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Abstract—Q-Table based Reinforcement Learning (QRL) is a
class of widely used algorithms in AI that work by successively
improving the estimates of Q-values — quality of state-action
pairs, stored in a table. They significantly outperform Neural
Network based techniques when the state space is tractable.
Fast learning for AI applications in several domains (such as
robotics), with tractable ‘mid-sized’ Q-tables, still necessitates
performing a large number of rapid updates. State-of-the-art
FPGA implementations of QRL do not scale along with the Q-
Table state space, thus they are not efficient for such applications.
In this work, we develop a novel FPGA based design of QRL
and SARSA (State Action Reward State Action), scalable to
large state spaces and thereby facilitating a large class of Al
applications. Our architecture provides higher throughput while
using significantly fewer on-chip resources, is capable of support-
ing a variety of action selection policies that covers Q-Learning
and variations of bandit algorithms, and can be easily extended
for multi-agent Q learning. Our pipelined implementation fully
handles the dependencies between consecutive updates allowing
it to process one sample every clock cycle. We evaluate our
architecture for Q-Learning and SARSA algorithms and show
that our designs achieve a high throughput of up to 180 million
samples per second.
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I. INTRODUCTION

Reinforcement Learning (RL) is a Machine Learning tech-
nique that governs the interactions of a goal-directed agent
interacting with an uncertain environment [1]. More formally,
a RL agent senses the environment to determine the current
state and chooses state dependent action that in the long run
will maximize the cumulative rewards. Reinforcement Learn-
ing has found widespread success in a plethora of applications
including robotics, games (Go, Atari, etc.), computer vision,
healthcare and several others [2].

Q-Table based Reinforcement Learning (QRL) algorithms
are classic algorithms for learning agent behavior [3]. QRL
works by successively improving the agent’s evaluation of the
“quality” of taking an action in a state — Q value for the state-
action pair. The Q table stores the values for all possible state-
action pairs.

Extensive research has been performed on accelerating Deep
Neural Network based Q learning algorithms (also known as
Deep Reinforcement Learning (DRL) [4]-[6]). DRL gained
attention due to its ability to tractably learn over very large
state spaces (greater than tens of millions). However, this has

led to a lack of research in accelerating classic QRL. QRL

acceleration merits attention as it can significantly outperform

DRL for medium sized state spaces (hundreds of thousands

to a few million state-action pairs that can fit on the on-chip

memory of the target platform). Specifically, (i) QRL provides
theoretical guarantee with respect to convergence to optimality,
and (ii) the update step for QRL, unlike DRL, does not require

the complexity of using neural networks [7, Ch. 7, p. 207-251]

which require backpropagation. Hence, for applications such

as robotics, accelerating QRL is expected to result in better
performance.

FPGAs have emerged as a platform of choice for ap-
plications requiring fine-grained parallelism and energy-
efficiency [8]. This makes them a suitable platform for acceler-
ating QRL which are sequential in nature (Section III-B). Ac-
celerators can achieve high throughput by using deep pipelined
architectures to exploit parallelism within each update step.
State-of-the-art FPGA devices [9], [10] provide abundant
user-controllable on-chip memory resources (up to 500 Mb)
allowing support for medium sized Q tables.

In this work, we significantly improve upon the state-of-the-
art FPGA implementation for Q-Learning [11] by developing
an architecture scalable to large state spaces. We highly
optimize the number of required multipliers to a small constant
as opposed to being proportional to the size of the state space
in [11]. Furthermore, we generalize the architecture to support
arbitrary action selection policies [12] and develop the first
known FPGA implementation of SARSA algorithm [1]. An
abstract-only version of this paper was published in the pro-
ceedings of ACM FPGA 2020 [13]. Our specific contributions
are as follows:

« We develop QTAccel: a generic pipelined FPGA architecture
for QRL. Our pipelined architecture handles all dependen-
cies between consecutive updates and processes one sample
in every clock cycle.

+ We show the generality of our architecture by implement-
ing two Q Table based algorithms which differ in action
selection policies: Q-Learning (greedy action selection) and
SARSA (e—greedy action selection [14]).

e Our design increases the limit on the on-chip Q-Table size
compared to the design in [11] by more than 1000x for
a similar sized device by reducing the number of required
multipliers to a small constant. This also enables launching
parallel pipelines to solve multi-agent Q learning problems.



o We discuss how our architecture can be customized for
Multi-armed Bandit (MAB) [15] which are critical to next
generation 5G wireless networks [16]. Energy-efficiency is a
significant requirement for such problems [16]. Thus, QTAc-
cel provides a pathway for energy-efficient high-throughput
FPGA implementations for the same.

