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Abstract - Large organizations may have hundreds or        
thousands of applications running simultaneously to      
support their operations. To maintain high levels of        
efficiency, they need to quickly detect outages or        
anomalies in order to quickly fix the problem and reduce          
costs. This paper describes the analytical framework for        
a network traffic data anomaly-detection method to       
reduce application downtime and the need for human        
involvement in detecting or reporting anomalous      
application behavior. We use the described framework       
to compare the performances of a Seasonal       
Autoregressive Integrated Moving Average (SARIMA)     
times series model and Long Short-Term Memory       
(LSTM) Autoencoder model at anomaly detection. We       
evaluated these models using false positive rates and        
accuracy, with a requirement of being able to give timely          
alerts, and saw that even though both models were         
accurate, their false positive rates were very high. We         
then improved overall detection performance by      
ensembling the SARIMA and LSTM autoencoder. Our       
results demonstrate a possible new method of anomaly        
detection in network traffic flow using time series and         
autoencoders. 

Index Terms - Anomaly Detection, Autoencoders, Network       
Traffic Flow, SARIMA, Time Series 

INTRODUCTION 

When network or applications unexpectedly fail or crash,        
there is a direct and far reaching impact on the downstream           
line and ongoing business operation. Furthermore, these       
anomalies are very difficult to detect and outages could         
result in significant financial loss. The average cost of         
network downtime is $100,000 per hour [1], a number         
expected to grow as more people become dependent on         
applications. 

Capital One Financial Corporation is a bank       
holding company specializing in credit cards, auto loans,        
banking and savings products. Today, millions of its        
customers use its applications to pay their bills, keep track          
of their expenses, and countless other time-sensitive uses.        
Additionally, internal Capital One company applications are       
used by all of its employees to carry out necessary tasks           
throughout the business day. Capital One has taken many         

steps to make sure these applications are reliable, one of          
those being by their  Center for Machine Learning. 

Capital One’s Center for Machine Learning      
(C4ML) currently implements many models that monitor       
the network traffic flow of their applications. However,        
these models produce a lot of false positives and noise. In           
partnership with the C4ML team, this paper aims to produce          
a model to detect anomalous activity on a Capital One          
application while also achieving a low false positive rate.         
This will enable Capital One engineers to better react to          
application outages, reduce the impact of application       
downtimes, and decrease the cost of needing to monitor         
these systems. 

This paper uses a SARIMA model, an extension of         
the popular ARIMA model, that incorporates seasonal       
components into its time series predictions. This paper also         
focuses on the power of autoencoders in replicating normal         
network traffic flow. With successful replication of Capital        
One network traffic flows, the autoencoder is able to predict          
future traffic flow patterns and throw an alert when the          
actual traffic flow greatly differs from the autoencoder        
predictions. Lastly, this paper combines these two models in         
an ensemble approach to confidently detect anomalies in        
network traffic flow. 

These methods are implemented and evaluated on a        
anomaly-detection framework that first monitors prediction      
residuals and then builds a Gaussian distribution on the         
residual errors, labeling predicted anomalies as the residuals        
that fail within the tails of the distribution.  

By comparing the false positive rate and prediction        
accuracy for all models and comparing the influence of         
transaction and bytes to anomalies, the ensemble method is         
the suggested candidate for anomaly detection. 

RELATED WORK 

I. Time Series Analysis

Anomaly detection has been an active research area in the          
fields of statistics and machine learning. When conducting        
anomaly detection, learning both normal and abnormal       
behaviour of the data is essential to understand the         
significance of each anomaly. As Toledano et al. [2]         
suggested, temporal methods such as Holt-Winters, classical       
ARIMA and seasonal ARIMA models can be used to study          
the temporal dynamics of normal behaviour. Several       



challenges are presented along with exploiting the time        
series algorithm, such as the robustness of the model to the           
anomalies in order to prevent training on unhealthy data,         
adjusting for seasonality including multiple patterns of       
seasonality in the data which requires the selected model to          
be sensitive to changing dynamics in the data. This issue is          
addressed in our methodology by replacing unhealthy data        
with healthy prediction data and adjusting the underlying        
parameters of the time series model automatically with a         
moving sliding window in order to adapt to various patterns          
of seasonality.  

