
Testing DNN Image Classifiers for Confusion & Bias Errors

Yuchi Tian∗

Columbia University
yuchi.tian@columbia.edu

Ziyuan Zhong∗

Columbia University
ziyuan.zhong@columbia.edu

Vicente Ordonez
University of Virginia
vicente@virginia.edu

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

Baishakhi Ray
Columbia University
rayb@cs.columbia.edu

ABSTRACT

Image classifiers are an important component of today’s software,

from consumer and business applications to safety-critical domains.

The advent of Deep Neural Networks (DNNs) is the key catalyst

behind such wide-spread success. However, wide adoption comes

with serious concerns about the robustness of software systems

dependent on DNNs for image classification, as several severe er-

roneous behaviors have been reported under sensitive and critical

circumstances. We argue that developers need to rigorously test

their software’s image classifiers and delay deployment until accept-

able. We present an approach to testing image classifier robustness

based on class property violations.

We found that many of the reported erroneous cases in popular

DNN image classifiers occur because the trained models confuse

one class with another or show biases towards some classes over

others. These bugs usually violate some class properties of one or

more of those classes. Most DNN testing techniques focus on per-

image violations, so fail to detect class-level confusions or biases.

We developed a testing technique to automatically detect class-

based confusion and bias errors in DNN-driven image classification

software. We evaluated our implementation, DeepInspect, on sev-

eral popular image classifiers with precision up to 100% (avg. 72.6%)

for confusion errors, and up to 84.3% (avg. 66.8%) for bias errors.

DeepInspect found hundreds of classification mistakes in widely-

used models, many exposing errors indicating confusion or bias.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Computing methodologies → Neural networks.

KEYWORDS

whitebox testing, deep learning, DNNs, image classifiers, bias

∗Both are first authors, and contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380400

1 INTRODUCTION

Image classification has a plethora of applications in software for

safety-critical domains such as self-driving cars, medical diagnosis,

etc. Even day-to-day consumer software includes image classifiers,

such as Google Photo search and Facebook image tagging. Image

classification is a well-studied problem in computer vision, where a

model is trained to classify an image into single or multiple prede-

fined categories [26]. Deep Neural Networks (DNNs) have enabled

major breakthroughs in image classification tasks over the past few

years, sometimes even matching human-level accuracy under some

conditions [22], which has led to their ubiquity in modern software.

However, in spite of such spectacular success, DNN-based image

classification models, like traditional software, are known to have

serious bugs. For example, Google faced backlash in 2015 due to

a notorious error in its photo-tagging app, which tagged pictures

of dark-skinned people as “gorillas” [19]. Analogous to traditional

software bugs, the Software Engineering (SE) literature denotes

these classification errors as model bugs [43], which can arise due

to either imperfect model structure or inadequate training data.

At a high-level, these bugs can affect either an individual image,

where a particular image is mis-classified (e.g., a particular skier is

mistaken as a part of a mountain), or an image class, where a class of

images is more likely to be mis-classified (e.g., dark-skinned people

are more likely to be misclassified), as shown in Table 1. The latter

bugs are specific to a whole class of images rather than individual

images, implying systematic bugs rather than the DNN equivalent

of off-by-one errors. While much effort from the SE literature on

Neural Network testing has focused on identifying individual-level

violations—using white-box [29, 42, 60, 79], grey-box [43, 77], or

concolic testing [75], detection of class-level violations remains rel-

atively less explored. This paper focuses on automatically detecting

such class-level bugs, so they can be fixed.

After manual investigation of some public reports describing

the class-level violations listed in Table 1, we determined two root

causes: (i) Confusion: The model cannot differentiate one class

from another. For example, Google Photos confuses skier and moun-

tain [44]. (ii) Bias: The model shows disparate outcomes between

two related groups. For example, Zhao et al. in their paper “Men

also like shopping” [92], find classification bias in favor of women

on activities like shopping, cooking, washing, etc.We further notice

that some class-level properties are violated in both kinds of cases.

For example, in the case of confusion errors, the classification error-

rate between the objects of two classes, say, skier and mountain,

is significantly higher than the overall classification error rate of

the model. Similarly, in the bias scenario reported by Zhao et al., a

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

Table 1: Examples of real-world bugs reported in neural image classifiers

Bug Type Name Report Date Outcome

Gorilla Tag [19] Jul 1, 2015 Black people were tagged as gorillas by Google photo app.

Confusion Elephant is detected Aug 9, 2018 Image Transplantation (replacing a sub-region of an image by

in a room [68] another image containing a trained object) leads to mis-classification.

Google Photo [44] Dec 10, 2018 Google Photo confuses skier and mountain.

Nikon Camera [67] Jan 22, 2010 Camera shows bias toward Caucasian faces when detecting people’s blinks.

Men Like Shopping [92] July 29, 2017 Multi-label object classification models show bias towards women on

Bias activities like shopping, cooking, washing, etc.

Gender Shades[8] 2018 Open-source face recognition services provided by IBM, Microsoft, and Face++

have higher error rates on darker-skin females for gender classification.

DNN model should not have different error rates while classifying

the gender of a person in the shopping category. Unlike individual

image properties, this is a class property affecting all the shopping

images with men or women. Any violation of such a property by

definition affects the whole class although not necessarily every

image in that class, e.g., a man is more prone to be predicted as

a woman when he is shopping, even though some individual im-

ages of a man shopping may still be predicted correctly. Thus, we

need a class-level approach to testing image classifier software for

confusion and bias errors.

The bugs in a DNN model occur due to sub-optimal interactions

between the model structure and the training data [43]. To capture

such interactions, the literature has proposed various metrics pri-

marily based on either neuron activations [29, 42, 60] or feature

vectors [43, 53]. However, these techniques are primarily targeted

at the individual image level. To detect class-level violations, we

abstract away such model-data interactions at the class level and an-

alyze the inter-class interactions using that new abstraction. To this

end, we propose a metric using neuron activations and a baseline

metric using weight vectors of the feature embedding to capture

the class abstraction.

For a set of test input images, we compute the probability of

activation of a neuron per predicted class. Thus, for each class, we

create a vector of neuron activations where each vector element cor-

responds to a neuron activation probability. If the distance between

the two vectors for two different classes is too close, compared to

other class-vector pairs, that means the DNN under test may not

effectively distinguish between those two classes. Motivated by

MODE’s technique [43], we further create a baseline where each

class is represented by the corresponding weight vector of the last

linear layer of the model under test.

We evaluate our methodology for both single- and multi-label

classification models in eight different settings. Our experiments

demonstrate that DeepInspect can efficiently detect both Bias and

Confusion errors in popular neural image classifiers. We further

check whether DeepInspect can detect such classification errors

in state-of-the-art models designed to be robust against norm-

bounded adversarial attacks [82]; DeepInspect finds hundreds of

errors proving the need for orthogonal testing strategies to detect

such class-level mispredictions. Unlike some other DNN testing

techniques [53, 60, 75, 77], DeepInspect does not need to generate

additional transformed (synthetic) images to find these errors. The

primary contributions of this paper are:

• We propose a novel neuron-coverage metric to automatically

detect class-level violations (confusion and bias errors) in DNN-

based visual recognition models for image classification.

• We implemented ourmetric and underlying techniques inDeepIn-

spect.

• We evaluated DeepInspect and found many errors in widely-used

DNNmodels with precision up to 100% (avg. 72.6%) for confusion

errors and up to 84.3% (avg. 66.8%) for bias errors.

Our code is available at https://github.com/ARiSE-Lab/DeepInspect.

The errors reported by DeepInspect are available at: https://www.

ariselab.info/deepinspect.

2 DNN BACKGROUND

Deep Neural Networks (DNNs) are a popular type of machine learn-

ing model loosely inspired by the neural networks of human brains.

A DNN model learns the logic to perform a software task from a

large set of training examples. For example, an image recognition

model learns to recognize cows through being shown (trained with)

many sample images of cows.

A typical "feed-forward" DNN consists of a set of connected

computational units, referred as neurons, that are arranged sequen-

tially in a series of layers. The neurons in sequential layers are

connected to each other through edges. Each edge has a correspond-

ing weight. Each neuron applies σ , a nonlinear activation function

(e.g., ReLU [50], Sigmoid [48]), to the incoming values on its input

edges and sends the results on its output edges to the next layer of

connected neurons. For image classification, convolutional neural

networks (CNNs) [37], a specific type of DNN, are typically used.

CNNs consist of layers with local spatial connectivity and sets of

neurons with shared parameters.

