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ON A PREDATOR-PREY SYSTEM WITH RANDOM SWITCHING
THAT NEVER CONVERGES TO ITS EQUILIBRIUM*

ALEXANDRU HENINGT AND EDOUARD STRICKLER?!

Abstract. We study the dynamics of a predator-prey system in a random environment. The
dynamics evolves according to a deterministic Lotka—Volterra system for an exponential random time
after which it switches to a different deterministic Lotka—Volterra system. This switching procedure
is then repeated. The resulting process is a piecewise deterministic Markov process (PDMP). In
the case when the equilibrium points of the two deterministic Lotka—Volterra systems coincide we
show that almost surely the trajectory does not converge to the common deterministic equilibrium.
Instead, with probability one, the densities of the prey and the predator oscillate between 0 and
oo. This proves a conjecture of Takeuchi, Du, Hieu, and Sato [J. Math. Anal. Appl., 323 (2006),
pp. 938-957]. The proof of the conjecture is a corollary of a result we prove about linear switched

systems. Assume (Y%, I¢) is a PDMP that evolves according to % = Ar,Y:, where Ag, Ay are 2 X 2
matrices and I; is a Markov chain on {0, 1} with transition rates ko, k1 > 0. If the matrices Ap and

O‘: _B(;'i ) with oz? + Bivi < 0, then there exists

A; are not proportional and are of the form A; := (,Y

A > 0 such that lim_ oo M -\
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1. Introduction and main results. One of the key issues in ecology is de-
termining when species will persist and when they will go extinct. The randomness
of the environment makes the dynamics of populations inherently stochastic, and
therefore we need to take into account the combined effects of biotic interactions
and environmental fluctuations. One way of doing this is by modeling the densities
of various species as Markov processes and looking at their long-term behavior (see
[13, 18, 17, 30, 37, 36, 10, 8, 4, 12, 25, 22]).

In order to allow for environmental fluctuations and their effect on the persistence
or extinction of species one approach is to study stochastic differential equations
([18, 36, 25, 22, 24, 23]). The other possible approach is to look at stochastic equations
driven by a Markov chain. These systems are sometimes called piecewise deterministic
Markov processes (PDMPs) or systems with telegraph noise.

PDMPs have been used recently to prove some very interesting and counterintu-
itive facts about biological populations. In [7] the authors look at a two-dimensional
competitive Lotka—Volterra system in a fluctuating environment. They show that
the random switching between two environments that are both favorable to the same
species can lead to the extinction of this favored species or to the coexistence of the
two competing species (also see [33]). PDMPs are also used in [15] where the author
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studies prey-predator communities where the predator population evolves much faster
than the prey.

For a predator-prey system the classical deterministic example is the Lotka—
Volterra model (see [32] and [39])

dx(t)

. "D _ at)(a - byt
dy(t)
o y(t)(—c+ dx(t)),

where z(t), y(t) are the densities of the prey and the predator at time ¢ > 0 and a,b, ¢
and d are positive constants. If one assumes that z(0) = 29 > 0,y(0) = yo > 0,
so that both predator and prey are present, then the solutions of system (1.1) are
periodic (see [20, 27]) and given in phase space by the curves described by the first
integral,

(1.2)
r(z,y) =dr—c—cln(l 4 (dx —¢)/c) + by — a — aln(1 + (by — a)/a) = constant = r.

One should note that both the predator and the prey from (1.1) do not experience
intraspecific competition. In particular, if the predator is not present (i.e., yo =
0), then the prey density blows up to infinity. In [19, 34] the authors are able to
analyze the n-dimensional generalization of (1.1), i.e., the setting when one has one
prey and n — 1 predators and each species interacts only with the adjacent trophic
levels. Stochastic predator-prey models have been studied in the stochastic differential
equation setting by [35, 24, 23]. However, we note that in all these studies one
needed to assume that there exists intraspecific competition among the prey and the
predators. This simplifies the analysis significantly because the predator and the prey
densities get pushed towards the origin when they become too large.

In [2] the authors show that if the coefficient a (growth rate of the prey) is ran-
domly perturbed by white noise, then the resulting stochastic system cannot have a
stationary distribution and that as the time goes to infinity, with probability 1, explo-
sion does not occur. In [28] the authors look at scaling limits of Lotka—Volterra systems
perturbed by white noise—they prove that a suitably rescaled version of r(z(t), y(t)),
where r(x,y) is the first integral from (1.2), converges to a one-dimensional stochastic
differential equation. They then use this SDE to gain information about both the
deterministic and the stochastic Lotka—Volterra systems.