II. Sliding Window Algorithm  

Sliding Window is a temporary approximation over the        
actual value of the time series data. H.S. Hota [3] illustrates           
that a sliding window algorithm is used to segment the time           
series data in order to minimize error approximation and to          
provide a robust forecast on time series data. As Figure I           
demonstrates, the initial window size of 5 historical data         
observations is used to make a prediction for the next day.           
The window slides after the first prediction and the         
observations 2-6 are used to predict day 7. The process          
continues until all necessary time frames are predicted or         
resources are exhausted. In this paper, a sliding window is          
combined with a time series model to forecast real-time data          
and auto-adjust parameters to make more accurate and        
timely predictions.  

 
FIGURE I. Process of Sliding Window 

 

III.  Autoencoders  

Long Short-Term Memory (LSTM) is an artificial recurrent        
neural network architecture. LSTM units include a cell that         
can maintain information in memory for long periods of         
time. It does this with a set of gates used to control when             
information enters the memory, when it’s output, and when         
it's forgotten. One input gate unit is used to protect memory           
contents from irrelevant input and one output gate is used to           
protect other units from currently irrelevant stored memory.        
[4] However, LSTM recurrent neural networks have not        
always proved to be a reliable time series forecasting         
method. This is most likely due to their inability to          
understand the structure among every point in a sequence,         
instead trying to continuously move the model forward.  

An autoencoder neural network is a unsupervised       
learning algorithm that tries to replicate its inputs, learning a          
function that can closely match, without overfitting, the        
identity function of the data [5]. Autoencoders help reduce         

noise while also decoding and constructing the complex and         
turbulent relationships in a signal. To model the uncertainty         
contained in network traffic flows, the auto-encoder is        
trained on a noisy dataset using unsupervised learning        
strategies. Then, the autoencoder is trained by a        
back-propagation algorithm using supervised learning     
strategies to capture the complex relationships over the        
network traffic flows. An LSTM autoencoder enhances this        
learning strategy for time series data by learning the         
importance of sequential data.  

Maxim Wolpher [6] showed that an LSTM       
autoencoder can have a significant advantage in replicating        
normal network traffic flow based off of a structure trained          
on known non-anomalous (healthy) traffic flow. Wolpher       
also tested the LSTM autoencoder on anomalous malicious        
traffic flow and showed that the model’s replication error         
was significantly higher than its replication error of normal         
network traffic.  

This type of test can be used to detect future          
anomalous periods based of off high replication errors and is          
the main style of implementation of an LSTM autoencoder         
in this paper.  

METHODOLOGY 
 

I. Data Description 

Two data sources hosted over Amazon Web Services were         
provided for this paper. The first, consisted of network         
traffic flow logs from a specific application used internally         
at Capital One. Due to complexities and size, the data used           
in this paper spans from January 15th 3:15pm to January          
26th 3:30pm, with logs aggregated on fifteen minute        
intervals. Additionally, only the number of bytes and        
transactions (a request sent by a user from one IP address)           
per timestamp were available for this paper. The number of          
transactions range from 275 to 75,434 and the volume of          
bytes range from 164 to 4.51 billion (Figure II). Limited          
feature engineering was done due to the irregularity and         
complexity of the network traffic flow and to reduce the         
possibility that a feature could be affected by an unknown          
anomalous period.  

The second datasource used in this paper provided        
anomalous periods for the application. These anomalous       
periods were represented by a rise in failed queries to the           
application. This dataset provided two periods that       
overlapped with our network traffic flow which were        
labeled as anomalous: Jan 23rd 6:30pm to Jan 23rd 10pm          
and January 24th 2pm to January 24th 9:30pm.  

