differential equation) model are replaced by their aver-
age values to which one adds a white noise fluctuation term; see the work by Turelli
(1977), Braumann (2002), Gard (1988), Evans et al. (2013), Schreiber et al. (2011),
Gard (1984), Hening et al. (2018) for more details. We note that just adding a stochastic
fluctuating term to a deterministic model has some short comings because it does not
usually explain how the biology of the species interacts with the environment. Instead,
following the fundamental work by Turelli (1977) we see the SDE models as “approx-
imations for more realistic, but often analytically intractable, models”. Moreover, as
described by Turelli (1977), the Itd interpretation (and not the Stratanovich one) of
stochastic integration is the natural choice in the context of population dynamics. The
general SDE model will be given by

dxi(t) = x;(t) i(x(@))dt + xi(t)gi(x(¢))dEi(t), i=1,...,n 4.1

where E(t) = (E((t), ..., E,(1))T = T'"B(r) for an n x n matrix I such that
r'r =3 = ©ij)uxn, B(t) = (B1(2), oo BT is a vector of independent
standard Brownian motions, and f;, g; : [0, 00)" — R are continuous functions that
are continuously differentiable on (0, c0)". In this setting, if one has a subcommunity
M C {1, ..., n} of species which has an invariant measure y the invasion rate of the
ith species is given by
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2 ..
Ai(p) = /a . (ﬁ(X) - @) dp. 4.2)
+

This expression can be seen as the average of the stochastic growth rate f; (x) — @
with respect to the measure w.

We will first assume that the growth rates of the species depend linearly on the
resources. In this setting the system (2.1) becomes

dx;(t) = x;(t) | —« —i—Zbl‘jRj(X(t)) dt +x;(t)gix(t))dE;i(t), i=1,...,n.
=1
4.3)

Under appropriate smoothness and growth conditions, this system has unique solu-
tions and (0, co)" is an invariant set for the dynamics, i.e. if the process starts in
(0, 00)™ it will stay there forever.

The following stochastic version of the competitive exclusion principle holds.

Theorem 4.1 Suppose n species compete with each other according to (4.3), the num-
ber of species is greater than the number of resources n > m, the resources depend on
the species densities according to (2.2) so that they eventually get exhausted and the
random temporal environmental variation is linear, i.e. g;(x) = 1 for all x € [0, 00)"
and all i = 1,...,n. Then for any initial species densities x(0) € (0, 00)" with
probability one at least one species will go extinct.

We note that even though according to Theorem 4.1 white noise terms that are
linear cannot facilitate coexistence, they can change which species go extinct and
which persist as the next two-species example shows.

Example 4.1 (Two dimensional Lotka—Volterra SDE) Assume for simplicity we have
two species x1, xp competing for one resource R. Then if we assume the resource
depends linearly on the species densities (2.3) and we set b; := b;j1, Ui = —a; +
biR, Bij = biaj, and g;(-) = 1 then the system (4.3) becomes

dxi(t) = x1(1) (1 — Brix1(t) — Brax2(2)) dt + x1(1)d Eq(¢)

4.4
dxz(t) = x2(t) (2 — Bo1x1(t) — Brox2(t)) dt + x2(t)d E2(1). @)

Suppose ¥ = diag(olz, 022), Uy — 0722 > 0,and u; — 07‘2 > 0 so that, according
to the result by Hening and Nguyen (2018a), none of the species go extinct on their
own, as well as % < % such that in the absence of random temporal environmental
variation species x| dominates species x2, i.e. x| persists while x, goes extinct. The
following scenarios are possible (Turelli and Gillespie 1980; Kesten and Ogura 1981;
Hening and Nguyen 2018a; Evans et al. 2015; Hening and Nguyen 2018b)

2
71

11—
o If % < Z—zz —“L then with probability one x| persists and x, goes extinct.

122

24y
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2
71

11—
o If % > %izl then with probability one x, persists and xj goes extinct.

1—22

2

The random temporal environmental variation acts on the dominance criteria according
2
o
1
) . . . .
to the term EL . As aresult, we can get reversal in certain situations. Nevertheless,

justas predicted by Theorem 4.1, one species will always go extinct and the competitive
exclusion principle holds.

This shows the competitive exclusion principle will hold when one models the
environmental stochasticity by a white noise term of the form x; (#)d E; (¢) and if one
assumes the growth rates of the species depend linearly on the resources. The linear
random temporal environmental variation increases the expected resource level for

each isolated species. The problem is that it also increases the death rates from «; to
2

o + %’ therefore making coexistence impossible. A similar explanation was given
by Chesson and Huntly (1997) who studied the competition for a single resource in a
variable environment and showed that a species might be subject to less competition
when there is higher average mortality, but the higher average mortality counteracts
the advantage of lower competition.