When implementing a DNN application, developers typically

start with a set of annotated experimental data and divide it into

three sets: (i) training: to construct the DNN model in a supervised

setting, meaning the training data is labeled (e.g., using stochas-

tic gradient descent with gradients computed using back-prop-

agation [69]); (ii) validation: to tune the model’s hyper-parameters,

basically configuration parameters that can be modified to better fit

the expected application workload; and (iii) evaluation: to evaluate

the accuracy of the trained model w.r.t. to its predictions on other

annotated data, to determine whether or not it predicts correctly.

Typically, training, validation, and testing data are drawn from the

same initial dataset.

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

For image classification, a DNN can be trained in either of the

following two settings:

(i) Single-label Classification. In a traditional single-label classi-

fication problem, each datum is associated with a single label l from

a set of disjoint labels L where |L| > 1. If |L| = 2, the classification

problem is called a binary classification problem; if |L| > 2, it is a

multi-class classification problem [78]. Among some popular image

classification datasets, MNIST, CIFAR-10/CIFAR-100 [32] and Ima-

geNet [70] are all single-label, where each image can be categorized

into only one class or outside that class.

(ii)Multi-label Classification. In a multi-label classification prob-

lem, each datum is associated with a set of labels Y where Y ⊆ L.

COCO[38] and imSitu[85] are popular datasets for multi-label clas-

sification. For example, an image from the COCO dataset can be

labeled as car, person, traffic light and bicycle. A multi-label classifi-

cation model is supposed to predict all of car, person, traffic light

and bicycle from a single image that shows all of these kinds of

objects.

Given any single- or multi-label classification task, DNN clas-

sifier software tries to learn the decision boundary between the

classes—all members of a class, say Ci , should be categorized iden-

tically irrespective of their individual features, and members of

another class, sayCj , should not be categorized toCi [6]. The DNN

represents the input image in an embedded space with the feature

vector at a certain intermediate layer and uses the layers after as

a classifier to classify these representations. The class separation

between two classes estimates how well the DNN has learned to

separate each class from the other. If the embedded distance be-

tween two classes is too small compared to other classes, or lower

than some pre-defined threshold, we assume that the DNN could

not separate them from each other.

3 METHODOLOGY

We give a detailed technical description of DeepInspect.We describe

a typical scenario where we envision our tool might be used in the

following and design the methodology accordingly.

Usage Scenario. Similar to customer testing of post-release soft-

ware, DeepInspect works in a real-world setting where a customer

gets a pre-trained model and tests its performance in a sample pro-

duction scenario before deployment. The customer has white-box

access to the model to profile, although all the data in the produc-

tion system can be unlabeled. In the absence of ground truth labels,

the classes are defined by the predicted labels. These predicted labels

are used as class references as DeepInspect tries to detect confusion

and bias errors among the classes. DeepInspect tracks the activated

neurons per class and reports a potential class-level violation if the

class-level activation-patterns are too similar between two classes.

Such reported errors will help customers evaluate how much they

can trust the model’s results related to the affected classes. As

elaborated in Section 7, once these errors are reported back to the

developers, they can focus their debugging and fixing effort on

these classes. Figure 1 shows the DeepInspect workflow.

3.1 Definitions

Before we describe DeepInspect’s methodology in detail, we intro-

duce definitions that we use in the rest of the paper. The following

Figure 1: DeepInspect Workflow

table shows our notation.

All neurons set N = {N1, N2, ... }
Activation function out (N , c) returns output

for neuron N , input c .
Activation threshold Th

Neural-Path (NP). For an input image c , we define neural-path as a

sequence of neurons that are activated by c .

Neural-Path per Class (NPC). For a class Ci , this metric represents

a set consisting of the union of neural-paths activated by all the

inputs in Ci .

For example, consider a class cow containing two images: a brown

cow and a black cow. Let’s assume they activate two neural-paths:

[N1,N2,N3] and [N4,N5,N3]. Thus, the neural-paths for class cow

would be NPcow = {[N1,N2,N3], [N4,N5,N3]}. NPcow is further

represented by a vector (N 1
1 ,N

1
2 ,N

2
3 ,N

1
4 ,N

1
5), where the super-

scripts represent the number of times each neuron is activated

by Ccow . Thus, each class Ci in a dataset can be expressed with a

neuron activation frequency vector, which captures how the model

interacts with Ci .

NeuronActivation Probability: Leveraging how frequently a neu-

ron Nj is activated by all the members from a class Ci , this metric

estimates the probability of a neuron Nj to be activated byCi . Thus,

we define: P(Nj | Ci) =
|{cik | ∀cik ∈ Ci ,out(Nj , cik) > Th}|

|Ci |

We then construct a n×m dimensional neuron activation probability

matrix, ρ, (n is the number of neurons and m is the number of

classes) with its ij-th entry being P(Nj | Ci).

ρ=

C1 ... Ci ... Cm

������

������

N1 p11 p1m
... ...

Nj pj1 ... pjm
... ...

Nn pn1 pnm

(1)

This matrix captures how a model interacts with a set of input

data. The column vectors (ραm) represent the interaction of a class

Cm with the model. Note that, in our setting,Cs are predicted labels.

Since Neuron Activation Probability Matrix (ρ) is designed to

represent each class, it should be able to distinguish between dif-

ferent Cs. Next, we use this metric to find two different classes of

errors often found in DNN systems: confusion and bias (see Table 1).

3.2 Finding Confusion Errors

In an object classification task, when the model cannot distinguish

one object class from another, confusion occurs. For example, as

shown in Table 1, a Google photo app model confuses a skier with

the mountain. Thus, finding confusion errors means checking how

well the model can distinguish between objects of different classes.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

An error happens when the model under test classifies an object

with a wrong class, or for multi-label classification task, predicts

two classes but only one of them is present in the test image.

We argue that the model makes these errors because during the

training process the model has not learned to distinguish well be-

tween the two classes, say a and b. Therefore, the neurons activated

by these objects are similar and the column vectors correspond-

ing to these classes: ραa and ραb will be very close to each other.

Thus, we compute the confusion score between two classes as the

euclidean distance between their two probability vectors:

napvd(a,b)=∆(a,b)= | |ραa−ραb | |2 =

√√
n∑
i=1

(P(Ni |a) − P(Ni |b))
2 (2)

If the ∆ value is less than some pre-defined threshold (conf_th)

for two pairs of classes, the model will potentially make mistakes

in distinguishing one from another, which results in confusion

errors. This ∆ is called napvd (Neuron Activation Probabiliy Vector

Distance).

3.3 Finding Bias Errors

In an object classification task, bias occurs if the model under test

shows disparate outcomes between two related classes. For ex-

ample, we find that ResNet-34 pretrained by imSitu dataset, of-

ten mis-classifies a man with a baby as woman. We observe that

in the embedded matrix ρ, ∆(baby,woman) is much smaller than

∆(baby,man). Therefore, during testing, whenever the model finds

an image with a baby, it is biased towards associating the baby

image with a woman. Based on this observation, we propose an

inter-class distance based metric to calculate the bias learned by

the model. We define the bias between two classes a and b over a

third class c as follows:

bias(a,b, c) :=
|∆(c,a) − ∆(c,b)|

∆(c,a) + ∆(c,b)
(3)

If a model treats objects of classes a and b similarly under the

presence of a third object class c , a and b should have similar dis-

tance w.r.t. c in the embedded space ρ; thus, the numerator of the

above equation will be small. Intuitively, the model’s output can be

more influenced by the nearer object classes, i.e. if a and b are closer

to c . Thus, we normalize the disparity between the two distances

to increase the influence of closer classes.

This bias score is used to measure how differently the given

model treats two classes in the presence of a third object class. An

average bias (abbreviated as avg_bias) between two objects a and

b for all class objects O is defined as:

avд_bias(a,b) :=
1

|O | − 2

∑
c ∈O ,c�a,b

bias(a,b, c) (4)

The above score captures the overall bias of the model between two

classes. If the bias score is larger than some pre-defined threshold,

we report potential bias errors.

Note that, even when the two classes a and b are not confused

by the model, i.e. ∆(a,b) > conf _th, they can still show bias w.r.t.

another class, say c , if ∆(a, c) is very different from ∆(b, c). Thus,

bias and confusion are two separate types of class-level errors that

we intend to study in this work.