 



FIGURE II. Network Traffic Flow of Bytes and Transactions  (15 minutes 
interval) 

MODELING TECHNIQUES

We used two different time series techniques to predict         
network bytes and transaction data and measured their       
performance. These models were chosen since they were        
thought to best understand the complexity and noise of the          
network traffic flow. Additionally, they are both useful and         
widely used techniques for detecting anomalies. Two       
datasets were created for both the bytes and transactions and          
each dataset was independently used on both models. The         
datasets were split into a training set which contained the         
first week of known non-anomalous traffic, while the dates         
Jan 22th-25th were used in the testing set. The models were           
tested using the test dataset and then post-test labeled with          
the known anomalous periods. The residuals of the test data          
prediction at non-anomalous and anomalous timestamps      
were used to arrive at the performance metrics for model          
comparison.  

I. Time Series -- SARIMA Model 

SARIMA, or Seasonal ARIMA, is an extension of ARIMA         
modeling, taking into account the seasonal component of the         
univariate time series data. The SARIMA model contains        
three hyperparameters to specify autoregression, difference      
order, and moving average for the seasonal component of         
time series data. It also includes additional parameters for         

seasonality such as seasonal autoregressive, seasonal      
difference order, seasonal moving average, and the number        
of time steps for a single seasonal period. To find out the            
best model, grid search is used over all hyperparameters to          
test all combinations, calculating their respective Akaike       
Information Criteria (AIC), which provides a means of        
model selection; the lower the AIC value, the better the          
model. 

Since a goal for this paper is to have the anomaly           
detector send alerts in a timely fashion, the SARIMA model          
needs to keep the prediction as close as possible to the           
previous trend. In order to achieve this goal, the sliding          
window algorithm is implemented in the SARIMA model to         
train data on a preceding period and then making predictions          
on the current period.  

The first step is to make several sliding windows         
with one week size and each time the sliding window moves           
one day forward in order to predict the next day. In the            
SARIMA model, each window is used as a training set and           
one day of prediction data points is used as a test set. Since             
the data ranges over eleven days, the one week sliding          
window algorithm moves four times in total, making        
predictions on Jan 22nd,  23rd,  24th, and  25th.  

Because anomalies can happen across days that       
may eventually be included in the sliding window training         
set, the model must be able to avoid being influenced by           
these unusual traffic patterns. This is done by replacing the          
test data, labeled as anomalous by the model, with its          
prediction data when it is incorporated in the sliding         
window to make future predictions. Because the prediction        
data is always based off of non-anomalous data it serves as a            
proxy for what should be healthy data during anomalous         
periods.  

II. LSTM Autoencoder 

Individual sequences of data were created for each        
datapoint in the training and test set that included the          
datapoint and six hours worth of prior timestamps, to give          
an array of 25 timestamps. This ultimately created a very          
large, complex, and overlapping state space. A stateful        
LSTM autoencoder model was used so the cell states         
remained persistent while the model was carried forward        
across the dataset. The stateful LSTM autoencoder       
parameters, such as number of layers and hidden units, were          
modified until the training loss was less than one percent.          
Ultimately, the autoencoder relied on one 100 unit hidden         
layer with another time-distributed dense layer.  

EVALUATION 
 

Both models were evaluated on both bytes and transaction         
datasets. However, analysis showed that both models       
evaluated on the transaction data were better suited for         
anomaly detection than their bytes counterparts. Therefore,       



the analysis for anomaly detection using the transaction        
dataset is highlighted in this paper.  

Figure III. Combined SARIMA predictions on the test 
transaction data 

Figure IV. LSTM Autoencoder replication of the test 
transaction data based on the training replication

 
Figure III shows the combined SARIMA      

predictions of every sliding window for the transaction data         
test set. Figure IV displays the autoencoders interpretation        
and replication of the transaction testing set based off of the           
structure of the training set. Both models discovered the         
seasonality and trends of the underlying movement of the         
data.  