However, if the random temporal environmental variation term is not linear, the
next result shows this need not be the case anymore.

Theorem 4.2 Assume that two species interact according to

dx1(t) = x1(t) (=1 + b1 R(x(2))) dt + x1(t)+/ B1x1(t) dB1(t)

(4.5)
dxo(t) = x2(t) (—an + ba R(X(2))) dt + x2(t)/ Bax2(t) d Bo (1)

and the resource R depends linearly on the species densities, i.e. (2.3) holds.

(1) Suppose that biR > «;,i = 1,2. Then each species i € {1, 2} can survive on its
own and has a unique invariant probability measure (1; on (0, 00).

(i) Suppose in addition that the coefficients are such that the invasion rates are strictly
positive, i.e.

A /OO( +b2(R — a1x)) pi(dx) = (2R — az) — b ULESIA
= —a —ax x) = T T ha T T
2= ] 2T 1% ? ? *rar + Bi
and
00 B _ bR — ay
Ay, Z/o (=1 4+ b1(R — azx)) pa(dx) = (b1 R — ) —blazw_'_ﬂ2 > 0.

Then the two species coexist.

Remark 4.1 We note that, as remarked by Peter Chesson, it is not clear how to interpret
this result biologically. This is due to the fact that the x*/?d B noise term has the
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effect of strongly increasing the intraspecific density-dependence without revealing a
biologically coherent mechanism. One way of looking into this mechanism would be
the following. By Turelli (1977) an It6 stochastic differential equation of the form

can be seen as a scaling limit N — oo of Xy (1) = X f%; | where X ,(1N) is the solution
of the stochastic difference equations

(N)

1 n
N
X, =X = f (1(’(1N)) N gN( 'gN)) f/er\f1 @D

where for each N, (n,(cN)> is a sequence of i.i.d random variables with mean 0 and

variance 1, fy(x) and gy (x) agree with xf (x) and xg(x) for x less than some large
value Cy, and Cy — oo as N — 00. As a consequence, one can interpret (4.6) by
looking at (4.7).

The nonlinear random temporal environmental variation terms create a nonlinearity
when computing the expected values of the resource when each species is on its own.
This breaks the symmetry when computing the invasion rates and allows to have
both invasion rates be strictly positive. One example of parameters for which we get
coexistence is presented in Fig. 1.

Phase portait of (x‘I (t), xz(t))

(%, 1) %,()

30

35

Fig. 1 Example showing the coexistence of the species x1 and x in the SDE setting from Theorem 4.2.
The paramters are oy = 0.5, 81 = 4,0 = 0.6, 80 = 4, R = 3,a; = ap = 1, and the invasion rates
Ay, = 1.9, Ay, =2.02
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4.2 Non-linear dependence on the resources.

If the assumption that the dependence of the per-capita growth rates on the resources is
linear is dropped like in Theorem 2.2 and the random temporal environmental variation
is modeled by linear white noise multiple species can coexist while competing for one
resource. The nonlinear dependence on resources falls under the coexistence mecha-
nism described by relative nonlinearity. This is a mechanism which makes coexistence
possible via the different ways in which species use the available resources (Armstrong
and McGehee 1980). In stochastic environments this effect has been studied in discrete
time by Chesson (1994), and Yuan and Chesson (2015).

Theorem 4.3 Suppose the dynamics of the two species is given by

dxi(t) = x1(t)(—a1 + f(R — arx1(t) — axx2(t))) dt + o1 x1d By ()

_ (4.8)
dxa(t) = x2(t)(—o2 + (R — a1x1(t) — axxa(t))) dt

where f is a continuously differentiable Lipschitz function satisfying limy_, _oo f(x) =

df (x) d*f(x) d*f(x)
—OO,

> 0, 5— =< 0forallx € Rand 5— < 0forx in some subinter-
dx dx dx
val of (—oo, %) Let ay, ar, 01, a1, 01, R be any fixed positive constants satisfying
2

_ o
f(R) > a1 + 71 Then there exists an interval (co, c1) C (0, 00) such that the two

species coexist for all oy € (co, c1).

Remark 4.2 A particular example is the following. Let R=5a =a =2:.0; =
I, = 0.5, ap = 0.4 and the function f = f* for

" In(x+3) x>-2
f(x)={x+2 x < =2.

Then the two species modelled by (4.8) coexist (Fig. 2).