Table 2: Study Subjects

Dataset Model

Classification CNN Reported
Task Name #classes Models #Neurons #Layers Accuracy

COCO [38] 80 ResNet-50[92] 26,560 53 Conv 0.73*
Multi-label COCO gender[92] 81 ResNet-50[22] 26,560 53 Conv 0.71*
classification imSitu[85] 205,095 ResNet-34[85] 8,448 36 Conv 0.37†

CIFAR-100[32] 100 CNN[1] 2,916 26 0.74

Robust 10 Small CNN[82] 158 8 0.69
Single-label CIFAR-10[32] Large CNN[82] 1,226 14 0.73
classification ResNet[82] 1,410 34 0.70

ImageNet[70] 1000 ResNet-50[73] 26,560 53 Conv 0.75

* reported in mean average precision, †reported in mean accuracy

Using these above equations we develop a novel testing tool,

DeepInspect, to inspect a DNN implementing image classification

tasks and look for potential confusion and bias errors. We imple-

mented DeepInspect in the Pytorch deep learning framework and

Python 2.7. All our experiments were run on Ubuntu 18.04.2 with

two TITAN Xp GPUs. For all of our experiments, we set the activa-

tion threshold Th to be 0.5 for all datasets and models. We discuss

why we choose 0.5 as neuron activation threshold and how different

thresholds affect our performance in the section 7.

4 EXPERIMENTAL DESIGN

4.1 Study Subjects

We apply DeepInspect for both multi-label and single-label DNN-

based classifications. Under different settings, DeepInspect auto-

matically inspects 8 DNNmodels for 6 datasets. Table 2 summarizes

our study subjects. All the models we used are standard, widely-

used models for each dataset. We used pre-trained models as shown

in the Table for all settings except for COCO with gender. For

COCO with gender model, we used the gender labels from [92] and

trained the model in the same way as [92]. imSitu model is a pre-

trained ResNet-34 model [85]. There are in total 11,538 entities and

1,788 roles in the imSitu dataset. When inspecting a model trained

using imSitu, we only considered the top 100 frequent entities or

roles in the test dataset.

Among the 8 DNN models, three are pre-trained relatively more

robust models that are trained using adversarial images along with

regular images. These models are pre-trained by provably robust

training approach proposed by [82]. Three models with different

network structures are trained using the CIFAR10 dataset [82].

4.2 Constructing Ground Truth (GT) Errors

To collect the ground truth for evaluating DeepInspect, we refer to

the test images misclassified by a given model. We then aggregate

these misclassified image instances by their real and predicted class-

labels and estimate pair-wise confusion/bias.

4.2.1 GT of Confusion Errors. Confusion occurs when a DNN of-

ten makes mistakes in disambiguating members of two different

classes. In particular, if a DNN is confused between two classes,

the classification error rate is higher between those two classes

than between the rest of the class-pairs. Based on this, we define

two types of confusion errors for single-label classification and

multi-label classification separately:

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

(a) Confusions distribution (b) NAPVD distribution

Figure 2: Identifying Type2 confusions for multi-classification ap-

plications. LHS showshowwemarked the ground truth errors based

on Type2 confusion score. RHS shows DeepInspect’s predicted er-

rors based on NAPVD score.

Type1 confusions: In single-label classification, Type1 confusion

occurs when an object of class x (e.g.,violin) is misclassified to

another classy (e.g.,cello). For all the objects of class x andy, it can

be quantified as: type1conf(x,y) = mean(P(x |y), P(y |x)) —DNN’s

probability to misclassify class y as x and vice-versa, and takes the

average value between the two. For example, given two classes

cello and violin, type1conf estimates the mean probability of

violin misclassified to cello and vice versa. Note that, this is a

bi-directional score, i.e. misclassification of y as x is the same as

misclassification of x as y.

Type2 confusions: In multi-label classification, Type2 confusion

occurs when an input image contains an object of classx (e.g.,mouse)

and no object of classy (e.g.,keyboard), but the model predicts both

classes (see Figure 7. For a pair of classes, this can be quantified

as: type2conf(x,y) = mean(P((x,y)|x), P((x,y)|y)) to compute the

probability to detect two objects in the presence of only one. For ex-

ample, given two classes keyboard and mouse, type2conf estimates

the mean probability of mouse being predicted while predicting

keyboard and vice versa. This is also a bi-directional score.

We measure type1conf and type2conf by using a DNN’s true

classification error measured on a set of test images. They create

the DNN’s true confusion characteristics between all possible class-

pairs. We then draw the distributions of type1conf and type2conf.

For example, Figure 2a shows type2conf distribution for COCO .

The class-pairs with confusion scores greater than 1 standard devia-

tion from the mean-value are marked as pairs truly confused by the

model and form our ground truth for confusion errors. For example,

in the COCO dataset, there are 80 classes and thus 3160 class pairs

(80*79/2); 178 class-pairs are ground-truth confusion errors.

Note that, unlike how a bug/error is defined in traditional soft-

ware engineering, our suspicious confusion pairs have an inherent

probabilistic nature. For example, even if a and b represent a con-

fusion pair, it does not mean that all the images containing a or b

will be misclassified by the model. Rather, it means that compared

with other pairs, images containing a or b tend to have a higher

chance to be misclassified by the model.

4.2.2 GT of Bias Errors. A DNN model is biased if it treats two

classes differently. For example, consider three classes: man, woman,

and surfboard. An unbiased model should not have different error

rates while classifying man or woman in the presence of surfboard.

To measure such bias formally, we define confusion disparity (cd)

to measure differences in error rate between classes x and z and

betweeny and z: cd(x,y, z) = |error (x, z)−error (y, z)|, where the er-

ror measure can be either type1conf or type2conf as defined earlier.

cd essentially estimates the disparity of the model’s error between

classes x , y (e.g., man, woman) w.r.t. a third class z (e.g., surfboard).

We also define an aggregated measure average confusion dis-

parity (avg_cd) between two classes x and y by summing up the

bias between them over all third classes and taking the average:

avg_cd(x,y) :=
1

|O | − 2

∑
z∈O ,z�x ,y

cd(x,y, z).

Depending on the error types we used to estimate avg_cd, we refer

toType1_avg_cd andType2_avg_cd. We measure avg_cd using the

true classification error rate reported for the test images. Similar to

confusion errors, we draw the distribution of avg_cd for all possible

class pairs and then consider the pairs as truly biased if their avg_cd

score is higher than one standard deviation from the mean value.

Such truly biased pairs form our ground truth for bias errors.

4.3 Evaluating DeepInspect

We evaluate DeepInspect using a set of test images.

Error Reporting. DeepInspect reports confusion errors based on

NAPVD (see Equation (2)) scores—lower NAPVD indicates errors.

We draw the distributions of NAPVDs for all possible class pairs, as

shown in Figure 2b. Class pairs having NAPVD scores lower than

1 standard deviation from the mean score are marked as potential

confusion errors.

As discussed in Section 3.3, DeepInspect reports bias errors based

on avg_bias score (see Equation (4)), where higher avg_bias means

class pairs are more prone to bias errors. Similar to above, from

the distribution of avg_bias scores, DeepInspect predicts pairs with

avg_bias greater than 1 standard deviation from the mean score to

be erroneous. Note that, while calculating error disparity between

classes a, b w.r.t. c (see Equation (3)), if both a and b are far from c

in the embedded space ρ, disparity of their distances (∆) should not

reflect true bias. Thus, while calculating avg_bias(a,b) we further

filter out the triplets where ∆(c,a) > th ∧ ∆(c,b) > th, where th is

some pre-defined threshold. In our experiment, we remove all the

class-pairs having ∆ larger than 1 standard deviation (i.e. th) from

the mean value of all Deltas across all the class-pairs.

Evaluation Metric. We evaluate DeepInspect in two ways:

Precision&Recall.Weuse precision and recall tomeasureDeepIn-

spect’s accuracy. For each error type t, suppose that E is the number

of errors detected by DeepInspect and A is the the number of true

errors in the ground truth set. Then the precision and recall of

DeepInspect are
|A ∩ E |

|E |
and

|A ∩ E |

|A|
respectively.

Area Under Cost Effective Curve (AUCEC). Similarly to how

static analysis warnings are ranked based on their priority lev-

els [63], we also rank the erroneous class-pairs identified by DeepIn-

spect based on the decreasing order of error proneness, i.e. most

error-prone pairs will be at the top. To evaluate the ranking we

use a cost-effectiveness measure [2], AUCEC (Area Under the Cost-

Effectiveness Curve), which has become standard to evaluate rank-

based bug-prediction systems [27, 63–66].

Cost-effectiveness evaluates when we inspect/test top n% class-

pairs in the ranked list (i.e. inspection cost), how many true errors

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

are found (i.e. effectiveness). Both cost and effectiveness are normal-

ized to 100%. Figure 6 shows cost on the x-axis, and effectiveness on

the y-axis, indicating the portion of the ground truth errors found.