« Using experimental evaluations we show that our implemen-
tations achieve a high throughput of 180 million samples/s.

II. RELATED WORK

Extensive research has been performed on accelerating
DRL. Parallelization techniques for DRL implementations
targeting cloud as well as single machines with multi-core and
GPUs have been developed [4], [17]-[19]. FPGA accelerators
have also been developed for DRL [6], [12], [20]. Such
implementations enable tractable learning of agents in ex-
tremely large state spaces of size greater than tens of millions.
However, for medium sized state spaces ranging in several
hundreds to a few millions, significantly better performance
can be expected from QRL due to the simplicity of the update
step compared to the backpropagation updated step of DRL.

Limited research has been done on accelerating QRL.
Authors in [11] develop an accelerator for Q Learning. The
limitation of their design is that the on-chip resource required
is proportional to the number of state-action pairs. This
limits the scalability of the design. A parallel publication
[21] describes an optimized architecture that saves significant
resource compared to [11], which makes use of a comparator
tree that utilizes LUTs proportional to the state-action size.
In [22], the authors develop a FPGA implementation for
SARSA customized to the task of dynamic power manage-
ment. However, the design works with just one state space and
four actions. Thus, technically it is a stateless multi-arm band
(MAB) [16] implementation as opposed to a generic SARSA
implementation.

III. BACKGROUND
A. Reinforcement Learning (RL)

Reinforcement Learning (RL) is an area of machine learning
concerned with how an agent in an environment takes actions
so as to maximize the reward [1]. A RL problem involves an
agent, which is the learner and decision maker, taking some
action in an environment and observe its new state and the re-
ward for taking the action. The environment and agent interact
in discrete time steps. The agent receives some representation
of the environment’s state S; € S at each time step ¢. S is one
of the possible states for the environment. The agent takes an
action A; where A; € A(S;) is one of the possible actions in
state Sy. The agent then receives a reward Ry, for taking the
action Ay in state S;. The RL algorithm then calculates the
quality function for the state-action pair. This process is run
over multiple episodes of training each lasting for several time
steps until some convergence criteria. The quality function
provides information regarding the optimal action to take in
each state.

B. Q-Table Based Algorithms

Q-Learning [1], [23] and SARSA (State-Action-Reward-

State-Action) [1], [24] are classical reinforcement learning
algorithms which use Q-tables for learning. Q-table stores the
“quality” of each state-action pair.
Q-Learning is a model-free and off-policy reinforcement
learning algorithm. This means that the learning is based on
trial-and-error and that the training is not done based on the
current policy but uses some “off-policy” [1] approach like
greedy or random selection. The algorithm includes a Q-value
(quality value) for each state-action pair. The update formula
for Q-Learning is:

Qt-‘rl (StaAt) = 1
Q(S1, A) + a[Repr +ymax Q(Sp41,0) — Q(S1, 4] !

Here Q(S;, A;) is the Q-value for the current state-action
pair. R;y1 is the reward for taking action A; on state .S;.
max, Q(Si4+1,a) is the Q-value of the next state-action pair
which gives the maximum reward. « is the learning rate which
is simply a measure of how much to take the newer value as
compared to the old value. y is the decay rate, which is used
to make sure that future rewards are given less preference
than current reward. The algorithm involves starting from
any one random state .S; and choosing an action A; from
state .S using some policy (can be random selection, greedy
or e-greedy [14]). After taking the action from the state the
algorithm observes the reward R;,; and the next state Sy i.
It then updates the Q-value using the formula given above.
Finally, the next state S;;1 becomes the current state and the
algorithm continues till the final/goal stage is reached. The
algorithm is repeated multiple times for convergence. SARSA
[1], [24] (State-Action-Reward-State-Action) is a model-free
and on-policy reinforcement learning algorithm. In an on-
policy learning process the training of agent is based on a
specific policy and hence promotes “exploration” instead of
“exploitation” [25]. The update formula for SARSA is [1]:

Qi41(St, A¢) =
Q(St, At) + a[Rir1 +7vQ(Sty1, Arg1) — Q(St, At)]

