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Abstract

We find necessary and sufficient conditions for a complete local ring to be the completion of a noncate-
nary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion
of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate
a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains
that are not universally catenary. We use our second result to find a larger class of noncatenary local
UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can

be.

1 Introduction

A ring A is called catenary if, for all pairs of prime ideals P C @ of A, all saturated chains of prime
ideals between P and @) have the same length. Otherwise, it is called noncatenary. For some time it was
thought likely that noncatenary Noetherian rings did not exist. This was proven incorrect by Nagata in
1956, when he constructed a family of noncatenary local (Noetherian) integral domains in [7]. Roughly
speaking, this construction is accomplished by “gluing together” maximal ideals of different heights of a
semilocal domain to obtain a noncatenary local domain. Nagata’s result was later extended by Heitmann
in [2], where he shows that there is no finite bound on the “noncatenarity” of a local domain, in the sense
that the difference in length between the longest and shortest saturated chains of prime ideals from (0) to
the maximal ideal can be made arbitrarily large (in fact, Heitmann’s result is considerably stronger than
this). It was then conjectured that all integrally closed domains are catenary, which Ogoma disproved in
1980 in [8] by constructing a noncatenary integrally closed domain. Furthermore, it was not until 1993 that
the existence of a noncatenary Noetherian unique factorization domain was established by Heitmann in [3].
We believe this is the only example of a noncatenary Noetherian UFD currently in the literature.

This paper contains two main results: we characterize the completions of noncatenary local domains

and we characterize the completions of noncatenary local UFDs. The former is done essentially by “gluing
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together” associated prime ideals of a nonequidimensional complete local ring, an approach that is different
than the previous methods of “gluing together” maximal ideals. We also use this construction to find a large
class of rings that are quasi-excellent but not excellent, as well as a class of rings that are catenary but not
universally catenary. Our second main result is a generalization of Theorem 10 in [3], and allows us to find
many examples of noncatenary local UFDs. Our constructions also allow us to prove in a new way that there
is no finite bound on the noncatenarity of a local domain, and we in fact extend this result to UFDs as well.

Throughout the paper, whenever we say a ring is local, we mean that it is Noetherian and has a unique
maximal ideal. We denote a local ring A with unique maximal ideal M by (A, M). Whenever we refer to
the completion of a local ring (A, M), we mean the completion of A with respect to M, and we denote this
by A. Finally, we use ht(I) to denote the height of the ideal I and we say that the length of a chain of prime

ideals of the form Py C --- C P, is n.

2 Characterizing Completions of Noncatenary Local Domains

2.1 Background
We first cite a result which will be important for both of our main theorems:

Theorem 2.1. ([6, Theorem 31.6)) Let A be a local ring such that A is equidimensional. Then A is univer-

sally catenary.

In particular, we will use the contrapositive: if A is not universally catenary, then Ais nonequidimensional.
This provides a simple necessary condition for a complete local ring T' to be the completion of a noncatenary
local ring.

The following theorem from [4] provides necessary and sufficient conditions for a complete local ring
to be the completion of a local domain. These conditions will be necessary for Theorem 2.10, where we

characterize completions of noncatenary local domains.

Theorem 2.2. ([4, Theorem 1]) Let (T, M) be a complete local ring. Then T is the completion of a local

domain if and only if the following conditions hold:
(i) No integer of T is a zero divisor of T, and
(11) Unless equal to (0), M ¢ AssT.

Our construction in the proof of Theorem 2.10 uses results from [1]. The following lemma, adapted from

Lemma 2.8 in [1], will be useful for pointing out additional interesting properties of the rings we construct.



Lemma 2.3. ([1, Lemma 2.8]) Let (T, M) be a complete local ring of dimension at least one, and let G be
a set of nonmazximal prime ideals of T where G contains the associated prime ideals of T and such that the
set of mazimal elements of G is finite. Moreover, suppose that if Q@ € SpecT with Q@ C P for some P € G
then Q € G. Also suppose that, for each prime ideal P € G, P contains no nonzero integers of T. Then

there exists a local domain A such that the following conditions hold:
(i) A~T,
(i1) If P is a nonzero prime ideal of A, then T ®4 k(P) = k(P), where k(P) = Ap/PAp,
(iti) {P € SpecT | PNA=(0)} =G, and
(iv) If I is a nonzero ideal of A, then A/I is complete.

Remark 2.4. A particularly useful consequence of Lemma 2.3 is that there is a one-to-one correspondence
between the nonzero prime ideals of the ring A and the prime ideals of T' that are not in G. Note that the
map from SpecT \ G to Spec A\ (0) is surjective since A is a faithfully flat extension of A. To sce that
the map is injective, let @ € SpecT \ G and let P = Q N A. We show that @ = PT. It suffices to prove
that Q/PT = PT/PT. By (iv), A/P is complete and therefore A/P 2 X]?’ >~ T/PT. Now observe that
(letting A/P denote its image in T/PT), we have (Q/PT)N (A/P)=(QNA)/P = P/P = (0). But since
A/P =2 T/PT, there can only be one ideal I of T/ PT such that IN(A/P) = (0). Thus Q/PT = PT/PT = (0)
as desired. It follows that the map from Spec T \ G to Spec A\ (0) given by @ — Q N A is bijective, with the
inverse mapping given by P — PT. It is clear that this map is also inclusion-preserving. This result will be

used heavily in the proof of Theorem 2.10. &
The next theorem is explicitly used in our construction.