We consider the random switching between two Lotka—Volterra prey-predator
systems of the form (1.1). More precisely, for i € E := {0,1}, let F’ : RZ — R2
denote the vector field

i _ [ x(a;i —biy)
(1.3) Fi(y) = (y(cz + dzx))
with a;,b;,¢;,d; > 0. Let (I;)¢>0 be a continuous-time Markov chain defined on
some probability space (2, F,P) and taking values in E := {0,1}. Suppose I; has
transition rates kg, k; > 0. Throughout the paper we will let Ri+ = {(x1,22) €
R? | 1 > 0,29 > 0} and Ri = {(z1,22) € R? | 1 > 0,22 > 0}. We denote by
(Xt)tzo = (l‘t,yt)tzo the solution of

dx

dftt = z(ar, — br,ye),
(1.4)

e = y(—cr, +dr,x)

dt t t
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for some initial condition Xo = (xg,y0) € R?H_. The process (X,I) = (Xy, It)i>0 is a
PDMP as introduced in [16] and belongs to the more specific class of PDMPs recently
studied in [3] and [6].

Omne can construct the process (X, I) as follows: suppose we start at (Xo, ) =
((x0,90),7). Then, the system evolves according to

dxc;t(t) = x;(t)(a; — biyi(t)),
WD) i (1) (e + dua(t).
:CZ(O) = Zo,

yz(O) = Yo,

for an exponential random time T; with rate k;. After this time the Markov chain I
jumps from state i to state j € {0,1} \ {i} and X} evolves according to

WO g0 (e + gy 1),
yi (1) = yi(T),

for an exponential random time 7} with rate £;. This procedure then gets repeated.
Intuitively our process follows an ODE for an exponential random time after which
it switches to a different ODE, follows that one for an exponential random time, and
SO on.

The generator L of (X, I) acts on functions ¢ : Rﬁ_ x F — R that are smooth in
the first variable as

Ly(x,i) = (F'(2), Vg'(2)) + ki (9(z,1 = i) — g(x,17)),

where (-, -) is the Euclidean inner product on R?. As usual, for x € R? and i € E, we
denote by Py ; the law of the process (X, I) when (Xo, Iy) = (x,) almost surely and
by Ey,; the associated expectation.

The vector field F* from (1.3) has a unique positive equilibrium (p;, ¢;) = (c;/d;,
a;/b;). In [38] the authors look at the following two cases:

Casel. po =p1 =:p and gy = ¢ =: ¢, i.e., common zero for F° and F';

Case I1. (po,qo) # (p1,q1), i.e., different zeroes for F* and F!.

We assume throughout this paper that pg = p1 =: p and g9 = ¢1 =: ¢. The vector
fields F° and F! therefore have a common zero—this will allow us to use the recent
results from [9]. We also assume that FY and F' are noncollinear to avoid trivial
switching.

In [38, Theorem 4.5] it is shown that only two long-term behaviors are possible
when the vector fields have a common zero: either X; converges almost surely to the
common equilibrium (p, ¢), or each coordinate oscillates between 0 and +oo.

THEOREM 1.1 (Takeuchi et al., 2006 [38]). For any (zo,y0) € R% ., with proba-
bility 1, either

(1.5) Jim X; = (p,q)
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or
(1.6) limsup z; = limsupy; = 400, liminfz; = liminfy; = 0.

It was conjectured from simulations (see [38, Remark 5.1]) that only case (1.6) happens
in the above theorem. Using Theorem 2.2 below and results from [9], we are able to
prove this conjecture.

THEOREM 1.2. There exist € > 0, n > 1, 8 > 0, and C > 0 such that for all
x = (20,90) € RL \ {(p, @)} and i € E,

Exi(n” ) < C(1+x— ()™,
where
(1.7) i it{t > 05 X~ ()] > <.
In particular, for any (zo,y0) € R% . \ {(p,q)} we have with probability 1 that

limsup z; = limsupy; = +o0o0, liminfax; = liminfy, = 0.
t—oo t—o0 t—o0 t—o0
Our result provides a deeper understanding of Lotka—Volterra systems in random
environments, continuing the work started in [28] and [2].