The intuition is as follows: Consider (4.8) for an arbitrary function f. One can
show that if one considers the species x; in the absence of species x, i.e.

dx(t) = x(t)(—ay + f(R — arx(t))) dt + o1xd By ().
then, under certain conditions, the process (x(#)) has a unique stationary distribution

@ on (0, 00). Ergodic theory then implies o1 + %‘ = fooo f(R —aix)u(dx). If the
function f is concave then by Jensen’s inequality and taking inverses

00 2
/ (R —arx)u(dx) > f~! (oq + %) . (4.9)
0
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Phase portait of (x1 (t), x2(t))

25

(%,(0). ,(0)

Fig.2 Example showing the coexistence of the species x| and x; in the SDE setting from Remark 4.2. The
invasion rates are Ay, = 0.192 and Ay, = 0.147

The concavity of f increases the expected value of the resource R. However, in the
deterministic setting or if f is linear and there is no random temporal environmental
variation, one would have equality

2

/OO(R —arx)uldx) = f_l o] + U_l
0 2

This is the main intuition behind the counterexample (4.8). Because f* is concave,
we can see that there will be by (4.9) an increase in the expected value of the resource.
This will in turn make coexistence possible. If f is linear or o7 = 0, i.e. the system
is deterministic, this cannot happen, and we always have competitive exclusion by
Theorems 2.2 or 4.1.

5 Piecewise deterministic Markov processes

The basic intuition behind piecewise deterministic Markov processes (PDMP) is that
due to different environmental conditions, the way species interact changes. For exam-
ple, in Tyson and Lutscher (2016), it has been showcased that the predation behavior
can vary with the environmental conditions and therefore change predator—prey cycles.
Since the environment is random, its changes (or switches) cannot be predicted in a
deterministic way. For a PDMP, the process follows a deterministic system of dif-
ferential equations for a random time, after which the environment changes, and the
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process switches to a different set of ordinary differential equations (ODE), follows the
dynamics given by this ODE for a random time and then the procedure gets repeated.
This class of Markov processes was first introduced in the seminal paper of Davis
(1984) and has been used in various biological settings (Cloez et al. 2017), from pop-
ulation dynamics (Benaim and Lobry 2016; Hening and Strickler 2019; Benaim 2018;
Du and Dang 2011, 2014) to studies of the cell cycle (Lasota and Mackey 1999), neu-
robiology (Ditlevsen and Locherbach 2017), cell population models (Bansaye et al.
2011), gene expression (Yvinec et al. 2014) and multiscale chemical reaction network
models (Hepp et al. 2015).

Suppose (r(t)) is a process taking values in the finite state space N = {1, ..., N}.
This process keeps track of the environment, soif 7(#) = i € A this means that at time
t the dynamics takes place in environment i. Once one knows in which environment
the system is, the dynamics are given by a system of ODE. The PDMP version of (2.1)
therefore is

dxi(t) = xi (1) _Oli(r(t))+Zbij(”(t))Rj(x([)sr(t)) dr. (5.1)

j=1

In order to have a well-defined system one has to specify the switching-mechanism,
e.g. the dynamics of the process (7 (¢)). Suppose that the switching intensity of r(¢) is
given as follows

Plr¢+A)=jlr®) =i,x(s),r(s),s <t} =¢g;jA+o(A)ifi # j and (5.2)
Plr(t + A) =i |rt) =i,x(s),r(s),s <t} =1+ qi;iA+o0o(A) ‘
where ¢;; = — Z#i gij. Here, we assume that the the matrix Q = (gij)Nxn 1S
irreducible. It is well-known that a process (X(¢), r(¢)) satisfying (5.1) and (5.2) is a
strong Markov process Davis (1984) while (r(¢)) is a continuous-time Markov chain
that has a unique invariant probability measure v on N.

We define for u € A the uth environment, &,. This is the deterministic setting
where we follow (5.1) with () = u forall r > 0, i.e.

dx!'(t) = x!'(t) —Oli(u)+Zbij(u)Rj(Xu(t)’u) dt. (5.3)
j=1

The dynamics of the switched system can be constructed as follows: We follow
the dynamics of &, and switch between environments &, and &£, at the rate g, . It is
interesting to note that in the limit case where the switching between the different states
is fast, the dynamics can be approximated (Cloez et al. 2017; Benaim and Strickler
2019) by the ‘mixed’ deterministic dynamics

dx; (1) =Xi(t) Y v [ —ei @) + > bij@)R;X(@), u) | dt. (5.4)
ueN j=1
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If the number of species is strictly greater than the number of resources, n > m,
forany u € {1, ..., N} the system

n

Zci(u)bij(u)zo, i=1,....m (5.5)

i=1

admits a nontrivial solution (cq(u), ..., c,(#)). We can prove the following PDMP
version of the competitive exclusion principle. A related result has been stated infor-
mally in the discrete-time work by Chesson and Huntly (1997).

