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Abstract

We consider learning problems where the training set consists of two types of
examples: private and public. The goal is to design a learning algorithm that
satisfies differential privacy only with respect to the private examples. This setting
interpolates between private learning (where all examples are private) and classical
learning (where all examples are public).
We study the limits of learning in this setting in terms of private and public sam-
ple complexities. We show that any hypothesis class of VC-dimension d can be
agnostically learned up to an excess error of α using only (roughly) d/α public
examples and d/α2 private labeled examples. This result holds even when the
public examples are unlabeled. This gives a quadratic improvement over the stan-
dard d/α2 upper bound on the public sample complexity (where private examples
can be ignored altogether if the public examples are labeled). Furthermore, we give
a nearly matching lower bound, which we prove via a generic reduction from this
setting to the one of private learning without public data.

1 Introduction

In this work, we study a relaxed notion of differentially private (DP) supervised learning which was
introduced by Beimel et al. in [BNS13], where it was coined semi-private learning. In this setting, the
learning algorithm takes as input a training set that is comprised of two parts: (i) a private sample that
contains personal and sensitive information, and (ii) a “public” sample that poses no privacy concerns.
We assume that the private sample is always labeled, while the public sample can be either labeled or
unlabeled. The algorithm is required to satisfy DP only with respect to the private sample. The goal
is to design algorithms that can exploit as little public data as possible to achieve non-trivial gains in
accuracy (or, equivalently savings in sample complexity) over standard DP learning algorithms, while
still providing strong privacy guarantees for the private dataset. Similar settings have been studied
before in literature (see “Related Work” section below).

There are several motivations for studying this problem. First, in practical scenarios, it is often not
hard to collect reasonable amount of public data from users or organizations. For example, in the
language of consumer privacy, there is considerable amount of data collected from the so-called
“opt-in” users, who voluntarily offer or sell their data to companies or organizations. Such data is
deemed by its original owner to have no threat to personal privacy. There are also a variety of other
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sources of public data that can be harnessed. Moreover, in many scenarios, it is often much easier to
collect unlabeled than labeled data.

Another motivation emerges from several pessimistic results in DP learning that either limit or
eliminate the possibility of differentially private learning, even for elementary problems such as
one-dimensional thresholds which are trivially learnable without privacy constraints [BNSV15,
ALMM19]. It is therefore natural to explore whether a small amount of public data circumvents these
impossibility results.

A third motivation arises from the following observation: consider a learning problem in which the
marginal distribution DX over the domain X is completely known to the algorithm, but the target
concept c : X → {0, 1} is unknown. One can show that in this setting every VC class can be learned
privately with (roughly) the same sample complexity as in the standard, non-private, case. The other
extreme is the standard PAC-setting in which both DX and c are unknown to the algorithm. As
mentioned earlier, in this case even very simple classes such as one-dimensional thresholds can not
be learned privately. In the setting considered in this work, the distribution DX is unknown but the
learner has access to some public examples from it. This naturally interpolates between these two
extremes: the case when DX is unknown that corresponds to having no public examples, and the
case when DX is known that corresponds to having an unbounded amount of public examples. It
is therefore natural to study the intermediate behaviour as the number of public examples grows
from 0 to∞. The same question can be also asked in the “easier” case where the public examples are
labeled.

We will generally refer to the setting described above as semi-private learning, and to algorithms
in that setting as semi-private learners. (See Section 2, for precise definitions.) Following previous
works in private learning, we consider two types of semi-private learners: those that satisfy the notion
of pure DP (the stronger notion of DP), as well as those that satisfy approximate DP. We will call the
former type pure semi-private learners, and call the latter approximate semi-private learners.

Main Results

In this work we concentrate on the sample complexity of semi-private learners in the agnostic setting.
We especially focus on the minimal number of public examples with which it is possible to learn
every VC class.

1. Upper bound: Every hypothesis class H can be learned up to excess error α by a pure semi-
private algorithm whose private sample complexity is (roughly) VC(H)/α2 and public sample
complexity is (roughly) VC(H)/α. Moreover, the input public sample can be unlabeled.
Recall that VC(H)/α2 examples are necessary to learn in the agnostic setting (even without
privacy constraints); therefore, this result establishes a quadratic saving.