1.1. Linear switched systems. Let A; denote the Jacobian matrix of the vec-
tor field F* at (p,q), where (p,q) is the common positive equilibrium of the vector

fields F° and F!. Then
i 0 —bip 0 B
Ai = = )
(diq 0 ) <%’ 0)

where 8; = —b;p and y; = d;q.

The matrices A; represent the linearizations of the nonlinear Lotka—Volterra sys-
tems near their common equilibrium point (p, ¢). In order to study the dynamics of
the nonlinear switched system (1.4) we will first study the linearization with switching
and then use results of [9]. Since we can prove slightly more general results for the
linear systems we will work in the following setting.

Let A; denote the matrix

R %) Bi
as am ()
for i = 0,1, where oy, §;,7; are real numbers satisfying
(1.9) 0422 + Bivi <O.

In this case, both matrices Ay, A; have purely imaginary eigenvalues.
We consider a random switching between the two dynamics given by Ay and A;.
Let (I;);>0 be a continuous-time Markov chain on E = {0,1} with transition rates
ko, k1 > 0. We denote by (Y;);>0 the solution of
dYy
(1.10) @ ~ At
Yo = yo € R?\ {(0,0)}.

The process (Y%, I;):>0 is a PDMP living on R?\ {(0,0)} x E.
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We will show that, independent of the starting conditions, ||Y|| converges expo-
nentially fast to infinity with probability one. More precisely, we prove the following.

THEOREM 1.3. Assume Ag and Ay are nonproportional matrices of the form (1.8)
with coefficients satisfying (1.9). Then, there exists A > 0 such that, for all yo # 0,
almost surely

1
(1.11) Jim — log [[Yl| = A.

1.2. Generalization to density-dependent switching rates. In fact, thanks
to Theorem 2.2, the first part of Theorem 1.2 can be significantly generalized.

For i € E, let F' be a vector field of class C? on R? such that F*(0) = 0.
Also assume that for i € E, DF(0), the Jacobian matrix of F' at 0, has two purely
imaginary eigenvalues. In this case, the equilibrium 0 is sometimes called a center.
We now consider a Markov process (Uy, Ji)i>0, where Uy is a solution of

v,
—_— = F t
dt ()

and [I; is a jump process on E whose rates depend on U
P(Jt—i-s =1- Z‘Jt = i,ft) = ki71_i(Ut)8 + O(S),

where F; = 0((Us, Js) : s <t) and for all x, (k;;(z));; is an irreducible matrix that
is continuous in z. The process (U, J) is still a PDMP, with infinitesimal generator £
acting on functions g : Ri x E — R that are smooth in the first variable as

Lyg(x,1) = (F'(2), Vg'(x)) + kin-i(z) (9(x, 1 = i) = g(x,17)) .

We can prove the following (see Remark 3.2) in this more general setting.

THEOREM 1.4. Assume DF°(0) and DF'(0) are nonproportional matrices such
that, fori € {0,1},

Tr(DF(0)) =0 and det(DF*(0)) > 0.

Then there exist ¢ > 0, n > 1, § > 0, and C > 0 such that for all x := (x9,y0) €
R?\ {(0,0)} and i € E,
Exi(n™) < C (1+[Ix]I7%),

where 5 = inf{t > 0: |Uy|| > e}. In particular, for any (xo,yo) € R?\ {(0,0)}, with
probability one, Uy cannot converge to (0,0).

The paper is structured as follows. In section 2 we prove results about the linear
switched systems introduced in section 1.1. In particular, we prove Theorem 1.3. We
then apply these results in section 3 where we prove Theorems 1.2 and 1.4. Finally,
in section 4 we present some conjectures and directions for future work.

2. A result on linear switched systems. In this section we work with the
linear systems introduced in section 1.1 by (1.8), (1.9), and (1.10). In order to do
this we will use a polar decomposition. The use of polar decompositions to study
Lyapunov exponents goes back to [21] in the case of stochastic differential equations.
They have been used recently in the study of linear PDMPs (see [5, 31]) and more
general PDMPs (see [9]).
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Throughout the paper, we will denote by S' C R? the circle with center at 0 and
radius 1. Whenever yo # 0 and Y; # 0, setting ©, = Y;/||Y;| and p; = ||Y:||, one can
check using (1.10) that (p;, ©¢)¢>0 is the solution to

de
— =410, (41,6,,0,)6,,
d
2.1) G~ AL O,
Oy = by € S,
po=10>0

with 6y = yo/|lyoll and ro = |lyol|. In particular, ((©¢,I;))¢>0 is a PDMP on S x E
(see [9]), and one has for all t > 0,

1 I 1
(22) Hlog il = 1 [ (41,6.,0.)ds + 1 log [yol.
0

Moreover, we have the following result.