Various action selection policies have been studied in the
literature such as:

2)

e ¢—Greedy [14] Action policy: The action with highest
Q-value is chosen greedily with probability of 1 — €, and
other actions are chosen with a probability ﬁ where
€ determines the exploration/exploitation nature of the
agent

« Boltzmann Action policy [26]: An action is chosen with
a probability proportional to exp(Q(s,a)/T)

In our discussion, we focus on using e—greedy.
C. Q-Table vs DON based Q-Learning

Q-Learning involves updating Q-values for each state-action
pair. In traditional table based approach all the Q-values for all
the state-action pair need to be stored in a table. This requires
huge tables when the number of state-action pairs is in the



order of billions or more. To remove this requirement, some
approximation function [7, Ch. 7, p. 207-251], [27] can be
used instead to calculate the Q-value for the required state-
action pair. The most common approximation functions are
neural networks like multi layer perceptron. For large state
space using approximation function is desirable. But for small
and medium sized state space (a few million) approximation
methods pose several challenges. Firstly, approximation func-
tions do not guarantee convergence. Secondly, they lead to
complex architectures. Multilayer perceptron based Q-learning
architecture can require 15 clocks per Q-value calculation
using fixed point operations or as high as 600+ using floating
point operations [12]. This is extremely slow compared to
table based approach where an efficient pipelined architecture
can perform a Q-value calculation every clock cycle (Section
VI-D). This makes table based Q-learning quite effective for
edge application like robotics, where medium sized state space
is required.

IV. QTACCEL: A GENERIC ARCHITECTURE FOR QRL

In this section, we present QTAccel: our generic pipelined
architecture for QRL.

A. Device Model

We implement our architecture design on a FPGA. The
starting state, learning rate and discount factor are user inputs
whose values are stored in registers. Q values associated with
each state-action pair and rewards observed by the learning
agent are stored in on-chip memory. The transition to next state
from current state-action pair is implemented as combinational
logic and LUTs. The action selector used to generate random
actions is implemented using linear feedback shift registers
(LFSR).

B. Architecture Details

A QRL algorithm executes the following steps until con-
vergence: (i) Start from any random state S;. (ii) Select a
state dependent action A; based on the behavior policy. (iii)
Determine the next state S;;;. (iv) Read the Q-value and
the reward for the current state-action pair Q(S;, A;) and
Ry¢y1. (v) For Siyq select an action A;4 1 based on the update
policy. (vi) Read the Q-value for the new state-action pair
Q(St+1, Aiy1) from the Q table. (vii) Compute the updated
Q-value - Q¢41(S¢, A;) for the original state action pair Sy, A;.
(viii) Select S;;1 as the current state for the next iteration and
write the new Q-value back into the table Q;1(St, At).

To accelerate QRL algorithm we use the following re-
sources: (i) 2 |S| * |A| sized tables implemented in internal
memory (BRAM), to store the Q values and reward values for
all state-action pairs. Another equally sized table is needed to
store the probability distribution of all state-action pairs for
RL algorithms which rely on stochastic distribution for action
selection, hence in that case 3 |S| = |A| sized tables would
be required. (ii) A behavior policy based action generation
module for selecting the action for the current state. (iii) An
update policy based action selection module which chooses

the action for the next state Sy;y1. (iv) A transition function,
which takes the inputs (S;, A;) and returns the next state Sy 1.
We propose a generic 4 stage pipelined architecture for
QRL accelerators. We start with empty Q-table and a reward
table. Figure 1 shows the complete pipelined architecture. The
following are the operations in the 4 stages of pipeline:

1) First stage: If this is the first iteration of the episode the
start/current state S is selected randomly, otherwise it is
the next state S;y; calculated in the previous iteration.
An action A; is chosen for the current state based on the
behavior policy (e.g. random selection for Q-learning or
e—greedy for SARSA), using random number generator.
We also provide a transition function module which takes
as input the current state S; and an action A;, and outputs
the new state S;,; based on the state-action pair. The
transition function module acts as a black box and the
correlations between its states and actions are application-
specific. For example, in a grid based robotics application,
states are usually represented as the co-ordinates and the
actions are usually directions of movement, and transition
function outputs the new co-ordinates. In this stage we
also read the Q-value Q(S;, A;) and the reward value
R,y for the current state-action pair. v and 1 — «, are
calculated to be used in later stages.