2. Lower bound: AssumeH has an infinite Littlestone dimension2. Then, any approximate semi-
private learner for H must have public sample complexity Ω(1/α), where α is the excess error.
This holds even when the public sample is labeled.
One example of a class with an infinite Littlestone dimension is the class of thresholds over R.
This class has VC dimension 1, and therefore demonstrates that the upper and lower bounds above
nearly match.

3. Dichotomy for pure semi-private learning: Every hypothesis class H satisfies exactly one of
the following:

(i) H is learnable by a pure DP algorithm, and therefore can be semi-privately learned without
any public examples.

(ii) Any pure semi-private learner forH must have public sample complexity Ω (1/α), where α
is the excess error.

Techniques

Upper bound: The idea of the construction for the upper bound is to use the (unlabeled) public
data to construct a finite class H′ that forms a “good approximation” of the original class H, then

2The Littlestone dimension is a combinatorial parameter that arises in online learning [Lit87, BPS09].
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reduce the problem to DP learning of a finite class. Such approximation is captured via the notion of
α-covering (Definition 2.7). By standard uniform-convergence arguments, it is not hard to see that
(roughly) VC(H)/α2 public examples suffice to construct such an approximation. We show that the
number of public examples can be reduced to only about VC(H)/α, even in the agnostic setting. Our
construction is essentially the same as a construction due to Beimel et al. [BNS13], but our proof
technique is different (see the “Related Work” section for a more detailed comparison).

Lower bounds: The lower bounds boil down to a public-data-reduction lemma which shows that if
we are given a semi-private learner whose public sample complexity is << 1/α, we can transform
it to a fully private learner (which uses no public examples) whose excess error is a small constant
(say 1/100). Stated contra-positively, this implies that if a class can not be privately learned up to an
excess loss of 1/100 then it can not be semi-privately learned with << 1/α public examples. This
allows us to exploit known lower bounds for private learning to derive a lower bound on the public
sample complexity.

Related Work: Our algorithm for the upper bound is essentially the same as a construction due to
Beimel et al. [BNS13]. Although [BNS13] focuses on the realizable case of semi-private learning,
their analysis can be extended to the agnostic case to yield a similar upper bound to the one we
present here. However, the proof technique we give here is different from theirs. In particular, our
proof relies on and emphasizes the use of α-coverings, which provides a direct argument for both the
realizable and agnostic case. We believe the notion of α-covering can be a useful tool in the analysis
of other differentially private algorithms even outside the learning context.

There are also several other works that considered similar problems. A similar notion known as
“label-private learning” was considered in [CH11] (see also references therein) and in [BNS13]. In
this notion, only the labels in the training set are considered private. This notion is weaker than
semi-private learning. In particular, any semi-private learner can be easily transformed into a label-
private learner. Another line of work considers the problem of private knowledge transfer [HCB16],
[PAE+17], [PSM+18], and [BTT18]. In this problem, first a DP classification algorithm with input
private sample is used to provide labels for an unlabeled public dataset. Then, the result is used
to train a non-private learner. [BTT18] gives sample complexity bounds in the setting when the
DP algorithm is required to label the public data in an online fashion. Their bounds are thus not
comparable to ours.

2 Preliminaries

Let X denote an arbitrary domain, let Z = X × {0, 1} denote the examples domain, and let
Z∗ = ∪∞n=1Zn. A function h : X → {0, 1} is called a concept/hypothesis, a set of hypotheses
H ⊆ {0, 1}X is called a concept/hypothesis class. The VC dimension of H is denoted by VC(H).
We use D to denote a distribution over Z , and DX to denote the marginal distribution over X . We
use S ∼ Dn to denote a sample/dataset S = {(x1, y1), . . . , (xn, yn)} of n i.i.d. draws from D.

Expected error: The expected/population error of a hypothesis h : X → {0, 1} with respect to a
distribution D over Z is defined by err(h;D) , E

(x,y)∼D
[1 (h(x) 6= y)].

A distribution D is called realizable by H if there exists h∗ ∈ H such that err(h∗;D) = 0. In this
case, the data distribution D is described by a distribution DX over X and a hypothesis h∗ ∈ H. For
realizable distributions, the expected error of a hypothesis h will be denoted by err (h; (DX , h∗)) ,
E

x∼DX
[1 (h(x) 6= h∗(x))] .

Empirical error: The empirical error of a hypothesis h : X → {0, 1} with respect to a labeled
dataset S = {(x1, y1), . . . , (xn, yn)} will be denoted by êrr (h;S) , 1

n

∑n
i=1 1 (h(xi) 6= yi) .