LEMMA 2.1. Assume Ag and Ay are two matrices of the form (1.8) with coeffi-
cients satisfying (1.9). Then, the process (O, I) admits a unique invariant probability
measure (1 on S' x E. Furthermore,

A= / (A:0,0)u(dbdi) > 0.

Proof. The uniqueness follows from [9, Proposition 2.11 and Example 2.12]. In-
deed, since we study a two-dimensional system, a sufficient condition is that at least
one matrix A; has no real eigenvalue. This is the case for both Ag and A;. Since Aq
and A; have zero trace, [9, Corollary 2.7] implies that A > 0. |

By the ergodic theorem, (2.2), and Lemma 2.1, one has for all yo # 0 and all
1€l )
lim ~log|[Y]| = A.

Because of this, Theorem 1.3 is a consequence of the following theorem, which is the
main result of this section.

THEOREM 2.2. Assume Ao and Ay are nonproportional matrices of the form (1.8)
with coefficients satisfying (1.9). Then, with the notation of Lemma 2.1,

A= /(Ai079>u(d9di) > 0.

2.1. Lyapunov exponents and Bougerol’s theorem. In order to prove The-
orem 2.2, we will use results from [11] on Lyapunov exponents. These numbers give
the exponential growth rate of a linear random dynamical system (see Arnold [1] for
the definition). In [9], the authors show that the process Y from (1.10) together with
the canonical shift on the space 2 of cadlag functions from Ry to E is a linear ergodic
random dynamical system satisfying the integrability conditions of Osedelets’ multi-
plicative ergodic theorem (see [1, Theorem 3.4.1] or [14, Proposition 3.12]). According
to this theorem, there exist 1 < d < 2 numbers such that if d = 2, then

)\1 > )\2,
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called the Lyapunov exponents, a Borel set Q C Q with ]P’(Q) =1 and for each w € Q
distinct vector spaces

{0} = Vap1(w) C Vy(w) C Vi(w) = R?
such that
o1
(23 Jlian 4 log [¥ill = A

for all yg € V;(w)\ Vit1(w). Now, since Tr(A;) = 0 for ¢ € E, |9, Corollary 2.7] implies

that
doai=o0.

In addition, [9, Proposition 2.5] yields
A=)

Therefore, proving that A > 0 is equivalent to showing that d = 2. In order to prove
that d = 2, we will use [11, Theorem 1.7] which we state below (see Theorem 2.6).
Let (My)i>0 with M; € GLy(R),t > 0 be the solution of the matrix equation

dM,
= A, M,
(2.4) dt L

My € GLQ(R)

Here GLy(R) stands for the set of invertible 2 x 2 matrices with real coefficients, and
the process (M, I;) is a PDMP living on GL2(R) x E.

The fact that M; € GL2(R) can easily be shown recursively as follows. If Ty
denotes the first jump time of the process I, then for all t < T}, one has M, = e*410 My,
which is invertible as a product of invertible matrices. Then if T5 is the second jump
time, for all ¢t € (T, Ty], My = elt=T2) A1 M, , and so on. One can note that when
M, = 1d, the identity matrix, then for all y € R% the process Y from (1.10) can be
written as

Y. = My

if Yo =y. Set m = (k1/(ko + k1), ko/(ko + k1)), and € = E = {0,1}. Then (M,I,n)
is a simple example of what Bougerol calls a multiplicative system (see Definition 2.3
and Lemma 2.8 below).

We next present the abstract framework of [11]. Let (o4);>0 be a stationary
Markov process on some metric space £, and (B;)¢>0 a process with values in GLs(R).

We recall that the semigroup of a Markov process (B, ) is a family of measures defined
for t > 0 and (4,7) € GL2(R) x £ by

B ((A4);) =Pai (B, o1) € ) -

Equivalently, the semigroup can be seen as a family (P,);>o of operators which act on
bounded measurable functions f : GLy(R) x £ — R according to

Pif((Ai)) =Ea,;[f((Bs,01))], A€ GLy(R), i€€.

We introduce the following definition, which is [11, Definition 1.1 and 1.2].

