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ON A PREDATOR-PREY SYSTEM WITH RANDOM SWITCHING
THAT NEVER CONVERGES TO ITS EQUILIBRIUM\ast 

ALEXANDRU HENING\dagger AND EDOUARD STRICKLER\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study the dynamics of a predator-prey system in a random environment. The
dynamics evolves according to a deterministic Lotka--Volterra system for an exponential random time
after which it switches to a different deterministic Lotka--Volterra system. This switching procedure
is then repeated. The resulting process is a piecewise deterministic Markov process (PDMP). In
the case when the equilibrium points of the two deterministic Lotka--Volterra systems coincide we
show that almost surely the trajectory does not converge to the common deterministic equilibrium.
Instead, with probability one, the densities of the prey and the predator oscillate between 0 and
\infty . This proves a conjecture of Takeuchi, Du, Hieu, and Sato [J. Math. Anal. Appl., 323 (2006),
pp. 938--957]. The proof of the conjecture is a corollary of a result we prove about linear switched

systems. Assume (Yt, It) is a PDMP that evolves according to dYt
dt

= AItYt, where A0, A1 are 2\times 2
matrices and It is a Markov chain on \{ 0, 1\} with transition rates k0, k1 > 0. If the matrices A0 and

A1 are not proportional and are of the form Ai := (\alpha i \beta i
\gamma i  - \alpha i

) with \alpha 2
i + \beta i\gamma i < 0, then there exists

\lambda > 0 such that limt\rightarrow \infty 
log \| Yt\| 

t
= \lambda .

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . piecewise deterministic Markov processes, random switching, population dynamics,
Lyapunov exponents, Lotka--Volterra, telegraph noise

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 60J99, 34F05, 37H15, 37A50, 92D25

\bfD \bfO \bfI . 10.1137/18M1196042

1. Introduction and main results. One of the key issues in ecology is de-
termining when species will persist and when they will go extinct. The randomness
of the environment makes the dynamics of populations inherently stochastic, and
therefore we need to take into account the combined effects of biotic interactions
and environmental fluctuations. One way of doing this is by modeling the densities
of various species as Markov processes and looking at their long-term behavior (see
[13, 18, 17, 30, 37, 36, 10, 8, 4, 12, 25, 22]).

In order to allow for environmental fluctuations and their effect on the persistence
or extinction of species one approach is to study stochastic differential equations
([18, 36, 25, 22, 24, 23]). The other possible approach is to look at stochastic equations
driven by a Markov chain. These systems are sometimes called piecewise deterministic
Markov processes (PDMPs) or systems with telegraph noise.

PDMPs have been used recently to prove some very interesting and counterintu-
itive facts about biological populations. In [7] the authors look at a two-dimensional
competitive Lotka--Volterra system in a fluctuating environment. They show that
the random switching between two environments that are both favorable to the same
species can lead to the extinction of this favored species or to the coexistence of the
two competing species (also see [33]). PDMPs are also used in [15] where the author
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3626 ALEXANDRU HENING AND EDOUARD STRICKLER

studies prey-predator communities where the predator population evolves much faster
than the prey.

For a predator-prey system the classical deterministic example is the Lotka--
Volterra model (see [32] and [39])

dx(t)

dt
= x(t)(a - by(t)),

dy(t)

dt
= y(t)( - c+ dx(t)),

(1.1)

where x(t), y(t) are the densities of the prey and the predator at time t \geq 0 and a, b, c
and d are positive constants. If one assumes that x(0) = x0 > 0, y(0) = y0 > 0,
so that both predator and prey are present, then the solutions of system (1.1) are
periodic (see [20, 27]) and given in phase space by the curves described by the first
integral,

r(x, y) = dx - c - c ln(1 + (dx - c)/c) + by  - a - a ln(1 + (by  - a)/a) = constant = r.
(1.2)

One should note that both the predator and the prey from (1.1) do not experience
intraspecific competition. In particular, if the predator is not present (i.e., y0 =
0), then the prey density blows up to infinity. In [19, 34] the authors are able to
analyze the n-dimensional generalization of (1.1), i.e., the setting when one has one
prey and n  - 1 predators and each species interacts only with the adjacent trophic
levels. Stochastic predator-prey models have been studied in the stochastic differential
equation setting by [35, 24, 23]. However, we note that in all these studies one
needed to assume that there exists intraspecific competition among the prey and the
predators. This simplifies the analysis significantly because the predator and the prey
densities get pushed towards the origin when they become too large.

In [2] the authors show that if the coefficient a (growth rate of the prey) is ran-
domly perturbed by white noise, then the resulting stochastic system cannot have a
stationary distribution and that as the time goes to infinity, with probability 1, explo-
sion does not occur. In [28] the authors look at scaling limits of Lotka--Volterra systems
perturbed by white noise---they prove that a suitably rescaled version of r(x(t), y(t)),
where r(x, y) is the first integral from (1.2), converges to a one-dimensional stochastic
differential equation. They then use this SDE to gain information about both the
deterministic and the stochastic Lotka--Volterra systems.