Theorem 2.5. ([1, Theorem 3.1]) Let (T, M) be a complete local ring, and G C SpecT such that G is
nonempty and the number of mazimal elements of G is finite. Then there exists a local domain A such that
A>T and the set {P € SpecT | PNA=(0)} is exactly the elements of G if and only if T is a field and
G = {(0)} or the following conditions hold:

(i) M ¢ G, and G contains all the associated prime ideals of T,
(1) If Q € G and P € SpecT with P C Q, then P € G, and

(i) If Q € G, then Q N prime subring of T = (0).



2.2 The Characterization

In this section, we characterize the completions of noncatenary local domains. To do this, we start with a
complete local ring T' and use Theorem 2.5 with G = {P € SpecT | P C @ for some @ € AssT'} to construct
a local domain A such that A satisfies the conditions described in Theorem 2.5. We then use the one-to-one
inclusion-preserving correspondence described in Remark 2.4 to show that A is noncatenary. For the reverse
direction, we first need a few lemmas which describe the relationship between chains of prime ideals in a

local domain and chains of prime ideals in its completion.

Lemma 2.6. Let A be a local domain such that A= T. Let M denote the mazimal ideal of T, and let Cr
be a chain of prime ideals in T of the form Py C -+ C P,_1 € M with length n > 2 and PyN A = (0). If
Ca, the chain obtained by intersecting the prime ideals of Cp with A, is such that (0) = BhbNA=P NAC

PNAC---CP,_1NACMnNA, then C4 is not saturated.

Proof. We prove this by induction on n, the length of Cr. If n = 2, then C4 is (0) = PhNA = PLNA C MNA.
Since ht(M N A) = ht M > 2, there must exist a prime ideal strictly between (0) and M N A. Thus C4 is not
saturated, so the base case n = 2 holds. Now assume that the lemma holds whenever Cr has length ¢ such
that 2 < <n-—1.

We show that the lemma holds for chains of length n. Suppose n > 3. Then C4 is (0) = BN A =
PNACPNAC ---CP,1NACMNA. Since P,NA # (0), we can choose a nonzero element
a € PN A. Note that a cannot be a zero divisor, as it is contained in the domain A, and it follows that
htaT > 0. Then ht(aTp,) > 0 as well, so Krull’s Principal Ideal Theorem gives that ht(aTp,) = 1. Thus
aTp, is contained in a height-1 prime ideal Q' € SpecTp,. Let @ be the preimage of Q' under the natural
surjection SpecT — Spec Tp,. Then aT C Q C P since dim(Tp,) > 2. But clearly Q N A # (0), so we have
that (0) CQNAC PN A.

There are two possible cases, either QNA C P,NAor QNA = PN A (see Figure 1). In the first case, C4

is not saturated. Otherwise, we consider A’ = , which is also a local domain and whose completion
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Note that Cp has length n — 1 > 2 because P» C M. Then, since C4- is of the necessary form, our inductive
hypothesis applies, so C4+ is not saturated. Therefore, C4 cannot be saturated. Hence, the lemma holds for

chains of length n in T, completing our inductive step and the proof.
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Note that the argument in the proof of Lemma 2.6 can be generalized to the case where (0) = PpN A =
PiNA=-...=P;NA for any integer j where 2 < j <n — 1. Now, we will use Lemma 2.6 to show that, in

general, if C4 has length less than that of Cp, then C4 is not saturated.

Lemma 2.7. Let A be a local domain such that A= T. Let M denote the mazimal ideal of T, and let Cp
be a chain of prime ideals of T of the form Py C --- C P,_1 C M of length n > 2 with Py N A = (0). If the

chain C4 given by (0) =P NAC---CP,_1NACMNA has length less than n, then C4 is not saturated.

Proof. First, note that P,_1 N A C M N A because ht(P,—1 N A) < htP,_; < ht M = ht(M N A). Now
suppose C4 has length strictly less than n. Then there must be equality at some point in the chain, so

let m denote the largest integer such that P,,_1 N A = P, N A. Note that this choice of m ensures that
A

P,NACP,;1NAC---C MNA, and since P,_1NA#MNA m<n-—1. Let A = m, which
T m
is also a local domain, and consider its completion T' = m Then let Cpv be the following chain of
prime ideals of T":
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Since m < n — 1, this is a chain of length at least 2. Let C4/ be the corresponding chain of prime ideals of

A’ given as follows:

P,_1NA P,NA Pt NA P,_1NA MNA
(O) = = C C...C C .
(PnnA) (PnNA) = (PnnA) = 7 (PnNA) = (PnNA)
Observe that Cp, and C 4 satisfy the conditions of Lemma 2.6, therefore, C 4/ is not saturated. This gives us

that C4 is not saturated. O

We note that Lemma 2.7 is particularly useful when Cr is saturated. In the next lemma, we show that,
in a local ring, it is possible to find saturated chains of prime ideals that satisfy nice properties. This result

will be used to prove our main theorems.

Lemma 2.8. Let (T, M) be a local ring with M ¢ AssT and let P € MinT with dim(T/P) = n. Then there
exists a saturated chain of prime ideals of T, P C Q1 C -+ C Qn_1 € M, such that, for eachi=1,...,n—1,

Q; ¢ AssT and P is the only minimal prime ideal contained in Q.

