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DOUBLE BUBBLES ON THE LINE WITH LOG-CONVEX DENSITY f
WITH (log f)) BOUNDED

NAT SOTHANAPHAN

ABSTRACT. We extend results of Bongiovanni et al. [Bo] on double bubbles on the line with
log-convex density to the case where the derivative of the log of the density is bounded. We
show that the tie function between the double interval and the triple interval still exists but
may blow up to infinity in finite time. For the first time, a density is presented for which
the blowup time is positive and finite.

1. INTRODUCTION

Consider R with a symmetric, strictly log-convex, C! density f. Bongiovanni et al. [Bo]
show that a perimeter-minimizing double bubble enclosing volumes V; < V5 is one of the
following two configurations of Figure 1:

o A double interval: two contiguous intervals in equilibrium enclosing volumes V; and
Va;

e A triple interval: an interval symmetric about the origin enclosing volume V; flanked
by two intervals on each side, each enclosing volume V5 /2.

They also show that, if (log f)’ is unbounded, there is a tie function A(V}) such that for V5 =
A(V1), the double interval and the triple interval tie (have equal perimeter); for Vo > A(V}),
the triple interval is uniquely perimeter minimizing; and for V5 < A(V}), the double interval
is uniquely perimeter minimizing up to reflection [Bo, Thm. 4.15].
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FI1GURE 1. A double interval and a triple interval on the real line.

The goal of this note is to extend this result to the case where (log f)" is bounded. We
show that the tie function A still exists, but it may “blow up in finite time”: it is defined
only for V; <V for some V; and approaches infinity as V; — V{. See Figure 2. This proves
the conjecture stated at the end of [Bo, Section 4].

Our main result is as follows.

Theorem 1.1. Consider R with a symmetric, strictly log-convex, C' density. There exists
a “blowup time” 0 < Vi < 0o such that, for each Vi <V, there is a unique \(Vy) > Vi with

the following properties.
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FIGURE 2. Three possibilities for the tie function A\ between the double in-
terval and the triple interval: A not existing, A blowing up to infinity in finite
time, and A existing for all time. Each case occurs for some symmetric, strictly
log-convex, C'' density (Ex. 3.11).

e For Vi < Vi and Vo = A(V1), the double interval and the triple interval tie.

o For Vi < Vi and Vo > A(V}), the perimeter-minimizing double bubble is uniquely the
triple interval.

o For either Vi > Vo or Vi < Vi and Vi < Vo < A(V}), the perimeter-minimizing double
bubble is uniquely the double interval up to reflection.

See Figure 2. Moreover, each of the three types of blowup: Vo =0, 0 < Vj < o0, and Vy = oo,
occurs for some symmetric, strictly log-convez, C1 density.

Proposition 2.2 gives more properties of the tie function A. We provide a way to compute
the blowup time Vj in Proposition 3.8, and criteria for when the blowup time is infinity or
zero in Corollaries 3.9 and 3.10. Finally, Example 3.11 presents densities exhibiting the three
types of blowup. In particular, we show that it is possible for the blowup time to be positive
and finite.

This note is organized as follows. Section 2 shows the existence of the blowup time Vj and
tie function A in Theorem 1.1 by modifying the proof of [Bo, Thm. 4.15].

In Section 3, we derive a formula for the blowup time V in Proposition 3.8. This result is
then used to develop criteria for when Vj = oo (Cor. 3.9) and Vj = 0 (Cor. 3.10). Finally,
we present examples of densities for which V5 = 0, 0 < Vj < 0o, and Vj = oo in Example
3.11.

2. EXISTENCE OF BrLowupr TIME

We establish the existence of the blowup time V4 and tie function A in Theorem 1.1. Our
notation follows Bongiovanni et al. [Bo]. For prescribed volumes V; < Vo, let u(Vi,V,) =
P; — P, be the difference of perimeters of the triple interval and the double interval. In
Bongiovanni et al. [Bo], Proposition 4.11 requires the extra hypothesis that (log f)’ is un-
bounded, but Lemmas 4.8, 4.9, and 4.14 and Proposition 4.10 do not and hold for any
symmetric, strictly log-convex, C! density.
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The following quantity is useful in characterizing the blowup time.