AUCEC is the area under this curve.

Baseline. We compare DeepInspect w.r.t. two baselines:

(i) MODE-inspired: A popular way to inspect each image is to

inspect a feature vector, which is an output of an intermediate

layer [43, 90]. However, abstracting a feature vector per image to the

class level is non-trivial. Instead, for a given layer, one could inspect

the weight vector (wl = [w0
l
,w1

l
, ...,wn

l
]) of a class, say l , where the

superscripts represent a feature. Similar weight-vectors are used

in MODE [43] to compare the difference in feature importance

between two image groups. In particular, from the last linear layer

before the output layer we extract such per-class weight vectors

and compute the pairwise distances between the weight vectors.

Using these pairwise distances we calculate confusion and bias

metrics as described in Section 3.

(ii) Random: We also build a random model that picks random

class-pairs for inspection [81] as a baseline.

For AUCEC evaluation, we further show the performance of an

optimal model that ranks the class-pairs perfectly—if n% of all the

class-pairs are truly erroneous, the optimal model would rank them

at the top such that with lower inspection budget most of the errors

will be detected. The optimal curve gives the lower upper bound of

the ranking scheme.

Research Questions.With this experimental setting, we investi-

gate the following three research questions to evaluate DeepInspect

for DNN image classifiers:

• RQ1. Can DeepInspect distinguish between different classes?

• RQ2. Can DeepInspect identify the confusion errors?

• RQ3. Can DeepInspect identify the bias errors?

5 RESULTS

We begin our investigation by checking whether de-facto neuron

coverage-based metrics can capture class separation.

RQ1.CanDeepInspect distinguish betweendifferent classes?

Motivation. The heart of DeepInspect’s error detection technique

lies in the fact that the underlying Neuron Activation Probability

metric (ρ) captures each class abstraction reasonably well and thus

distinguishes between classes that do not suffer from class-level

violations. In this RQ we check whether this is indeed true. We also

check whether a new metric ρ is necessary, i.e., whether existing

neuron-coverage metrics could capture such class separations.

Approach. We evaluate this RQ w.r.t. the training data since the

DNN behaviors are not tainted with inaccuracies associated with

the test images. Thus, all the class-pairs are benign. We evalu-

ate this RQ in three settings: (i) using DeepInspect’s metrics, (ii)

neuron-coverage proposed by Pei et al. [60], and (iii) other neuron-

activation related metrics proposed by DeepGauge [42].

Setting-1. DeepInspect. Our metric, Neuron Activation Proba-

bility Matrix (ρ), by construction is designed per class. Hence it

would be unfair to directly measure its capability to distinguish

between different classes. Thus, we pose this question in slightly a

different way, as described below. For multi-label classification,

each image contains multiple class-labels. For example, an im-

age might have labels for both mouse and keyboard. Such coin-

cidence of labels may create confusion—if two labels always ap-

pear together in the ground truth set, no classifier can distinguish

between them. To check how many times two labels coincide,

we define a coincidence score between two labels La and Lb as:

coincidence (La, Lb) =mean(P (La, Lb |La) , P (La, Lb |Lb)).

The above formula computes the minimum probability of labels

La and Lb occurring together in an image given that one of them is

present. Note that this is a bi-directional score, i.e. we treat the two

labels similarly. Themean operation ensures we detect the least

coincidence in either direction. A low value of coincidence score

indicates two class-labels are easy to separate and vice versa.

Now, to check DeepInspect’s capability to capture class separa-

tion, we simply check the correlation between coincidence score

and confusion score (napvd) from Equation 2 for all possible class-

label pairs. Since only multi-label objects can have label coinci-

dences, we perform this experiment for a pre-trained ResNet-50

model on the COCO multi-label classification task.

A Spearman correlation coefficient between the confusion and

coincidence scores reaches a value as high as 0.96, showing strong

statistical significance. The result indicates that DeepInspect can

disambiguate most of the classes that have a low confusion scores.

Interestingly, we found some pairs where coincidence score

is high, but DeepInspect was able to isolate them. For example,

(cup,chair), (toilet,sink), etc.. Manually investigating such cases

reveals that although these pairs often appear together in the input

images, there are also enough instances when they appear by them-

selves. Thus, DeepInspect disambiguates between these classes and

puts them apart in the embedded space ρ. These results indicate

DeepInspect can also learn some hidden patterns from the context

and, thus, can go beyond inspecting the training data coincidence

for evaluating model bias/confusion, which is the de facto technique

among machine learning researchers [92].

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●●

●

0.2

0.3

0.4

0.5

 s
to

p
 s

ig
n

 c
a
t

 c
o
u
ch

 c
h
a
ir

 c
e
ll

p
h
o
n
e

 r
e
fr
ig

e
ra

to
r

 c
u
p

 p
iz

za

 s
p
o
o
n

 s
n
ow

b
o
a
rd

Class Labels

N
e
u
ro

n
 C

o
v
e
ra

g
e

Figure 3: Distribution of neuron coverage per class label, for 10

randomly picked class labels, from the COCO dataset.

Next, we investigate whether popular white-box metrics can

distinguish between different classes.

Setting-2. Neuron Coverage (NC) [60] computes the ratio of the

union of neurons activated by an input set and the total number

of neurons in a DNN. Here we compute NC per class-label, i.e. for

a given class-label, we measure the number of neurons activated

by the images tagged with that label w.r.t. to the total neurons. The

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

activation threshold we use is 0.5. We perform this experiment on

COCO and CIFAR-100 to study multi- and single-label classifica-

tions. Figure 3 shows results for COCO . We observe similar results

for CIFAR-100 .

Each boxplot in the figure shows the distribution of neuron cov-

erage per class-label across all the relevant images. These boxplots

visually show that di�erent labels have very similar NC distribution.

We further compare these distributions using Kruskal Test [33],

which is a non-parametric way of comparing more than two groups.

Note that we choose a non-parametric measure as NCs may not

follow normal distributions. (Kruskal Test is a parametric equiv-

alent of the one-way analysis of variance (ANOVA).) The result

reports a p −value << 0.05, i.e. some differences exist across these

distributions. However, a pairwise Cohend’s effect size for each

class-label pair, as shown in the following table, shows more than

56% and 78% class-pairs for CIFAR-100 and COCO have small to

negligible effect size. This means neuron coverage cannot reliably

distinguish a majority of the class-labels.

Effect Size of neuron coverage across different classes

Exp Setting negligible small medium large

COCO 40.51% 38.19% 16.96% 4.34%
CIFAR-100 31.94% 25.69% 23.87% 18.48%

Setting-3. DeepGauge [42].Ma et al. [42] argue that each neuron

has a primary region of operation; they identify this region by using

a boundary condition [low,hiдh] on its output during training time;

outputs outside this region ((−∞, low) ∪ (hiдh,+∞)) are marked as

corner cases. They therefore introduce multi-granular neuron and

layer-level coverage criteria. For neuron coverage they propose: (i)

k-multisection coverage to evaluate how thoroughly the primary

region of a neuron is covered, (ii) boundary coverage to compute how

many corner cases are covered, and (iii) strong neuron activation

coverage to measure how many corner case regions are covered in

(hiдh,+∞) region. For layer-level coverage, they define (iv) top-k

neuron coverage to identify the most active k-neurons for each layer,

and (v) top-k neuron pattern for each test-case to find a sequence of

neurons from the top-k most active neurons across each layer.

We investigate whether each of these metrics can distinguish

between different classes by measuring the above metrics for in-

dividual input classes following Ma et al.’s methodology. We first

profiled every neuron upper- and lower-bound for each class using

the training images containing that class-label. Next, we computed

per-class neuron coverage using test images containing that class;

for k-multisection coverage we chose k = 100 to scale up the anal-

ysis. It should be noted that we also tried k = 1000 (which is used

in the original DeepGauge paper) and observed similar results (not

shown here).

For layer-level coverage, we directly used the input images con-

taining each class, where we select k = 1.

Figure 4 shows the results as a histogram of the above five cov-

erage criteria for the COCO dataset. For all five coverage criteria,

there are many class-labels that share similar coverage. For ex-

ample, in COCO , there are 52 labels with k-multisection neuron

coverage with values between 0.31 and 0.32. Similarly, there are

40 labels with 0 neuron boundary coverage. Therefore, none of the

five coverage criteria are an effective way to distinguish between

Figure 4: Histogram of DeepGauge [42] multi-granular coverage

per class label for COCO dataset

different equivalence classes. The same conclusion was drawn for

the CIFAR-100 dataset.

Result 1: DeepInspect can disambiguate classes better than

previous coverage-based metrics for the image classification task.

