
Towards Improved Testing For Deep Learning

Jasmine Sekhon
University of Virginia

Charlottesville, VA USA

js3cn@virginia.edu

Cody Fleming
University of Virginia

Charlottesville, VA USA

cf5eg@virginia.edu

Abstract—The growing use of deep neural networks in safety-
critical applications makes it necessary to carry out adequate test-
ing to detect and correct any incorrect behavior for corner case
inputs before they can be actually used. Deep neural networks
lack an explicit control-flow structure, making it impossible to
apply to them traditional software testing criteria such as code
coverage. In this paper, we examine existing testing methods for
deep neural networks, the opportunities for improvement and
the need for a fast, scalable, generalizable end-to-end testing
method. We also propose a coverage criterion for deep neural
networks that tries to capture all possible parts of the deep neural
network’s logic.

Index Terms—deep neural networks, whitebox testing, cover-
age criterion

I. INTRODUCTION

Deep Neural Networks, or DNNs, are increasingly being

used in diverse applications owing to their ability to match

or exceed human level performance. The availability of large

datasets, fast computing methods and their ability to achieve

good performance has paved way for DNNs into safety-critical

avenues such as autonomous car driving, medical diagnosis,

security, etc. The safety-critical nature of such applications

makes it imperative to adequately test these DNNs before

deployment. However, unlike traditional software, DNNs do

not have a clear control-flow structure. They learn their

decision policy through training on a large dataset, adjusting

parameters gradually using several methods to achieve desired

accuracy. Consequently, traditional software testing methods

like functional coverage, branch coverage, etc. cannot be

applied to DNNs, thereby challenging their use for safety-

critical applications.

A lot of recent work, discussed in III, has looked into

developing testing frameworks for DNNs. These methods

suffer from certain limitations, as discussed in IV. In our work,

we intend to make an effort to overcome these limitations and

build a fast, scalable, efficient, generalizable testing method for

deep neural networks. In V, we propose a coverage criterion

for feed forward deep neural networks that tries to capture the

DNN logic to a greater extent by incorporating inter-layer and

intra-layer relationships.

II. BACKGROUND

Deep neural networks are neural networks with multiple

hidden layers between the input and output layers. Unlike

traditional software programs, where the program logic has

to be manually described by the programmer, deep neural

networks are capable of learning rules by training on a large

dataset. Today, DNNs are used in easy to complex tasks, such

as image classification [10], medical diagnosis and end-to-end

Fig. 1: The internal logic of a deep neural network is opaque

to humans, as opposed to the well laid out decision logic of

traditional software programs.

Fig. 2: A high-level representation of most existing DNN

testing methods.

driving in autonomous cars [1]. The safety-critical nature of

such applications makes it important to assure correctness,

to avoid fatally incorrect behavior and obtain performance

benefits from DNNs safely.

Traditional software testing methods fail when applied to

DNNs because the code for deep neural networks holds no

information about the internal decision-making logic of a

DNN, as shown in Figure 1. DNNs learn their rules from

training data and lack the control-flow structure present in

traditional software programs. Therefore, traditional coverage

criterion like code coverage, branch coverage, functional cov-

erage, etc. cannot be applied to deep neural networks. A high-

level representation of most existing whitebox testing methods

for DNNs is shown in Figure 2. The inputs to the testing

process are the DNN, the test inputs, and a coverage metric

to ensure that all parts of the program logic have been tested.

An oracle decides whether the behavior of the DNN is correct

for the tested inputs. Further, a guided test input generation

method may be used to generate test inputs that have greater
coverage and which uncover greater corner case behavior.

The output of existing testing methods is usually either a

measure of system correctness or adversarial ratio.