DEFINITION 2.3. Let 7 be a probability measure on £. We say that (B,o,7) is a
multiplicative system if the following properties hold:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(i) The process (B, o) is Markovian with semigroup (P;):
(ii) For any Borel subset A C & (resp., B C GL2(R)), t

i €&, one has

05
>0, C € GLy(R), and

P ((C,i); BC x A) = P, ((1d,1); B x A),

where BC'= {NC; N € B};
(ili) 7 is an ergodic measure for o and supy<;<; Eia,x [log™ || Be|| +log™ | B '] <
0.

We let @ be the first order resolvent of the semigroup (R:);>o of the Markov
process o. This is defined via

+o0
Q == / e_thdt.
0

Remark 2.4. The resolvent has the following properties related to the dynamics
of its associated Markov process:
e A probability measure is invariant for the semigroup if and only if it is in-
variant for the resolvent.
e A point y is accessible for the process from z (meaning that it can reach every
neighborhood of y with strictly positive probability) if and only if y is in the
support of the resolvent.

Following [11], we will say that the semigroup (P;)¢>o is Feller if for any bounded
continuous map f : GL2(R) xE — R, and for all ¢ > 0, the function P, f is continuous.

DEFINITION 2.5. We say that a multiplicative system (B, o, ) satisfies hypothesis
H if the following conditions hold:
(i) The space & is a complete metric space.
(ii) The semigroup (Py)¢>o is Feller.
(iii) The support of w is €. If h is a bounded measurable function which is a fized
point for the first order resolvent of o, i.e.,

then h is continuous.

Denote by U the first order resolvent of (P;)¢>0, that is,

“+o0
U :/ eftPtdt.
0

For i € £ let D; be the support of U((Id,?), ) and S; = {4 € GLa(R) : (4,i) € D;}.
One has the following result (see [11, Theorem 1.7]).

THEOREM 2.6 (Bougerol, 1988 [11]). Assume (B, o,
defined on the space Q of functions from Ry to GLa(R)
H. Assume furthermore the following:
(i) For somei € &, there exists a matriz in S; with two eigenvalues with different
moduli.

(ii) There does not exist some finite union W of one-dimensional vector spaces
such that, for all matrices B in S;, BW =W.

) is a multiplicative system
x & and satisfying hypothesis

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Then there exist 2 numbers A\; > Ao, a Borel set Q C Q with lP’Id,,r(Q) =1, and
for each w € Q distinct vector spaces

{0} = V3(w) C Va(w) C Vi (w) =R

such that
o1
tlgrolo n log || Bs(w)yoll = Ni

Jor all yo € Vi(w) \ Vi1 (w).

Remark 2.7. Theorem 2.6 is a reformulation of [11, Theorem 1.7], which is given
for the numbers ~; that are the Lyapunov exponents for the external power of M (see
[11, Proposition 2.2] or [1, Theorem 3.3.3] for details). The numbers v; and 7, are the
numbers \; counted with multiplicity (see [1, Definition 3.3.8 and Theorem 3.4.1]).

We show that we can use Theorem 2.6 in our context. Let (M;)>o with M, €
GL3(R),t > 0, be the process defined above, i.e., the solution of the matrix equation

dM;
= A;, M,
dt I, 4V1t,
My € GLQ(R)

LEMMA 2.8. Set m = (k1/(ko + k1), ko/(ko + k1)) and € = E = {0,1}. Then
(M, I,7) is a multiplicative system satisfying H.

Proof. First we show that (M, I, ) is a multiplicative system. (M, I) is a PDMP
and thus a Markov process. In addition, if we denote by MY the process M when
My = N almost surely, one can easily check that MY = M N almost surely. As a
result we see that point (ii) of Definition 2.3 is satisfied. Straightforward computations
show that 7 is the unique invariant distribution of I and is therefore ergodic. Let K
be a constant such that ||4;]| < K for i € E. Then from

dM;
- = A; M,
dt I, 4V1t,
del —1
o T Mo AL

together with My = MJI = Id and Gronwall’s lemma, one can show that for all ¢t > 0
M, [| M| < e

This proves point (iii) of Definition 2.3.

Now we show that (M, I, 7) satisfy hypothesis H. In our case, £ = F is a finite set;
thus points (i) and (iii) of Definition 2.5 are straightforward. To prove that (M, I) is
Feller, we use [6, Proposition 2.1] where the authors show that for a PDMP remaining
in a compact set, the semigroup maps every continuous function to a continuous
function. Their proof adapts verbatim to the case where the process does not remain
in a compact set with the additional assumption that the continuous function is
bounded and provided the jump rates are bounded—in our setting the jump rates are
constant. This concludes the proof. 0
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2.2. Proof of Theorem 2.2. We start by showing that it suffices to prove
Theorem 2.2 for a specific class of matrices.

