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SPECTRAL STATISTICS OF NON-HERMITIAN RANDOM MATRIX
ENSEMBLES

RYAN C. CHEN, YUJIN H. KIM, JARED D. LICHTMAN, STEVEN J. MILLER,
SHANNON SWEITZER, AND ERIC WINSOR

ABSTRACT. Recently Burkhardt et. al. introduced the k-checkerboard random matrix
ensembles, which have a split limiting behavior of the eigenvalues (in the limit all but & of
the eigenvalues are on the order of /N and converge to semi-circular behavior, with the
remaining k of size N and converging to hollow Gaussian ensembles). We generalize their
work to consider non-Hermitian ensembles with complex eigenvalues; instead of a blip new
behavior is seen, ranging from multiple satellites to annular rings. These results are based
on moment method techniques adapted to the complex plane as well as analysis of singular
values.
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1. INTRODUCTION

1.1. Background. Random matrix ensembles have been studied for almost a hundred years.
The eigenvalues of these ensembles model many important and interesting behavior, from
the waiting time of events to the energy levels of heavy nuclei to zeros of L-functions in
number theory; see for example the surveys [Bai, BFMT-B, Con, FM, KaSa, KeSn] and the
textbooks [Fo, Me, MT-B, Tao2].

There are many questions one can ask about these eigenvalues. This paper is a sequel to
[B-]. There, in the spirit of numerous previous works, the authors investigated the density
of eigenvalues of some highly structured ensembles. One of the central results in the subject
is due to Wigner [Wigl, Wig2, Wig3, Wigd, Wigh|, which states that the distribution of
the scaled eigenvalues of a typical real symmetric matrix converges, in some sense, to the
semi-circle distribution. However, if the real symmetric matrices have additional structure
then other distributions can arise; see for example [Bai, BasBol, BasBo2, BanBo, BLMST,
BCG, BHS1, BHS2, BM, BDJ, GKMN, HM, JMRR, JMP, Kar, KKMSX, LW, MMS, MNS,
MSTW, McK, Me, Sch].

In all those examples the limiting distribution has just one component. Different behavior
is seen in the limit as N — oo of the k-checkerboard N x N matrix ensembles of [B—| (see
also [CDF, CDF2]), described later in Definition 1.1. There, all but k& of the normalized
eigenvalues converge to a semi-circle centered at the origin; however, there are k eigenvalues
which diverge to infinity together. Further, these k blip eigenvalues converge to a universal
distribution, the k-hollow GOE distribution (obtained by setting the diagonal of the k x k
GOE ensemble to 0).

Below we describe the ensembles studied in [B-] and discuss our generalization (see Def-
initions 1.8 and 1.10). In particular, we find ensembles where there can be multiple blips
or satellites orbiting the bulk of the eigenvalues, as well as a ring of eigenvalues around the
central mass; Figure 1.

FIGURE 1. Two numerical examples of distributions which can arise from a
generalized k-checkerboard ensemble. Left: A collection of satellites. Right:
A ring of eigenvalues.



In the next subsections we define the ensembles we investigate and state our results.
Unfortunately many of the techniques used for related ensembles are not applicable here,
and thus we spend some time describing the needed tools and approach.

1.2. Results. Random matrix ensembles with real entries see markedly different behavior
between asymmetric and symmetric entry choices — for example, the symmetric ensembles
are Hermitian with real eigenvalues, and this need not hold for asymmetric ensembles. Al-
lowing matrices with complex entries, we also find differences between the asymmetric and
symmetric (not-necessarily Hermitian) ensembles in the joint density formulas.

Recall that the joint density function for singular values returns the probability that any
given matrix has a certain N-tuple as its singular values.

Suppose M is a random N x N matrix (for example, real asymmetric, complex symmetric,
etc.). The joint density function py for the singular values satisfies

/R F(zy,...,zn)pn(z1,...,2y) do = E Z F(oy,...,on) (1.1)

N
>0 {02,..,0% YeX(M*M)

for any test function F', where the right-hand sum is interpreted as over all N! orderings of
the N eigenvalues of M*M (and the o, are nonnegative).