Theorem 5.1 Assume the dynamics of n competing species is given by (5.1) and
(5.2), there are fewer resources than species m < n, and all resources eventually
get exhausted. In addition, suppose that

m
lim | —o;(u) +Zb,-j(u)Rj(x,u) <0,i=1,....,n,u=1,...,N.
Ix]|— 00 =

and there exists a non-zero vector (ci, ..., cy) that is simultaneously a solution of
the linear systems (5.5) for allu € {1, ..., N}. Then, with probability 1, at least one
species goes extinct except possibly for the critical case when

n

N
Zci Zai(k)vk =0,

i=1 k=1
where (Vi)reN IS the invariant probability measure of the Markov chain (r(t))..

This shows that competitive exclusion holds if there is some kind of ‘uniformity’ of
solutions of (5.5) in all the different environments. However, the next example shows
coexistence on fewer resources than species is possible for PDMP.

Suppose we have two species, two environments, one resource and the dependence
of the resource on the population densities is linear, i.e. (2.3) holds. In environment
Eu, u € {1, 2} the system is modelled by the ODE

2
dx!(t) = x" (1) (—a,» () + b; () [ﬁ(u) -y (r)a,-(u)D dt
i=1
and therefore the switched system is given by
- 2
dxi(t) = xi (1) (_Oli (r@) + bi(r(1)) [R(V(t)) - sz'(t)ai (r(t))D dt. (5.0)
i=1
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The competitive exclusion principle in stochastic environments

If we define w; (1) = —ai(u) + bi (W) R(u), Bij(w) = bi(u)a;(u) we get the well
known two-dimensional competitive Lotka—Volterra system

dx1(t) = x1 ()1 (r(1)) <1 - MMO) - Mm(ﬂ) dt
wu1(r(1)) wi(r(r)) 5.7)
_ P21 (r (1)) _ Bu@r@) '
dxz(t) = x2 () u2(r (1)) (1 T ar®) x1(t) a0 X2(t)> dt.

By the deterministic competitive exclusion principle from Theorem 2.1 we know
that in each environment &,, u € {1, 2} one species is dominant and drives the other
one extinct.

Theorem 5.2 Suppose two species compete according to (5.6). There exist environ-
ments &1, & for which the maximal resource is equal R(1) = R(2) such that

(1) in both environments &, &, species x| persists and species xj goes extinct, or
(2) in environment &) species x| persists and species xy goes extinct while in environ-
ment & the reverse happens and x| goes extinct while x persists,

and rates q12, q21 > 0 such that the process x(t) modelled by (5.6) converges to a
unique invariant measure supported on a compact subset K of the positive orthant
(0, 00)2. In particular, with probability 1 the two species coexist, and the competitive
exclusion principle does not hold.

Remark 5.1 Here, the results of Cushing (1980), and De Mottoni and Schiaffino (1981)
are related, even though deterministic. Li and Chesson (2016) investigate a version of
this model in which the environment can be deterministic or stochastic, with the sole
requirement of stationarity of the environment. Their work shows mechanistically and
biologically how coexistence occurs. They consider explicit resource dynamics, but
in the limit of fast resource dynamics, their model becomes a version of our model.

We emphasize that the maximal resource does not have to change with the
environment—in the above example the maximal resources in the two environments
&1 and & are equal. Two examples of systems satisfying Theorem 5.2 are given in
Figs. 3 and 4. For the environments given by the coefficients from Fig. 3 one notes that
species x persists and x; goes extinct in £; while the reverse happens in environment
&>. Even more surprisingly, for the environments given by the coefficients from Fig. 4
species x1 persists and x» goes extinct in both environments. By spending time in both
environments there is a rescue effect which forces both species to persist. We note that
Theorem 5.2 can be proved using results by Benaim and Lobry (2016).

6 Discussion

We have analyzed how environmental stochasticity influences the coexistence of n
species competing for m < n abiotic resources. The assumptions we make are the ones
that are common throughout the literature: the populations are unstructured, the species
compete through the resources which eventually get exhausted, there is no explicit time
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Phase portait of (x1 (t), xz(t))

(x, (0. %,(0)
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Fig. 3 Example showing the coexistence of the species x; and xp when one switches between two envi-
ronments. Species x| persists in £ and goes extinct in £ while the reverse happens for species xj.
The constants are aj(1) = a1(2) = 0.66,a2(1) = a2(2) = 1,R(1) = RQ2) = 2,a; = l,ap =
1,01(1) =b1(2) = 1,b2(1) = 1,b2(2) = 5,912 = 1, g21 = 5. The invasion rates of the two species are
Ax; ~0.137, Ax, = 0.1

dependence in the interactions and there is no environmental stochasticity. Another
common assumption is that the per-capita growth rates of the species depend linearly
on the resources. There are several papers which have looked at related problems. The
first of these Chesson (1994) develops a general theory of coexistence in a variable
environment. Chesson (2009) gives a simpler presentation of the coexistence theory.
Klausmeier (2010) studies coexistence with the environment jumping between discrete
states, which is an issue taken up in the current manuscript. Li and Chesson (2016)
is a detailed discussion of Hutchinson’s paradox of the plankton. Finally, Chesson
(2018) is relevant as an overall review. We note that in most of the stochastic results
one of the main assumptions is that the random temporal fluctuations are small. In our
analysis, especially in the setting from Sect. 5, this is not true anymore—the random
fluctuations can, and will be, large. The small effects approximations in earlier papers
have provided explicit formulae for species coexistence in a number of useful cases
(Chesson 1994). In our work, explicit coexistence criteria are not as readily available
due to the more complicated underlying mathematical structure.