We now investigate DeepInspect’s capability in detecting confu-

sion and bias errors in DNN models.

RQ2. Can DeepInspect identify the confusion errors?

Motivation. To evaluate how well DeepInspect can detect class-

level violations, in this RQ, we report DeepInspect’s ability to detect

the first type of violation, i.e., Type1/Type2 confusions w.r.t. to

ground truth confusion errors, as described in Section 4.2.1.

0.0 0.1 0.2 0.3
type 2 confusion

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
A

P
V

D
 (

Δ
)

(a) COCO dataset + ResNet-50

0.00 0.05 0.10 0.15
type 1 confusion

0.0

0.1

0.2

0.3

N
A

P
V

D
 (

Δ
)

(b) Robust CIFAR-10 Small

Figure 5: Strong negative Spearman correlation (-0.55 and -0.86) be-

tween napvd and ground truth confusion scores.

We first explore the correlation between napvd and ground truth

Type1/Type2 confusion score. Strong correlation has been found

for all 8 experimental settings. Figure 5 gives examples on COCO

and CIFAR-10. These results indicate that napvd can be used to

detect confusion errors—lower napvd means more confusion.

Approach. By default, DeepInspect reports all the class-pairs with

napvd scores one standard deviation less than the mean napvd

score as error-prone (See Figure 2b). In this setting, as the result

shown on Table 3, DeepInspect reports errors at high recall un-

der most settings. Specifically, on CIFAR-100 and robust CIFAR-10

ResNet, DeepInspect can report errors as high as 71.8%, and 100%,

respectively. DeepInspect has identified thousands of confusion

errors.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

Table 3: DeepInspect performance on detecting confusion errors

napvd < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

COCO DeepInspect 138 256 0.350 0.775 31 0 1 0.174
MODE 126 382 0.248 0.708 26 5 0.839 0.146
random 22 372 0.056 0.124 1 30 0.032 0.006

COCO gender DeepInspect 139 286 0.327 0.827 32 0 1 0.190
MODE 125 379 0.248 0.744 30 2 0.938 0.179
random 22 403 0.052 0.131 1 31 0.031 0.006

CIFAR-100 DeepInspect 206 584 0.261 0.718 39 10 0.796 0.136
MODE 111 605 0.155 0.387 22 27 0.449 0.077
random 45 745 0.057 0.157 2 47 0.041 0.007

R CIFAR-10 S DeepInspect 4 6 0.400 0.800 - - - -
MODE 3 4 0.429 0.600 - - - -
random 1 9 0.100 0.200 - - - -

R CIFAR-10 L DeepInspect 3 4 0.430 0.600 - - - -
MODE 3 5 0.375 0.600 - - - -
random 0 7 0 0 - - - -

R CIFAR-10 R DeepInspect 5 3 0.625 1 - - - -
MODE 1 3 0.250 0.200 - - - -
random 0 8 0 0 - - - -

ImageNet DeepInspect 4014 69957 0.054 0.617 1073 3922 0.215 0.165
MODE 3428 66987 0.049 0.527 1591 3404 0.319 0.245
random 962 73009 0.013 0.148 65 4930 0.013 0.010

imSitu DeepInspect 48 58 0.453 0.165 31 19 0.620 0.107
random 6 100 0.057 0.020 2 48 0.040 0.007

If higher precision is wanted, a user can choose to inspect only a

small set of confused pairs based on napvd. As also shown in Table 3,

when only the top1% confusion errors are reported, a much higher

precision is achieved for all the datasets. In particular, DeepIn-

spect identifies 31 and 39 confusion errors for the COCO model

and the CIFAR-100 model with 100% and 79.6% precision, respec-

tively. The trade-off between precision and recall can be found on

the cost-effective curves shown on Figure 6, which show overall

performance of DeepInspect at different inspection cutoffs. Over-

all, w.r.t. a random baseline mode, DeepInspect is gaining AUCEC

performance from 61.6% to 85.7%; w.r.t. a MODE baseline mode,

DeepInspect is gaining AUCEC performance from 10.2% to 28.2%.

Figure 6: AUCEC plot of Type1/Type2 Confusion errors in three

different settings. The red vertical line marks 1-standard deviation

less frommeannapvd score. DeepInspectmarks all class-pairswith

napvd scores less than the red mark as potential errors.

Figure 7 and Figure 8 give some specific confusion errors found

by DeepInspect in the COCO and the ImageNet settings. In par-

ticular, as shown in Figure 7a, when there is only a keyboard but

(a) (keyboard,mouse) (b) (oven,microwave)

Figure 7: Confusion errors identified in COCOmodel. In each pair

the second object is mistakenly identified by the model.

no mouse in the image, the COCO model reports both. Similarly,

Figure 8a shows confusion errors on (cello, violin). There are several

cellos in this image, but the model predicts it to show a violin.

(a) (cello, violin) (b) (library, bookshop)

Figure 8: Confusion errors identified in the ImageNet model. For

each pair, the second object is mistakenly identified by the model.

Across all three relatively more robust CIFAR-10 models DeepIn-

spect identifies (cat, dog), (bird, deer) and (automobile, truck) as

buggy pairs, where one class is very likely to be mistakenly classi-

fied as the other class of the pair. This indicates that these confusion

errors are to be tied to the training data, so all the models trained

on this dataset including the robust models may have these errors.

These results further show that the confusion errors are orthogonal

to the norm-based adversarial perturbations and we need a different

technique to address them.

We also note that the performance of all methods degrades quite

a bit on ImageNet. ImageNet is known to have a complex structure,

and all the tasks, including image classification and robust image

classification [83] usually have inferior performance compared with

simpler datasets like CIFAR-10 or CIFAR-100. Due to such inherent

complexity, the class representation in the embedded space is less

accurate, and thus the relative distance between two classes may

not correctly reflect a model’s confusion level between two classes.

Result 2: DeepInspect can successfully find confusion errors

with precision 21% to 100% at top1% for both single- and multi-

object classification tasks. DeepInspect also finds confusion errors

in robust models.

RQ3. Can DeepInspect identify the bias errors?

Motivation. To assess DeepInspect’s ability to detect class-level

violations, in this RQ, we report DeepInspect’s performance in

detecting the second type of violation, i.e., Bias errors as described

in Section 4.2.2.

Approach.Weevaluate this RQ by estimating amodel’s bias (avg_bias)

using Equation (4) w.r.t. the ground truth (avg_cd), computed as

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

(a) COCO (b) CIFAR-100

Figure 9: Strong positive Spearman’s correlation (0.76 and 0.62) ex-

ist between avg_cd and avg_bias while detecting classification bias.

in Section 4.2.2. We first explore the correlation between pairwise

avg_cd and our proposed pairwise avg_bias; Figure 9 shows the

results for COCO and CIFAR-10. Similar trends were found in the

other datasets we studied. The results show that a strong correlation

exists between avg_cd and avg_bias. In other words, our proposed

avg_bias is a good proxy for detecting confusion errors.

Table 4: DeepInspect performance on detecting bias errors

avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

COCO DeepInspect 249 278 0.472 0.759 24 8 0.75 0.073
MODE 145 324 0.309 0.442 12 20 0.375 0.037
random 54 472 0.103 0.167 3 28 0.103 0.010

COCO gender DeepInspect 218 325 0.401 0.568 17 16 0.515 0.044
MODE 151 328 0.315 0.393 13 20 0.394 0.034
random 64 478 0.118 0.168 3 28 0.118 0.010

CIFAR-100 DeepInspect 310 543 0.363 0.380 29 21 0.580 0.036
MODE 69 315 0.180 0.085 5 45 0.100 0.001
random 140 711 0.165 0.172 8 41 0.165 0.010

R CIFAR-10 S DeepInspect 7 4 0.636 0.778 - - - -
MODE 3 10 0.231 0.333 - - - -
random 2 8 0.200 0.222 - - - -

R CIFAR-10 L DeepInspect 6 7 0.462 0.667 - - - -
MODE 8 14 0.364 0.889 - - - -
random 2 9 0.200 0.267 - - - -

R CIFAR-10 R DeepInspect 6 3 0.667 0.667 - - - -
MODE 8 14 0.364 0.889 - - - -
random 1 7 0.200 0.200 - - - -

ImageNet DeepInspect 26704 48913 0.353 0.330 3253 1742 0.651 0.040
MODE 23881 47503 0.335 0.295 2355 2640 0.471 0.029
random 12234 63381 0.162 0.151 808 4186 0.162 0.010

imSitu DeepInspect 408 311 0.567 0.718 43 8 0.843 0.076
random 80 638 0.112 0.142 5 44 0.112 0.010

As in RQ2, we also do a precision-recall analysis w.r.t. find-

ing the bias errors across all the datasets. We analyze the pre-

cision and recall of DeepInspect when reporting bias errors at

the cutoff Top1%(avg_bias) and mean(avg_bias)+standard devia-

tion(avg_bias), respectively. The results are shown in Table 4. At cut-

off Top1%(avg_bias), DeepInspect detects suspicious pairs with pre-

cision as high as 75% and 84% for COCO and imSitu, respectively. At

cutoff mean(avg_bias)+standard deviation(avg_bias), DeepInspect

has high recall but lower precision: DeepInspect detects ground

truth suspicious pairs with recall at 75.9% and 71.8% for COCO and

imSitu. DeepInspect can report 657(=249+408) total true bias bugs

across the two models. DeepInspect outperforms the random base-

line by a large margin at both cutoffs. As in the case of detecting

confusion errors, there is a significant trade-off between precision

and recall. This can be customized based on user needs. The cost-

effectiveness analysis in Figure 10 shows the entire spectrum.