The models were evaluated using a distribution       
method on both the bytes and transaction datasets. For each          
model, all of the residual errors of the testing set before the            
first anomaly period (Jan 22nd - Jan 23rd 6:30pm), which is           
a period that only contains healthy data, were scaled and         
used to build a standard normal Gaussian distribution        
(Figure V).  

FIGURE V. Gaussian plots for SARIMA (top) and Autoencoder (bottom). 
Both are the distributions for the transaction residuals.  

These distributions validify the assumption of      
standard normal distribution of residuals during a       
non-anomalous period. However, both plots are slightly       
skewed to the right which indicates that the mean is greater           
than the median and the distribution may contain outliers. 

After the distributions were created the rest of the         
testing residuals were fit into the distribution. Residuals        
were labeled as anomalous if they exceeded a certain         
standard deviation away from the mean.  

Detecting anomalous behaviour in network traffic      
flow requires accurate labeling of the data in real time.          
Additionally, for Capital One, a conservative model with        
little noise and low false positive rates is essential for          
implementation. Models with a high false positive rate can         
cause alert fatigue and expensive monitoring costs.       
Therefore, though accuracy and true positive rates are take         
into consideration during model evaluation, a useful model        
with a low false positive rate must be emphasized.  

The appropriate standard deviation for each model       
was chosen with this in mind by using a ROC curve to            
analyze the tradeoff between specificity and sensitivity of        
the known non-anomalous and anomalous periods. With       
low false positive rates given priority, a standard deviation         
of 2.2 was chosen for the SARIMA model and a standard           
deviation of 2.8 was chosen for the autoencoder (Figure VI). 



FIGURE VI. ROC curves for Transaction SARIMA (Top) and LSTM 
Autoencoder (Bottom) 

 
RESULTS 

 
The resulting detection rates from the SARIMA model        

and LSTM Autoencoder are shown in Table 1. In both         
models the transaction dataset was better suited for        
modeling normal traffic behavior, and thus detect anomalies        
based on prediction error. The true positive rates for the          
transaction based models are significantly higher than those        
seen in the bytes based models . However, every model has           
a very high false positive rate relative to the how much this            
application is used on a daily basis. Such a high false           
positive rate would render a model useless for real life          
implementation.  

TABLE I
 SARIMA Autoencoder 

  Bytes Transactions Bytes Transactions

True Positive Rate 4.17% 25.00% 2.07% 14.58% 

False Positive Rate 2.97% 3.86% 2.08% 3.26% 

III. Ensemble Model 

This papers final approach is an ensemble model that         
combines the predictions of both the SARIMA and        
Autoencoder model in order to reduce the false positive rate.          
The ensemble model classifies a data point as an anomaly if           
both models do. As shown in Table II, this ensemble          
method reduces the the false positive rate of the autoencoder         
by nearly 50% 

TABLE II 
 Ensemble Model 

  Bytes Transactions 

True Positive Rate 2.08% 14.58%

False Positive Rate 1.48% 1.78% 

CONCLUSION AND FUTURE WORK 
 

This paper set out to create a model that could ingest real            
time network traffic flow and detect if it was anomalous.          
Based off of transaction data for network traffic flow time          
stamps, this paper was able to create an ensemble model,          
comprised of a SARIMA model and an autoencoder that had          
a true positive rate of 14.58% and a false positive rate of            
1.78%. Implemented with other models, this type of model         
could prove useful in confident anomalous behavior       
detection.  

Most importantly, this paper supported the      
usefulness of LSTM autoencoders and SARIMA models in        
network traffic flow prediction. It also provided a        
methodology of describing healthy network traffic as a        
Gaussian distribution with anomalous network traffic flow       
falling outside of a certain standard deviation. 

However, this paper encountered many obstacles,      
such as limited features and very specific and scarce data          
that limit the significance of the particular findings of this          
paper. Future work should expand on the concepts and         
methodologies outlined in this paper. More data should be         
analyzed to learn the true distribution of healthy data and          
where anomalous activity falls inside of that distribution for         
each type of model. Additional future work also includes         
improving class imbalance and testing other distributions.  
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