Following Chesson (2000) we note that the response of a species to random envi-
ronmental fluctuations is part of the niche of the species. The coexistence ideas in
the current paper also involve niche differences. We are able to show that in certain
situations coexistence on fewer resources than species is possible as a result of the
species interacting with the random environment.
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Phase portait of (x1 (t), xz(t))

(x, (0. %,(0)

Fig. 4 Example showing the coexistence of the species x; and x when one switches between two
environments in both of which species x; dominates and drives species x extinct. The constants are
ar(1) = 3,01(2) = 02, a2(1) = 3.5,00(2) = 0.8, R(1) = RQ2) = 4,a1 = l,ap = 0.2,b1(1) =
1,01(2) = 2,b2(1) = 1,b2(2) = 4,q12 = 1.4,q21 = 5. The invasion rates of the two species are
Ay, ~0.00531, Ay, ~ 0.00519

In the setting of stochastic differential equations, if we assume that the per-capita
growth rates of the species depend linearly on the resources and the white noise term is
linear, we prove the stochastic analogue of the competitive exclusion principle holds:
for any initial starting densities, at least one species will go extinct with probability 1.
The random temporal environmental variation can change which species persist and
which go extinct as well as drive more species towards extinction. This is in line with
Hening and Nguyen (2018, b) where we show that white noise of the form x; (t)d E; (¢)
makes the coexistence of species in a Lotka—Volterra food chain less likely. In a sense,
this type of white noise is, on average, detrimental to the ecosystem if the interaction
between the species is linear enough.

However, if one drops the assumption that the per-capita growth rates of the species
depend linearly on the resources, then coexistence on fewer resources than species is
possible. We exhibit an example of two species competing for one resource where the
species coexist because of the linear white noise. More specifically, we look at the
interaction modelled by

dx1(t) = x1(t)(—a1 + f(R — arx1(t) — axx2(t))) dt + o1 x1d By ()
dxy(t) = x2(t)(—az + (R — arx| (t) — axx»(1))) dt.

The combination of random temporal environmental variation and non-linear depen-
dence on the resources make it possible for one species to get an increased expected
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value of the resource. This will in turn make it possible for the two species to coexist.
To glean more information, we look at the invasion rates of the two species, namely

2
_ —1 0]
Ay, =¢e0+ f <a1+7)—0{2,

and
2

g
AX1 = —0] — 7 + f(a2)'

The constant g is defined in the Appendix via equation (C.4) and involves the invariant
probability distribution p of species x;. We note that the invasion rates are nonlinear
functions of the death rates of the species and the variance of the random temporal
fluctuations. This shows that the variance of the noise increases the invasion rate of x»
and decreases the invasion rate of x, creating a type of relative nonlinearity (Ches-
son 1994; Yuan and Chesson 2015). This well known mechanism, in turn, promotes
coexistence. The conditions for coexistence in this setting are given by

— O’2
f(R) > a +71

i T\ & e of
awelf 051+2 S RALS Ol]—l-2 + &9 .

The first species needs to be efficient enough at using the resource, while the death rate
of the second species cannot be too low, as that would make the invasion of species 1
negative, nor can it be too high, as that would make its own invasion rate negative.

If instead, we drop the condition that the random temporal environmental variation
term is linear, we construct an example of two species

and

dx1(t) = x1(t) (—a1 + b1 R(x(1))) dt + x1()y/B1x1(t) d B (1)
dxa(t) = x2(1) (—a2 + baR(x(1))) dt + x2(1)+/ Pox2(1) d B2 (1)
where the random temporal environmental variation looks like x; (1)3/2d E; (t) and the

per-capita growth rates of the species depend linearly on the resources in which the
two species coexist. The invasion rates in this setting are

Ay, = (2R —an) — b bR—e g
= —w) —baj—— >
xz 2 2 2 A
and
o — — bR — an
Ay = —a1 + b1 (R — axx)) pua(dx) = (bR — 1) — byjap—— > 0.
H /<; ( ) braz + B2
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Here there are two mechanisms that promote coexistence: relative nonlinearity
(the invasion rates are nonlinear functions of the competition parameters) and the
storage effect (density dependence of the covariance between the environment and
competition).