Figure 10: Bias errors detected w.r.t. the ground truth of avg_cd

beyond one standard deviation from mean.

As shown in Figure 10, DeepInspect outperforms the baseline by

a large margin. The AUCEC gains of DeepInspect are from 37.1% to

76.1% w.r.t. the random baseline and from 6.0% to 41.9% w.r.t. the

MODE baseline across the 8 settings. DeepInspect’s performance

is close to the optimal curve under some settings, specifically the

AUCEC gains of the optimal over DeepInspect are only 7.11% and

7.95% under the COCO and ImSitu settings, respectively.

Inspired by [92], which shows bias exists between men and

women in COCO for the gender image captioning task, we analyze

the most biased third class c for a and b being men and women. As

shown in Figure 11, we found that sports like skiing, snowboarding,

and surfboarding are more closely associated with men and thus

misleads the model to predict the women in the images as men.

Figure 12 shows results on imSitu, where we found that the model

tends to associate the class “inside” with women while associating

the class “outside” with men.

Figure 11: Themodel classifies thewomen in these pictures asmen

in the COCO dataset.

We generalize the idea by choosing classes a and b to be any

class-pair. We found that similar bias also exists in the single-label

classification settings. For example, in ImageNet, one of the highest

biases is between Eskimo_dog and rapeseed w.r.t. Siberian_husky.

The model tends to confuse the two dogs but not Eskimo_dog and

rapeseed. This makes sense since Eskimo_dog and Siberian_husk

are both dogs so more easily misclassified by the model.

One of the fairness violations of a DNN system can be drastic

differences in accuracy across groups divided according to some

sensitive feature(s). In black-box testing, the tester can get a number

indicating the degree of fairness has been violated by feeding into

the model a validation set. In contrast, DeepInspect provides a new

angle to the fairness violations. The neuron distance difference

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

Figure 12: The model classifies the man in the first figure to be a

woman and the woman in the second figure to be a man.

between two classes a and b w.r.t. a third class c sheds light on why

the model tends to be more likely to confuse between one of them

and c than the other. We leave a more comprehensive examination

on interpreting bias/fairness violations for future work.

Result 3: DeepInspect can successfully find bias errors for

both single- and multi-label classification tasks, and even for

the robust models, from 52% to 84% precision at top1%.

6 RELATED WORK

Software Testing & Verification of DNNs. Prior research pro-

posed different white-box testing criteria based on neuron cov-

erage [42, 60, 77] and neuron-pair coverage [74]. Sun et al. [75]

presented a concolic testing approach for DNNs called DeepCon-

colic. They showed that their concolic testing approach can effec-

tively increase coverage and find adversarial examples. Odena and

Goodfellow proposed TensorFuzz[53], which is a general tool that

combines coverage-guided fuzzing with property-based testing to

generate cases that violate a user-specified objective. It has appli-

cations like finding numerical errors in trained neural networks,

exposing disagreements between neural networks and their quan-

tized versions, surfacing broken loss functions in popular GitHub

repositories, and making performance improvements to Tensor-

Flow. There are also efforts to verify DNNs [25, 28, 61, 80] against

adversarial attacks. However, most of the verification efforts are

limited to small DNNs and pixel-level properties. It is not obvi-

ous how to directly apply these techniques to detect class-level

violations.

Adversarial Deep Learning. DNNs are known to be vulnerable

to well-crafted inputs called adversarial examples, where the dis-

crepancies are imperceptible to a human but can easily make DNNs

fail [14, 17, 24, 31, 34, 40, 51, 52, 54, 57, 58, 62, 76, 86]. Much work

has been done to defend against adversarial attacks [4, 10, 15, 18,

20, 23, 45, 47, 55, 59, 72, 84, 93]. Our methods have potential to iden-

tify adversarial inputs. Moreover, adversarial examples are usually

out of distribution data and not realistic, while we can find both

out-distribution and in-distribution corner cases. Further, we can

identify a general weakness or bug rather than focusing on crafted

attacks that often require a strong attacker model (e.g., the attacker

adds noise to a stop sign image).

InterpretingDNNs.There has beenmuch research onmodel inter-

pretability and visualization [5, 11, 39, 49, 71, 91]. A comprehensive

study is presented by Lipton [39]. Dong et al. [11] observed that

instead of learning the semantic features of whole objects, neurons

tend to react to different parts of the objects in a recurrent manner.

Our probabilistic way of looking at neuron activation per class

aims to capture holistic behavior of an entire class instead of an

individual object so diverse features of class members can be cap-

tured. Closest to ours is by Papernot et al. [56], who used nearest

training points to explain adversarial attacks. In comparison, we

analyze the DNN’s dependencies on the entire training/testing data

and represent it in Neuron Activation Probability Matrix. We can

explain the DNN’s bias and weaknesses by inspecting this matrix.

Evaluating Models’ Bias/Fairness. Evaluating the bias and fair-

ness of a system is important both from a theoretical and a practical

perspective [7, 41, 88, 89]. Related studies first define a fairness

criteria and then try to optimize the original objective while satisfy-

ing the fairness criteria [3, 12, 13, 21, 36, 46]. These properties are

defined either at individual [13, 30, 35] or group levels [9, 21, 87].

In this work, we propose a definition of a bias error for image clas-

sification closely related to fairness notions at group-level. Class

membership can be regarded as the sensitive feature and the equal-

ity that we want to achieve is for the confusion levels of two groups

w.r.t. any third group. We showed the potential of DeepInspect to

detect such violations.

Galhotra et al. [16] first applied the notion of software testing

to evaluating software fairness. They mutate the sensitive features

of the inputs and check whether the output changes. One major

problem with their proposed method, Themis, is that it assumes

the model takes into account sensitive attribute(s) during training

and inference. This assumption is not realistic since most exist-

ing fairness-aware models drop input-sensitive feature(s). Besides,

Themis will not work on image classification, where the sensitive at-

tribute (e.g.,, gender, race) is a visual concept that cannot be flipped

easily. In our work, we use a white-box approach to measure the

bias learned by the model during training. Our testing method does

not require the model to take into account any sensitive feature(s).

We propose a new fairness notion for the setting of multi-object

classification, average confusion disparity, and a proxy, average bias,

to measure for any deep learning model even when only unlabeled

testing data is provided. In addition, our method tries to provide an

explanation behind the discrimination. A complementary approach

by Papernot et al. [56] shows such explainability behind model bias

in a single classification setting.

7 DISCUSSION & THREATS TO VALIDITY

Discussion. In the literature, bug detection, debugging, and repair

are usually three distinct tasks, and there is a large body of work in-

vestigating each separately. In this work, we focus on bug detection

for image classifier software. A natural follow-up of our work will

be debugging and repair leveraging DeepInspect’s bug detection.

We present some preliminary results and thoughts.

A commonly used approach to improving (i.e. fixing) image clas-

sifiers is active learning, which consists of adding more labeled

data by smartly choosing what to label next. In our case, we can

use napvd to identify the most confusing class pairs, and then

target those pairs by collecting additional examples that contain

individual objects from the confusing pairs. We download 105 sam-

ple images from Google Images that contain isolated examples of

these categories so that the model learns to disambiguate them.

We retrain the model from scratch using the original training data

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

and these additional examples. Using this approach, we have some

preliminary results on the COCO dataset. After retraining, we find

that the type2conf of the top confused pairs reduces. For example,

the type2conf(baseball bat, baseball glove) is reduced from 0.23

to 0.16, and type2conf(refrigerator, oven) is reduced from 0.14 to

0.10. Unlike traditional active learning approaches that encourage

labeling additional examples near the current decision boundary of

the classifier, our approach encourages the labeling of problematic

examples based on confusion bugs.