We list the available singular value joint density functions for complex asymmetric and
symmetric ensembles, see for example [AZ, TaoVul, Fol:

N N
: : 2 e
Complex asymmetric Gaussian : py(z1,...,2y) = cy|A2], ..., 2%)| H |z, He l31°/2
7j=1 7j=1
(1.2)
N N
. . a2
Complex symmetric Gaussian : py(x1,...,2y) = cn ‘A(:Ef, e ,I?V)‘ H |z, He l31°/2
j=1  j=1
(1.3)

where A denotes the Vandermonde determinant, and the complex Gaussian random variables
have mean 0 and variance 1. Entries in matrices from the asymmetric ensemble are iidrv,
while entries in the symmetric ensemble are iidrv in the upper triangle and the diagonal.

Note that the joint densities for singular values differ between the symmetric and asym-
metric ensembles. In the ensembles that follow, we will chiefly consider symmetric matrices,
and in doing so highlight the consistency found instead with the statistics we study for
symmetric and asymmetric ensembles.

1.2.1. Checkerboard Ensembles. We investigate extensions of the structured “checkerboard”

ensemble from [B-] into the complex regime. In that paper, the authors investigated a

Hermitian ensemble, with real limiting eigenvalue distribution having almost all eigenvalues

in a semicircular mass at the origin, referred to as the “bulk” and a vanishing percentage

of eigenvalues, whose distribution is described explicitly, that moves off to infinity and is

referred to as the “blip.” (We adopt this terminology of bulk and blip where appropriate.)
The first complex analog we investigate is constructed as follows.
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Definition 1.1. Fix £ € N and w € C. Then, for k£ | N, the N x N complex symmetric
(k,w)-checkerboard ensemble is the ensemble of matrices A with entries

R & ifi#£j (mod k) (1.4)
O Yw ifi=j (mod k) '

where * ~ X + 7Y are selected such that X, Y are iidrv mean 0 variance 1/2 real random
variables. When we set w = 1, or the value of w is clear, we will just refer to the complex
symmetric k-checkerboard ensemble.

In contrast, the real symmetric ensemble studied in [B-] uses real random variables for
a;; = aj;, and the Hermitian ensemble studied uses complex random variables with a;; = @;;.
In these situations, Hermiticity implies the resulting eigenvalue distributions are real. Our
matrices are not necessarily Hermitian, and thus the eigenvalue distributions that arise are
on C. Restricting our attention to complex symmetric rather than the fully asymmetric case
turns out to not make a difference for several of the following results. We have chosen to
require symmetry, however, to highlight the difference between requiring symmetric structure
in the real and complex settings (real symmetric and real asymmetric ensembles have very
different behavior), and also to contrast with the differing behavior of complex symmetric
and complex asymmetric Gaussian ensembles discussed above. For simplicity, we prove most
of our results below for w = 1 as was done in [B-] — the extension to other values of w is
relatively straightforward.

In the paper [B-| studying the Hermitian version of this ensemble, the semicircular bulk
was analyzed with the method of moments, but this could not be used for the blip as the
eigenvalues were growing too rapidly. The blip existence was established by a perturbation
argument using Weyl’s inequalities (available for Hermitian matrices), and the distribution
of the blip was analyzed using a polynomial weighting function.

None of these techniques are directly applicable for non-Hermitian ensembles with complex
eigenvalue distributions. Complex polynomial weighting functions are not as well behaved
— for example, they are far from non-negative. Non-Hermitian ensembles also do not enjoy
perturbation results such as Weyl’s inequalities, as the spectra can be quite unstable due to
the presence of pseudospectrum [Tao2].

The method of moments also runs into serious difficulties in the complex regime. The use
of the standard (real) method of moments is two-fold. Appropriate bounds on the moments
implies convergence of the measures to a limiting measure (e.g. via the Carleman continuity
theorem), and the moments also uniquely determine the limiting distribution. The analogous
problem for complex moments uses mixed moments of the form

/ M . (1.5)

However, these mixed moments do not have a straightforward relation to the matrix entries,
as is available via the eigenvalue trace lemma in the real case and for moments of the form

/ 2 dp. (1.6)

which we refer to as “holomorphic.” Although these holomorphic moments can be computed
easily via the eigenvalue trace lemma for spectral measures, they cannot in general be used to

characterize complex distributions. For example, all holomorphic moments of any angularly
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symmetric distribution will vanish. Ultimately, this is because the space of real polynomials is
dense in various function spaces (the Stone-Weierstrass Theorem) and similarly for complex
polynomials in z and Z, but holomorphic polynomials in z do not enjoy such properties
[Tao2].

