
Evaluating Statistical Models for Network Traffic
Anomaly Detection

 Peter Kromkowski1¶, Shaoran Li1¶, Wenxi Zhao1¶, Brendan Abraham2*, Austin Osborne3*, Donald E. Brown4
pk9t, sl4bz, wz8nx, bea3ch@virginia.edu, austin.osborne@capitalone.com, brown@virginia.edu

Abstract - Large organizations may have hundreds or
thousands of applications running simultaneously to
support their operations. To maintain high levels of
efficiency, they need to quickly detect outages or
anomalies in order to quickly fix the problem and reduce
costs. This paper describes the analytical framework for
a network traffic data anomaly-detection method to
reduce application downtime and the need for human
involvement in detecting or reporting anomalous
application behavior. We use the described framework
to compare the performances of a Seasonal
Autoregressive Integrated Moving Average (SARIMA)
times series model and Long Short-Term Memory
(LSTM) Autoencoder model at anomaly detection. We
evaluated these models using false positive rates and
accuracy, with a requirement of being able to give timely
alerts, and saw that even though both models were
accurate, their false positive rates were very high. We
then improved overall detection performance by
ensembling the SARIMA and LSTM autoencoder. Our
results demonstrate a possible new method of anomaly
detection in network traffic flow using time series and
autoencoders.

Index Terms - Anomaly Detection, Autoencoders, Network
Traffic Flow, SARIMA, Time Series

INTRODUCTION

When network or applications unexpectedly fail or crash,
there is a direct and far reaching impact on the downstream
line and ongoing business operation. Furthermore, these
anomalies are very difficult to detect and outages could
result in significant financial loss. The average cost of
network downtime is $100,000 per hour [1], a number
expected to grow as more people become dependent on
applications.

Capital One Financial Corporation is a bank
holding company specializing in credit cards, auto loans,
banking and savings products. Today, millions of its
customers use its applications to pay their bills, keep track
of their expenses, and countless other time-sensitive uses.
Additionally, internal Capital One company applications are
used by all of its employees to carry out necessary tasks
throughout the business day. Capital One has taken many

steps to make sure these applications are reliable, one of
those being by their Center for Machine Learning.

Capital One’s Center for Machine Learning
(C4ML) currently implements many models that monitor
the network traffic flow of their applications. However,
these models produce a lot of false positives and noise. In
partnership with the C4ML team, this paper aims to produce
a model to detect anomalous activity on a Capital One
application while also achieving a low false positive rate.
This will enable Capital One engineers to better react to
application outages, reduce the impact of application
downtimes, and decrease the cost of needing to monitor
these systems.

This paper uses a SARIMA model, an extension of
the popular ARIMA model, that incorporates seasonal
components into its time series predictions. This paper also
focuses on the power of autoencoders in replicating normal
network traffic flow. With successful replication of Capital
One network traffic flows, the autoencoder is able to predict
future traffic flow patterns and throw an alert when the
actual traffic flow greatly differs from the autoencoder
predictions. Lastly, this paper combines these two models in
an ensemble approach to confidently detect anomalies in
network traffic flow.

These methods are implemented and evaluated on a
anomaly-detection framework that first monitors prediction
residuals and then builds a Gaussian distribution on the
residual errors, labeling predicted anomalies as the residuals
that fail within the tails of the distribution.

By comparing the false positive rate and prediction
accuracy for all models and comparing the influence of
transaction and bytes to anomalies, the ensemble method is
the suggested candidate for anomaly detection.

RELATED WORK

I. Time Series Analysis

Anomaly detection has been an active research area in the
fields of statistics and machine learning. When conducting
anomaly detection, learning both normal and abnormal
behaviour of the data is essential to understand the
significance of each anomaly. As Toledano et al. [2]
suggested, temporal methods such as Holt-Winters, classical
ARIMA and seasonal ARIMA models can be used to study
the temporal dynamics of normal behaviour. Several

challenges are presented along with exploiting the time
series algorithm, such as the robustness of the model to the
anomalies in order to prevent training on unhealthy data,
adjusting for seasonality including multiple patterns of
seasonality in the data which requires the selected model to
be sensitive to changing dynamics in the data. This issue is
addressed in our methodology by replacing unhealthy data
with healthy prediction data and adjusting the underlying
parameters of the time series model automatically with a
moving sliding window in order to adapt to various patterns
of seasonality.