Proof. Observe that, since dim(7'/P) = n, there must exist a saturated chain of prime ideals in T' from P
to M of length n, say PC Py C --- C P,,_1 € M. We first show that we can choose ()1 € SpecT such that
P C Q1 C P, is saturated, P is the only minimal prime ideal of T' contained in Q1, and Q1 ¢ AssT. To do

so, consider the following sets:

B ={Q € SpecT | P C Q C P, is saturated},
B ={Q e B|3P e€MinT\ {P} with P' C Q},

By, ={Q e B|QecAssT}.

Then By, Bo C B and it suffices to find @1 € B\(B;1 U Bs). Note that since T' is Noetherian and P C Py C P,
we know that B contains infinitely many elements and By contains finitely many elements.

Next, we show that By contains finitely many elements. Suppose Q € Bj contains P’ € MinT \ {P}.
Then P+ P’ C @. We claim that () must be a minimal prime ideal of P + P’. Suppose instead that it is
not. Then there must exist Q' € SpecT with P+ P’ C Q' C Q. But then we have P C Q' C Q (where
P # Q' because P’ € P), contradicting the fact that P C @Q is saturated. Thus, if Q € B; contains P’, then
Q is a minimal prime ideal of P + P’. Then, as there are only finitely many minimal prime ideals of P + P’
for each of the finitely many P’ € MinT \ { P}, we have that B; contains finitely many elements. Therefore,
we can choose Q1 to be one of the infinitely many prime ideals in B\ (B; U Ba).

Now, for each i = 2,...,n—1, we sequentially choose @Q); € SpecT so that Q;_1 € Q; € P;4 is saturated,



P is the only minimal prime ideal contained in Q;, and Q; ¢ AssT using the same argument as above. More
specifically, to choose Q;, redefine the set B as B = {Q € SpecT | Q;—1 C Q T P41 is saturated}
and define By and B, as before. Then B is an infinite set, Bs is a finite set, and we can show that
Bj is a finite set as above by showing that if Q € B; contains P’, then @Q is a minimal prime ideal of
Qi—1 + P’. Hence, B\ (B1 U By) is infinite and we choose @Q; to be in this set. Then the resulting chain

PCQ1 S CQnro1 < M will satisfy the desired properties. O
The next lemma will be used to show that the conditions in our main theorems are necessary.

Lemma 2.9. Let (T, M) be a complete local ring and let A be a local domain such that A>T, If A contains
a saturated chain of prime ideals from (0) to M N A of length n, then there exists P € MinT such that

dim(T/P) = n.

Proof. Let C4 be a saturated chain of prime ideals in A from (0) to M N A of length n. Since T is a flat
extension of A, we can apply the Going Down Theorem. This implies that there exists a chain of prime
ideals in T of length n from some prime ideal P to M, which we call Cp, such that the image of Cr under
the intersection map with A is C4. We show that P € MinT and Cr is saturated. To see this, suppose
P ¢ MinT. Then there must exist some P’ € MinT such that P’ C P. If we extend Cr to contain P’, then
this new chain will have length n+ 1 and its image under the intersection map with A will also be C4. Then
Lemma 2.7 implies that C4 is not saturated, a contradiction. So, we must have P € MinT. Additionally,
by a similar argument using Lemma 2.7, Cr is saturated. Therefore, as T is catenary, P is a minimal prime

ideal of T such that dim(T/P) = n. O
With the above lemmas, we are now ready to prove the main theorem of this section.

Theorem 2.10. Let (T, M) be a complete local ring. Then T is the completion of a noncatenary local

domain A if and only if the following conditions hold:
(i) No integer of T is a zero diwvisor,
(i) M ¢ AssT, and
(iii) There exists P € MinT such that 1 < dim(T/P) < dimT.

Proof. We first show that if (T, M) is a complete local ring satisfying (i), (ii), and (iii), then T is the
completion of a noncatenary local domain A.
Using Theorem 2.5 with G = {P € SpecT | P C Q for some ) € AssT}, we have that there exists a

local domain A whose completion is T" such that the set {P € SpecT | PNA = (0)} is exactly the elements of



G. Note that this G satisfies the assumptions of Theorem 2.5. Furthermore, for this A, we have a one-to-one
inclusion-preserving correspondence between nonzero P € Spec A and Q € Spec T'\ G as described in Remark
2.4.

Let Py € MinT with 1 < m = dim(T/Fy) < dim T, which exists by assumption. Using Lemma 2.8 we
construct a saturated chain of prime ideals from Py to M given by Po C Q1 € Q2 € --- € Qm—1 T M,
where the only minimal prime ideal contained in each Q; is Py and Q; ¢ AssT. Then, since M ¢ AssT, we
have that Q,,,—1 ¢ G.