LEMMA 2.9. Assume Theorem 2.2 holds when Ag is of the special form

_ 0 —Wo
et ).
Then Theorem 2.2 holds for any Ap.

Proof. First we show that a linear change of coordinates does not change the
value of A. Let G € GLy(R), and set, for all ¢ > 0, Z; = GY;. Then (Z;,I;) is a
PDMP with Z solution of iz

t
— =B 7
dt I, 4t
where B; = GA;G~!. Due to lim & QY*H = lim & QZtH, one can see that the growth
rates of Y; and Z; are equal.

Next, since the eigenvalues of Ag are Fiwg for wy := \/—(a3 + Boo), a classical
result in linear algebra (see for example [26, Chapter 4, Theorem 3]) states that there
exists a matrix G € GLy(R) such that

Bo = GAG—! = (0 _“’0> .

wo 0

Thus, replacing if necessary the matrices Ay and A; by By and B; = GA;G™!, one
may always assume that Ay has the form (2.9). |

Proof of Theorem 2.2. We recall that it is sufficient to prove that d = 2 and thus
to show that (i) and (ii) of Theorem 2.6 are satisfied.

We first show that (i) holds. For this, we need to display a matrix of &; with
two eigenvalues with different moduli. We claim that for every ¢,s > 0, the matrix
esAoetAt is in S). Thus it is sufficient to find such a matrix with two eigenvalues
with different moduli. We start by showing that it is indeed possible to find a matrix
es4oet41 for some s,t > 0 with two eigenvalues with different moduli, before proving
the claim.

According to Lemma 2.9, we assume that Ag is of the form

_ 0 —Wwo
Aq = (wO : ) .
By standard computations, one can show that for all t > 0 and 7 € F,

1
etAi = COS(wZ't)Id + 7 Sln(wlt)Ala

Wi

where w; := \/—(a? 4+ B;v;). In particular, since Tr(A;) = 0, one has that for all
s,t >0

@(s,t) := Tr(e*A0et1) = 2 cos(wps) cos(wit) +

i i t)Tr(AogA1).
oo sin(wps) sin(w1t) Tr(AgA;)

On the other hand, since Tr(4;) = 0, one has det(e*4°e!41) = 1. Thus, denoting
by i1, 2 the eigenvalues of e$40e!41 one can see that uius = 1 or equivalently
1 = 1/ps. Let assume that the eigenvalues are such that |uq]| > |u2|- Then point (i)
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of Theorem 2.6 is checked if |u1]| > |ue|. This condition is equivalent to |¢(s,t)| > 2.
Indeed, due to the fact that pu; + pup = Tr(es40e41), one has

(o) = Jal F s €R
ARe(ur)] it py € C\R,
where Re(:) stands for the real part. Combined with pjps = 1, this proves the
equivalence. By studying the derivatives of (s, ), one sees that its extremal values
are reached at points (s*,t*) of the form (n7/wg, mm/wy) or (7/2wo + nw/wg, 7/2w1 +
mn/wy) with n,m € Z. From this we note that the extremal values are p(s*,t*) = +2
or

1 _ 2
(s )" = ——5Tr(AgAr)* = Brom)

2
Wowi w1

where the second equality comes from the specific form of Ay. Therefore
(2.5)  @(s%,t*)* >4 <= a; #0 or B +71 # 0 <= A is not proportional to Ag.

By assumption, A; and Ag are not proportional. Therefore, using (2.5) one infers that
the matrix N(tg,t;) = N := efodoet141 has two eigenvalues with different moduli for
(to, tl) = (71'/20.)0, 7r/2w1).

In order to conclude that assumption (i) from Theorem 2.6 is satisfied, we show
that the matrix N lies in S.