2) Second stage: An action A;;; is chosen for the next
state S; 11 based on the update policy (e.g. greedy policy
for Q-learning, e—greedy policy for SARSA or proba-
bility distribution based policy for generic table based
approach). Using this state-action pair (S;11, A;11) the
Q-value Q(S¢+1,A¢41) for this state-action pair is read
from the memory.

3) Third stage: This is the main computation stage of the
pipeline. It calculates the followings:

e Rii1 *a— The product of learning rate and the reward
function

e (1—a)=*Q(St, Ay)— The product of 1 — « calculated
in the first stage of pipeline and the current Q value
for the current state-action pair (.S, A)

o a7y Q(Sty1, Ar+1)— The product of the product
of learning rate and discount factor v * v which we
calculated in the first stage of pipeline and the Q-value
for the next state-action pair calculated in the first and
second stage of the pipeline.

Then using an adder to sum up all three values, giving

the new updated Q value Q;41(St, A¢) for the current

state-action pair.

Qi+1(S, A¢) =
(1 — Oé) * Q(St, At) + Q ok Rt+1 + Q ok Y * Q(StJrh At+1)
3)

4) Fourth stage: In this stage we write the new/updated Q
value for the current state-action pair back into the Q-
table and if necessary in the Qp,x table.
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Fig. 1: Pipelined architecture for QRL

V. REINFORCEMENT LEARNING ACCELERATORS

We customize QTAccel to implement two QRL algorithms
- Q Learning and SARSA on FPGA. We perform several
optimizations to improve the performance of the algorithms.
Moreover, we discuss how any general Q table based algorithm
can be implemented using QTAccel.

A. Q Learning

We propose the following optimization for Q learning on top
of our generalized architecture. We note that in Q learning the
action for the next state Sy;; is calculated based on greedy
policy i.e. we choose the action with highest Q-value. Hence,
instead of accessing all the entries of Q-table corresponding to
the next state and finding the action with maximum Q-value,
we use an array - Qmax Of size equal to the number of states
which stores the maximum Q-value for all the states. Thus,
the action is selected by a single access to Qpax. In the fourth
stage, while writing back the new Q-value into the Q-table, an
update is made to the Q. if the new Q-value is higher than
the current value in the Q¢ array for the state.

B. SARSA

In this work, we implement SARSA with e—greedy policy
selection. Under this policy, the maximum Q-value is read
with probability 1 — e and all other Q-values for this state are
read with probability ﬁ, where |A| is the number of actions.
Similar to the Q-Learning algorithm, we use an array Quax to
store the maximum Q-values for each state. A random number
generator is used to sample the action using the probability
distribution described above. To simulate e—greedy approach,
we use a random number generator to generate a /N bit random
number. If the number is between 1 and (1 — €) * 2V then
we read the maximum Q-value else, any Q-value for this
particular state can be selected with equal probability. As we

know the range beforehand, we can use the random number to
directly index one of the Q-values. Since SARSA is on-policy
where the behavior policy is the same as the update policy,
the sampled action which is available at the beginning of 3rd
stage will be forwarded to the 1st stage as the next-step action.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implement the reinforcement learning accelerators de-
signed in this work using Xilinx UltraScale+ FPGA (xcvul3p).
We perform place-and-route simulations using Vivado Design
Suite 2019.1. A Q-learning python implementation is also
developed running on 2.3 GHz Intel Core i5 CPU as the
baseline for throughput comparison. We use the grid world
application to evaluate the performance of our accelerator.

In the grid world application, the environment is a grid of
cells and the agent is the robot which starts at one of the cells
in one of the cells and its aim is to reach a goal cell while
avoiding obstacles (unreachable cells) and walls. Under this
setting, the states represent the cells and the actions represent
the moves of the robot. The agent randomly selects a start
state and traverses the grid by choosing actions, collecting
rewards and updating the Q values. Figure 2 is an example
which shows a grid with 16 cells with starting and goal cells
labeled. Four actions are available - left, up, right, and down.
Every state-action pair in this environment is assigned with a
reward value. Reaching the goal state yields maximum rewards
while hitting a wall yields negative rewards.