II. Sliding Window Algorithm

Sliding Window is a temporary approximation over the
actual value of the time series data. H.S. Hota [3] illustrates
that a sliding window algorithm is used to segment the time
series data in order to minimize error approximation and to
provide a robust forecast on time series data. As Figure I
demonstrates, the initial window size of 5 historical data
observations is used to make a prediction for the next day.
The window slides after the first prediction and the
observations 2-6 are used to predict day 7. The process
continues until all necessary time frames are predicted or
resources are exhausted. In this paper, a sliding window is
combined with a time series model to forecast real-time data
and auto-adjust parameters to make more accurate and
timely predictions.

FIGURE I. Process of Sliding Window

III. Autoencoders

Long Short-Term Memory (LSTM) is an artificial recurrent
neural network architecture. LSTM units include a cell that
can maintain information in memory for long periods of
time. It does this with a set of gates used to control when
information enters the memory, when it’s output, and when
it's forgotten. One input gate unit is used to protect memory
contents from irrelevant input and one output gate is used to
protect other units from currently irrelevant stored memory.
[4] However, LSTM recurrent neural networks have not
always proved to be a reliable time series forecasting
method. This is most likely due to their inability to
understand the structure among every point in a sequence,
instead trying to continuously move the model forward.

An autoencoder neural network is a unsupervised
learning algorithm that tries to replicate its inputs, learning a
function that can closely match, without overfitting, the
identity function of the data [5]. Autoencoders help reduce

noise while also decoding and constructing the complex and
turbulent relationships in a signal. To model the uncertainty
contained in network traffic flows, the auto-encoder is
trained on a noisy dataset using unsupervised learning
strategies. Then, the autoencoder is trained by a
back-propagation algorithm using supervised learning
strategies to capture the complex relationships over the
network traffic flows. An LSTM autoencoder enhances this
learning strategy for time series data by learning the
importance of sequential data.

Maxim Wolpher [6] showed that an LSTM
autoencoder can have a significant advantage in replicating
normal network traffic flow based off of a structure trained
on known non-anomalous (healthy) traffic flow. Wolpher
also tested the LSTM autoencoder on anomalous malicious
traffic flow and showed that the model’s replication error
was significantly higher than its replication error of normal
network traffic.

This type of test can be used to detect future
anomalous periods based of off high replication errors and is
the main style of implementation of an LSTM autoencoder
in this paper.

METHODOLOGY

I. Data Description

Two data sources hosted over Amazon Web Services were
provided for this paper. The first, consisted of network
traffic flow logs from a specific application used internally
at Capital One. Due to complexities and size, the data used
in this paper spans from January 15th 3:15pm to January
26th 3:30pm, with logs aggregated on fifteen minute
intervals. Additionally, only the number of bytes and
transactions (a request sent by a user from one IP address)
per timestamp were available for this paper. The number of
transactions range from 275 to 75,434 and the volume of
bytes range from 164 to 4.51 billion (Figure II). Limited
feature engineering was done due to the irregularity and
complexity of the network traffic flow and to reduce the
possibility that a feature could be affected by an unknown
anomalous period.

The second datasource used in this paper provided
anomalous periods for the application. These anomalous
periods were represented by a rise in failed queries to the
application. This dataset provided two periods that
overlapped with our network traffic flow which were
labeled as anomalous: Jan 23rd 6:30pm to Jan 23rd 10pm
and January 24th 2pm to January 24th 9:30pm.

FIGURE II. Network Traffic Flow of Bytes and Transactions (15 minutes
interval)

MODELING TECHNIQUES

We used two different time series techniques to predict
network bytes and transaction data and measured their
performance. These models were chosen since they were
thought to best understand the complexity and noise of the
network traffic flow. Additionally, they are both useful and
widely used techniques for detecting anomalies. Two
datasets were created for both the bytes and transactions and
each dataset was independently used on both models. The
datasets were split into a training set which contained the
first week of known non-anomalous traffic, while the dates
Jan 22th-25th were used in the testing set. The models were
tested using the test dataset and then post-test labeled with
the known anomalous periods. The residuals of the test data
prediction at non-anomalous and anomalous timestamps
were used to arrive at the performance metrics for model
comparison.