We now show that A is noncatenary. Since the only minimal prime ideal contained in Q,,—1 is Py,
our chain is saturated, and T is catenary, we have that ht Q,,—1 = m — 1 and dim(7/Q;,—1) = 1. Then,
since Qm-1 ¢ G, we have @Qp—1 N A # (0). We claim that dim(A/(Qm—1 N A)) = 1. To see this, suppose
P’ € Spec A such that Q,,,—1NA C P’. Then by the one-to-one inclusion-preserving correspondence described
in Remark 2.4, Q,,—1 € P'T. Since Q,,—1 & M is saturated and P'T € SpecT, we must have that P'T = M.
Therefore, P’ = P'T N A = MNA and it follows that dim(A/(@Qm—1NA)) = 1. Since ht(Qn,—1NA) < ht Q1
we have that ht(Qn—1NA) +dim(A/(Qm-1NA)) <ht Q1 +dim(T/Qm-1) = m < dimT = dim A. Thus,
A is a noncatenary local domain whose completion is 7.

Now, suppose that T is the completion of a noncatenary local domain, A. The contrapositive of Theorem
2.1 implies that T is nonequidimensional, and hence dim7T = n > 1. Therefore, T' cannot be a field, so M
cannot be (0). Additionally, by Theorem 2.2, no integer of T is a zero divisor and M ¢ AssT. Since A is
noncatenary, there exists a saturated chain of prime ideals in A, call it C4, from (0) to M N A with length
m < n. Since dimA = n > 1, we know that (0) € M N A is not a saturated chain. Thus, m > 1, and
consequently, n > 2. By Lemma 2.9, there exists P € MinT such that 1 < dim(T/P) = m < n, completing

the proof. O

Remark 2.11. Let (T, M) be a complete local ring satisfying conditions of (i), (ii), and (iii) of Theorem
2.10, and let A be the noncatenary local domain constructed in the proof of Theorem 2.10 whose completion
is T. Then we claim that A may, under certain circumstances, be quasi-excellent, even though it cannot be

excellent. To show this, we first present the following definitions, adapted from [9]:

Definition 2.12. A local ring A is quasi-excellent if, for all P € Spec A, the ring A\®A L is regular for
every purely inseparable finite field extension L of k(P) = Ap/PAp. A local ring A is excellent if it is

quasi-excellent and universally catenary.

To demonstrate our claim, we need to show that, for all P € Spec A and for every purely inseparable
finite field extension L of k(P), the ring T ® 4 L is regular. If P € Spec A is nonzero, then, by Lemma 2.3,
T®Rak(P)=k(P). Then we have T®4 L =T ®4 k(P) ®rp) L = k(P) ®ypy L = L, a field. So in this case,



T ®4 L is regular.

Now A will be quasi-excellent if and only if T'® 4 L is regular for all purely inseparable finite field
extensions L of k((0)). For example, suppose the characteristic of k((0)) is zero and suppose Tg is a
regular local ring for all @ € G where G = {P € SpecT | P C @ for some Q € AssT}. Note that
T ®4 k((0)) = S7IT, where S = A\ (0). The prime ideals of S~!T are in one-to-one correspondence
with the set {Q € SpecT | Q N A = (0)} = G. So, to show that S~!T is regular, it suffices to show that
(S7IT)q = T is a regular local ring for all Q € G. But we assumed this to be true, so A is quasi-excellent.

Of course, A cannot be excellent as it is noncatenary. &

We now use Remark 2.11 to give a specific example of a quasi-excellent noncatenary local domain.

Kz, y, z,v]
(z) N (y,2)

minates. Let x,y, z,and v represent their corresponding images in T'. Then T satisfies conditions (i), (ii), and

Example 2.13. Let T = , where K is a field of characteristic zero and x, y, z,and v are indeter-
(iii) of Theorem 2.10 since Ass T = {(x), (y, 2)} and dim(T"/(y, z)) = 2 < dim T = 3. So, let A be the noncate-
nary local domain constructed as in the proof of Theorem 2.10. Then G = {Q € SpecT | QNA = (0)} = AssT
and T{,) and T}, .y are both regular local rings. Therefore, by Remark 2.11, A is a quasi-excellent noncatenary

local domain such that A = T

In the next example we construct a class of catenary, but not universally catenary, local domains.

K[['rvyla"'vyn]]

(‘T) N (ylv R 7yﬂ)
By Theorem 2.2, we know that there exists a local domain, A, whose completion is T'. Observe that T" contains

Example 2.14. Let T = where K is a field, x,y1,...,y, are indeterminates, and n > 1.
only two minimal prime ideals, P; and P, where dim(7/P;) = n and dim(7'/P2) = 1. Thus, T does not
satisfy condition (iii) of Theorem 2.10, which implies that any such A must be catenary. Additionally,
Theorem 31.7 in [6] states that a local ring is universally catenary if and only if //l/?’ is equidimensional for
every P € Spec A. But since A is an integral domain, we have (0) € Spec A, and m = A = T which is

nonequidimensional. Therefore, A is not universally catenary.

3 Characterizing Completions of Noncatenary Local UFDs

3.1 Background

In this section, we find necessary and sufficient conditions for a complete local ring to be the completion of a
noncatenary local unique factorization domain. Conditions (i), (ii), and (iii) of Theorem 2.10 will, of course,
be necessary conditions. We begin by presenting a few previous results that will be useful in the proof of

this section’s main theorem.



The following theorem, essentially taken from [3], provides necessary and sufficient conditions for a

complete local ring to be the completion of a local UFD.

Theorem 3.1. Let (T, M) be a complete local ring. Then T is the completion of a unique factorization
domain if and only if it is a field, a discrete valuation ring, or it has depth at least two and no element of

its prime subring is a zero divisor.
Proof. The result follows from Theorem 1 and Theorem 8 in [3]. O

We will also use the following generalization of the Prime Avoidance Lemma to find ring elements that

satisfy a certain transcendental property.