Expected disagreement: The expected disagreement between a pair of hypotheses h1 and h2 with
respect to a distribution DX over X is defined as dis (h1, h2; DX ) , E

x∼DX
[1 (h1(x) 6= h2(x))] .
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Empirical disagreement: The empirical disagreement between a pair of hypotheses h1

and h2 w.r.t. an unlabeled dataset T = {x1, . . . , xn} is defined as d̂is (h1, h2; T ) =
1
n

∑n
i=1 1 (h1(xi) 6= h2(xi)) .

Definition 2.1 (Differential Privacy [DMNS06, DKM+06]). Let ε, δ > 0. A (randomized) algorithm
A with input domain Z∗ and output rangeR is called (ε, δ)-differentially private if for all pairs of
datasets S, S′ ∈ Z∗ that differs in exactly one data point, and every measurable O ⊆ R, we have

Pr (A(S) ∈ O) ≤ eε · Pr (A(S′) ∈ O) + δ,

where the probability is over the random coins ofA. When δ = 0, we say thatA is pure ε-differentially
private.

We study learning algorithms that take as input two datasets: a private dataset Spriv and a public
dataset Spub, and output a hypothesis h : X → {0, 1}. The private set Spriv ∈ (X × {0, 1})∗ is
labeled. We distinguish between two settings of the learning problem depending on whether the
public dataset is labeled or not. To avoid confusion, we denote an unlabeled public set as Tpub ∈ X ∗,
and use Spub to denote a labeled public set. We formally define learners in these two settings.

Definition 2.2 ((α, β, ε, δ)- Semi-Private Learner). Let H ⊂ {0, 1}X be a hypothesis class. A
randomized algorithm A is (α, β, ε, δ)-SP (semi-private) learner forH with private sample size npriv
and public sample size npub if the following conditions hold:

1. For every distribution D over Z = X × {0, 1}, given datasets Spriv ∼ Dnpriv and Spub ∼
Dnpub as inputs to A, with probability at least 1− β (over the choice of Spriv, Spub, and the
random coins of A), A outputs a hypothesis A (Spriv, Spub) = ĥ ∈ {0, 1}X satisfying

err
(
ĥ; D

)
≤ inf
h∈H

err (h; D) + α.

2. For all S ∈ Znpub , A (·, S) is (ε, δ)-differentially private.

When the second condition is satisfied with δ = 0 (i.e., pure differential privacy), we refer to A as
(α, β, ε)-SP learner (i.e., pure semi-private learner).

As a special case of the above definition, we say that an algorithm A is an (α, β, ε, δ)-semi-privately
learner for a classH under the realizability assumption if it satisfies the first condition in the definition
only with respect to all distributions that are realizable byH.
Definition 2.3 (Semi-Privately Learnable Class). We say that a classH is semi-privately learnable if
there are functions npriv : (0, 1)2 → N, npub : (0, 1)2 → N, where npub(α, ·) = o(1/α2), and there
is an algorithm A such that for every α, β ∈ (0, 1), when A is given private and public samples of
sizes npriv = npriv(α, β), and npub = npub(α, β), it (α, β, 0.1, negl (npriv))-semi-privately learnsH.

Note that in the definition above, the privacy parameters are set as follows: ε = 0.1 and δ is negligible
function in the private sample size (and δ = 0 for a pure semi-private learner).

The restriction npub = o(1/α2) in the above definition is because taking Ω(VC(H)/α2) public
examples suffices for learning the class without any private examples.
Definition 2.4 ((α, β, ε, δ)-Semi-Supervised Semi-Private Learner). The definition is analogous to
Definition 2.2 except that the public sample is unlabeled. An algorithm that satisfies this definition is
referred to as (α, β, ε, δ)-SS-SP (semi-supervised semi-private) learner.

Private learning without public data: In the standard setting of (ε, δ)-differentially private learning,
the learner has no access to public data. We note that this setting can be viewed as a special case of
Definitions 2.2 and 2.4 by taking npub = 0. In such case, we refer to the learner as (α, β, ε, δ)-private
learner. As before, when δ = 0, we call the learner pure private learner. The notion of privately
learnable classH is defined analogously to Definition 2.3 with npub(α, β) = 0 for all α, β.