Another potential direction to explore is to use DeepInspect

in tandem with debugging & repair tools for DNN models like

MODE [43]. DeepInspect enables the user to focus debugging effort

on the vulnerable classes even in the absence of labeled data. For

instance, once DeepInspect identifies the vulnerable class-pairs, one

can use the GAN-based approach proposed in MODE to generate

more training data from these class-pairs, apply MODE to identify

the most vulnerable features in these pairs to select for retraining.

We have also explored how the neuron coverage threshold(th)

used in computing NAPVD affects our performance in detecting

confusion and bias errors. We studied one multi-label classification

task COCO and one single-label classification task CIFAR-100. Table

5, 6, 7, 8 show how our precision and recall change when using

different neuron coverage thresholds (th). We observed that for

CIFAR-100 and COCO that DeepInspect’s accuracies are overall

stable at 0.4 ≤ th ≤ 0.75. With smaller th(< 0.25), too many

neurons are activated pulling the per-class activation-probability-

vectors closer to each other. In contrast, with higher th(> 0.75),

important activation information gets lost. Thus, we select th = 0.5

for all the other experiments to avoid either issue.

Table 5: DeepInspect impact of neuron coverage threshold on de-

tecting confusion errors for COCO

NC threshold napvd < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 36 18 0.67 0.20 23 8 0.74 0.13

0.40 150 215 0.41 0.84 31 0 1 0.17

0.50 138 256 0.35 0.78 31 0 1 0.17

0.60 137 264 0.34 0.77 30 1 0.97 0.17

0.75 135 271 0.33 0.76 29 2 0.94 0.16

Table 6: DeepInspect impact of neuron coverage threshold on de-

tecting confusion errors for CIFAR-100

NC threshold napvd < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 188 629 0.23 0.66 34 15 0.69 0.12

0.40 197 550 0.26 0.69 39 10 0.80 0.14

0.50 206 584 0.26 0.72 39 10 0.80 0.14

0.60 211 596 0.26 0.74 37 12 0.76 0.13

0.75 195 604 0.24 0.68 37 12 0.76 0.13

Threats to Validity.We only test DeepInspect on 6 datasets under

8 settings. We include both single-class and multi-class as well

Table 7: DeepInspect impact of neuron coverage threshold on de-

tecting bias errors for COCO

NC threshold avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 218 280 0.438 0.665 26 6 0.812 0.079

0.40 260 275 0.486 0.793 20 12 0.625 0.061

0.50 249 278 0.472 0.759 24 8 0.75 0.073

0.60 190 273 0.410 0.579 24 8 0.75 0.073

0.75 197 54 0.785 0.601 32 0 1 0.098

0.90 201 102 0.663 0.592 32 0 1 0.094

Table 8: DeepInspect impact of neuron coverage threshold on de-

tecting bias errors for CIFAR-100

NC threshold avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 289 569 0.337 0.355 18 32 0.36 0.022

0.40 272 545 0.333 0.334 27 23 0.54 0.033

0.50 310 543 0.363 0.380 29 21 0.58 0.036

0.60 279 473 0.371 0.342 26 24 0.54 0.032

0.75 276 455 0.378 0.339 29 21 0.58 0.036

0.90 179 587 0.234 0.220 12 38 0.24 0.015

as regular and robust models to address these threats as much as

possible.

Another limitation is that DeepInspect needs to decide thresholds

for both confusion errors and bias errors, and a threshold for dis-

carding low-confusion triplets in the estimation of avg_bias. Instead

of choosing fixed threshold, we mitigate this threat by choosing

thresholds that are one standard deviation from the corresponding

mean values and, also, reporting performance at top1%.

The task of accurately classifying any image is notoriously dif-

ficult. We simplify the problem by testing the DNN model only

for the classes that it has seen during training. For example, while

training, if a DNN does not learn to differentiate between black vs.

brown cows (i.e., all the cow images only have label cow and they

are treated as belonging to the same class by the DNN), DeepInspect

will not be able to test these sub-groups.

8 CONCLUSION

Our testing tool for DNN image classifiers, DeepInspect, automat-

ically detects confusion and bias errors in classification models.

We applied DeepInspect to six different popular image classifica-

tion datasets and eight pretrained DNN models, including three

so-called relatively more robust models. We show that DeepInspect

can successfully detect class-level violations for both single- and

multi-label classification models with high precision.

ACKNOWLEDGMENTS

This work is supported in part by NSF CNS-1563555, CCF-1815494,

CNS-1842456, CCF-1845893, and CCF-1822965. Any opinions, find-

ings, conclusions, or recommendations expressed herein are those

of the authors, and do not necessarily reflect those of the US Gov-

ernment or NSF.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray

REFERENCES
[1] 2017. Base pretrained models and datasets in pytorch. https://github.com/aaron-

xichen/pytorch-playground
[2] Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen. 2010. A systematic

and comprehensive investigation ofmethods to build and evaluate fault prediction
models. JSS 83, 1 (2010), 2–17.

[3] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2018. Fairness and Machine
Learning. fairmlbook.org. http://www.fairmlbook.org.

[4] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness with
constraints. In Advances in Neural Information Processing Systems. 2613–2621.

[5] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network Dissection: Quantifying Interpretability of Deep Visual Representations.
In Computer Vision and Pattern Recognition.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[7] Yuriy Brun and Alexandra Meliou. 2018. Software Fairness. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL,
USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 754–759. https://doi.org/10.
1145/3236024.3264838

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification. In FAT.

[9] T. Calders, F. Kamiran, and M. Pechenizkiy. 2009. Building Classifiers with
Independency Constraints. In 2009 IEEE International Conference on Data Mining
Workshops. 13–18.

[10] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE,
39–57.

[11] Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. 2017. Towards interpretable
deep neural networks by leveraging adversarial examples. arXiv preprint
arXiv:1708.05493 (2017).

[12] Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, and Massi-
miliano Pontil. 2018. Empirical Risk Minimization Under Fairness Constraints.
In Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. 2796–2806. http://papers.nips.cc/paper/7544-empirical-risk-
minimization-under-fairness-constraints

[13] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2012. Fairness Through Awareness. In Proceedings of the Innovations in
Theoretical Computer Science Conference abs/1104.3913 (2012), 214–226.

[14] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul
Prakash, Amir Rahmati, and Dawn Song. 2017. Robust Physical-World Attacks
on Machine Learning Models. arXiv preprint arXiv:1707.08945 (2017).

[15] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017.
Detecting Adversarial Samples from Artifacts. arXiv preprint arXiv:1703.00410
(2017).

[16] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing:
testing software for discrimination. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 498–510.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations (ICLR).

[18] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. 2017. On the (statistical) detection of adversarial examples.
arXiv preprint arXiv:1702.06280 (2017).

[19] Loren Grush. 2015. Google engineer apologizes after Photos app tags two black
people as gorillas. (2015). https://www.theverge.com/2015/7/1/8880363/google-
apologizes-photos-app-tags-two-black-people-gorillas

[20] Shixiang Gu and Luca Rigazio. 2015. Towards deep neural network architec-
tures robust to adversarial examples. In International Conference on Learning
Representations (ICLR).

[21] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of Opportunity in
Supervised Learning. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (Barcelona, Spain) (NIPS’16). USA, 3323–3331.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[23] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. 2017.
Adversarial Example Defenses: Ensembles of Weak Defenses Are Not Strong. In
Proceedings of the 11th USENIX Conference on O�ensive Technologies (Vancouver,
BC, Canada) (WOOT’17). USENIX Association, Berkeley, CA, USA, 15–15. http:
//dl.acm.org/citation.cfm?id=3154768.3154783

[24] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
2017. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284 (2017).

[25] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
verification of deep neural networks. In International Conference on Computer
Aided Verification. Springer, 3–29.

[26] Pooja Kamavisdar, Sonam Saluja, and Sonu Agrawal. 2013. A survey on image
classification approaches and techniques. International Journal of Advanced
Research in Computer and Communication Engineering 2, 1 (2013), 1005–1009.

[27] Yasutaka Kamei, ShinsukeMatsumoto, AkitoMonden, Ken-ichi Matsumoto, Bram
Adams, and Ahmed E Hassan. 2010. Revisiting common bug prediction findings
using effort-aware models. In 2010 IEEE International Conference on Software
Maintenance. IEEE, 1–10.