Lemma 3.2. ([3, Lemma 2]) Let (T, M) be a complete local ring, C be a countable set of prime ideals in
SpecT' such that M ¢ C and D be a countable set of elements of T'. If I is an ideal of T which is contained
in no single P in C, then I ¢ \J{r + P | P € C, r € D}.

The counstruction in [3] involves adjoining carefully-chosen transcendental elements to a subring while
ensuring certain properties are maintained. A ring satisfying these properties is called an N-subring, and
was first defined in [3]. Since we will be interested in maintaining those same properties, we present the
definition of an N-subring, where a quasi-local ring denotes a ring with one maximal ideal that is not

necessarily Noetherian.

Definition 3.3. Let (T, M) be a complete local ring and let (R, M N R) be a quasi-local unique factorization

domain contained in 7" satisfying:
(i) |R] < sup(No, |[T/M|) with equality only if T'/M is countable,
(i) @R =(0) for all @ € Ass(T), and
(iii) If t € T is regular and P € Ass(T/tT), then ht(P N R) < 1.

Then R is called an N-subring of T'.

We will also make use of the following lemma in our construction. It allows us to adjoin elements to an

N-subring in such a way that the resulting ring is also an N-subring.

Lemma 3.4. ([5, Lemma 11)) Let (T, M) be a complete local ring, R be an N-subring of T, and C' C SpecT
such that M ¢ C, AssT C C, and {P € SpecT | P € Ass(T/rT),0 #r € R} C C. Suppose x € T is such
that, for every P € C, x ¢ P and x + P is transcendental over R/(P N R) as an element of T/P. Then

S = R[|(rmnR[z)) 18 an N-subring with R C S and |S| = sup(No, |R]).
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3.2 The Characterization

We start by describing the main idea of our proof for characterizing completions of noncatenary local UFDs.
Let (T, M) be a complete local ring such that depthT > 1 and no integer of T is a zero divisor. Our goal
is to find sufficient conditions to construct a noncatenary local UFD, A, such that A=T. First, we note
that if R is the prime subring of T localized at M N R, then R is an N-subring. Now, suppose there exists
Q@ € SpecT such that dim(7T/Q) = 1, ht Q + dim(7T/Q) < dim T, and depthTg > 1. Then, in Lemma 3.6,
we show that it is possible to adjoin appropriate elements of @) to R to obtain an N-subring, S, such that,
if we apply the proof of Theorem 8 in [3] to S, the resulting A is a local UFD satisfying (Q N A)T = Q. We
then prove that A is noncatenary. Additionally, in Theorem 3.7, we prove that our conditions are necessary.

First, we prove the following lemma, which allows us to simplify the statement of the main theorem of

this section.

Lemma 3.5. Let (T, M) be a catenary local ring with depthT > 1. Then the following are equivalent:
(1) There exists Q € SpecT such that dim(T/Q) =1, ht Q@ + dim(T/Q) < dim T, and depthTg > 1.
(i) There exists P € MinT such that 2 < dim(T/P) < dimT.

Proof. Suppose condition (i) holds for @ € SpecT, and let P € MinT be such that P C Q and dim(7/P) =
ht@Q+1 < dim7T. If Q € MinT, then depthTy = 0, so it must be the case that P C Q. It suffices to
show that dim(7/P) > 2. Now dim(T/P) > dim(7T/Q) = 1, so suppose dim(7T/P) = 2. Then we have
dim T = 1, which implies that depth T < 1, contradicting our assumption. Therefore, dim(T'/P) > 2.

Now suppose condition (ii) holds for P € MinT with 2 < dim(7/P) = n < dim7T. By Lemma 2.8,
there exists a saturated chain of prime ideals in 7" given by P C Q1 € -+ € @n—1 € M such that, for
t=1,...,n—1, P is the only minimal prime ideal of T contained in @); and @; ¢ AssT. This ensures that
ht Q; + dim(T/Q;) = n < dimT for each i = 1,...,n — 1. Note that, as a consequence of Theorem 17.2
in [6], we have depthT < min{dim(7'/P) | P € AssT}. Since we have depthT > 1, this means that any
Q@ € SpecT such that dim(7'/Q) = 1 satisfies Q ¢ AssT. Therefore, ,,—2 is not contained in any associated
prime ideal of T, so we can find a T-regular element = € @Q,,—2.

We will replace Q,,—1 in our chain with a prime ideal Q" that satisfies condition (i). By the same argument
used in the proof of Lemma 2.8, we can now choose @' € SpecT such that Q,—2 C Q' C M is saturated, P is
the only minimal prime ideal contained in @', and Q' ¢ AssT. We can additionally choose Q' ¢ Ass(T/xT)
since Ass(T'/zT) is a finite set. Observe that, since z € @’ is T-regular and Ty is a flat extension of T', z is
Tg-regular. We now find a regular element on Ty /zT to obtain a T -regular sequence of length 2. Since

Q' ¢ Ass(T/xT), by the corollary to Theorem 6.2 in [6], Q'Tg ¢ Ass(Tq//xTg). Therefore, there exists
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y € Q'To which is a regular element on T /xTg,. Thus, x,y is a Tg/-regular sequence of length 2. So, we

have shown that depthTg, > 1, which completes the proof. O

Lemma 3.6. Let (T, M) be a complete local ring such that no integer of T is a zero divisor. Suppose
depthT > 1 and there exists P € MinT such that 2 < dim(T/P) < dimT. Then T is the completion of a

noncatenary local UFD.