We consider the random switching between two Lotka--Volterra prey-predator
systems of the form (1.1). More precisely, for i \in E := \{ 0, 1\} , let F i : R2

+ \rightarrow R2
+

denote the vector field

F i(x, y) =

\biggl( 
x(ai  - biy)
y( - ci + dix)

\biggr) 
(1.3)

with ai, bi, ci, di > 0. Let (It)t\geq 0 be a continuous-time Markov chain defined on
some probability space (\Omega ,\scrF ,P) and taking values in E := \{ 0, 1\} . Suppose It has
transition rates k0, k1 > 0. Throughout the paper we will let R2

++ := \{ (x1, x2) \in 
R2 | x1 > 0, x2 > 0\} and R2

+ := \{ (x1, x2) \in R2 | x1 \geq 0, x2 \geq 0\} . We denote by
(Xt)t\geq 0 = (xt, yt)t\geq 0 the solution of

dxt
dt

= xt(aIt  - bItyt),

dyt
dt

= yt( - cIt + dItxt)

(1.4)D
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PREDATOR-PREY WITH RANDOM SWITCHING 3627

for some initial condition X0 = (x0, y0) \in R2
++. The process (X, I) = (Xt, It)t\geq 0 is a

PDMP as introduced in [16] and belongs to the more specific class of PDMPs recently
studied in [3] and [6].

One can construct the process (X, I) as follows: suppose we start at (X0, I0) =
((x0, y0), i). Then, the system evolves according to

dxi(t)

dt
= xi(t)(ai  - biyi(t)),

dyi(t)

dt
= yi(t)( - ci + dixi(t)),

xi(0) = x0,

yi(0) = y0,

for an exponential random time Ti with rate ki. After this time the Markov chain I
jumps from state i to state j \in \{ 0, 1\} \setminus \{ i\} and Xt evolves according to

dxj(t)

dt
= xj(t)(aj  - bjyj(t)),

dyj(t)

dt
= yj(t)( - cj + djxj(t)),

xj(Ti) = xi(Ti),

yj(Ti) = yi(Ti),

for an exponential random time Tj with rate kj . This procedure then gets repeated.
Intuitively our process follows an ODE for an exponential random time after which
it switches to a different ODE, follows that one for an exponential random time, and
so on.

The generator L of (X, I) acts on functions g : R2
+ \times E \rightarrow R that are smooth in

the first variable as

Lg(x, i) = \langle F i(x),\nabla gi(x)\rangle + ki (g(x, 1 - i) - g(x, i)) ,

where \langle \cdot , \cdot \rangle is the Euclidean inner product on R2. As usual, for x \in R2 and i \in E, we
denote by P\bfx ,i the law of the process (X, I) when (X0, I0) = (x, i) almost surely and
by E\bfx ,i the associated expectation.

The vector field F i from (1.3) has a unique positive equilibrium (pi, qi) = (ci/di,
ai/bi). In [38] the authors look at the following two cases:

Case I. p0 = p1 =: p and q0 = q1 =: q, i.e., common zero for F 0 and F 1;
Case II. (p0, q0) \not = (p1, q1), i.e., different zeroes for F

0 and F 1.
We assume throughout this paper that p0 = p1 =: p and q0 = q1 =: q. The vector

fields F 0 and F 1 therefore have a common zero---this will allow us to use the recent
results from [9]. We also assume that F 0 and F 1 are noncollinear to avoid trivial
switching.

In [38, Theorem 4.5] it is shown that only two long-term behaviors are possible
when the vector fields have a common zero: either Xt converges almost surely to the
common equilibrium (p, q), or each coordinate oscillates between 0 and +\infty .

Theorem 1.1 (Takeuchi et al., 2006 [38]). For any (x0, y0) \in R2
++, with proba-

bility 1, either

(1.5) lim
t\rightarrow \infty 

Xt = (p, q)
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3628 ALEXANDRU HENING AND EDOUARD STRICKLER

or

(1.6) lim sup xt = lim sup yt = +\infty , lim inf xt = lim inf yt = 0.

It was conjectured from simulations (see [38, Remark 5.1]) that only case (1.6) happens
in the above theorem. Using Theorem 2.2 below and results from [9], we are able to
prove this conjecture.

Theorem 1.2. There exist \varepsilon > 0, \eta > 1, \theta > 0, and C > 0 such that for all
x := (x0, y0) \in R2

++ \setminus \{ (p, q)\} and i \in E,

E\bfx ,i(\eta 
\tau \varepsilon 

) \leq C
\bigl( 
1 + \| x - (p, q)\|  - \theta 

\bigr) 
,

where

\tau \varepsilon := inf\{ t \geq 0 : \| Xt  - (p, q)\| \geq \varepsilon \} .(1.7)

In particular, for any (x0, y0) \in R2
++ \setminus \{ (p, q)\} we have with probability 1 that

lim sup
t\rightarrow \infty 

xt = lim sup
t\rightarrow \infty 

yt = +\infty , lim inf
t\rightarrow \infty 

xt = lim inf
t\rightarrow \infty 

yt = 0.

Our result provides a deeper understanding of Lotka--Volterra systems in random
environments, continuing the work started in [28] and [2].

1.1. Linear switched systems. Let \~Ai denote the Jacobian matrix of the vec-
tor field F i at (p, q), where (p, q) is the common positive equilibrium of the vector
fields F 0 and F 1. Then

\~Ai =

\biggl( 
0  - bip
diq 0

\biggr) 
=

\biggl( 
0 \beta i
\gamma i 0

\biggr) 
,

where \beta i =  - bip and \gamma i = diq.
The matrices \~Ai represent the linearizations of the nonlinear Lotka--Volterra sys-

tems near their common equilibrium point (p, q). In order to study the dynamics of
the nonlinear switched system (1.4) we will first study the linearization with switching
and then use results of [9]. Since we can prove slightly more general results for the
linear systems we will work in the following setting.