Our analysis of the complex eigenvalues will thus employ markedly different techniques. As
a proxy for the complex eigenvalues, we first study the associated singular value distributions,
and explicitly describe the split limiting behavior in this context.

Definition 1.2. Given an N x N complex symmetric k-checkerboard matrix A, define the
bulk squared singular spectral measure as

VjiN(x) = % Z 4] (a: - %) . (1.7)

o eigenvalue A*A

Note that o > 0 is a singular value of A if and only if o2 is an eigenvalue of B := A*A.

Theorem 1.3. Let Ay be a random sequence of N x N complex symmetric k-checkerboard
matrices. Then as N — oo, l/ij,N converges almost surely to the quarter-circular probability
distribution (after renormalizing the total measure so that the distribution integrates to 1) of
radius R = 2+/1 — 1/k and circle center at 0, supported on [0, R].

We also give an explicit description of the singular value blip distribution.

Definition 1.4. The empirical blip square singular spectral measure (EBSSSM)
for a matrix A is

s2 1 ]{720' 1 N2
HaN = 7 Z Afn(N) (W) 0 (ZE N (U - ﬁ)) ) (1.8)

o an eigenvalue of A*
where f,(z) is the polynomial weighting function
" (z — 2)*" (1.9)

and n(N) is a monotonically growing function of N that tends to co such that 2**N) = o (N);
for example, n(N) = clog N with ¢ a small enough constant suffices.

Note that o an eigenvalue of A*A is equivalent to /o being a singular value of A. As in
[B-], the weight function f weights the squared singular values in the blip roughly 1, and
weights the squared singular values in the bulk roughly 0. The normalization factor 1/N
ensures that we will find finite moments, i.e., the fluctuations of the squared singular values
about the blip are of order N.

We can explicitly describe the blip distribution for the squared singular values, and recall
a distribution studied in Theorem 1.9 of [B-][Theorem 1.9], which also contains a few images
of examples for small k.

Definition 1.5. Fix £ € N. Then the k£ x £k hollow Gaussian Orthogonal Ensemble
(GOE) is the ensemble of k x k matrices A with entries

x  ifi#£7j

i = Qij = e 1.10

a; @ij {0 iti—j. ( )
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where x ~ X are iidrv mean 0 variance 1 real normal random variables, and the entries in
the upper triangular half A are all iidrv.

When k = 2, the empirical spectral measure is Gaussian, see [B—, Proposition 3.18|. In
general, standard universality implies that the limiting spectral distribution only requires
the random variables to be mean 0 and variance 1. Furthermore, we use the term hollow as
a qualifier to any ensemble (for example, complex symmetric) where we have replaced the
entries a;; with 0 when ¢ = j (mod k), with k is clear from the context.

Theorem 1.6 (Blip distribution for squared singular values). The empirical blip squared
singular spectral measure of a complex symmetric k-checkerboard ensemble converges almost
surely to the measure with r*™ centered moments equal to the r'™® centered moments of the
empirical spectral measure of the k X k hollow Gaussian Orthogonal Ensemble, scaled by a

factor of (V2/k)".

Note that this implies that the blip distribution of the squared singular values converges
to the distribution of the hollow GOE scaled by V2 /k. This is visualized in the k& = 2 case
in Figure 2.

FIGURE 2. Normalized singular values of 100 x 100 complex symmetric 2-
checkerboard ensemble, 2000 trials. Note the bulk and blip. This has not
been re-scaled to display a quarter circle rather than a quarter ellipse.

We also describe the bulk and blip behavior of the eigenvalues. In the preceding two results,
analysis of the singular values was done via the method of moments, taking advantage of the
Hermiticity associated with singular values. Since Girko in 1984 [Gi], however, work on such
non-Hermitian ensembles has proceeded through the log potential and his Hermitization
trick, with the limiting circular law distribution of fully random complex matrices being
fully proven by Tao and Vu in 2010 [TaoVu2]. In analogy with the real method of moments,
continuity of the log potential, closely related with the Stieltjes transform, plays a surrogate
role to moment continuity theorems.