Proof. Let Ry be the prime subring of T localized at its intersection with M, and let Co = {P € SpecT | P €
Ass(T/rT),0# r € Ry} UAssT. Note that by Lemma 3.5, there exists Q € Spec T such that dim(7T/Q) = 1,
ht @ +dim(T/Q) < dim T, and depth T > 1. We first claim that @ ¢ Ass(T/tT) for every ¢t € T that is not
a zero divisor. If Q € Ass(T/tT) for some ¢ € T that is not a zero divisor, then the corollary to Theorem
6.2 in [6] gives QTg € Ass(Tg/tTg). This implies that Tg/tTg consists of only units and zero divisors.
Therefore, t is a maximal regular sequence of Ty. Thus, depthTy = 1, which contradicts our assumption
and establishes the claim. Furthermore, if M € Ass(T/tT) for any ¢t € T that is not a zero divisor, then
depth T = 1, a contradiction. Therefore, M ¢ Ass(T/tT) for every t € T that is not a zero divisor and M
is the only prime ideal strictly containing (). By the above argument, we have that @ € P for all P € Cj.
Similarly, M € P for all P € Cy. Since |Ro| < Rp, we have that |Cy| < Rg. Then the “countable prime
avoidance lemma” [10, Corollary 2.2] gives that there exists y; € @ such that y; ¢ P for all P € Cy. As Q
is finitely generated, let Q@ = (z1,...,x,).

Next, we create a chain of N-subrings Ry C Ry C --- € R, so that the resulting ring, R,, contains a
generating set for . Note that, as in the proof of Theorem 8 of [3], Ry is an N-subring. To construct our
chain, at each step we replace x; with an appropriate #; so that R; = R;_1[%i](mnr,_,[z,]) is an N-subring
by Lemma 3.4. Beginning with Ry, we find Z; = 1 + ayy; with a; € M so that Z; + P is transcendental
over Ry/(PNRy) as an element of T/ P for every P € Cy. To find an appropriate ay, we follow an argument
similar to that in Lemma 4 of [3]. First, fix some P € Cy and consider x; + ty; + P for some ¢t € T. We have
|Ro/(PNRy)| <|Ro| and so the algebraic closure of Ry/(P N Ry) in T/ P is countable. By Lemma 2.3 in [1]
we have that T/ P is uncountable. Note that each choice of ¢t + P gives a different x; + ty; + P since y; ¢ P.
So, for all but at most countably many choices of ¢t + P, the image of x1 4+ ty; in T/ P will be transcendental
over Ry/(PNRy). Let Dpy C T be a full set of coset representatives of 7'/ P that make x; +ty; + P algebraic
over Ro/(P N Ry). Let Dy = U D(py. Then |Dy| < Rg since [Cp| < Rg and [D(py| < Ny for every P € Co.
We can now apply Lemma 3.2Pv§i(£f1 I = M to find oy € M such that £, + P = z1 +a1y; + P is transcendental
over Ryo/(P N Ry) for every P € Cy. Then by Lemma 3.4, Ry = Ro[Z1](amnR,[3,]) 1S @ countable N-subring
containing Ry.

We now claim that @ = (%1, 2, ...,%,). This can be seen by writing y1 € Q asy; = 1121+ -+ B1.n%n
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for some 31,; € T. Then clearly Z; € @) since z1,y; € Q and we have
Tr=z14+a1y =1 +aifr)zr + a1Bioze + - + @1 fi .
Rearranging gives
r1=(1+aB11) (31— a1frore — - — a1 B1nTn) € (F1,72,...,Ty)

where (1 4+ a181,1) is a unit because a; € M. Thus, we can replace z1 with #; in our generating set for Q.
To create Ro, let Cy = {P € SpecT | P € Ass(T/rT),0#r € R1} UAssT. Then Q € P for all P € (4.
Then |Cy] < Vg, so again by the “countable prime avoidance lemma” in [10], we can find y2 € Q such that

ya ¢ P for all P € C. Let Dy = U D(py where Dpy C T is a full set of coset representatives of T/P
PeCy
that make xo + ty2 + P algebraic over Ry /(P N Ry) for every P € C;. Then using Lemma 3.2 with I = M,

there exists s € M such that xo + asys + P is transcendental over Ry /(P N Ry) for every P € C; as an
element of T'//P. Let #2 = w2 + azyz. Then Ry = Ri[Z2](mnR, [#.]) 15 an N-subring by Lemma 3.4 and we
have Q = (%1, %2, x3,...,2Zy) by a similar argument as above by writing yo = 2121 + B2.222 + -+ - + San®n
to show that zo € (Z1, &2, s, ..., z,). Repeating the above process for each i = 3,...,n we obtain a chain
of N-subrings Ry € R1 € -+ € R,, and have Q = (%1, Z2,...,&,). By our construction, each Z; € R,, so R,
contains a generating set for Q.