B. Performance Metrics

We analyze the performance of our accelerator with the
grid-world robotics problem described above with different
state-action sizes. All evaluated sizes are listed in Table I
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Fig. 2: Grid world example
Case 1 2 3 4 5 6 7
S| 64 256 1024 4096 16384 65536 262144
Al | 48 48 48 48 4.8 4.8 438

TABLE I: Test Cases

|S| represents the maximum total number of states and |A|
denotes the maximum total number of actions. The states are
addressed as (x,y) coordinates. For example, when there are
256 total possible states, the address of the state is an 8-bit
binary value where the most significant 4 bits represents the
x-coordinate and the least significant 4 bits represent the y-
coordinate. Actions are encoded as consecutive numbers. In
the case of 4 actions, each action is addressed as a 2-bit binary
value where 00 denotes going left, 01 denotes going up, 10
denotes going right and 11 denotes going down. When there
are 8 actions addressed by 3-bits binary values, 000 denotes
left, 001 denotes top-left, 010 denotes up, 011 denotes top-
right, and so on in clockwise direction.

C. Resource Utilization
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Fig. 3: Resource utilization for Q-learning

1) Q-Learning: Figures 3, 4 presents the resource utiliza-
tion for various state sizes with 8 actions for Q-Learning. Our
pipelined architecture efficiently uses 4 multipliers (each utiliz-
ing a single DSPs) in the design. As the problem size increases,
the DSP usage stays the same. The logic/register utilization
does not increase much either as the architecture is fixed
for different state spaces as well. The overall logic/register
utilization remains less than 0.1% for state-action pair size
of 2 million. Block RAM utilization, shown in Figure 4,
increases linearly with the state and action size. The bottleneck
of our design is memory, as we need to store the whole
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Fig. 4: BRAM utilization for both Q-learning and SARSA

reward table and Q-table in internal memory to reduce external
communication. Hence, for storing larger state-action space,
our design needs equally large BRAM resources to fulfill
the memory requirements. For state-of-the-art FPGA devices
we are able to support a state space of more than a million
states-action pairs which is sufficient to support many robotics
applications like space rovers.
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Fig. 5: Resource utilization for SARSA

2) SARSA: As mentioned in section V-B, the architec-

ture for SARSA is very similar to Q-Learning. The main
difference comes in stage 2 of the pipeline. Where instead
of using greedy policy for finding the Q-value for the next
stage Si41, e—greedy policy is used. To implement this we
need a random number generator. Hence the logic utilization
increases accordingly. A basic random number generator can
be implemented as a linear feedback shift register and hence
requires only a few registers for implementation. Hence our
logic utilization (register) has increased accordingly. Using
random number generator does not increase any DSPs or
BRAMs utilization and hence those resources remain the same.
Because of the increase in logic/register utilization the power
utilization increases accordingly.
As evident from the results, we are able to support a state
space of 262,144 states and 8 actions i.e. a state-action size
of more than 2 million. This is equivalent to the grid size
of 512X512 with 8 actions which is sufficient for typical
robotics applications. Theoretically, a state-action pair size of
10 million can be supported using the available 360 Mb of
on-chip UltraRAM. However, the synthesis tool times out for
such large state spaces.
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D. Throughput

Throughput (T4) is measured by number (in Millions) of
Q values/samples calculated per second (MS/s). Our pipelined
architecture ensures that after the first iteration, the Q values
are output every clock cycle. Figure 6 presents the throughput
achieved by varying the state size | S| and fixing the action size
to 8 for both Q-Learning and SARSA. As evident from Figure
6, we achieve a consistent throughput of around 180 MS/s. The
high throughput is sustained even on very large state space due
to the efficiency of our architecture design in which the logic
and DSP utilization does not increase significantly. Please note
that the clock speed and hence the throughput starts decreasing
for extremely large state space i.e. state-space of more than
100k. This is to be expected because for such large state space
more than 50% of the BRAM would be fully utilized and this
in itself puts a huge pressure on the FPGA device and hence
degrades the clock speed.