Let Ai denote the matrix

Ai :=

\biggl( 
\alpha i \beta i
\gamma i  - \alpha i

\biggr) 
(1.8)

for i = 0, 1, where \alpha i, \beta i, \gamma i are real numbers satisfying

\alpha 2
i + \beta i\gamma i < 0.(1.9)

In this case, both matrices A0, A1 have purely imaginary eigenvalues.
We consider a random switching between the two dynamics given by A0 and A1.

Let (It)t\geq 0 be a continuous-time Markov chain on E = \{ 0, 1\} with transition rates
k0, k1 > 0. We denote by (Yt)t\geq 0 the solution of

dYt
dt

= AItYt,

Y0 = y0 \in R2 \setminus \{ (0, 0)\} .
(1.10)

The process (Yt, It)t\geq 0 is a PDMP living on R2 \setminus \{ (0, 0)\} \times E.
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PREDATOR-PREY WITH RANDOM SWITCHING 3629

We will show that, independent of the starting conditions, \| Yt\| converges expo-
nentially fast to infinity with probability one. More precisely, we prove the following.

Theorem 1.3. Assume A0 and A1 are nonproportional matrices of the form (1.8)
with coefficients satisfying (1.9). Then, there exists \lambda > 0 such that, for all y0 \not = 0,
almost surely

(1.11) lim
t\rightarrow \infty 

1

t
log \| Yt\| = \lambda .

1.2. Generalization to density-dependent switching rates. In fact, thanks
to Theorem 2.2, the first part of Theorem 1.2 can be significantly generalized.

For i \in E, let F i be a vector field of class C2 on R2 such that F i(0) = 0.
Also assume that for i \in E, DF i(0), the Jacobian matrix of F at 0, has two purely
imaginary eigenvalues. In this case, the equilibrium 0 is sometimes called a center.
We now consider a Markov process (Ut, Jt)t\geq 0, where Ut is a solution of

dUt

dt
= F Jt(Ut)

and It is a jump process on E whose rates depend on U

P(Jt+s = 1 - i| Jt = i,\scrF t) = ki,1 - i(Ut)s+ o(s),

where Ft = \sigma ((Us, Js) : s \leq t) and for all x, (kij(x))i,j is an irreducible matrix that
is continuous in x. The process (U, J) is still a PDMP, with infinitesimal generator \scrL 
acting on functions g : R2

+ \times E \rightarrow R that are smooth in the first variable as

\scrL g(x, i) = \langle F i(x),\nabla gi(x)\rangle + ki,1 - i(x) (g(x, 1 - i) - g(x, i)) .

We can prove the following (see Remark 3.2) in this more general setting.

Theorem 1.4. Assume DF 0(0) and DF 1(0) are nonproportional matrices such
that, for i \in \{ 0, 1\} ,

Tr(DF i(0)) = 0 and det(DF i(0)) > 0.

Then there exist \varepsilon > 0, \eta > 1, \theta > 0, and C > 0 such that for all x := (x0, y0) \in 
R2 \setminus \{ (0, 0)\} and i \in E,

E\bfx ,i(\eta 
\tau \varepsilon 
U ) \leq C

\bigl( 
1 + \| x\|  - \theta 

\bigr) 
,

where \tau \varepsilon U = inf\{ t \geq 0 : \| Ut\| \geq \varepsilon \} . In particular, for any (x0, y0) \in R2 \setminus \{ (0, 0)\} , with
probability one, Ut cannot converge to (0, 0).

The paper is structured as follows. In section 2 we prove results about the linear
switched systems introduced in section 1.1. In particular, we prove Theorem 1.3. We
then apply these results in section 3 where we prove Theorems 1.2 and 1.4. Finally,
in section 4 we present some conjectures and directions for future work.

2. A result on linear switched systems. In this section we work with the
linear systems introduced in section 1.1 by (1.8), (1.9), and (1.10). In order to do
this we will use a polar decomposition. The use of polar decompositions to study
Lyapunov exponents goes back to [21] in the case of stochastic differential equations.
They have been used recently in the study of linear PDMPs (see [5, 31]) and more
general PDMPs (see [9]).
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3630 ALEXANDRU HENING AND EDOUARD STRICKLER

Throughout the paper, we will denote by S1 \subset R2 the circle with center at 0 and
radius 1. Whenever y0 \not = 0 and Yt \not = 0, setting \Theta t = Yt/\| Yt\| and \rho t = \| Yt\| , one can
check using (1.10) that (\rho t,\Theta t)t\geq 0 is the solution to

d\Theta t

dt
= AIt\Theta t  - \langle AIt\Theta t,\Theta t\rangle \Theta t,

d\rho t
dt

= \rho t\langle AIt\Theta t,\Theta t\rangle ,

\Theta 0 = \theta 0 \in S1,

\rho 0 = r0 > 0

(2.1)

with \theta 0 = y0/\| y0\| and r0 = \| y0\| . In particular, ((\Theta t, It))t\geq 0 is a PDMP on S1 \times E
(see [9]), and one has for all t \geq 0,

1

t
log \| Yt\| =

1

t

\int t

0

\langle AIs\Theta s,\Theta s\rangle ds+
1

t
log \| y0\| .(2.2)

Moreover, we have the following result.

Lemma 2.1. Assume A0 and A1 are two matrices of the form (1.8) with coeffi-
cients satisfying (1.9). Then, the process (\Theta t, It) admits a unique invariant probability
measure \mu on S1 \times E. Furthermore,

\Lambda =

\int 
\langle Ai\theta , \theta \rangle \mu (d\theta di) \geq 0.