The above two examples show that in order to have competitive exclusion it is key
to assume both that the growth rates depend linearly on the resources and that the
white noise term is linear. If either one of these assumptions is violated we are able to
give examples of two species that compete for one resource and coexist, therefore vio-
lating the competitive exclusion principle. Nonlinear terms facilitate the coexistence
of species. Since there is no reason one should assume the interactions or the random
temporal environmental variation terms in nature are linear, this can possibly explain
coexistence in some empirical settings.

The second type of random temporal environmental variation we analyze is coming
from switching the environment between a finite number of states at random times,
and following a system of ODE while being in a fixed environment. This is related to
the concept of seasonal forcing, i.e. the aspect of nonequilibrium dynamics that looks
at the temporal variation of the parameters of a model during the year. This has been
studied extensively (Hsu 1980; Rinaldi et al. 1993; King and Schaffer 1999; Litchman
and Klausmeier 2001) and was shown to have significant impacts on competitive,
predator—prey, epidemic and other systems. However, much of the work in this area
has been done using simulation or approximation techniques and did not involve
any random temporal variation. We present some theoretical findings regarding the
coexistence of competitors, in the more natural setting when the forcing is random.
We prove that if the different environments are uniform, in the sense that there exists
a solution (cy, ..., c,) that solves the system

n
Y cibijw) =0, j=1,....m, (6.1)

i=1

simultaneously in an all environments then the competitive exclusion principle holds.
If this condition does not hold, we construct an example, based on the work by Benaim
and Lobry (2016), with two species x1, x competing for one resource, and two envi-
ronments &1 and & such that in the switched system the two species coexist. We note
that in this setting we do have that the growth rates of the species depend linearly on
the resource. This example is interesting as it relates to Hutchinson’s explanation of
why environmental fluctuations can favor different species at different times and thus
facilitate coexistence (Hutchinson 1961; Li and Chesson 2016). We are able to find
environments & and & such that without the switching species x| persists and species
X7 goes extinct in both environments. However, once we switch randomly between the
environments we get coexistence (see Fig. 4). This implies the surprising result that
species can coexist even if one species is unfavored at all times, in all environments.
We conjecture that in general if one has k environments and m resources, the coexis-
tence of n < mk species will be possible if the environments are different, i.e. there is
no solution of (6.1) that is independent of the environments. If the environments are
different enough, each environment creates m niches for the species. However, if the
environments are too similar, i.e. (6.1) holds then coexistence is not possible.
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Our analysis shows that different types of random temporal environmental variation
interact differently with competitive exclusion according to whether the growth rates
depend linearly on the resources or not. As long as the random temporal environmental
variation is ‘smooth’ and ‘linear’ and changes the dynamics in a continuous way
and the growth rates are linear in the resources, the competitive exclusion principle
will hold. One needs nonlinear continuous random temporal environmental variation,
‘discontinuous’ random temporal environmental variation that abruptly changes the
dynamics of the system, or a nonlinearity in the dependence of the per-capita growth
rates on the resources in order to facilitate coexistence.
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Appendix A: Proof of Theorem 4.1

If the number of species is strictly greater than the number of resources, n > m, the
system

n
> eibij =0, j=1,....m (A.1)
i=1
admits a nontrivial solution (cy, ..., ¢,).
Theorem A.1 Assume that lim x| 00 Rj(X) = —00, j = 1, ..., m. Suppose further

that n species interact according to (4.3), the number of species is greater than the
number of resources n > m and the resources depend on the species densities accord-
ing to (2.2) so that they eventually get exhausted. Suppose further that g;(x) = 1
and

R;i(x
0<rm§1iminfM§rM<oo,
Ixl—oc0 Ry (X)|
for j = 1,...,m. Let (c1,...,cy) be a non-trivial solution to (A.1) and assume

that Y}, ¢; (oci + %) # 0. Then, for any starting densities x(0) € (0, 00)" with
probability 1

Inmin{x; (), ..., x,(®)} -0

lim sup
t—0 t

Proof of Theorem 4.1 Suppose g;(x) = 1,i = 1,...,n and Zj bij > by > 0 for

any i and some b,, > 0. Note that if ) j bjj = 0 then we can remove R; from the
equation. Assume that
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i (x
0<r, <lim |j()|_rM<oo.
IIXII—>Oo |R1(x)]
Then, since lim x| o0 Rj(X) = —00, we have when |x| large that:

E =X + X; E bijR;j(x) | < — E xia; + x; E bij|R;j(X)]
i I i I
<- E xXioi + Xirp E bij| R (x)]
i J
<

—Fbm (Zx,») IR (%))

rmbm

R in Z|Rj(x)|
i J

which together with the linearity of the diffusion part implies that Assumption 1.1
from the work by HN16 holds with ¢ = (1, ..., 1). As a result, for any starting point
x(0) € (0,00)" the SDE (4.3) has a unique positive solution and by Hening and
Nguyen (2018a) (equation (5.22)) with probability 1

I In x|
imsup —— < 0. (A.2)

Ixll—o0 !