E. Comparison with CPU implementation

exp. | [S|=64 [S|=1024 |S|=16384 |S|=262144
CPU JA|=4 | 1055K 9I4IK _ 74.17K 157.85K
FPGA |A|=4 | 189M 187M 181M 156M
CPU  |A|=8 | 105.80K  88./K 70.25K 152K
FPGA |A|=8 | 189M 186M 179M 153M

* K: Thousands of Samples/s; M: Millions of Samples/s;
TABLE II: Throughput comparison with CPU

We run the Q learning algorithm on Intel Core i5 processor,
and compare the achieved throughputs for different state-
action sizes with FPGA implementation. For the CPU baseline,
we run a python program in which the Q values are stored in a
nested dictionary and are indexed by state coordinates tuples
and actions. As evident from Table II, our design achieves
a significantly higher throughput than CPU implementation.
This is due to: (1) Q learning, essentially being a sequential
algorithm, is executed in a sequential loop on CPU, not able
to exploit much parallelism; (2) The limited cache size on
processor (256KB L2 and 6MB L3) cannot hold all data in Q
Table and rewards Table, the performance is therefore bounded
by off-chip data accesses. On FPGA there is abundant on-chip

memory which provides low access-latency to all the Q values
and rewards.

FE. Comparison with State of the Art

We compare our results with [11] which implements a Q-
learning algorithm on FPGA. They conducted experiments
on the Virtex 6 FPGA device. For fair comparison we also
implemented our design on Virtex 7 FPGA device which
has similar characteristics. Compared to [11] our resource
utilization is very low for the same state-action size. For 132
state, 4 actions the design in [11] fully utilized the DSP and
logic on the FPGA device. For the same state space with 8
action we only used 4 DSP (4 multipliers) and used 1% of
logic. For the same state-action size, our throughput was more
than 180 million samples per second (MS/s), which is more
than 15X higher than the throughput observed by [11].

The limitation of their design is the use of a finite state
machine for each state-action pair. Thus, the number of
multipliers required by their design is equal to the number
of state-action pairs. However, as in any given iteration the
Q value of only one state-action pair is updated, this leads
to a lot of wasted computation by their design. Our pipelined
architecture eliminates these wasted computations resulting in
low resource utilization and high scalability. Moreover, the use
of Qmax table further optimizes the amount of computation
required. Figure 7 compares the number of DSPs used in our
design and the state-of-the-art design [11] for same state-action
pair size.

Multipliers (DSP) utilization

m QTAccel mBaseline

14
(1324)  ———————— 370

14
(56)8)  EE———— 750

(56,4)

State, action

(12,8) ba

(12,4)

Number of multipliers

Fig. 7: Comparison of the number of DSPs used in base-
line [11] and QTAccel.

Scalability - The number of DSPs available on the device
becomes a bottleneck for scalability of the design in [11].
Our efficient pipelined design can support a state space of
131,072 (more than 1000X) compared with 132 supported by
the design in [11] on a similar sized device while giving a
throughput improvement of 15X. For state-of-the-art FPGA
devices with on-chip memory of 450Mb, QTAccel can support
a state-action pair size of more than 2 million. This makes our
design well suited for a range of edge centric applications like
robotics.

VII. DISCUSSION

In this section we discuss how our pipelined design can be
extended to support multi-agent training and generalized to
solve other RL and Multi-Armed Bandit (MAB) problems.



A. Parallel Pipelines

Even for the largest state-action space that saturates on-
chip memory, the DSP and Flip-Flop utilizations are fixed
and small. Therefore, our design can be easily employed to
train multiple agents on the same device. The design can be
extended to operate in two modes:

State Sharing Learners: In this mode, we support appli-
cations where two agents perform a task sharing the same
environment (i.e. same set of states, actions), for instance
hunter game [28] or multi-agent box pushing with/without
shared Q Table [29]. Our pipeline design can easily support
2 parallel pipelines without any change of configuration, as
modern FPGAs support up to 2 concurrent accesses to the
same block memory. Therefore for a given environment we
can deploy two agents to explore the same environment and
update the Q table, which effectively doubles the achievable
throughput. In case of shared Q Table, when there are concur-
rent writes to the same state address, one pipeline arbitrarily
overwrites the other. The effect on quality of training depend
on the rate at which two agents collide onto the same state
(If this rate is 100%, the throughput and convergence rate will
be approximately the same as using one pipeline; however for
widely-used behavior policy such as random action selection,
collision is much less likely to happen and both the throughput
and convergence rate should increase compared to those of
single-pipeline implementation).