Proof. The uniqueness follows from [9, Proposition 2.11 and Example 2.12]. In-
deed, since we study a two-dimensional system, a sufficient condition is that at least
one matrix Ai has no real eigenvalue. This is the case for both A0 and A1. Since A0

and A1 have zero trace, [9, Corollary 2.7] implies that \Lambda \geq 0.

By the ergodic theorem, (2.2), and Lemma 2.1, one has for all y0 \not = 0 and all
i \in E

lim
t\rightarrow \infty 

1

t
log \| Yt\| = \Lambda .

Because of this, Theorem 1.3 is a consequence of the following theorem, which is the
main result of this section.

Theorem 2.2. Assume A0 and A1 are nonproportional matrices of the form (1.8)
with coefficients satisfying (1.9). Then, with the notation of Lemma 2.1,

\Lambda =

\int 
\langle Ai\theta , \theta \rangle \mu (d\theta di) > 0.

2.1. Lyapunov exponents and Bougerol's theorem. In order to prove The-
orem 2.2, we will use results from [11] on Lyapunov exponents. These numbers give
the exponential growth rate of a linear random dynamical system (see Arnold [1] for
the definition). In [9], the authors show that the process Y from (1.10) together with
the canonical shift on the space \Omega of c\`adl\`ag functions from R+ to E is a linear ergodic
random dynamical system satisfying the integrability conditions of Osedelets' multi-
plicative ergodic theorem (see [1, Theorem 3.4.1] or [14, Proposition 3.12]). According
to this theorem, there exist 1 \leq d \leq 2 numbers such that if d = 2, then

\lambda 1 > \lambda 2,

D
ow

nl
oa

de
d 

09
/0

7/
19

 to
 1

30
.2

35
.6

6.
10

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PREDATOR-PREY WITH RANDOM SWITCHING 3631

called the Lyapunov exponents, a Borel set \~\Omega \subset \Omega with P(\~\Omega ) = 1 and for each \omega \in \~\Omega 
distinct vector spaces

\{ 0\} = Vd+1(\omega ) \subset Vd(\omega ) \subset V1(\omega ) = R2

such that

(2.3) lim
t\rightarrow \infty 

1

t
log \| Yt\| = \lambda i

for all y0 \in Vi(\omega )\setminus Vi+1(\omega ). Now, since Tr(Ai) = 0 for i \in E, [9, Corollary 2.7] implies
that \sum 

i

\lambda i = 0.

In addition, [9, Proposition 2.5] yields

\Lambda = \lambda 1.

Therefore, proving that \Lambda > 0 is equivalent to showing that d = 2. In order to prove
that d = 2, we will use [11, Theorem 1.7] which we state below (see Theorem 2.6).

Let (Mt)t\geq 0 with Mt \in GL2(R), t \geq 0 be the solution of the matrix equation

dMt

dt
= AItMt,

M0 \in GL2(R).
(2.4)

Here GL2(R) stands for the set of invertible 2\times 2 matrices with real coefficients, and
the process (Mt, It) is a PDMP living on GL2(R)\times E.

The fact that Mt \in GL2(R) can easily be shown recursively as follows. If T1
denotes the first jump time of the process I, then for all t \leq T1, one hasMt = etAI0M0,
which is invertible as a product of invertible matrices. Then if T2 is the second jump
time, for all t \in (T1, T2], Mt = e(t - T2)A1 - I0MT1

, and so on. One can note that when
M0 = Id, the identity matrix, then for all y \in R2

+ the process Y from (1.10) can be
written as

Yt =Mty

if Y0 = y. Set \pi = (k1/(k0 + k1), k0/(k0 + k1)), and \scrE = E = \{ 0, 1\} . Then (M, I, \pi )
is a simple example of what Bougerol calls a multiplicative system (see Definition 2.3
and Lemma 2.8 below).

We next present the abstract framework of [11]. Let (\sigma t)t\geq 0 be a stationary
Markov process on some metric space \scrE , and (Bt)t\geq 0 a process with values in GL2(R).
We recall that the semigroup of a Markov process (B, \sigma ) is a family of measures defined
for t \geq 0 and (A, i) \in GL2(R)\times \scrE by

Pt ((A, i); \cdot ) = PA,i ((Bt, \sigma t) \in \cdot ) .

Equivalently, the semigroup can be seen as a family (Pt)t\geq 0 of operators which act on
bounded measurable functions f : GL2(R)\times \scrE \rightarrow R according to

Ptf((A, i)) = EA,i [f((Bt, \sigma t))] , A \in GL2(R), i \in \scrE .

We introduce the following definition, which is [11, Definition 1.1 and 1.2].

Definition 2.3. Let \pi be a probability measure on \scrE . We say that (B, \sigma , \pi ) is a
multiplicative system if the following properties hold:
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3632 ALEXANDRU HENING AND EDOUARD STRICKLER

(i) The process (B, \sigma ) is Markovian with semigroup (Pt)t\geq 0;
(ii) For any Borel subset A \subset \scrE (resp., B \subset GL2(R)), t \geq 0, C \in GL2(R), and

i \in \scrE , one has

Pt ((C, i);BC \times A) = Pt ((Id, i);B \times A) ,

where BC = \{ NC;N \in B\} ;
(iii) \pi is an ergodic measure for \sigma and sup0\leq t\leq 1 EId,\pi 

\bigl[ 
log+ \| Bt\| + log+ \| B - 1

t \| 
\bigr] 
<

\infty .

We let Q be the first order resolvent of the semigroup (Rt)t\geq 0 of the Markov
process \sigma . This is defined via

Q =

\int +\infty 

0

e - tRtdt.