Definition 2.1. Consider R with a symmetric, strictly log-convex, C'* density. For each V;,
define py(V}) to be
pe(Va) = lim p(V1, V2),
Vo—o0

the limit of the difference of perimeters of the triple interval and the double interval as
Vo — o0.

Notice that g, is well defined because pu is strictly decreasing in V, [Bo, Lemma 4.9],
with —oo < py < 0o. Moreover, since p is strictly increasing in V; [Bo, Lemma 4.9], i, is
nondecreasing.

We can now state the following proposition, which proves the existence of the blowup time
Vo and tie function \.

Proposition 2.2. Consider R with a symmetric, strictly log-convex, C' density. There
exists a “blowup time” 0 < Vi < oo such that, for each Vi < Vi, there is a unique A(Vy) >V}
with the following properties.

o For Vi < Vy and Vo = A(V1), the double interval and the triple interval tie, and they
are the only perimeter-minimizing double bubbles up to reflection.

o For Vi < Vi and Vo > A(V}), the perimeter-minimizing double bubble is uniquely the
triple interval.

o For either Vi > Vo or Vi < Vi and Vi < Vo < A(V}), the perimeter-minimizing double
bubble is uniquely the double interval up to reflection.

e \ is strictly increasing, C', tends to infinity as Vi — Vi, and tends to a positive limit
as Vi — 0.

See Figure 2.

Proof. We modify the proof of [Bo, Thm. 4.15]. The idea is that p, (Def. 2.1) should be
negative in the region where \ is defined. With this in mind, let the blowup time 1} be

(2.1) Vo = sup{Vi : (Vi) < 0}, 0 <V, < oo,

where this quantity is zero if no V; satisfies the condition.

For V; < Vi, we now construct the tie function A(V;). Because p, is nondecreasing,
we(Vi) < 0. Since p(Vi, Vi) > 0 [Bo, Prop. 4.10] and g is strictly decreasing in V3 [Bo,
Lemma 4.9], there is a unique A(Vy) > V; such that p(Vi, \(V1)) = 0. Then p(Vi,V3) <0
for Vo > A(V1) and p(V3, Vo) > 0 for V3 < Vo < A(V}). Because the double interval and the
triple interval are the only possible perimeter minimizers [Bo, Prop. 4.6], we have proved
the first three items in the case that V; < V4.

Consider now the case Vi > V. We must show that p(Vi, V) > 0 for all Vo, > V. If
Vo = oo, this is trivial. If Vj = 0, then p,(V7) > 0 for all V; > 0. Because p is strictly
decreasing in Vo, u(Vy, V) > 0 for all V; < V3, as desired. Now suppose that 0 < V) < co.
We claim that p (Vo) > 0. If pe(Vp) < 0, then for some Vo > Vg, u(Vp, V2) < 0. By continuity
of p, for some Vy < Vi < Vi, u(V1, Vo) < 0, and so p(V7) < 0, contradiction. Thus the claim
holds. Becaue p, is nondecreasing, (V1) > 0 for all V; > V4. Then because p is strictly
decreasing in Vo, u(Vy, Vo) > 0 for all Vo > V) > V.
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It remains to prove the fourth item. Using exactly the same arguments as in the proof of
[Bo, Thm. 4.15], one can show everything except the statement that A(V;) — oo as Vi — Vj.
We now show this last statement. Notice that we can assume 0 < Vy < oco. Suppose to the
contrary that A increases to a finite limit L as V; — V4. Then p(V3,V5) < 0 for all V; < Vj
and V5 > L. By continuity, u(Vo,V2) < 0 for all V5 > L, and so because pu is strictly
decreasing in Vo, pu(Vp, V2) < 0 for all V5 > L. Again by continuity, u(V;,V2) < 0 for some
Vi > Vp and V3 > L, implying that u,(V;) < 0, contradiction. Therefore, the proposition is
proved. 0]

A question remains: what values can the blowup time V{ take? Theorem 4.15 of Bongio-
vanni et al. shows that if (log f)" is unbounded, then Vj = 0o, and their Example 4.13 gives a
density with V5 = 0. In the next section, we will devise a general procedure for determining
the value of V) and finally present a density for which 0 < V{ < oo.

3. CoOMPUTING BLowupr TIME

We now seek to compute the blowup time V; in Proposition 2.2. We must first define some
quantities. As in Bongiovanni et al. [Bo, Lemma 4.2], define the volume coordinate by

vz/omf,

where x is the positional coordinate. In particular, f is a strictly log-convex density if and
only if f is strictly convex in volume coordinate.