85

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

978-1-7281-1758-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-NIER.2019.00030

III. PRIOR LITERATURE

Testing methods for deep neural networks have normally

followed a black-box approach, until recently, when Deep-

Xplore [7] proposed the first white-box testing method for

DNNs. The method proposed by [6] involves randomly search-

ing around a given input for changes that cause misclassifi-

cation. Many other approaches involve generating adversarial

examples by perturbing an input slightly to induce incorrect

behavior, which is checked for manually. However, these

black-box approaches are completely unguided in terms of

the absence of a coverage criterion and overlook the internal

logic of a DNN. In DeepXplore [7], the authors introduced the

concept of neuron coverage as a coverage metric for testing

DNNs. They also proposed using multiple implementations

for the same task as an oracle to avoid manual labeling

effort. Further, DeepCover [8] proposes several criteria for

testing DNNs, inspired by modified code/decision coverage

for software testing. Their coverage criteria take into account

the condition-decision dependence between neurons of con-

secutive layers. Another recent approach, DeepMutation [4] is

the first source-level mutation testing technique that proposes

a set of model-level mutation testing operators that directly

mutate on deep learning models without a training process.

DeepCT [5] uses a combinatorial-testing inspired coverage

criterion which guides an exhaustive search for test inputs that

activate neurons in a layer-wise manner.

IV. OPPORTUNITIES FOR IMPROVEMENT

A. Why do we need a better coverage criteria?
Coverage criteria for traditional software programs, such as

code coverage and branch coverage check that all parts of the

logic in the program have been tested by at least one test input

and all conditions have been tested to independently affect the

entailing decisions. On similar lines, any coverage criterion for

deep neural networks must be able to guarantee completeness,

that is, it must be able to ensure that all parts of the internal

decision-making structure of the DNN have been exercised by

at least one test input.

A typical feed-forward deep neural network contains mul-

tiple nonlinear processing layers with each hidden layer using

the output of the previous hidden layer as its input. Each

layer consists of multiple neurons. A neuron is a computing

unit, loosely patterned on the neurons in the human brain,

which fires/activates when it receives sufficient stimuli or

input. Mathematically, if Lk−1 and Lk denote two consecutive

layers of this DNN (Figure 1):

ni,k = φk

(
δi,k +

∑
1≤j≤Nk−1

(wj,i·nj,k−1)
)

(1)

where:

• ni,k denotes the value of the ith neuron of kth layer,

• φk denotes the activation function of the kth layer,

• δi,k denotes the bias for node ni,k,

• Nk−1 denotes the number of nodes/neurons of layer Lk−1,

and

• wj,i denotes the weight of the connection between the jth

neuron of layer Lk−1 and ith neuron of layer Lk

Therefore, along with the value of each neuron having an

independent effect on the activation of neurons in the next

hidden layer, the combinations of values of neurons in the

same layer also affect the value of neurons in the next layer.

Any coverage criterion for deep neural networks must be

able to capture both of these factors. Further, the coverage

criterion should be scalable to larger-sized real-world DNNs

and different network architectures. The coverage criteria

proposed by previous works suffer from several limitations:

• Neuron coverage [7] measures the parts of the DNN’s logic

exercised by the test inputs based on the number of neurons

activated by the input. However, it is not able to thoroughly

account for all the possible behaviors that a DNN could

exhibit. Experiments by [8] were able to prove that neuron

coverage is fairly easy to achieve and 25 random test inputs

are able to achieve close to 100% neuron coverage. Further,

we observed that corner case behavior can be found beyond

100% neuron coverage. Our experiments1 found that in cer-

tain cases of model architecture, for instance LeNet-1 used

for MNIST handwritten digit classification, 100% neuron

coverage can be obtained with two test inputs, because

for most test inputs, the neurons are always fired/activated.

Therefore, neuron coverage is a fairly coarse and insufficient

criterion for coverage in DNNs.

• DeepCover’s [8] coverage criteria take into consideration the

condition-decision dependence in adjacent layers of a DNN.