[28] GuyKatz, Clark Barrett, David L. Dill, Kyle Julian, andMykel J. Kochenderfer. 2017.
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. Springer
International Publishing, Cham, 97–117.

[29] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In Proceedings of the 41st International Conference
on Software Engineering. IEEE Press, 1039–1049.

[30] Michael P. Kim, Omer Reingold, and Guy N. Rothblum. 2018. Fairness Through
Computationally-Bounded Awareness. 32nd Conference on Neural Information
Processing Systems (NeurIPS 2018) (2018).

[31] Jernej Kos, Ian Fischer, and Dawn Song. 2017. Adversarial examples for generative
models. arXiv preprint arXiv:1702.06832 (2017).

[32] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

[33] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in
One-Criterion Variance Analysis. J. Amer. Statist. Assoc. 47, 260
(1952), 583–621. https://doi.org/10.1080/01621459.1952.10483441
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/01621459.1952.10483441

[34] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In Workshop track at International Conference on Learning
Representations (ICLR).

[35] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-
tual Fairness. InAdvances in Neural Information Processing Systems 30. 4066–4076.

[36] Alexandre Louis Lamy, Ziyuan Zhong, Aditya Krishna Menon, and Nakul
Verma. 2019. Noise-tolerant fair classification. CoRR abs/1901.10837 (2019).
arXiv:1901.10837 http://arxiv.org/abs/1901.10837

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[39] Zachary C Lipton. 2016. The mythos of model interpretability. Proceedings of the
33rd International Conference on Machine Learning Workshop (2016).

[40] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. 2017. No need to
worry about adversarial examples in object detection in autonomous vehicles. In
Spotlight Oral Workshop at Proceedings of the IEEE conference on computer vision
and pattern recognition.

[41] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. 2011. k-NN as an
implementation of situation testing for discrimination discovery and prevention.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 502–510.

[42] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. (2018), 120–131.
https://doi.org/10.1145/3238147.3238202

[43] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New
York, NY, USA, 175–186. https://doi.org/10.1145/3236024.3236082

[44] MalletsDarker. 2018. I took a few shots at Lake Louise today and Google offered
me this panorama. (2018). https://www.reddit.com/r/funny/comments/7r9ptc/i_
took_a_few_shots_at_lake_louise_today_and/dsvv1nw/

[45] Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray.
2019. Metric Learning for Adversarial Robustness. In Advances in Neural Informa-
tion Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 478–489. http:
//papers.nips.cc/paper/8339-metric-learning-for-adversarial-robustness.pdf

[46] Aditya Krishna Menon and Robert C. Williamson. 2018. The cost of fairness in
binary classification. In Conference on Fairness, Accountability and Transparency,
FAT 2018, 23-24 February 2018, New York, NY, USA. 107–118. http://proceedings.
mlr.press/v81/menon18a.html

[47] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017.
On detecting adversarial perturbations. In International Conference on Learning
Representations (ICLR).

[48] Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., New
York, NY, USA.

Testing DNN Image Classifiers for Confusion & Bias Errors ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[49] GrégoireMontavon,Wojciech Samek, and Klaus-Robert Müller. 2017. Methods for
interpreting and understanding deep neural networks. Digital Signal Processing
(2017).

[50] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[51] Nina Narodytska and Shiva Prasad Kasiviswanathan. 2016. Simple black-box
adversarial perturbations for deep networks. InWorkshop on Adversarial Training,
NIPS 2016.

[52] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 427–436.

[53] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on Machine Learning (Proceedings
of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov
(Eds.), Vol. 97. PMLR, Long Beach, California, USA, 4901–4911. http://proceedings.
mlr.press/v97/odena19a.html

[54] Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Fartash
Faghri, Alexander Matyasko, Karen Hambardzumyan, Yi-Lin Juang, Alexey Ku-
rakin, Ryan Sheatsley, et al. 2016. cleverhans v2. 0.0: an adversarial machine
learning library. arXiv preprint arXiv:1610.00768 (2016).

[55] Nicolas Papernot and Patrick McDaniel. 2017. Extending Defensive Distillation.
arXiv preprint arXiv:1705.05264 (2017).

[56] Nicolas Papernot and Patrick McDaniel. 2018. Deep k-Nearest Neighbors:
Towards Confident, Interpretable and Robust Deep Learning. arXiv preprint
arXiv:1803.04765 (2018).

[57] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 506–519.

[58] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 372–387.

[59] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 582–597.

[60] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Au-
tomated Whitebox Testing of Deep Learning Systems. (2017), 1–18. https:
//doi.org/10.1145/3132747.3132785

[61] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Towards Practical
Verification of Machine Learning: The Case of Computer Vision Systems. arXiv
preprint arXiv:1712.01785 (2017).

[62] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses
against adversarial examples. 6th International Conference on Learning Represen-
tations (ICLR) (2018).

[63] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 432–441.

[64] Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu. 2013.
Sample size vs. bias in defect prediction. In Proceedings of the 2013 9th joint
meeting on foundations of software engineering. ACM, 147–157.

[65] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. 2011. BugCache for
inspections: hit or miss?. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
322–331.

[66] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the" naturalness" of buggy code.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 428–439.

[67] Adam Rose. 2010. Are Face-Detection Cameras Racist? (2010). http://content.
time.com/time/business/article/0,8599,1954643,00.html

[68] Amir Rosenfeld, Richard S. Zemel, and John K. Tsotsos. 2018. The Elephant in
the Room. CoRR abs/1808.03305 (2018). arXiv:1808.03305 http://arxiv.org/abs/
1808.03305

[69] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1988. Learning
representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[70] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[71] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based

Localization. In 2017 IEEE International Conference on Computer Vision (ICCV).
618–626. https://doi.org/10.1109/ICCV.2017.74

[72] Uri Shaham, Yutaro Yamada, and Sahand Negahban. 2015. Understanding adver-
sarial training: Increasing local stability of neural nets through robust optimiza-
tion. arXiv preprint arXiv:1511.05432 (2015).

[73] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional net-
works for large-scale image recognition. In International Conference on Learning
Representations (ICLR).

[74] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural
Networks. arXiv preprint arXiv:1803.04792 (2018).

[75] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 109–119.
https://doi.org/10.1145/3238147.3238172

[76] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. 2014. Intriguing properties of neural networks. In International Conference
on Learning Representations (ICLR).

[77] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated testing of deep-neural-network-driven autonomous cars. In International
Conference of Software Engineering (ICSE), 2018 IEEE conference on. IEEE.

[78] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining (IJDWM) 3, 3
(2007), 1–13.

[79] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, 1245–1256.

[80] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal Security Analysis of Neural Networks using Symbolic Intervals. (2018).

[81] Ian H Witten and Eibe Frank. 2005. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann.

[82] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. 2018. Scaling
provable adversarial defenses. In Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Eds.). Curran Associates, Inc., 8410–8419. http://papers.nips.cc/
paper/8060-scaling-provable-adversarial-defenses.pdf

[83] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming
He. 2019. Feature Denoising for Improving Adversarial Robustness. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[84] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. arXiv preprint arXiv:1704.01155
(2017).

[85] Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. 2016. Situation Recognition: Vi-
sual Semantic Role Labeling for Image Understanding. In Conference on Computer
Vision and Pattern Recognition.

[86] X. Yuan, P. He, Q. Zhu, and X. Li. 2019. Adversarial Examples: Attacks and
Defenses for Deep Learning. IEEE Transactions on Neural Networks and Learning
Systems (2019), 1–20. https://doi.org/10.1109/TNNLS.2018.2886017

[87] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P.
Gummadi. 2017. Fairness Beyond Disparate Treatment & Disparate Impact:
Learning Classification Without Disparate Mistreatment. In Proceedings of the
26th International Conference on World Wide Web (Perth, Australia). 1171–1180.

[88] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. 2017. Fairness constraints: Mechanisms for fair classification. In
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics ((AISTATS) 2017), Vol. 54. JMLR.

[89] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013.
Learning Fair Representations. In Proceedings of the 30th International Conference
on Machine Learning. 325–333.

[90] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing.
arXiv preprint arXiv:1802.02295 (2018).

[91] Quan-shi Zhang and Song-Chun Zhu. 2018. Visual interpretability for deep
learning: a survey. Frontiers of Information Technology & Electronic Engineering
19, 1 (2018), 27–39.

[92] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang.
2017. Men Also Like Shopping: Reducing Gender Bias Amplification using
Corpus-level Constraints. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. 2941–2951. https://www.aclweb.org/
anthology/D17-1319

[93] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. Improving
the robustness of deep neural networks via stability training. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4480–4488.