In the proof of Theorem 8 in [3], Heitmann starts with a complete local ring (7', M) such that no integer
of T is a zero divisor and depthT" > 1. He then takes the N-subring Ry, which, recall, is a localization of the
prime subring of 7', and constructs a local UFD containing Ry, whose completion is 7. Now, to complete
our construction of A, follow the proof of Theorem 8 in [3] replacing Ry with the N-subring R, to obtain a
local UFD, A, such that A contains R,, and A~T.

Finally, we show that this A is noncatenary. Since R,, contains a generating set for @ and R,, C A, we
have that (Q N A)T = Q. We use this and the fact that dim(7/Q) = 1 to show that dim(4/(Q N A)) = 1.
Suppose P’ is a prime ideal of A such that QN A C P’. Then we have (QNA)T = Q C P'T. This means that
the only prime ideal of T that contains P'T is M. Then dim(7/P’T) = 0, which implies that dim(A/P’) =0
since A//F’ = T/P'T. Tt follows that P = M N A. Thus, dim(4/(Q N A)) =1. Asht(Q N A) < htQ, we
have ht(Q N A) + dim(A/(Q N A)) <ht Q + dim(T/Q) < dim T = dim A. Therefore, A is noncatenary. O

We are now prepared to prove the main theorem of this section.

Theorem 3.7. Let (T, M) be a complete local ring. Then T is the completion of a noncatenary local UFD

if and only if the following conditions hold:
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(i) No integer of T is a zero diwisor,
(11) depthT > 1, and
(iii) There exists P € MinT such that 2 < dim(T/P) < dim 7.

Note that conditions (i), (ii), and (iii) immediately imply that dim 7T > 3 and that conditions (i), (ii),

and (iii) of Theorem 2.10 hold.

Proof. Lemma 3.6 gives us that conditions (i), (ii), and (iii) are sufficient. We now prove that they are
necessary.

Suppose T is the completion of a noncatenary local UFD, A. Then dim A = n > 3 since all local UFDs
of dimension three or less are catenary. By Theorem 8 in [3], T satisfies conditions (i) and (ii). Therefore,
we need only show that T contains a minimal prime ideal P with 2 < dim(7/P) < dimT = n. Since A
is noncatenary, there exists a saturated chain of prime ideals in A from (0) to M N A, call it C4, of length
m < n. We claim that m > 2. Note that m # 1 because (0) C M N A is not a saturated chain in A.
So, suppose m = 2. Then C4 is given by (0) € @ € M N A. Since C4 is saturated, ht @ = 1. Since all
height-1 prime ideals of a local UFD are principal, let a € A such that Q@ = aA. Now let be (M N A)\ Q
and I = aA + bA. Let Q' € Spec A be a minimal prime ideal of I. Since I is generated by two elements,
Krull’s Generalized Principle Ideal Theorem implies that ht Q" < 3. Then we have Q C Q' C M N A since
ht(M N A) = n > 3. This contradicts that C4 is saturated. Thus, m > 2 as claimed. Now, by Lemma 2.9,

there exists P € Min T such that 2 < dim(7'/P) = m < n, completing the proof. (|

Remark 3.8. To see parallels between the above theorem and the main theorem in Section 2, it is interesting
to note that condition (ii) in Theorem 2.10 can be replaced with the condition that depthT > 0 since
dim 7T > 2. Then Theorem 3.7 is very similar to Theorem 2.10 in that the only changes required are for the

depth of T and dim(7T'/P) to each increase by 1. &

Note that, as a result of this theorem, given any complete local ring T satisfying conditions (i), (ii), and
(iii) of Theorem 3.7, there exists a noncatenary local UFD, A, such that A =~ T. This allows us to show
the existence of a larger class of noncatenary UFDs than was previously known, as exhibited in the example
below.

Kz, y1,- -y Ya, 215 -+ 2]

(‘T) N (y17 s 7y11)
minates, and a and b are integers such that a,b > 1. Let z,y1,...,Yq, 21, - - ., 2 denote their corresponding

Example 3.9. Let T = , where K is a field, x,y1,...,¥q, 21, - ., 2p are indeter-

images in T. Note that dim7 = a + b > 3. Then T satisfies conditions (i), (ii), and (iii) of Theorem 3.7
since AssT = {(z), (y1,---+Ya)}, AM(T/(Y1,---,¥a)) =b+1 < a+b=dimT, and depthT > 1. So, we

know there exists a noncatenary local UFD, A, such that AT,
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3.3 Catenary Local Domains and Local UFDs

Theorems 2.10 and 3.7 concern the completions of noncatenary rings, however when used in conjunction

with Theorem 2.2 and Theorem 3.1, we also obtain some information regarding completions of catenary

local domains and catenary local UFDs.
Corollary 3.10. Suppose T is a complete local ring such that the following conditions hold:
(i) No integer of T is a zero diwisor,
(ii) depthT >0, and
(i1i) For all @ € MinT, either dim(T/Q) <1 or dim(T/Q) = dimT.
Then T is the completion of a catenary local domain. Moreover, every domain whose completion is T is

catenary.

Proof. Since T is a complete local ring which satisfies (i) and (ii), Theorem 2.2 implies that there exists a

local domain, A, such that A>T, However, by Theorem 2.10, we know that 7T is not the completion of a

noncatenary local domain. Therefore, A must be catenary, and every such A must be catenary. O

Corollary 3.11. Suppose T is a complete local ring such that the following conditions hold:
(i) No integer of T is a zero diwvisor,
(ii) depthT > 1, and
(ii) For all @ € MinT, either dim(T/Q) <2 or dim(7/Q) = dimT.
Then T is the completion of a catenary local UFD. Moreover, every UFD whose completion is T is catenary.