Apart from their method being tested on relatively small

networks, it assumes the DNN to be a feedforward, fully-

connected network and cannot generalize to architectures

like RNNs, LSTMs, attention networks, etc. Such methods

do not consider the context of a neuron in its own layer,

and the combinations of neuron outputs in the same layer.

• DeepCT’s [5] combinatorial testing inspired coverage crite-

rion determines the fraction of logic exercised by a test input

in terms of the fraction of neurons activated in each layer. It

does not consider the inter-layer relationships within a DNN,

and has not been verified to scale to real-world DNNs with

different kinds of layers.

B. Why do we need better test input generation?
Generating or selecting test inputs in a guided manner

usually has two major goals - maximizing the number of un-

covered faults, and maximizing the coverage. [7] introduces a

joint optimization based test input generation method, in which

an existing test input is modified (using image manipulations)

recursively until a test input causing differential behavior is

found. [9] uses a similar greedy search technique in which

random transformations are applied until an appropriate test

input is found. Such test input generation methods suffer from

some major drawbacks:

1All results for neuron coverage were obtained by running the DeepXplore
code https://github.com/peikexin9/deepxplore/tree/master/MNIST for image
manipulation=light and best-performing parameters: λ1=1, λ2=0.1, steps=10,
grad iterations=1000, threshold=0

86

• The iterative process of manipulating an existing test input

until a test input that satisfies the criterion is found, has

considerable time per execution.

• The number of test inputs that actually cause an increase

in coverage and/or an increase in the number of uncovered

corner case behaviors are fairly low in comparison to the

sum of total number of tested and generated inputs.

C. Why do we need a better oracle?
Testing for the correctness of a DNN requires the presence

of ground truth (oracle), that decides if the behavior is correct.

The existing oracles for testing DNNs suffer from several

limitations:

• The most straightforward way in data-driven schemes like

DNNs is by collecting as much real-world data as possible

and manually labeling it to check for correctness. However,

such a process requires a lot of manual effort.

• In multiple DNN implementations [7] as an oracle, multiple

implementations for the same task are compared, and differ-

ential behavior is labeled as a corner case behavior. How-

ever, we observed that this method erroneously classifies

certain corner case inputs as correct behaviors because the

labels predicted by all the implementations are similar and

misclassifies several correct inputs as corner-case behaviors.

Also, this method is only valid in applications that have sev-

eral existing high-accuracy implementations. Often, DNNs

may be deployed in tasks that do not have many existing

implementations and/or implementations may be crafted by

the same set of experts that are bound to have used the same

methods or made the same errors.

V. PRELIMINARY APPROACH AND RESULTS

In this paper, we focus only on proposing a finer coverage

criterion. An ideal coverage criterion for deep neural networks

must be able to guarantee completeness, i.e., all parts of the

internal decision logic of the DNN have been tested by at least

one input. Recall that the value of a neuron in a particular

layer in a DNN is computed as a nonlinear function of the

weighted sum of neurons in the previous layer, as shown in

Equation 1. On these lines, we propose a coverage criterion

that incorporates both factors- the conditional effect of each

neuron on the value of neurons in the next layer and the

combinations of values of neurons in a layer [3].

For two consecutive layers, Lk−1 and Lk in a given

(feed forward) deep neural network, let the neurons in these

layers be denoted by {n1,k−1, n2,k−1, ..., nNk−1,k−1} and

{n1,k, n2,k, ..., nNk,k} respectively, where Nk denotes the total

number of neurons in Lk. For any test input t, a neuron n
is said to be activated if its value is greater than a certain

threshold, for example, 0. Formally, if φ(t, n) denotes the

activation of neuron n when the input to the deep neural

network is t, then if φ(t, n) >0 (or any other threshold value,

depending on activation function) then the neuron is said to

be activated or fired. Therefore, for a given neuron n and test

input t, the condition φ(t, n) > 0 can have two values, true

or false, depending on whether the neuron is activated or not.