Remark 2.4. The resolvent has the following properties related to the dynamics
of its associated Markov process:

\bullet A probability measure is invariant for the semigroup if and only if it is in-
variant for the resolvent.

\bullet A point y is accessible for the process from x (meaning that it can reach every
neighborhood of y with strictly positive probability) if and only if y is in the
support of the resolvent.

Following [11], we will say that the semigroup (Pt)t\geq 0 is Feller if for any bounded
continuous map f : GL2(R)\times \scrE \rightarrow R, and for all t \geq 0, the function Ptf is continuous.

Definition 2.5. We say that a multiplicative system (B, \sigma , \pi ) satisfies hypothesis
H if the following conditions hold:

(i) The space \scrE is a complete metric space.
(ii) The semigroup (Pt)t\geq 0 is Feller.
(iii) The support of \pi is \scrE . If h is a bounded measurable function which is a fixed

point for the first order resolvent of \sigma , i.e.,

Qh = h,

then h is continuous.

Denote by U the first order resolvent of (Pt)t\geq 0, that is,

U =

\int +\infty 

0

e - tPtdt.

For i \in \scrE let Di be the support of U((Id, i), \cdot ) and \scrS i = \{ A \in GL2(R) : (A, i) \in Di\} .
One has the following result (see [11, Theorem 1.7]).

Theorem 2.6 (Bougerol, 1988 [11]). Assume (B, \sigma , \pi ) is a multiplicative system
defined on the space \Omega of functions from R+ to GL2(R)\times \scrE and satisfying hypothesis
H. Assume furthermore the following:

(i) For some i \in \scrE , there exists a matrix in \scrS i with two eigenvalues with different
moduli.

(ii) There does not exist some finite union W of one-dimensional vector spaces
such that, for all matrices B in \scrS i, BW =W .
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PREDATOR-PREY WITH RANDOM SWITCHING 3633

Then there exist 2 numbers \lambda 1 > \lambda 2, a Borel set \~\Omega \subset \Omega with PId,\pi (\~\Omega ) = 1, and

for each \omega \in \~\Omega distinct vector spaces

\{ 0\} = V3(\omega ) \subset V2(\omega ) \subset V1(\omega ) = R2

such that

lim
t\rightarrow \infty 

1

t
log \| Bt(\omega )y0\| = \lambda i

for all y0 \in Vi(\omega ) \setminus Vi+1(\omega ).

Remark 2.7. Theorem 2.6 is a reformulation of [11, Theorem 1.7], which is given
for the numbers \gamma i that are the Lyapunov exponents for the external power of M (see
[11, Proposition 2.2] or [1, Theorem 3.3.3] for details). The numbers \gamma 1 and \gamma 2 are the
numbers \lambda i counted with multiplicity (see [1, Definition 3.3.8 and Theorem 3.4.1]).

We show that we can use Theorem 2.6 in our context. Let (Mt)t\geq 0 with Mt \in 
GL2(R), t \geq 0, be the process defined above, i.e., the solution of the matrix equation

dMt

dt
= AItMt,

M0 \in GL2(R).

Lemma 2.8. Set \pi = (k1/(k0 + k1), k0/(k0 + k1)) and \scrE = E = \{ 0, 1\} . Then
(M, I, \pi ) is a multiplicative system satisfying H.

Proof. First we show that (M, I, \pi ) is a multiplicative system. (M, I) is a PDMP
and thus a Markov process. In addition, if we denote by MN the process M when
M0 = N almost surely, one can easily check that MN = M IdN almost surely. As a
result we see that point (ii) of Definition 2.3 is satisfied. Straightforward computations
show that \pi is the unique invariant distribution of I and is therefore ergodic. Let K
be a constant such that \| Ai\| \leq K for i \in E. Then from

dMt

dt
= AItMt,

dM - 1
t

dt
=  - M - 1

t AIt

together with M0 =M - 1
0 = Id and Gronwall's lemma, one can show that for all t \geq 0

\| Mt\| , \| M - 1
t \| \leq eKt.

This proves point (iii) of Definition 2.3.
Now we show that (M, I, \pi ) satisfy hypothesis H. In our case, \scrE = E is a finite set;

thus points (i) and (iii) of Definition 2.5 are straightforward. To prove that (M, I) is
Feller, we use [6, Proposition 2.1] where the authors show that for a PDMP remaining
in a compact set, the semigroup maps every continuous function to a continuous
function. Their proof adapts verbatim to the case where the process does not remain
in a compact set with the additional assumption that the continuous function is
bounded and provided the jump rates are bounded---in our setting the jump rates are
constant. This concludes the proof.
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3634 ALEXANDRU HENING AND EDOUARD STRICKLER

2.2. Proof of Theorem 2.2. We start by showing that it suffices to prove
Theorem 2.2 for a specific class of matrices.

Lemma 2.9. Assume Theorem 2.2 holds when A0 is of the special form

A0 =

\biggl( 
0  - \omega 0

\omega 0 0

\biggr) 
.

Then Theorem 2.2 holds for any A0.

Proof. First we show that a linear change of coordinates does not change the
value of \Lambda . Let G \in GL2(R), and set, for all t \geq 0, Zt = GYt. Then (Zt, It) is a
PDMP with Z solution of

dZt

dt
= BItZt,

where Bi = GAiG
 - 1. Due to lim log \| Yt\| 

t = lim log \| Zt\| 
t , one can see that the growth

rates of Yt and Zt are equal.
Next, since the eigenvalues of A0 are \pm i\omega 0 for \omega 0 :=

\sqrt{} 
 - (\alpha 2

0 + \beta 0\gamma 0), a classical
result in linear algebra (see for example [26, Chapter 4, Theorem 3]) states that there
exists a matrix G \in GL2(R) such that

B0 = GA0G
 - 1 =

\biggl( 
0  - \omega 0

\omega 0 0

\biggr) 
.