We will use the following lemma due to Beimel et al. [BNS15]:
Lemma 2.5 (Special case of Theorem 4.16 in [BNS15]). Any class H that is privately learnable
under realizability assumption is also privately learnable (i.e., in the agnostic setting).
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The following fact follows from the private boosting technique due to [DRV10]:
Lemma 2.6 (follows from Theorem 6.1 [DRV10] (the full version)). For any class H, under the
realizability assumption, if there is a (0.1, 0.1, 0.1)-pure private learner forH, thenH is privately
learnable by a pure private algorithm.

We note that no analogous statement to the one in Lemma 2.6 is known for approximate private
learners (see the full version [ABM19] for a discussion).

We will also use the following notion of coverings:

Definition 2.7 (α-cover for a hypothesis class). A family of hypotheses H̃ is said to form an α-cover
for a hypothesis class H ⊆ {0, 1}X with respect to a distribution DX over X if for every h ∈ H,

there is h̃ ∈ H̃ such that dis
(
h, h̃; DX

)
≤ α.

3 Upper Bound

In this section we show that every VC classH can be semi-privately learned in the agnostic case with
only Õ(VC(H)/α) public examples:
Theorem 3.1 (Upper bound). Let H be a hypothesis class and let VC (H) = d. For any α, β ∈
(0, 1), ε > 0, ASSPP is an (α, β, ε)-semi-supervised semi-private agnostic learner forH with private
and public sample complexities:

npriv = O

((
d log(1/α) + log(1/β)

)
max

(
1

α2
,

1

ε α

))
,

npub = O

(
d log(1/α) + log(1/β)

α

)
.

Proof overview. The upper bound is based on a reduction to the fact that any finite hypothesis classH′
can be learned privately with sample complexity (roughly)O(log|H′|) via the exponential mechanism
[KLN+08]. In more detail, we use the (unlabeled) public data to construct a finite classH′ that forms
a “good enough approximation” of the (possibly infinite) original classH (See Algorithm 1). The
relevant notion of approximation is captured by the definition of α-cover (Definition 2.7). Indeed, it
suffices to output an hypothesis h′ ∈ H′ that “α-approximates” an optimal hypothesis h∗ ∈ H.

Thus, the crux of the proof boils down to the question: How many samples from DX are needed in
order to construct an α-cover for H? It is not hard to see that (roughly) O(VC(H)/α2) examples
suffice: indeed, these many examples suffice to approximate the distances dis (h′, h′′; DX ) for
every h′, h′′ ∈ H, which suffices to construct the α-cover. We show how to reduce the number of
examples to only (roughly) O(VC(H)/α) examples (Lemma 3.3), which, by our lower bound, is
nearly optimal.

Algorithm 1 ASSPP: Semi-Supervised Semi-Private Agnostic Learner
Input: Private labeled dataset: Spriv = {(x1, y1), . . . , (xnpriv , ynpriv)} ∈ Znpriv , a public unlabeled

dataset: Tpub = (x̃1, · · · , x̃npub
) ∈ Xnpub , a hypothesis class H ⊂ {0, 1}X , and a privacy

parameter ε > 0.
1: Let T̃ = {x̂1, . . . , x̂m̂} be the set of points x ∈ X appearing at least once in Tpub.
2: Let ΠH(T̃ ) = {(h(x̂1), . . . , h(x̂m̂)) : h ∈ H} .
3: Initialize H̃Tpub

= ∅.
4: for each c = (c1, . . . , cm̂) ∈ ΠH(T̃ ): do
5: Add to H̃Tpub

arbitrary h ∈ H that satisfies h(x̂j) = cj for every j = 1, . . . , m̂.
6: Use the exponential mechanism with inputs Spriv, H̃Tpub

, ε and score function q(Spriv, h) ,

−êrr(h;Spriv) to select hpriv ∈ H̃Tpub
.

7: return hpriv.

The proof of Theorem 3.1 relies on the following lemmas. (The full proof of Theorem 3.1 can be
found in the full version [ABM19]).
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Lemma 3.2. For all Tpub ∈ Xnpub , ASSPP(·, Tpub) is ε-differentially private.

The proof is straightforward and is deferred to the full version [ABM19].

Lemma 3.3 (α-cover forH). Let Tpub ∼ D
npub

X , where npub = O
(
d log(1/α)+log(1/β)

α

)
. Then, with

probability at least 1− β, the family H̃Tpub
constructed in Step 5 of Algorithm 1 is an α-cover forH

w.r.t. DX .