Based on these definitions, our coverage criterion is defined

as the 2-way coverage [3] for every such triplet in the DNN:

(ni,k−1, nj,k−1, nq,k). Formally, for a given test set for n
variables, simple t-way combination coverage is the proportion

of t-way combinations of n variables for which all variable-

values configurations are fully covered. By ensuring 2-way

coverage on three such distinct neurons, we are able to cover,

(1) the independent effect a condition (activation of neuron in

Lk−1) has on an outcome (value of neuron in the next layer,

Lk), (2) the failures that may arise because of the ‘interaction’

or activation values of neurons in the same layer Lk−1. While

the first coverage is more inspired by MC/DC [2] and other

traditional software-coverage criteria, the second coverage is

inspired by combinatorial testing [3]. This kind of testing is

based on the fact that not every parameter contributes to every

failure, and empirical data suggest that nearly all failures are
caused by interactions between relatively fewer parameters.

This finding has important implications for testing because it

suggests that testing combinations of (fewer) parameters can

provide highly effective fault detection. In our scenario, since

values of multiple (but not always all) neurons in the previous

layer contribute towards the values of neurons in the next

layer, such a method is able to test for multiple values that

a condition (weighted sum in Equation 1) can take, which is

also one of the requirements for traditional software coverage

criteria such as MC/DC [2].

For preliminary results, we approach guided test input

generation via joint optimization [7]. Any triplet not having

achieved 100% coverage is randomly chosen to determine

which combination(s) of activation values has not been cov-

ered. Consider, for example, the DNN instance where ni,k-1

is fired but nj,k-1 is not activated. The decision neuron nq,k is

fired. The objective becomes

Fn,t = fni,k−1
(t) + fnj,k−1

(t) + fnq,k
(t), (2)

where

• fni,k−1
(t) = φ(t, ni,k−1) needs to be maximized such that

φ(t, ni,k−1) > 0 (or the decided threshold),

• fnj,k−1
(t) = φ(t, nj,k−1) needs to be minimized such that

φ(t, nj,k−1) = 0, and

• fnq,k
(t) = φ(t, nq,k) needs to be maximized such that

φ(t, nq,1) > 0.

The objective function to maximize coverage therefore be-

comes,

Fn,t = φ(t, ni,k−1)− φ(t, nj,k−1) + φ(t, nq,k). (3)

Because the individual terms in Fn,t are activation values

of certain neurons in certain layers and φ(t, n) for any n is

a sequence of stacked functions, the gradient
∂F n(t)

∂t can be

calculated using the chain rule in calculus, i.e., by computing

layer-wise derivatives backwards from the layer containing

neuron n until reaching the input layer which takes input t
[7].Hence, the input t can be manipulated in steps to maximize

Fn,t. The oracle we use is the same as [7], so the second

objective is to generate differential behavior causing inputs.

87

Metric Result

Coverage for 10 random inputs 8.9%

Guided coverage for 550 test inputs 31%

Number of corner case behaviors found for 550 inputs tested 483

Adversarial Ratio 87.8%

TABLE I: Evaluation of coverage metric on LeNet archi-

tectures for MNIST dataset. All results are an average over

LeNet-1, LeNet-4, LeNet-5.

We evaluated our coverage metric on three DNNs that

classify the MNIST dataset of handwritten digits: LeNet-1,

LeNet-4 and LeNet-5. Since the primary goal of our work is

to introduce and test a more fine-grained coverage metric, our

test input generation method and oracle share the limitations

mentioned in section IV. The metrics used for determining the

validity of our coverage criterion were:

• The coverage obtained on ten random test inputs, and

• The ratio of number of corner cases found to the number of

total test inputs.