As short-hand, we refer to the ensemble with iidrv mean 0 variance 1 complex entries as
the complexr asymmetric ensemble. Associated measures that arise below are denoted with
a superscript “asym.” Similarly, measures that arise below in association with a complex

symmetric checkerboard ensemble will be denoted with a superscript “check.”
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We also proceed with the log potential and Hermitization, and will show that, up to
an explicit scaling factor and an assumption on the least singular values, our structured
checkerboard ensembles also have a bulk that converges to a circular law.

Theorem 1.7 (Eigenvalue Bulk - Complex Symmetric k-checkerboard). Consider a sequence

of N x N random matrices Ay from the complex symmetric k-checkerboard ensemble, with

normalized spectral distribution p LAy Assume appropriate control of the least singular val-
N

circ

— MR
for puSre the uniform measure on the disc centered at the origin with radius R := /1 — 1/k.

See Figure 1 for a visualization of the bulk behavior in a more general setting. (The bulk
corresponds to the large circular mass in the center.) This involves a careful combinatorial
reduction that connects our complex symmetric checkerboard ensemble to the asymmetric
case, via an interpretation of the Hermitianized moments as counting walks on certain trees.

We also describe the position of the split-limiting eigenvalue blip, which will be naturally
stated in the context of more general checkerboard ensembles.

ues as in Assumption 2.7. Then, as N — 0o, we have almost sure convergence BLay
N

Definition 1.8. We define a generalized k-checkerboard ensemble to be an ensemble of
matrices A with entries either real/complex random variables or deterministic constants,
that satisfy a;; = amy if i =m (mod k) and j =n (mod k), and such that for fixed 7, j, a;;
is always “equal” over all matrices in the ensemble (“equal” in the sense that the entry in that
position is always either the same deterministic value or random variable). The qualifiers
symmetric/asymmetric refer to the structure we place on both the random variables and the
deterministic entries, and real/complex refer to the random variables used.

Note that the complex symmetric k-checkerboard ensemble from Definition 1.1 is an ex-
ample of a generalized k-checkerboard ensemble, where the deterministic entries are all 1
and we set a;; = 1 when ¢ = j (mod k). Indeed, many of the above results hold in this more
general context as well.

Example 1.9. This depicts a generalized 3-checkerboard asymmetric ensemble, when the
entries * are iidrv complex random variables and the w; are fixed in value and position over
the ensemble:

w1 * Wo W7 X Wao
* * * * * *
* ws * * ws *
w1 * Wwe W1 *  Wo
* * * * * *
* ws * * ws k

Definition 1.10. A generalized k-checkerboard ensemble is said to be m-reqular if, for any
N =0 (mod k), there are Nm/k deterministic entries in every row of all N x N matrices

in the ensemble.

For example, the complex symmetric k-checkerboard ensemble from Definition 1.1 is 1-
regular, while the ensemble described in Example 1.9 is not m-regular for any m. In this
scenario, we find that the bulk results for singular values and the eigenvalues will also hold,

up to scaling.
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Corollary 1.11. Consider an m-reqular generalized complex symmetric k-checkerboard en-
semble. In analogy with Theorem 1.3, when N — oo the squared singular values have

moments
2r
M, = <§) c, (1.11)
for C,. = T%rl (2:) the v Catalan number and R = 2+/1 — m/k, which shows that the bulk of

the singular values converges almost surely to a quarter-circle distribution of radius R, with
the circle’s center at the origin.

Corollary 1.12. In analogy with Theorem 1.7, consider a sequence of N X N random ma-

trices Ay from the m-reqular complex symmetric k-checkerboard ensemble, with normalized

spectral distribution KAy Assume appropriate control of the least singular values in ap-
N

propriate analogy to Assumption 2.7. Then, as N — oo, we have almost sure convergence

circ circ

Hiay = MR for pEe the uniform measure on the disc centered at the origin with radius

R:=/1—-m/k.

In the absence of Hermitian perturbation results, the characterization of a blip with differ-
ent limiting behavior is not so readily obtainable for complex distributions. The techniques
we use to characterize the complex eigenvalue blip will be markedly more involved than a
short perturbation argument.