We now prove Lemma 3.3. (We include a a more detailed version in the full version [ABM19]).
We need to show that with high probability, for every h ∈ H there exists h̃ ∈ H̃Tpub

such that
dis(h, h̃;DX ) ≤ α. Let T̃ = {x̂1, . . . , x̂m̂} be as defined in ASSPP (Algorithm 1), and define
h(T̃ ) = (h(x̂1), . . . , h(x̂m̂)). By construction, there must exist h̃ ∈ H̃Tpub

such that ∀j ∈ [m̂]

h̃(x̂j) = h(x̂j); that is, d̂is
(
h̃, h; Tpub

)
= 0. For Tpub ∼ D

npub

X , define the event

Bad =
{
∃h1, h2 ∈ H : dis (h1, h2;DX ) > α and d̂is (h1, h2; Tpub) = 0

}
We will show that

P
Tpub∼D

npub
X

[Bad] ≤ 2

(
2e npub
d

)2d

e−αnpub/4. (1)

Before we do so, we first show that (1) suffices to prove the lemma. Indeed, if dis
(
h̃, h; DX

)
> α

for some h ∈ H then the event Bad occurs. Hence,

P
Tpub∼D

npub
X

[
H̃Tpub

is not an α-cover
]
≤ 2

(
2e npub
d

)2d

e−αnpub/4.

Now, via standard manipulation, this bound is at most β when npub = O
(
d log(1/α)+log(1/β)

α

)
,

which yields the desired bound and finishes the proof.

Now, it is left to prove (1). To do so, we use a standard VC-based uniform convergence bound (a.k.a
α-net bound) on the classH∆ , {h1∆h2 : h1, h2 ∈ H} where h1∆h2 : X → {0, 1} is defined as

h1∆h2(x) , 1 (h1(x) 6= h2(x)) ∀x ∈ X

Let GH∆ denote the growth function ofH∆; i.e., for any m, GH∆(m) , max
V :|V |=m

|ΠH∆(V )|, where

ΠH∆
(V ) is the set of all possible dichotomies that can be generated by H∆ on a set V of size m.

Note that GH∆(m) ≤
(
em
d

)2d
. This follows from the fact that for any set V of size m, we have

|ΠH∆
(V )| ≤ |ΠH(V )|2 since every dichotomy in ΠH∆

is determined by a pair of dichotomies in
ΠH(V ). Hence, GH∆(m) ≤ (GH(m))

2 ≤
(
em
d

)2d
, where the last inequality follows from Sauer’s

Lemma [Sau72]. Now, by invoking a uniform convergence argument, we have

P
Tpub∼D

npub
X

[Bad] = P
Tpub∼D

npub
X

[
∃h ∈ H∆ : dis (h, h0; DX ) > α and d̂is (h, h0; Tpub) = 0

]
≤ 2GH∆

(2npub) e
−αnpub/4 ≤ 2

(
2e npub
d

)2d

e−αnpub/4.

The first bound in the second line follows from the so-called double-sample argument used in virtually
all VC-based uniform convergence bounds (e.g., [SSBD14]). This completes the proof of Lemma 3.3.

4 Lower Bound

In this section we establish that our upper bound on the public sample complexity is nearly tight.
Theorem 4.1 (Lower bound for classes of infinite Littlestone dimension). LetH be any class with
an infinite Littlestone dimension (e.g., the class of thresholds over R). Then, any semi-private learner
forH must have public sample of size npub = Ω(1/α), where α is the excess error.
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In the case of pure differentially privacy we get a stronger statement which manifests a dichotomy
that applies for every class:
Theorem 4.2 (Pure private vs. pure semi-private learners). Every classH must satisfy exactly one of
the following:

1. H is learnable by a pure private learner.

2. Any pure semi-private learner forH must have npub = Ω(1/α), where α is the excess error

Proof overview. The crux of the argument is a public-data-reduction lemma (Lemma 4.4), which
shows how one can reduce the number of public examples at the price of a proportional increase in
the excess error. This lemma implies, for example, that if H can be learned up to an excess error
of α with less than 1

1000α public examples then it can also be privately learned without any public
examples and excess error < 1

10 . Stating contra-positively, if H can not be privately learned with
excess error< 1