By possibly replacing all ¢; by —c; we can assume that Y 1, ¢; (o + %) > 0. Using
this in conjunction with (4.3), (A.1) and It6’s Lemma we see that

Yo 1c,lnx,(t) _ch(l Uzz ch/ E;(s)ds

Y GEi()

Letting + — oo and using that lim;_, ;

= 0 with probability 1, we
obtain that with probability 1

hmw _ch<al ﬁ)<o_

—>00

In view of (A.2) this implies that with probability 1

. In (min{x{(?), ..., x,(2)})
lim sup

t—>00 t

< 0.

O
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Appendix B: Proof of Theorem 4.2

Theorem B.14 Assume two species interact according to
dx; (1) = xi(t) (=i + b RX(®)) di + xi () Bixi () dBi (1), i = 1,2,
the resource R depends linearly on the species densities
R(X) = R —ayxi (1) — azxa (1)

and biR > «;,i = 1, 2. Then there exist B1, B2 > 0 such that the two species coexist.

Proof Consider

dxi(t) = xi (1) (—a; + biR(x(1))) dt + x;(t)y/ Bixi (1) dBi (1), i = 1,2.

If the species x; is absent species x1 has the one-dimensional dynamics
dx(t) = x(t) (—a1 + b1(R — a1x(1))) dt + x(1)y/ B1x(1) d By (1).

Since b R > «], we can use Hening and Nguyen (2018a) to show that the process x ()
has a unique invariant measure on (0, 00), say 1. Moreover, (Hening and Nguyen
2018a, Lemma 2.1 ) shows that

fo (—a1 +b1(R = arx) — Bix) 1 (dx) = 0

or

o blﬁ—al
xpy(dx) = ———.
0 biay + B

The invasion rate of x, with respect to x; can be computed by (4.2) as

bR — a;

o0
Ay, = —ar + by(R — a1x)) ui(dx) = (2R — az) — bra) ————.
x2 /0 ( 2 2 1 )Ml 2 2 2 11?1611_}_131

Similarly, one can compute the invasion rate of x; with respect to x as

bR — a»

A Zbﬁ—(x —ba—.
x = (b 1) — by 2b2a2+/32

Since ;R — «; > 0, one can easily see that Ay, > 0, and Ay, > 0if f; >

b2a1(b1F —ap) blaz(bzi —a)
——————— —bjaj.and B > ————
bR —ap biR — oy
are positive we get by Hening and Nguyen (2018a) that the species coexist. O

— bay. If both invasion rates
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Appendix C: Proof of Theorem 4.3

We construct an SDE example of two species competing for one abiotic resource
and coexisting. We remark that this happens solely because of the random temporal
environmental variation term.

Theorem C.1 Suppose the dynamics of the two species is given by

dx(t) = x1(t)(—ay + f(R — a1x1(t) — axx2(t))) dt + o1x1d By ()

_ (C.D
dxz(t) = x2(t)(—o2 + (R — a1x1(t) — axx2(t))) dt

where f is a continuously differentiable Lipschitz function satisfyinglim,_, _, f(x) =
NG N ) d* f(x)

I > 0, 2 <Oforallx € Rand )

val of (—oo, %) Let ay, a», o1, a1, 01, R be any fixed positive constants satisfying

< 0 for x in some subinter-

2
_ o
f(R) > a1 + —L Then there exists an interval (co, c1) C (0, 00) such that the two

species coexist for all oy € (cp, c1).

Proof The dynamics of species x; in the absence of species x; is given by the one-
dimensional SDE

dx(t) = x(t)(—a1 + f(R — aix(®))) dt + o1xd B (1).

2
_ — o

Since limy_~ f(R — ajx) = —oo, and f(R) > o + —L | this diffusion has a
unique invariant probability measure @ on (0, 00) whose density is strictly positive
on (0, 0o) (see Borodin and Salminen (2016) or Mao (1997)). Moreover, by noting
that lim;_, o nx® — 0 with probability 1 (using Lemma 5.1 of Hening and Nguyen
(2018a)) and using It6’s formula one sees that
of

/ f(R —a1x)pu(dx) = oy + )
0

(C2)

d* f(x)

dx?