Thus, replacing if necessary the matrices A0 and A1 by B0 and B1 = GA1G
 - 1, one

may always assume that A0 has the form (2.9).

Proof of Theorem 2.2. We recall that it is sufficient to prove that d = 2 and thus
to show that (i) and (ii) of Theorem 2.6 are satisfied.

We first show that (i) holds. For this, we need to display a matrix of \scrS 1 with
two eigenvalues with different moduli. We claim that for every t, s > 0, the matrix
esA0etA1 is in \scrS 1. Thus it is sufficient to find such a matrix with two eigenvalues
with different moduli. We start by showing that it is indeed possible to find a matrix
esA0etA1 for some s, t > 0 with two eigenvalues with different moduli, before proving
the claim.

According to Lemma 2.9, we assume that A0 is of the form

A0 =

\biggl( 
0  - \omega 0

\omega 0 0

\biggr) 
.

By standard computations, one can show that for all t \geq 0 and i \in E,

etAi = cos(\omega it)Id +
1

\omega i
sin(\omega it)Ai,

where \omega i :=
\sqrt{} 

 - (\alpha 2
i + \beta i\gamma i). In particular, since Tr(Ai) = 0, one has that for all

s, t \geq 0

\varphi (s, t) := Tr(esA0etA1) = 2 cos(\omega 0s) cos(\omega 1t) +
1

\omega 0\omega 1
sin(\omega 0s) sin(\omega 1t)Tr(A0A1).

On the other hand, since Tr(Ai) = 0, one has det(esA0etA1) = 1. Thus, denoting
by \mu 1, \mu 2 the eigenvalues of esA0etA1 one can see that \mu 1\mu 2 = 1 or equivalently
\mu 1 = 1/\mu 2. Let assume that the eigenvalues are such that | \mu 1| \geq | \mu 2| . Then point (i)
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PREDATOR-PREY WITH RANDOM SWITCHING 3635

of Theorem 2.6 is checked if | \mu 1| > | \mu 2| . This condition is equivalent to | \varphi (s, t)| > 2.
Indeed, due to the fact that \mu 1 + \mu 2 = Tr(esA0etA1), one has

| \varphi (s, t)| =

\Biggl\{ 
| \mu 1| + 1

| \mu 1| if \mu 1 \in R,
2| Re(\mu 1)| if \mu 1 \in C \setminus R,

where Re(\cdot ) stands for the real part. Combined with \mu 1\mu 2 = 1, this proves the
equivalence. By studying the derivatives of \varphi (s, t), one sees that its extremal values
are reached at points (s\ast , t\ast ) of the form (n\pi /\omega 0,m\pi /\omega 1) or (\pi /2\omega 0+n\pi /\omega 0, \pi /2\omega 1+
m\pi /\omega 1) with n,m \in Z. From this we note that the extremal values are \varphi (s\ast , t\ast ) = \pm 2
or

\varphi (s\ast , t\ast )2 =
1

\omega 2
0\omega 

2
1

Tr(A0A1)
2 =

(\beta 1  - \gamma 1)
2

\omega 2
1

,

where the second equality comes from the specific form of A0. Therefore

\varphi (s\ast , t\ast )2 > 4 \Leftarrow \Rightarrow \alpha 1 \not = 0 or \beta 1 + \gamma 1 \not = 0 \Leftarrow \Rightarrow A1 is not proportional to A0.(2.5)

By assumption, A1 and A0 are not proportional. Therefore, using (2.5) one infers that
the matrix N(t0, t1) = N := et0A0et1A1 has two eigenvalues with different moduli for
(t0, t1) = (\pi /2\omega 0, \pi /2\omega 1).

In order to conclude that assumption (i) from Theorem 2.6 is satisfied, we show
that the matrix N lies in \scrS 1.

Let V be a neighborhood of N in GL2(R). Then, by continuity, there exists
\varepsilon > 0 such that for all u \in [t0  - \varepsilon , t0 + \varepsilon ], s \in [t1  - \varepsilon , t1 + \varepsilon ], and \delta \leq \varepsilon , the matrix
Ns,u,\delta = e\delta A1euA0esA1 is in V . Let V\varepsilon be the set of the matrices Ns,u,\delta for s, u, and \delta 
as before. Then V\varepsilon \subset V . Recall that (Mt, It)t\geq 0 is the PDMP defined by (2.4). Let
(Un)n\geq 1 denote the sequence of interjump times of the process I. Then, on the event
Bt,\varepsilon = \{ U1 \in [t0  - \varepsilon , t0 + \varepsilon ];U2 \in [t1  - \varepsilon , t1 + \varepsilon ]; t - (U1 +U2) \leq \varepsilon ;U1 +U2 +U3 \geq t\} ,
It = 1 and Mt \in V\varepsilon , conditionally on I0 = 1. Thus one has

PId,1 ((Mt, It) \in V \times \{ 1\} ) \geq PId,1 ((Mt, It) \in V\varepsilon \times \{ 1\} )
\geq PId,1 (Bt,\varepsilon ) .

This last probability is positive for all \varepsilon > 0 and t \in [t0 + t1  - 2\varepsilon , t0 + t1 +3\varepsilon ]. Hence

U((Id, 1), V \times \{ 1\} ) =
\int +\infty 

0

e - tPId,1 ((Mt, It) \in V \times \{ 1\} ) dt > 0.