Definition 3.1. On R with a symmetric, strictly log-convex, C* density f, define
L = lim (log f)'(z) = lim f'(V),
T—00 V—o0
M = lim f(2V)—2f(V),
V—o0
where z is the positional coordinate and V' the volume coordinate.

Notice that L exists because f’ is strictly increasing and M exists because, by taking
derivatives, f(2V) —2f(V) is strictly increasing when V' > 0. Observe that 0 < L < oo and
—00 < M < 0.

From now on, we work exclusively with volume coordinates. The following lemma shows
a relationship between L and M.

Lemma 3.2. L = oo implies M = oo.

Proof. Let g(V) = f(2V)—=2f(V) for V > 0. Because g is strictly increasing, ¢ < M. Notice
that
fev)y ) _gv)

2V V 2V

1
< (1__) .
2n

Since L = oo, f(V)/V — o0 as V — o0o. So as n — oo, the left-hand side diverges to
infinity, implying that M = oo. U

so by telescoping,

on < g(2k
=348

The following example shows that the converse of Lemma 3.2 is not true.
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Example 3.3. Consider f(V) = Vtan~ 'V —log(V?+1)/2 + 1. We can easily check that
f is symmetric, C* with f/(V) = tan™!'V, and strictly convex. Therefore L = /2, and we
can compute that M = oo.

We now define another quantity, which will later be shown to be related to the left endpoint
of the double interval.

Definition 3.4. Let f be a symmetric, strictly log-convex, C' density on R with f/(V)
bounded. For each Vi, define V* to be the unique solution to

(3.1) )+ f[(ve+W) =L,
where L is as in Definition 3.1.

Notice that the left-hand side of (3.1) is strictly increasing in V*, tends to —2L as V* —
—00, and tends to 2L as V* — oco. So (3.1) has a unique solution, and V* is well defined.

Let V be the leftmost endpoint of the double interval. By the equilibrium condition [Bo,
Cor. 3.3], V is the unique solution to

(3.2) FOV)+ (VA V) + f(V+ Vi + 1) =0.

Because f’ is strictly increasing, we can see that Vs strictly decreasing in both Vi and V5.
We now characterize V* as the limit of V' as V5 — oo.

Lemma 3.5. Suppose that L < co. For a fized Vi, limy, o V=V

Proof. Since Vs strictly decreasing in V5, the limit V, = limvz_mf} exists (it may be
—00). It remains to show that V; = V*. By [Bo, Lemma 4.8], V' > —(V] + V,)/2, so
V+Vi+ Vo> (V14 V3)/2 = oo as Vo — oo. Hence by taking V5 — 0o in (3.2),

Vo) + f'(Ve+ Vi) + L =0,

where we interpret f'(—oc0) = —L in the case that V;, = —oco. Finally, observe that V, = —oco
is not possible due to L > 0, so V/ is finite and equals V*. 0

The next lemma collects some properties of V* as V} — oo.

Lemma 3.6. Suppose that L < oo and let V* be as in Definition 3.4. Then V* is strictly
decreasing in Vi, limy, o, V* = —o0, and limy, . (V*+ V;) = 0.

Proof. The fact that f’ is strictly increasing implies that V* is strictly decreasing in V;. This
and the fact that V* < —V; [Bo, Lemma 4.8] imply that limy, ,., V* = —oo. Now take
Vi — oo in (3.1) to obtain limy, . (V* + Vi) = 0. d

The following proposition gives a way to compute p, (Def. 2.1) based on Lemma 3.5.

Proposition 3.7. Let u; be as in Definition 2.1, L and M be as in Definition 3.1, and V*
be as in Definition 3.4. Suppose that L < co. Then

(33) Vi) = 2f (%) ~FV) = fV V)~ VL - M,

where this quantity is finite if M < oo and equals —oo if M = oc.



6 NAT SOTHANAPHAN

Proof. By Lemma 3.5,
pe(V1) = lim (P5 — P)

VQ‘)OO

= i [or () 27 (BE) - 50) = 17+ i) = 17 + 12+ 12)

VQ—)OO 2

—2f () = - s v i [2r (B <A@ ).