Let V' be a neighborhood of N in GL2(R). Then, by continuity, there exists
e > 0 such that for all u € [tg —e,tg + €], s € [t1 —&,t1 + €], and § < £, the matrix
Nous = ed41eudoesAr i in V. Let V. be the set of the matrices N .5 for s,u, and §
as before. Then V. C V. Recall that (M, I;);>0 is the PDMP defined by (2.4). Let
(Un)n>1 denote the sequence of interjump times of the process I. Then, on the event
Bie={U1€fto—e,to+e;Us € [t1 —¢,t1 +¢e);t — (U1 +Us) < e;U1 + Uz + Us > t},
I; =1 and M; € V, conditionally on Iy = 1. Thus one has

Pld,l ((Mt,It) cV x {1}) > Pld,l ((Mt,lt) S V;- X {1})
> Pra1 (Bre) -

This last probability is positive for all ¢ > 0 and t € [tg + t1 — 2¢,to + t1 + 3¢]. Hence
+oo
U1, 1),V x {1}) = / e Py (M, I) € V x {1})dt > 0.
0

This is true for all neighborhoods of N, so N € S, and point (i) is shown.
Using similar arguments, one can show that the family of matrices (etAl) >0 18
in S;. Since A; has two purely imaginary eigenvalues, if W denotes a finite union of

one-dimensional vector spaces, one has

et w =R

t>0

In particular, for any finite union of one-dimensional vector spaces W, there exists
t > 0 such that e!1W # W. Since e/ € Sy, this proves that assumption (ii) of
Theorem 2.6 holds. O
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3. Proof of Theorem 1.2. Before we start the proof, we recall a result from
[9] that we will make use of. Let n,m be two positive integers and for all j € W :=
{1,...,n}, G : R™ — R™ be a smooth vector field such that G?(0) = 0. Let (J;);>0
be an irreducible Markov chain on W and consider the PDMP given by
dX: s
— =G (Xy).
dt (Xe)
For all j € W, let B; be the Jacobian matrix of G7 at 0. Like in section 2 (see also [9]

for more details), we consider the PDMP (¥, J;);>0 on S™~! x W, where ¥ is the
angular part of the linearized process at 0, i.e., is a solution to

AU
th = B, Uy — (B, U, U\,
For € > 0, let

¢ =inf{t >0 : || X;|| > ¢}
Then a consequence of [9, Theorem 3.5(ii)] is the following.

THEOREM 3.1. Assume that the PDMP (U, J;)i>0 admits a unique invariant
probability measure v on S* x W. If

/ (B, wyw(did)) > 0,
StxW

then there exist e > 0, n > 1,0 > 0, and C > 0 such that for all x € R™ \ {0} and
Jew,
Exi (") <C(1+ x|,

Proof. The proof of [9, Theorem 3.5(ii)] is not given in [9]; that is why we prove
Theorem 3.1. In the case where there exists a compact set K containing 0 such that

XoeK=X,eK Vt>0,

then Theorem 3.1 is a direct consequence of [9, Theorem 3.2(iii)]. We now show how
we can still use [9, Theorem 3.2(iii)] in the general context.

Let K C R? be a compact set containing 0 in its interior. Let o : R? — [0,1]
be a smooth function such that ¢ = 1 on K% and ¢ = 0 on the complement of
K% Here K% = {x ¢ R? : d(z, K) < §} is the §-neighborhood of K. For i € E, set
GHE = oK@' Note that GVX = G on K. In particular, 0 is a common equilibrium
of the G*¥ and DG"*(0) = DF(0) = B;. Now consider the PDMP (XX T) with
(X[/);>0 a solution of

AL gron (%K),

Then we have the two following facts. First, denote by 7% = inf{t > 0 Xé ¢ K} the
exit time of K for X;. Then if Xg = X =x € K, for all t < 75 X, = X/ almost
surely. Next, since DG (0) = B;, the average growth rate AX of (XX, 1) is equal
to

A= [ (B vldvd)
SixW
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Now, since XtK remains in the compact set K29 and AX > 0, one can apply [9,
Theorem 3.2(iii)]. According to this theorem, since A% > 0, there exist € > 0, § > 0,
7> 1, and C' > 0 such that for all x € K\ {0} and i € E,

TK,E

Exi(n” ") < C(L+[x]7),

where 75 = inf{t > 0: | XX|| > £}. Without loss of generality, we can assume that
the ball of center 0 and radius ¢ is included in the interior of K. Let 7 = inf{t > 0:
| X:|| > e}. Now if ||x|| > €, 7° = 0. If ||x|| < ¢, then since X; = X[ for all t < 7x,
one gets that 7° = 75 < 1. In particular, for all x € R?\ {0} and i € F,

(3.1) Exi(n™) < C(1+ x| 7%). U

Proof of Theorem 1.2. We proceed in steps.