Agent 1
Environment Goal PIPELINE 1
p Q/R/Qmax
o Table PIPELINE 2
Agent 1
Agent 2 Agent 2

Dual Port BRAM

Fig. 8: 2 pipelines

Independent Learners: For problems where multiple in-
dependent agents need to be trained on separate environments
(e.g. launching multiple rovers to explore the geomorphologi-
cal features of a ground surface, each responsible for a subset
of the entire state space), we can deploy N agents, each
accessing a separate memory block which stores the Q values
and rewards for states in its corresponding sub-environment.
To avoid bank conflicts the Q and reward tables need to be
stored in separate memory blocks. While NV is upper bounded
by available BRAM blocks on FPGA, we claim that this
does not matter because the size of the state-action space of
each sub-environment is generally larger than that of a single
BRAM block.

B. Generalization to Other QRL and MAB
A policy in a RL algorithm is a probability distribution
on the actions conditional on the current state. This can
be represented as: an action a; at state S; is selected with
probability
P(CL2|SJ) XX ft(Sj,ai) (4)

: Agent1 Agent2 «on AgentN
Environment 9 g -
Sub-environment1 | Sub-environment 2

— ~ =4
Goal —_ i o o
< = = 2
Start |Agent2 = = s
Agent 1 g g Ié."
Start Goal a a a

Sub-environment 4

Sub-environment 3
o
Agent 4

Start
Start

—»
—>

T

. BRAMN‘

BRAM 1 I‘ BRAM 2

Agent 3

N worlds: Q/R/Qmaqx Tables
Fig. 9: N pipelines

for some temporal function f;, that may be updated with every
sample. To implement such probability distribution based
policies, we use a table P which store the probability value
for each state-action pair. In the second stage, the actions
selection will evaluate the next action based on the probability
distribution. To simulate the action selection using probability
distribution we use a random number generator. Based on
a random number generated in [0,) . f;(S;,a;)], a binary
search can provide the selected action in log n; cycles, where
n; is the number of actions available at state S;. In the final
stage, the probability values need to be updated.

High-throughput, energy-efficient Multi-Arm Bandit (MAB)
implementation is critical for next generation 5G wireless
network applications such as distributed channel selection,
opportunistic spectrum access, etc. [16]. To the best of our
knowledge, no FPGA implementation exists for general MAB
problems. In MAB, the agent chooses one out of M arms
where each arm is associated with its own state S,,, at time ¢
and instantaneous reward g,, ; which is obtained using some
probability distribution (usually normal distribution [30]). The
objective of the agent is to select arms in each time step
to maximize the accumulated reward. As the actions and
states are finite and discrete in MAB and policies such as
epsilon-greedy are also used in MAB problems, we can
adapt our design to accelerate MAB with only changes to the
rewards table in the first stage. To sample rewards, uniform
random numbers can be generated using linear feedback shift
registers whose output can be summed up to obtain the normal
distribution. [31]. While other methods exist to obtain normal
distribution [32], [33], they require large number of clock
cycles and are not efficient compared to our design where
the pipeline is compact and provides high throughput.

Stateless Bandits are a variant of MAB which do not have
states associated with rewards [16]. When implemented using
QTAccel, the Q table will have just a single state and M
actions - one action for each arm. The Q value for action
m will be a function of the awards received for the arm m.
For example, in EXP3 algorithm [34], the Q value of the
action is an exponential function of the average reward. The
probability distribution table will store the probabilities for the
policies to be selected. For example, in EXP3 algorithm [34],
the probability for action m is given as:

Q(m)

I-Ns=—Fr+

1
>, Qm) M ©)

M



where v € [0,1] is a fixed constant. For Stateful Ban-
dits [16], the state space can be represented by concatenation
of the states of individual arms. Typically, the number of arms
is very small (=5) [35], so the size of the resulting table will
still be tractable.

VIII. CONCLUSION

In this paper, we presented a pipelined FPGA architecture,
QTAccel, for accelerating QRL. QTAccel achieves a high
throughput of one sample per clock cycle, and the pipelined
design makes efficient use of hardware resources and is able
to scale to over one million state-action pairs on state-of-art
FPGA. Experiments evaluations illustrate that our implemen-
tation outperforms the state-of-art Q learning accelerator in
both throughput and resource utilization.

In future, we will customize our architecture to implement
more variants of Multi-Armed Bandit problems. We will de-
velop efficient pipelined implementation of probability based
policy selection for such problems to ensure high-throughput
architecture with limited stalls due to dependencies.
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