Proof. Since T is a complete local ring which satisfies (i) and (ii), Theorem 3.1 implies that there exists a

local UFD, A, such that AT, However, by Theorem 3.7, we know that 7T is not the completion of a

noncatenary local UFD. Therefore, A must be catenary, and every such A must be catenary. O

A consequence of these two corollaries is that there exists a class of complete local rings which are the

completion of both a noncatenary local domain and a catenary local UFD.

Corollary 3.12. Suppose T is a complete local ring with dimT > 3 such that the following conditions hold:
(i) No integer of T is a zero diwvisor,
(ii) depthT > 1,
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(i1i) For all Q@ € MinT, either dim(T/Q) < 2 or dim(T/Q) = dim T, and
(iv) There exists P € MinT such that dim(T/P) = 2.
Then T is the completion of a noncatenary local domain and the completion of a catenary local UFD.

Proof. Since T satisfies conditions (i), (ii), and (iv), by Theorem 2.10, we know that T is the completion of
a noncatenary local domain. Since T satisfies conditions (i), (ii), and (iii), Corollary 3.11 implies that T is
the completion of a catenary local UFD. Thus, T is the completion of both a noncatenary local domain and

a catenary local UFD. O

4 Noncatenarity of Local Domains and Local UFDs

As a consequence of Heitmann’s main result in [2], Noetherian domains can be made to be “as noncatenary
as desired,” in the sense that, for any natural numbers m and n, both greater than one, there exists a ring
containing two prime ideals with both a saturated chain of prime ideals of length m and a saturated chain
of prime ideals of length n between them. We reprove this result for noncatenary local domains and show

that the same can be done for noncatenary local UFDs.

Proposition 4.1. Let m and n be positive integers with 1 < m < n. Then there exists a noncatenary local

domain of dimension n with a saturated chain of prime ideals of length m from (0) to the maximal ideal.

Proof. Let T be the complete local ring given in Example 3.9 where a =n—m+ 1 and b = m — 1. Observe
that a + b =dimT and 1 < a < a + b. Therefore, T satisfies the conditions of Theorem 2.10, and so it is
the completion of a noncatenary local domain, A. By the construction of A in the proof of Theorem 2.10,
the set {P € SpecT | PNA=(0)} = {(2),(¥1,-..,%a)} = G and there is a one-to-one inclusion-preserving
correspondence between the nonzero prime ideals of A and the prime ideals of T' which are not in G. Note
that dim(T/(z)) = a + b = n and dim(T/(y1,...,%.)) = b+ 1 = m. Therefore, there exists a saturated
chain of prime ideals of T from (x) to M = (x,y1,...,Ya,21,-.-,2) of length n and a saturated chain of
prime ideals of T from (y1,...,ys) to M of length m (see Figure 2). By the one-to-one correspondence,
the intersection map will preserve the lengths of these chains. Therefore, we have found a local domain of

dimension n with a saturated chain of length m from (0) to M N A. O
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Figure 2

Proposition 4.2. Let m and n be positive integers with 2 < m < n. Then there exists a noncatenary local

UFD of dimension n with a saturated chain of prime ideals of length m from (0) to the maximal ideal.

Proof. Let a, b, and T be as in the proof of Proposition 4.1. Observe that again ¢ + b = dim T and we have
2 < a < a+b. Furthermore, T is exactly as in Example 3.9, so it satisfies the conditions of Theorem 3.7 and is
the completion of a noncatenary local UFD, A. Recall that in the proof of Lemma 3.6, we choose a prime ideal
Q' of T such that dim(7T/Q’) = 1 and ht Q' +dim(T"/Q’) < dim T and construct A such that (Q'NA)T = Q'
and dim(A/(Q' N A)) = 1. In particular, we choose Q" = (y1,-..,Ya,21,---,2p), which satisfies the above
(see Figure 2), and construct A such that (Q' N A)T = Q'. We know that dim A = dimT = a4+ b = n, and
we will show that ht(Q' N A) = ht Q' = b. From Theorem 15.1 in [6], since completions are faithfully flat
extensions, we have that ht Q" = ht(Q’' N A) + dim(Ty/ /(Q' N A)T/). Since (Q' N A)T = @', we know that
dim(Tg /(Q' N A)Tgy ) =0, so ht(Q' N A) = ht Q’. Therefore, there exists a saturated chain of prime ideals

in A from (0) to M N A, containing Q' N A, of length b+ 1 = m. O

Although we show that there is no finite bound on the noncatenarity of a local domain, as a result of
Lemma 2.9, if A is a local domain (or local UFD) such that A T, then A can only be “as noncatenary
as T is nonequidimensional.” In general, however, the converse is not true. In fact, in Example 2.14,
we construct a class of examples of rings which are “as nonequidimensional as desired,” but are not the
completions of noncatenary local domains. In other words, for any positive integer n, there is a complete
local nonequidimensional ring T' with P, € MinT such that dim(7/P) — dim(T/Q) = n, but every local

domain A such that A 2 T must be catenary, but not universally catenary.
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