Fix a generalized k-checkerboard asymmetric ensemble.! Note that any generalized k-
checkerboard matrix A can be decomposed as A = M + P where M is a generalized k-
checkerboard matrix with all deterministic entries set to 0, and P is finite rank (at most
k), completely deterministic, and composed of repeating blocks of some fixed k x k matrix
B (determined by the ensemble); we will use this notation when discussing the blip for
generalized checkerboard matrices.

Example 1.13. For example, the 3 x 3 matrix B associated with the ensemble in Example
1.91s

w; 0 ws
B=|10 0 0
0 Ws 0

For Ay an N x N matrix from the ensemble, we expect a vanishing proportion of the
eigenvalues growing of order N (referred to as the blip) and the remaining eigenvalues of
size N'/2 (referred to as the bulk) as this would correspond, heuristically, to the behavior of
the singular values as in Proposition 2.1. One also expects, heuristically, that the spectral
distribution should follow the distribution of the matrix P up to an error of size O(N'/?)
from the matrix M, as occurs in the real case. Roughly speaking, we expect a clump of
eigenvalues whose size is around the order of N'/? at each eigenvalue of P, with the bulk
consisting of all the clumps associated to the zero eigenvalues of P, which has fixed rank at
most k£ as N — oo. The blip distribution, then, should reflect the distribution of the nonzero
eigenvalues of B.

IWe take the ensemble to be asymmetric instead of symmetric to accommodate general asymmetric patterns
for the deterministic entries, see for example Example 1.9.
8



This heuristic seems to follow numerical simulation. See Figure 1 (left), which corresponds
to an ensemble with matrix B having eigenvalues chosen from roots of unity with appropriate
multiplicity.

We give a justification for this heuristic and numerical understanding of the blip. To
extract the blip position, we thus modify the empirical spectral measure g4, using two
types of renormalization — dividing the matrix by N so that the location of the blip is of
constant order as N — oo, while the bulk is vanishing as O(N~'/?), and multiplying the
total measure by N so that the measure of the blip remains constant rather than vanishing.

Definition 1.14. Let Ay be an N x N matrix. Define the renormalized measure fi4, :=
(N/k)p & ay» Where fu4y is the empirical spectral measure of Ay (on C).

We wish to extract an almost sure limiting measure fi4,, — ft as N — 0o over sequences of
matrices { Ay} from the ensemble. However, we expect such a measure [ to have a singularity
at 0, since each fi4, has total measure N/k, the bulk of which is of size O(N~'/2), going to
0as N — oo.

To avoid this singularity, we will instead restrict our measures by excising small neighbor-
hoods at the origin.

Notation. For € > 0, let B, = {z: |2] < ¢} C C and Q. =C\ B..

With some abuse of notation, we use fiy to denote both the full measure on C and the
measure restricted to (2. where appropriate. Instead of convergence of ji4, — ft on C, we
restrict to {2, to avoid the limiting singularity at 0.

Unfortunately, even the existence of a limiting measure associated to appropriate normal-
ized measures extracting blip behavior is not clear — one might hope to proceed through the
log potential, though certain normalization conditions will yield singularities that present
serious obstacles. We show that, assuming a limiting measure exists, the limiting measure
must indeed be characterized by the spectral distribution of B.

Theorem 1.15. Assume, restricted to S, that jiy — fi almost surely for every e > 0. Then
for any fized € > 0 smaller than all eigenvalues of B, ji1 must be the spectral measure of B
restricted to €)..

For example, with ensemble as in Example 1.9, this theorem states that the blip is described
by the measure fi which will be the restriction to 2. of the spectral measure of the 3 x 3
matrix listed in Example 1.13.

Remark 1.16. In the theorem statement, we have neglected distinguishing [i restricted to
Q. for different e, since i on Q. restricts to fi on Qo when 0 < € < e.

The basic idea is to show first that the limiting measure must be discrete and finitely
supported on the nonzero eigenvalues of B, and to then show that holomorphic moments
(calculated from the eigenvalue trace lemma) are enough to characterize discrete distribu-
tions, while also controlling the error from computing moments on €. instead of all of C.

As a corollary, this gives us better control on the total measure of the bulk, in analogy
with the case of real eigenvalues.