This is true for all neighborhoods of N , so N \in \scrS 1, and point (i) is shown.
Using similar arguments, one can show that the family of matrices

\bigl( 
etA1

\bigr) 
t\geq 0

is

in \scrS 1. Since A1 has two purely imaginary eigenvalues, if W denotes a finite union of
one-dimensional vector spaces, one has\bigcup 

t\geq 0

etA1W = R2.

In particular, for any finite union of one-dimensional vector spaces W , there exists
t > 0 such that etA1W \not = W . Since etA1 \in \scrS 1, this proves that assumption (ii) of
Theorem 2.6 holds.

D
ow

nl
oa

de
d 

09
/0

7/
19

 to
 1

30
.2

35
.6

6.
10

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3636 ALEXANDRU HENING AND EDOUARD STRICKLER

3. Proof of Theorem 1.2. Before we start the proof, we recall a result from
[9] that we will make use of. Let n,m be two positive integers and for all j \in W :=
\{ 1, . . . , n\} , Gj : Rm \rightarrow Rm be a smooth vector field such that Gj(0) = 0. Let (Jt)t\geq 0

be an irreducible Markov chain on W and consider the PDMP given by

d \~Xt

dt
= GJt( \~Xt).

For all j \in W , let Bj be the Jacobian matrix of Gj at 0. Like in section 2 (see also [9]
for more details), we consider the PDMP (\Psi t, Jt)t\geq 0 on \scrS m - 1 \times W , where \Psi is the
angular part of the linearized process at 0, i.e., is a solution to

d\Psi t

dt
= BJt\Psi t  - \langle BJt\Psi t,\Psi t\rangle \Psi t.

For \varepsilon > 0, let

\tau \varepsilon = inf\{ t \geq 0 : \| \~Xt\| \geq \varepsilon \} .

Then a consequence of [9, Theorem 3.5(ii)] is the following.

Theorem 3.1. Assume that the PDMP (\Psi t, Jt)t\geq 0 admits a unique invariant
probability measure \nu on \scrS 1 \times W . If\int 

S1\times W

\langle Bj\psi ,\psi \rangle \nu (d\psi dj) > 0,

then there exist \varepsilon > 0, \eta > 1, \theta > 0, and C > 0 such that for all x \in Rm \setminus \{ 0\} and
j \in W ,

E\bfx ,i

\Bigl( 
\eta \tau 

\varepsilon 
\Bigr) 
\leq C

\bigl( 
1 + \| x\|  - \theta 

\bigr) 
.

Proof. The proof of [9, Theorem 3.5(ii)] is not given in [9]; that is why we prove
Theorem 3.1. In the case where there exists a compact set K containing 0 such that

\~X0 \in K \Rightarrow \~Xt \in K \forall t \geq 0,

then Theorem 3.1 is a direct consequence of [9, Theorem 3.2(iii)]. We now show how
we can still use [9, Theorem 3.2(iii)] in the general context.

Let K \subset Rd be a compact set containing 0 in its interior. Let \varphi K : Rd \rightarrow [0, 1]
be a smooth function such that \varphi K = 1 on K\delta and \varphi K = 0 on the complement of
K2\delta . Here K\delta = \{ x \in Rd : d(x,K) < \delta \} is the \delta -neighborhood of K. For i \in E, set
Gi,K = \varphi KGi. Note that Gi,K = Gi on K\delta . In particular, 0 is a common equilibrium
of the Gi,K and DGi,K(0) = DF i(0) = Bi. Now consider the PDMP ( \~XK , I) with
( \~XK

t )t\geq 0 a solution of

d \~XK
t

dt
= GIt,K

\Bigl( 
\~XK
t

\Bigr) 
.

Then we have the two following facts. First, denote by \tau K = inf\{ t \geq 0 : \~Xt /\in K\} the
exit time of K for \~Xt. Then if \~X0 = \~XK

0 = x \in K, for all t \leq \tau K , \~Xt = \~XK
t almost

surely. Next, since DGi,K(0) = Bi, the average growth rate \Lambda K of (XK , I) is equal
to

\Lambda K =

\int 
S1\times W

\langle Bj\psi ,\psi \rangle \nu (d\psi dj).
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Now, since \~XK
t remains in the compact set K2\delta and \Lambda K > 0, one can apply [9,

Theorem 3.2(iii)]. According to this theorem, since \Lambda K > 0, there exist \varepsilon > 0, \theta > 0,
\eta > 1, and C > 0 such that for all x \in K \setminus \{ 0\} and i \in E,

E\bfx ,i(\eta 
\tau K,\varepsilon 

) \leq C(1 + \| x\|  - \theta ),

where \tau K,\varepsilon = inf\{ t \geq 0 : \| \~XK
t \| \geq \varepsilon \} . Without loss of generality, we can assume that

the ball of center 0 and radius \varepsilon is included in the interior of K. Let \tau \varepsilon = inf\{ t \geq 0 :
\| \~Xt\| \geq \varepsilon \} . Now if \| x\| \geq \varepsilon , \tau \varepsilon = 0. If \| x\| < \varepsilon , then since \~Xt = \~XK

t for all t \leq \tau K ,
one gets that \tau \varepsilon = \tau K,\varepsilon \leq \tau K . In particular, for all x \in Rd \setminus \{ 0\} and i \in E,

E\bfx ,i(\eta 
\tau \varepsilon 

) \leq C(1 + \| x\|  - \theta ).(3.1)

Proof of Theorem 1.2. We proceed in steps.
First, we prove using Theorem 2.2 that the setting of Theorem 3.1 applies. Then

we show that it implies that Xt cannot converge to (p, q), and we conclude with
Theorem 1.1.