I. Time Series -- SARIMA Model

SARIMA, or Seasonal ARIMA, is an extension of ARIMA
modeling, taking into account the seasonal component of the
univariate time series data. The SARIMA model contains
three hyperparameters to specify autoregression, difference
order, and moving average for the seasonal component of
time series data. It also includes additional parameters for

seasonality such as seasonal autoregressive, seasonal
difference order, seasonal moving average, and the number
of time steps for a single seasonal period. To find out the
best model, grid search is used over all hyperparameters to
test all combinations, calculating their respective Akaike
Information Criteria (AIC), which provides a means of
model selection; the lower the AIC value, the better the
model.

Since a goal for this paper is to have the anomaly
detector send alerts in a timely fashion, the SARIMA model
needs to keep the prediction as close as possible to the
previous trend. In order to achieve this goal, the sliding
window algorithm is implemented in the SARIMA model to
train data on a preceding period and then making predictions
on the current period.

The first step is to make several sliding windows
with one week size and each time the sliding window moves
one day forward in order to predict the next day. In the
SARIMA model, each window is used as a training set and
one day of prediction data points is used as a test set. Since
the data ranges over eleven days, the one week sliding
window algorithm moves four times in total, making
predictions on Jan 22nd, 23rd, 24th, and 25th.

Because anomalies can happen across days that
may eventually be included in the sliding window training
set, the model must be able to avoid being influenced by
these unusual traffic patterns. This is done by replacing the
test data, labeled as anomalous by the model, with its
prediction data when it is incorporated in the sliding
window to make future predictions. Because the prediction
data is always based off of non-anomalous data it serves as a
proxy for what should be healthy data during anomalous
periods.

II. LSTM Autoencoder

Individual sequences of data were created for each
datapoint in the training and test set that included the
datapoint and six hours worth of prior timestamps, to give
an array of 25 timestamps. This ultimately created a very
large, complex, and overlapping state space. A stateful
LSTM autoencoder model was used so the cell states
remained persistent while the model was carried forward
across the dataset. The stateful LSTM autoencoder
parameters, such as number of layers and hidden units, were
modified until the training loss was less than one percent.
Ultimately, the autoencoder relied on one 100 unit hidden
layer with another time-distributed dense layer.

EVALUATION

Both models were evaluated on both bytes and transaction
datasets. However, analysis showed that both models
evaluated on the transaction data were better suited for
anomaly detection than their bytes counterparts. Therefore,

the analysis for anomaly detection using the transaction
dataset is highlighted in this paper.

Figure III. Combined SARIMA predictions on the test
transaction data

Figure IV. LSTM Autoencoder replication of the test
transaction data based on the training replication

Figure III shows the combined SARIMA

predictions of every sliding window for the transaction data
test set. Figure IV displays the autoencoders interpretation
and replication of the transaction testing set based off of the
structure of the training set. Both models discovered the
seasonality and trends of the underlying movement of the
data.

The models were evaluated using a distribution
method on both the bytes and transaction datasets. For each
model, all of the residual errors of the testing set before the
first anomaly period (Jan 22nd - Jan 23rd 6:30pm), which is
a period that only contains healthy data, were scaled and
used to build a standard normal Gaussian distribution
(Figure V).

FIGURE V. Gaussian plots for SARIMA (top) and Autoencoder (bottom).
Both are the distributions for the transaction residuals.

These distributions validify the assumption of
standard normal distribution of residuals during a
non-anomalous period. However, both plots are slightly
skewed to the right which indicates that the mean is greater
than the median and the distribution may contain outliers.

After the distributions were created the rest of the
testing residuals were fit into the distribution. Residuals
were labeled as anomalous if they exceeded a certain
standard deviation away from the mean.

Detecting anomalous behaviour in network traffic
flow requires accurate labeling of the data in real time.
Additionally, for Capital One, a conservative model with
little noise and low false positive rates is essential for
implementation. Models with a high false positive rate can
cause alert fatigue and expensive monitoring costs.
Therefore, though accuracy and true positive rates are take
into consideration during model evaluation, a useful model
with a low false positive rate must be emphasized.

The appropriate standard deviation for each model
was chosen with this in mind by using a ROC curve to
analyze the tradeoff between specificity and sensitivity of
the known non-anomalous and anomalous periods. With
low false positive rates given priority, a standard deviation
of 2.2 was chosen for the SARIMA model and a standard
deviation of 2.8 was chosen for the autoencoder (Figure VI).