First, we prove using Theorem 2.2 that the setting of Theorem 3.1 applies. Then
we show that it implies that X; cannot converge to (p,q), and we conclude with
Theorem 1.1.

Let A; denote the Jacobian matrix of the vector field F* at (p, q), where (p, q) is
the common positive equilibrium of F° and F!. Then

(0 =bip\_ (0 B
Al(diq 0 ><% 0)’

where 8; = —b;p and ~; = d;q. The linear PDMP (Y, I) where Y is the solution of

dY;
7; = ALY,
is a particular case of the systems studied in section 2.

To apply Theorem 2.2, we have to check that Ay and A; are noncollinear. This
is equivalent to showing that v18y # 7081. Assume that v189 = 751. Then since
B; = —b;p and ~; = d;q, we get bidy = bpd;. Moreover, since pg = p; and g9 = q1,
one has cod; = c1dp and apb; = a1bg. If we set & = by /by, we note that k1 = dkg for
k € {a,b,c,d}, which implies F! = §F°. This contradicts the assumption that the
vector fields F° and F! are noncollinear.

As a result, Ayp and A; cannot be collinear. We can therefore apply Theorem 2.2
and conclude that A > 0.

In particular, Theorem 3.1 can be applied to deduce that there exist ¢ > 0, n > 1,
6 > 0, and C > 0 such that for all x := (z0,70) € R3, \ {(p,q)} and i € E,

(3.2) Ex,i(n™ ) < C(L+ |x—(p,q)]).

We claim that because of (3.2) X; cannot converge to (p,q). We argue by con-
tradiction. Let x € ]R?H,i € E, and assume that X; converges to (p, q) almost surely
under Py ;. Define two stopping times by

Ty = inf{t >0 || X, — (p.q)l| <¢/2}
and

T =t {t > 7 ¢ |1X — (pog)ll > )
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Since X; converges to (p,q) almost surely, one has vai(rsi’;’; < o0) = 1. Using the

strong Markov property at 7':/”21, one gets
]P)XJ'(T;MJ < OO) - EXJ (PZ in,1 (TE < OO)> =1,
7-5/12

where the second equality comes from the fact that, by (3.2), for all y € R3 , \{(p,q)}
and j € E,
Py ;(m° < o0) = 1.

Construct recursively a family of stopping times

T;f/‘é’f = inf{t > 7oUF=1 . | X, — (p,q)|| < e/2}
and .
TOUR — inf{t > T;/lék X = (pg)|| > €}
by repeating the above procedure. Then one gets that for all k > 1, T:/I’Qk and Toutk

are finite almost surely. This contradicts the fact that X; converges to (p,q). As a
result we have shown that X; cannot converge to (p, ¢). In particular, due to Theorem
1.1, with probability one,

limsup x; = limsup y; = 400, liminfz; = liminfy, = 0. 0

Remark 3.2. The proof of Theorem 1.2 above extends verbatim to the proof of
Theorem 1.4. The fact that the jump rates now depend on the position does not
affect the result because when it comes to the linear system in Theorem 2.2, one just
has the constants k;;(0) as jump rates (see [9, section 2] for details).

4. Future research. Using some of the methods developed in [9] we were able to
prove a conjecture from [38] and show that if one switches between two deterministic
Lotka—Volterra systems with a common equilibrium point at (p, ¢), then the resulting
PDMP can never converge to this equilibrium. We reduced the analysis from the
nonlinear Lotka—Volterra PDMP to the study of a linear PDMP (a linearization of
the original PDMP around the equilibrium point).

Recently, there have been several studies about randomly switched linear systems
in dimension 2 (see [5], [31], and [29]). In these studies, the authors show that
the growth rate is positive for some switching rates by a direct computation of the
invariant measure of the process (0, 1) (this is the process that arises as the angular
part when doing the polar decomposition). One could try a similar method in our
setting. However, the integral expression we obtain for the growth rate does not easily
yield the sign of the growth rate. Nonetheless, it could be interesting to investigate
this integral expression, possibly through numerical simulations.

Another interesting direction for the future is finding out whether the process X
defined by (1.4) is transient, null-recurrent, or positive recurrent. The simulations
done in [38] seem to suggest the following conjecture.

CONJECTURE 4.1. Suppose X; = (xt,yt) is the process defined by (1.4) together
with the initial condition Xo = (xo,Yyo) € R?H-' Then, almost surely

1 1
lim ($t+yt++):OO,
t—o00 Tt yt

and the process Xy is transient.
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