Since f is a concave function and > 0 for all x in some subinterval of

R s s .
(—oo, E) we must have by Jensen’s inequality that

/0 f(R—arx)p(dx) < f (/0 (R - am)u(dX)) : (C3)

The fact that the function f is strictly increasing together with (C.2) and (C.3) forces
0o 02
6 = / ® - apopn — 1~ (e + %) >0, €4
0
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where f~! is the inverse of f—it exists because f is strictly increasing. As a result,
the invasion rate of species xp with respect to xp, of the invariant probability measure
W, can be computed using (4.2) as

oo 02
Ay, =—a2+f (R —arx)pudx) =eo+ [~ | +71 — .
0

This implies that Ay, > 0 if and only if

2
~1 91
ar <eo+ f <Ol1 + 3 ) . (C.5)

The dynamics of species x; in the absence of species x1 is

dy(t) = y(t)(R — ay — apy(t))dt.

R — o

The positive solutions of this equation converge to the point y* =
if

if and only
a

R > as. (C.6)

The invasion rate of x; with respect to x; will be

0_2
1
Axl = —a] — ) + fa2).

Note that since the function f is increasing we get A, > 0 if and only if

2
~1 %1
oy > f <Ol1 + 7) . (C.7)
O'2 — — 0'2
Note that f~! | a; + 71 < R since by assumption f(R) > o] + 71 As a result,

making use of the inequalities (C.5), (C.6) and (C.7) we get that Ay, > 0, Ay, > 0if
any only if

el f a1+2 SRALS Ol1+2 + &0 .

This implies by Theorem 3.1 or by Benaim (2018) [Theorem 4.4 and Definition 4.3]
that the two species coexist. O
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Appendix D: Proof of Theorem 5.1

Theorem D.2 Assume that

m
lim | =)+ Y bij)Rjx,u) | <0i=1....nu=1..N (DI
Ix[—o00 i

Suppose further that there exists a vector (cy, . . ., cp) that is simultaneously a solution
to the systems (5.5) for allu € {1, ..., N}. Then, with probability 1,

) Inmin{x;(2), ..., x, ()}
lim sup p <0
t—0

except possibly for the critical case when

n N
D) kv =0, (D.2)
i=1 k=1

where (Vi)reN IS the invariant probability measure of the Markov chain (r(t)).

Proof Under the condition (D.1), there exists an M > 0 such that the set Ky, :=
{x € R" : |x|]| < M} is a global attractor of (5.4). As a result, the solution to (5.4)
eventually enters and never leaves the compact set K. In particular, this shows that
the process x(#) is bounded. Next, note that we can assume that

n

N
> e Y aikm > 0. (D.3)

i=1 k=1
Otherwise, if Y/, ¢; 21](\121 a;(k)m, < 0, we can replace ¢; by —¢;, i = 1,...,n

and then get (D.3). Using (5.1) and the fact that that ¢;’s solve (5.5) simultaneously
we get

t t

i ealin® _ L[5 oo
0 =1

Letting + — oo and using the ergodicity of the Markov chain (r(¢)) we obtain that
with probability 1

" cilnx(t 1 [
lim sup M = —lim inf—/ Zciai(r(s))ds
0 “

t—00 t i—>oo f 1
=

n N
= — Zci Zai(k)”k < Oa.s.
k=1

i=1 =
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Since x(#) is bounded, this implies that with probability 1

0.

) Inmin{x(z), ..., x,(¢)}
lim sup <

t—00 t

Appendix E: Proof of Theorem 5.2

According to Benaim and Lobry (2016), Malrieu and Zitt (2017), and Malrieu and
Phu (2016) it is enough to find an example for which the invasion rates A,,, Ay, are
positive. We will follow Benaim and Lobry (2016) in order to compute the invasion

rates of the two species. Set for u = 1,2 p, = —a(u) + by W)R, v, = —az(u) +

by(W)R T, = 1(u)a1(u)’bu _ 1(u)a2(u)7gu _ 2(u)a1(u)7d(u) _ z(u)az(u),
1 I . b Vu

Pu=—qu = =,Y1 = ﬂ,yz N p1 # p2, suppose without loss of
a, P v

u u
generality that p; < p». Define the functions

Ix — p11"1 =t py — x|t
x1+7/1+7/2

O(x) =
and

ar —di v _ _ Vi _ —
P(x)= —— [—(1 —ox)(I—ax) — — ({1 —cx)(1 — azx)} .
laz —arl L2 M1

By Benaim and Lobry (2016) we have

——— (@il =c1p) +qi2v2(1 —c2p)) ifpr=pr=p
q12 + 921

fzfnz 0(x)P(x)dx
,ff 0(x)dx

Ay, = (E.1)

P1D2 if p1 < p2

The expression for Ay, can be obtained by swapping u; and v;, (a;, ¢;) with (d;, b)),
and p; with g;.

For the example from Figs. 3 and 4 we have used the integral equation from (E.1)
together with the numerical integration package of Mathematica in order to find A, >
Oand Ay, > 0. This implies by Theorem 3.1, Benaim and Lobry (2016) or by Benaim
(2018) [Theorem 4.4 and Definition 4.3] that the two species coexist.
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