10 then it can not be semi-privately learned with excess error of α with less than 1
1000α

public examples. This yields a lower bound of Ω(1/α) on the public sample complexity for every
classH which is not privately learnable with constant excess error

One example for such a class is any class with infinite Littlestone dimension (e.g., the class of
1-dimensional thresholds over an infinite domain). This follows from the result in [ALMM19]:
Theorem 4.3 (Restatement of Corollary 2 in [ALMM19]). LetH be any class of infinite Littlestone
dimension (e.g., the class of thresholds over an infinite domain X ⊆ R). For any n ∈ N, given a
private sample of size n, there is no

(
1
16 ,

1
16 , 0.1, 1

100n2 log(n)

)
-private learner forH (even in the

realizable case).

The aforementioned reduction we use for the lower bound holds even when the public sample is
labeled, and it holds for both pure and approximate private/semi-private learners.

We now state and prove the reduction lemma outlined above.
Lemma 4.4 (Public data reduction lemma). Let 0 < α ≤ 1/100, ε > 0, δ ≥ 0. Suppose there is an
(α, 1

18 , ε, δ)-agnostic semi-private learner for an hypothesis classH with private sample size npriv
and public sample size npub. Then, there is a

(
100npub α,

1
16 , ε, δ

)
-private learner that learns any

distribution realizable byH with input sample size d npriv

10npub
e.

Proof. Let A denote the assumed agnostic-case semi-private learner forH with input private sample
of size npriv and input public sample of size npub. Using A, we construct a realizable-case private
learner forH, which we denote by B. The description of B appears in Algorithm 2.

The following two claims about B suffice to prove the lemma.

Algorithm 2 Description of the private learner B:

Input: Private sample S̃ = (z̃1, . . . , z̃ñ) of size ñ = dnpriv/(10 · npub)e.
1: Pick a fixed (dummy) distribution D0 over Z = X × {0, 1} where the label y ∈ {0, 1} is drawn

uniformly at random from {0, 1} independently from x ∈ X .
2: Set p = 1/(100 · npub).
3: Using S̃ and D0, construct samples Spriv, Spub using procedures PrivSamp(S̃,D0, p, npriv) and

PubSamp(D0, npub) given by Algorithms 3 and 4 below.
4: Return h̃ = A(Spriv, Spub).

Claim 4.5 (Privacy guarantee of B). B is (ε, δ)-differentially private

The above claim easily follows since A is a semi-private learner, Spub does not contain any points
from S̃, and each point in S̃ appears at most once in Spriv.

Claim 4.6 (Accuracy guarantee of B). Let D be any distribution over Z that is realizable by H.
Suppose S̃ ∼ Dñ. Then, except with probability at most 1/16 (over the choice of S̃ and internal
randomness in B), the output hypothesis h̃ satisfies: err(h̃; D) ≤ 100npub α.
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Algorithm 3 Private Sample Generator PrivSamp:

Input: Sample S̃ = (z̃1, . . . , z̃ñ), Distribution D0, parameter p, sample size npriv.
1: i := 1
2: while S̃ 6= ∅ and i ≤ npriv: do
3: Sample bi ∼ Ber(p) (independently for each i), where Ber(p) is Bernoulli distribution with

mean p.
4: if bi = 1: then
5: Set zprvi to be the next element in S̃, i.e., zprvi = z̃ji , where ji =

∑i
k=1 bk.

6: Remove this element from S̃: S̃ ← S̃ \ z̃ji .
7: else
8: Set zprvi = z0

i , where z0
i is a fresh independent example from the “dummy” distribution D0.

9: i← i+ 1
10: return Spriv = (zprv1 , . . . , zprvnpriv

).

Algorithm 4 Public Sample Generator PubSamp:
Input: Distribution D0, sample size npub.

1: for i = 1, . . . , npub : do
2: Set zpubi = z0

i where z0
i is a fresh independent example from D0.

3: return Spub = (zpub1 , . . . , zpubnpub
)

LetD(p) denote the mixture distribution p·D+(1−p)·D0 (recall the definition of p from Algorithm 2).
To prove Claim 4.6, we first show that both Spriv and Spub can be “viewed” as being sampled from
D(p). The claim will then follow since A learnsH with respect to D(p).