Let Ai denote the Jacobian matrix of the vector field F i at (p, q), where (p, q) is
the common positive equilibrium of F 0 and F 1. Then

Ai =

\biggl( 
0  - bip
diq 0

\biggr) 
=

\biggl( 
0 \beta i
\gamma i 0

\biggr) 
,

where \beta i =  - bip and \gamma i = diq. The linear PDMP (Y, I) where Y is the solution of

dYt
dt

= AItYt,

is a particular case of the systems studied in section 2.
To apply Theorem 2.2, we have to check that A0 and A1 are noncollinear. This

is equivalent to showing that \gamma 1\beta 0 \not = \gamma 0\beta 1. Assume that \gamma 1\beta 0 = \gamma 0\beta 1. Then since
\beta i =  - bip and \gamma i = diq, we get b1d0 = b0d1. Moreover, since p0 = p1 and q0 = q1,
one has c0d1 = c1d0 and a0b1 = a1b0. If we set \delta = b1/b0, we note that \kappa 1 = \delta \kappa 0 for
\kappa \in \{ a, b, c, d\} , which implies F 1 = \delta F 0. This contradicts the assumption that the
vector fields F 0 and F 1 are noncollinear.

As a result, A0 and A1 cannot be collinear. We can therefore apply Theorem 2.2
and conclude that \Lambda > 0.

In particular, Theorem 3.1 can be applied to deduce that there exist \varepsilon > 0, \eta > 1,
\theta > 0, and C > 0 such that for all x := (x0, y0) \in R2

++ \setminus \{ (p, q)\} and i \in E,

E\bfx ,i(\eta 
\tau \varepsilon 

) \leq C(1 + \| x - (p, q)\|  - \theta ).(3.2)

We claim that because of (3.2) Xt cannot converge to (p, q). We argue by con-
tradiction. Let x \in R2

++, i \in E, and assume that Xt converges to (p, q) almost surely
under P\bfx ,i. Define two stopping times by

\tau in,1\varepsilon /2 = inf\{ t \geq 0 : \| Xt  - (p, q)\| \leq \varepsilon /2\} 

and

\tau out,1\varepsilon = inf\{ t > \tau in,1\varepsilon /2 : \| Xt  - (p, q)\| \geq \varepsilon \} .
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Since Xt converges to (p, q) almost surely, one has P\bfx ,i(\tau 
in,1
\varepsilon /2 < \infty ) = 1. Using the

strong Markov property at \tau in,1\varepsilon /2 , one gets

P\bfx ,i(\tau 
out,1
\varepsilon <\infty ) = E\bfx ,i

\biggl( 
PZ

\tau 
in,1
\varepsilon /2

(\tau \varepsilon <\infty )

\biggr) 
= 1,

where the second equality comes from the fact that, by (3.2), for all y \in R2
++\setminus \{ (p, q)\} 

and j \in E,
P\bfy ,j(\tau 

\varepsilon <\infty ) = 1.

Construct recursively a family of stopping times

\tau in,k\varepsilon /2 = inf\{ t > \tau out,k - 1
\varepsilon : \| Xt  - (p, q)\| \leq \varepsilon /2\} 

and
\tau out,k\varepsilon = inf\{ t > \tau in,k\varepsilon /2 : \| Xt  - (p, q)\| \geq \varepsilon \} 

by repeating the above procedure. Then one gets that for all k \geq 1, \tau in,k\varepsilon /2 and \tau out,k\varepsilon 

are finite almost surely. This contradicts the fact that Xt converges to (p, q). As a
result we have shown that Xt cannot converge to (p, q). In particular, due to Theorem
1.1, with probability one,

lim supxt = lim sup yt = +\infty , lim inf xt = lim inf yt = 0.

Remark 3.2. The proof of Theorem 1.2 above extends verbatim to the proof of
Theorem 1.4. The fact that the jump rates now depend on the position does not
affect the result because when it comes to the linear system in Theorem 2.2, one just
has the constants kij(0) as jump rates (see [9, section 2] for details).

4. Future research. Using some of the methods developed in [9] we were able to
prove a conjecture from [38] and show that if one switches between two deterministic
Lotka--Volterra systems with a common equilibrium point at (p, q), then the resulting
PDMP can never converge to this equilibrium. We reduced the analysis from the
nonlinear Lotka--Volterra PDMP to the study of a linear PDMP (a linearization of
the original PDMP around the equilibrium point).

Recently, there have been several studies about randomly switched linear systems
in dimension 2 (see [5], [31], and [29]). In these studies, the authors show that
the growth rate is positive for some switching rates by a direct computation of the
invariant measure of the process (\Theta , I) (this is the process that arises as the angular
part when doing the polar decomposition). One could try a similar method in our
setting. However, the integral expression we obtain for the growth rate does not easily
yield the sign of the growth rate. Nonetheless, it could be interesting to investigate
this integral expression, possibly through numerical simulations.

Another interesting direction for the future is finding out whether the process Xt

defined by (1.4) is transient, null-recurrent, or positive recurrent. The simulations
done in [38] seem to suggest the following conjecture.

Conjecture 4.1. Suppose Xt = (xt, yt) is the process defined by (1.4) together
with the initial condition X0 = (x0, y0) \in R2

++. Then, almost surely

lim
t\rightarrow \infty 

\biggl( 
xt + yt +

1

xt
+

1

yt

\biggr) 
= \infty ,

and the process Xt is transient.
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