Vo—o0 2

Rewrite the quantity in the last limit as

[Zf (\4;%) —f(V1+V2)] + [f(%Jer)—f(f/JerJr%)].

The first bracket tends to —M as V32 — oo. By the Mean Value Theorem, the second bracket
equals =V (V) for some V >V 4+V; + V4, > (V1 +V4)/2 — oo as Vo — 0o [Bo, Lemma 4.8],
so it tends to —V*L as Vo, — oo. Therefore, y, has the desired formula. O

We are now ready to state the proposition computing the blowup time Vj.

Proposition 3.8. Consider R with a symmetric, strictly log-convex, C* density f. Let L
and M be as in Definition 3.1 and V* be as in Definition 3.4. Then the blowup time V4 of
Proposition 2.2 can be computed as follows.

o I[f L =00 or M =00, then Vj = 0.

o If L < oo and M < oo, then Vi < 0o and

(3.4) Vo = sup {V1 : (V1) < 0} = inf {V1 = (V1) > 0%,

where g has the formula (3.3) and the sup is 0 if there is no Vi satisfying its condi-
tion.

Proof. Bongiovanni et al. [Bo, Prop. 4.11] show that if L = oo, then Vi = co. So suppose
that L < oo. By Proposition 3.7, p, is given by (3.3).

The characterization of Vj in (2.1) shows the first half of (3.4). Then fact that p, is
nondecreasing implies the second half of (3.4).

It remains to show that, still assuming L < oo, Vy = oo if and only if M = oco. If M = oo,
then (V1) = —oo by (3.3), and so Vj = oco. Now suppose that M < co. By (3.3), we can
write

() = |21 () = SO0 4 [F-V) = F070)] = 4 10) = V'L =

Take V} — oo and apply Lemma 3.6. The first bracket tends to —M. The second bracket is
(—=Vi = V*)f'(V) for some V, which tends to 0 because V* 4+ V; — 0 as V; — oo and f’ is
bounded. Finally, f(V*+V;) — f(0) and V*L — —oco. Hence py — 0o as V; — oo, showing
that Vp < oc. O

From Proposition 3.8, we obtain two corollaries stating conditions for when Vj = 0 and
Vo = o0.

Corollary 3.9. Consider R with a symmetric, strictly log-convez, C* density. Let L and M
be as in Definition 3.1. Then Vy = oo if and only if M = oo. In particular, L = oo implies
Vo = 0.
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Proof. By Proposition 3.8, Vj = oo if and only if L = oo or M = oco. This is equivalent to
M = oo by Lemma 3.2. U

Corollary 3.10. Consider R with a symmetric, strictly log-convez, C* density f. Let L and
M be as in Definition 3.1. Then Vo = 0, that is, the double interval is uniquely perimeter
minimizing for all prescribed volumes if and only if L < oo and

(3.5) 2f(0) —2f(V)+VL—~M >0, whereV = (f)1(L/2).

Proof. By Corollary 3.9, L = oo implies Vjj = co. So suppose that L. < co. By Proposition
3.8, Vo = 0 if and only if u,(V3) > 0 for all V; > 0. Since p, is nondecreasing, this is
equivalent to limy, o u¢(V4) > 0. From (3.1), V* — —(f')"'(L/2) as V; — 0. Hence by
(3.3), limy, 0 1e(V1) equals the left-hand side of (3.5), proving the corollary. O

Finally, the following example shows densities with the three types of blowup: V, = 0,
0 < Vyp < o0, and Vy = oo. In particular, it shows that the case 0 < 1 < oo is indeed
possible.

Example 3.11. All densities below are symmetric, C*, and strictly convex in volume coor-
dinate.
e [Bo, Ex. 4.13]. Consider f(V) = |V|+ e IVl. We can compute L = 1, M = 0, and
(f)"1(L/2) =log2. By Corollary 3.10, we can check that Vj = 0.
e Consider f(V)=+vV2+1—1/2. Then L =1, M =1/2, and (f')"'(L/2) = 1//3.
Corollaries 3.9 and 3.10 imply that 0 < V{ < oo.
e Consider the Borell density f(z) = ¢**. Then (log f)'(z) = 2z is unbounded, so
L = oo. By Corollary 3.9, Vj = oc.

With this example, we have completed the proof of Theorem 1.1.
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