First, note that since ñ = 10 · p · npriv, then by Chernoff’s bound, except with probability < 0.01,
Algorithm 3 exits the WHILE loop with i = npriv. Thus, except with probability < 0.01, we have

|Spriv| = npriv, hence, Spriv ∼ D
npriv

(p) . (2)

As for Spub, note that Spub = (z0
1 , . . . , z

0
npub

) ∼ Dnpub

0 . We will show that Dnpub

0 is close in total

variation to Dnpub

(p) . Let Ŝpub = (ẑ1, . . . , ẑnpub
) be i.i.d. sequence generated as follows: for each

i ∈ [npub], ẑi = bi vi + (1− bi) z0
i , where (b1, . . . , bnpub

) ∼ (Ber(p))npub , and (v1, . . . , vn) ∼ Dnpub .
It is clear that Ŝpub ∼ D

npub

(p) . Moreover, observe that

P
[
Ŝpub = Spub

]
≥ P [bi = 0 ∀ i ∈ [npub]] =

(
1− 1

100npub

)npub

≥ 0.99

Note that P
[
Ŝpub 6= Spub

]
is the probability measure attributed to the first component of the mixture

distribution D(p) of Ŝpub (i.e., the component from D). Hence, it follows that the total variation
between the distribution of Ŝpub (induced by the mixture D(p)) and the distribution of Spub (induced
by D0) is at most 0.01. In particular, the probability of any event w.r.t. the distribution of Ŝpub is at
most 0.01 far from the probability of the same event w.r.t. the distribution of Spub. Hence,

P
Spriv,Spub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
− P
Spriv,Ŝpub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
≤ 0.01 (3)

Now, from (2) and the premise that A is agnostic semi-private learner, we have

P
Spriv,Ŝpub,A

[
err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) > α

]
≤ 1

17

Hence, using (3), we conclude that except with probability < 1/16,

err
(
A(Spriv, Spub); D(p)

)
−min
h∈H

err(h;D(p)) ≤ α. (4)
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Note that for any h, err(h; D(p)) = p · err(h; D) + (1− p) · err(h;D0) = p · err(h; D) + 1
2 (1− p),

where the last equality follows from the fact that the labels generated by D0 are completely noisy
(uniformly random labels). Hence, we have arg min

h∈H
err(h;D(p)) = arg min

h∈H
err(h;D). That is,

the optimal hypothesis with respect to the realizable distribution D is also optimal with respect to
the mixture distribution D(p). Let h∗ ∈ H denote such hypothesis. Note that err(h∗;D) = 0 and
err(h∗;D(p)) = 1

2 (1− p). These observations together with (4) imply that except with probability
< 1/16, we have

α ≥ p · err (A(Spriv, Spub); D)

Hence, err
(
B(S̃); D

)
= err (A(Spriv, Spub); D) ≤ 100 · npub · α. This completes the proof.

With Lemma 4.4, we are now ready to prove the main results for this section:

Proof of Theorem 4.1

Proof. Suppose A is a semi-private learner forH with sample complexities npriv, npub. In particular,
given npriv(α, 1

18 ), npub(α,
1
18 ) private and public examples,A is (α, 1

18 , 0.1, 1
100n2

priv log(npriv)
)-semi-

private learner forH. Hence, by Lemma 4.4, there is (100npubα,
1
16 , 0.1, 1

100n2
priv log(npriv)

)-private

learner for H. Thus, Theorem 4.3 implies that 100npubα > 1
16 and hence that npub > 1

1600α as
required.

Proof of Theorem 4.2

Proof. First, if H is learnable by a pure private learner, then trivially the second condition cannot
hold sinceH can be learned without any public examples. Now, suppose that the first item does not
hold. Note that by Lemma 2.5, this implies that there is no pure private learner forH with respect
to realizable distributions. By Lemma 2.6, this in turn implies that there is no

(
1
16 ,

1
16 , 0.1

)
-pure

private learner forH with respect to realizable distributions. Now, suppose A is a pure semi-private
learner A for H. Then, this implies that for any α > 0, A is an

(
α, 1

18 , 0.1
)
-pure semi-private

learner forH with sample complexities npriv(α, 1
18 ), npub(α,

1
18 ). Hence, by Lemma 4.4, there is a(

100npub α,
1
16 , 0.1

)
-pure private learner for H w.r.t. realizable distributions. This together with

the earlier conclusion implies that 100npub α >
1
16 , and therefore that npub > 1

1600α , which shows
that the condition in the second item holds.
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