Ideally, the coverage for ten random test inputs (not generated

using a guided method) must be low, i.e., the criterion must

be difficult to achieve for random inputs, and the adversarial

ratio must be high. We currently use multiple implementations

[7] as an oracle, introduced in IV, and only one image

manipulation, brightness. The results are summarized in Table

I2. We then compared our proposed coverage criterion with

existing coverage metrics. We found that for the same dataset

and DNNs, the average neuron coverage [7] for ten random

test inputs over the three DNNs is 30.5% (threshold used is

0), as opposed to 8.9% for our coverage criterion. Further,

for LeNet-1, 100% neuron coverage can be achieved with just

two corner-case inputs and a lot of corner-case inputs can

be found beyond achieving 100% neuron coverage. On the

other hand, LeNet-1 achieves close to 11.6% coverage for

our criterion over 550 test inputs. This is because the most

common activation pattern in the DNN for the given test inputs

is all neurons being fired/activated, and hence 2-way coverage

is difficult to achieve. The average neuron coverage across all

three DNNs using guided test input generation is 98.5% for

550 test inputs, but is 31% for our proposed coverage criterion

using the same test input generation method. The maximum

adversarial ratio obtained using DeepCover [8] for DNNs of

similar size is 11%. Similarly, DeepCT [5] achieves less than

10% adversarial ratio for a DNN of similar size, for 10,000

test inputs. These results confirm that for testing DNNs, it is

important to have a more fine-grained coverage metric that not

only incorporates inter-layer relationships, but also the relative

activations of neurons in the same layer. While the large

number of triplets may seem like a computational bottleneck,

the average time taken to update coverage for LeNet-5 with

the most number of triplets (651720) is 2.08 seconds.

2Our implementation involves trying to optimize for image manipulations
to generate differentially behaving, more coverage test inputs from all inputs,
whether or not they cause differential behavior when not manipulated at all.

VI. CONCLUSION

The absence of a transparent decision logic makes it

impossible to apply traditional software testing methods to

DNNs. This paper examines existing testing methods for deep

neural networks and recognizes several limitations such as

coarse coverage criteria, open ended processes, unreliable

oracles, inefficient test input generation methods, inability to

scale to larger DNNs and different network architectures, etc.

Further, we propose a fine-grained coverage criterion for feed

forward DNNs that takes into account the condition-decision

relationships between adjacent layers and the combinations

of values of neurons in the same layer. A set of ten random

test inputs could only achieve 8.9% of our coverage criterion.

Further, when coupled with gradient-based search techniques

and multiple implementations oracle, it is able to achieve an

average 87.8% adversarial ratio over three models. The ability

to test the internal logic of a DNN to a greater extent makes

its performance better than existing methods. The scalability

of the coverage method to larger-sized real-world DNNs and

its adaptation to different network architectures is yet to be

tested.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported in part by the

National Science Foundation under Grant No. CNS: 1650512,

conducted in the NSF UICRC Center of Visual and Decision

Dynamics. This research was also supported by the Northrop

Grumman Mission Systems University Research Program.

REFERENCES

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
End to End Learning for Self-Driving Cars. 2016.

[2] Kelly J Hayhurst, John J Chilenski, and Leanna K Rierson. A Practical
Tutorial Decision Coverage on Modified Condition. Technical report,
2001.

[3] D Richard Kuhn, Raghu N Kacker, and Yu Lei. ”Combinatorial Testing”.
Technical report.

[4] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-
Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang.
DeepMutation: Mutation Testing of Deep Learning Systems. 2018.

[5] Lei Ma, Fuyuan Zhang, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao,
and Yadong Wang. Combinatorial Testing for Deep Learning Systems.
2018.

[6] Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple Black-Box
Adversarial Perturbations for Deep Networks. 2016.

[7] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore:
Automated Whitebox Testing of Deep Learning Systems. 2017.

[8] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. Testing Deep
Neural Networks. 2018.

[9] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. DeepTest:
Automated Testing of Deep-Neural-Network-driven Autonomous Cars.
2017.

[10] Y. LeCun. Lenet-5, convolutional neural networks.

88