FIGURE VI. ROC curves for Transaction SARIMA (Top) and LSTM
Autoencoder (Bottom)

RESULTS

The resulting detection rates from the SARIMA model

and LSTM Autoencoder are shown in Table 1. In both
models the transaction dataset was better suited for
modeling normal traffic behavior, and thus detect anomalies
based on prediction error. The true positive rates for the
transaction based models are significantly higher than those
seen in the bytes based models . However, every model has
a very high false positive rate relative to the how much this
application is used on a daily basis. Such a high false
positive rate would render a model useless for real life
implementation.

TABLE I
 SARIMA Autoencoder

 Bytes Transactions Bytes Transactions

True Positive Rate 4.17% 25.00% 2.07% 14.58%

False Positive Rate 2.97% 3.86% 2.08% 3.26%

III. Ensemble Model

This papers final approach is an ensemble model that
combines the predictions of both the SARIMA and
Autoencoder model in order to reduce the false positive rate.
The ensemble model classifies a data point as an anomaly if
both models do. As shown in Table II, this ensemble
method reduces the the false positive rate of the autoencoder
by nearly 50%

TABLE II
 Ensemble Model

 Bytes Transactions

True Positive Rate 2.08% 14.58%

False Positive Rate 1.48% 1.78%

CONCLUSION AND FUTURE WORK

This paper set out to create a model that could ingest real
time network traffic flow and detect if it was anomalous.
Based off of transaction data for network traffic flow time
stamps, this paper was able to create an ensemble model,
comprised of a SARIMA model and an autoencoder that had
a true positive rate of 14.58% and a false positive rate of
1.78%. Implemented with other models, this type of model
could prove useful in confident anomalous behavior
detection.

Most importantly, this paper supported the
usefulness of LSTM autoencoders and SARIMA models in
network traffic flow prediction. It also provided a
methodology of describing healthy network traffic as a
Gaussian distribution with anomalous network traffic flow
falling outside of a certain standard deviation.

However, this paper encountered many obstacles,
such as limited features and very specific and scarce data
that limit the significance of the particular findings of this
paper. Future work should expand on the concepts and
methodologies outlined in this paper. More data should be
analyzed to learn the true distribution of healthy data and
where anomalous activity falls inside of that distribution for
each type of model. Additional future work also includes
improving class imbalance and testing other distributions.

REFERENCES

1. Andrus, Kolton. “Why CTOs And CIOs Should
Care More About The Cost Of Downtime.” Forbes,
Forbes Magazine, 26 Apr. 2018,
www.forbes.com/sites/forbestechcouncil/2018/04/2
6/why-ctos-and-cios-should-care-more-about-the-c
ost-of-downtime/#9d3bde9131c1.

2. Toledano, Meir, Cohen, Ira et al. “Real-Time
Anomaly Detection System for Time Series at
Scale.” PMLR,

3. Hota, H.S, et al. “Time Series Data Prediction
Using Sliding Window Based RBF Neural
Network .” International Journal of Computational
Intelligence Research , vol. 13, no. 5, 2017.

4. Namin, SIMA SIAMI, and AKBAR SIAMI
Namin. “Forecasting Economics and Financial
Time Series: ARIMA vs. LSTM.” ArXiv.org, 16
Mar. 2018, arxiv.org/abs/1803.06386.

5. Unsupervised Feature Learning and Deep Learning
Tutorial, Stanford,
ufldl.stanford.edu/tutorial/unsupervised/Autoencod
ers/.

6. Wolpher, Maxim. “Anomaly Detection in
Unstructured Time Series Data Using an LSTM
Autoencoder.” KTH ROYAL INSTITUTE OF
TECHNOLOGY SCHOOL OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE,
vol. 2, 2018.

AUTHOR INFORMATION

1 Peter Kromkowski, M.S. Data Science, Data Science
Institute, University of Virginia.
1 Shaoran Li, M.S. Data Science, Data Science Institute,
University of Virginia.
1 Wenxi Zhao M.S. Data Science, Data Science Institute,
University of Virginia.
2 Brendan Abraham, Co-Advisor, School of Systems and
Information Engineering, University of Virginia.
3 Austin Osborne, Co-Sponsor, Center For Machine
Learning, Capital One.
4 Donald E. Brown, Co-Sponsor, School of Systems and
Information Engineering, University of Virginia.

¶ These authors contributed equally to this work.
* Corresponding author