Corollary 1.17. Write k' for the number of nonzero eigenvalues of B, with multiplicity.
The bulk of the spectral measure ju, consists of N — k' eigenvalues of order N'/2+° for any

d > 0. That is, ia, almost surely has total measure N — k' on By-1/21s as N — oo.
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Sections 2 and 3 give proofs for these results. In Section 2, we prove Theorem 1.3 and The-
orem 1.6, the bulk and blip results of the singular values for complex symmetric checkerboard
ensembles, as well as Theorem 1.7, our bulk result for the complex eigenvalue distribution
of complex symmetric checkerboard ensembles. In Section 3, we prove singular value and
eigenvalue bulk analogs in Corollary 1.11 and Corollary 1.12 for generalized checkerboard
matrices, and prove Theorem 1.15 and Corollary 1.17 to describe the complex blip behav-
ior. We conclude with some conjectural observations concerning generalized checkerboard
matrices and related ensembles in Subsection 3.3. Some terminology and auxiliary material
can be found in Appendix A.1.

2. COMPLEX CHECKERBOARD ENSEMBLES

We first establish the existence of two squared singular value regimes with a matrix per-
turbation result.

Proposition 2.1. As N — oo, the squared singular values of k-checkerboard complex sym-
metric matrices almost surely fall into two regimes: N — k of the squared singular values are
O (N'¢), and k of the squared singular values are N?/k* + O (N3/2*¢), for any e > 0.

Proof. A k-checkerboard matrix A can be decomposed as M + P, where
a;; ifi1Z45 (modk 0 ifiZ 4 (modk
S { g ifi# ) (mod k) . :{ £ (mod k)

0  otherwise a;; otherwise.

(2.1)

A straightforward generalization of [B—, Lemma B.3] in the context of our above argument
for the square singular values bulk shows that as N — oo, [|4]|,, = O (N1/2+¢) almost
surely. Since P has k singular values at N/k, and N — k eigenvalues at 0, Weyl’s inequality
for singular values implies that almost surely, N — k of the singular values are O (N 1/ 2+€),
and k of the singular values are N/k + O (N 1/ 2+5). This implies the proposition for squared
singular values. O

We modify the combinatorics and weighting function from [B-] to extract the limiting
distribution of the blip for the squared singular values of complex symmetric checkerboard
matrices.

2.1. Singular values of complex checkerboard matrices: bulk.

In this subsection we establish the limiting bulk measure for singular values of complex
symmetric k-checkerboard matrices.

We use the method of moments. We wish to match the moments of our limiting squared
singular value distribution with the moments of the quarter-circular distribution.

Proposition 2.2. Let X be the random variable with probability density function a quarter
circle supported on [0, 2] of radius 2 with circle-center at the origin (normalized by m so that
it is a probability distribution). Then the random variable X? has its r'" moment, M,, equal

to the r*™ Catalan number
1 2r
C, = r—i—l(r)' (2.2)
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Proof. The even 2r*" moments of both the semicircular distribution and the quarter-circular
distribution of X are known to equal the r*t Catalan number, see for example [BS]. The
proposition then follows by noting that the 7" moment of the random variable X? is also
the 2" moment of random variable X. O

Proof of Theorem 1.3. Before we can apply the method of moments, we must first consider
the perturbation as in the proof of Proposition 2.1, which exhibits complex symmetric k-
checkerboard matrices as a finite rank (i.e., fixed as N — o00) perturbation from the corre-
sponding hollow complex symmetric k-checkerboard matrices. Then, since M + P a finite
rank perturbation of M implies that (M + P)*(M + P) is a finite rank perturbation of M*M,
we can apply Theorem 1.3 of [B-] to find that the complex symmetric k-checkerboard en-
semble and the corresponding hollow ensemble have the same limiting squared singular value
distribution. We thus apply the method of moments below to the hollow ensemble.

By the eigenvalue trace lemma and linearity of expectation, the 7" moment of the bulk
squared singular spectral measure is computed as

2 2 1
E [1/2%)} =E {/ vin(z)z" d:v] = = E

> (&)

o eigenvalue B

= NTTE] ) a’“] = N77'E [Tx(B")]
o eigenvalue B
= N7 > Elbi, b, (2.3)
1<y, ipr <N

where the entries of B = A*A are given by

bij = Z A Qgj = Z Wik Ol (2.4)

1<k<N 1<k<N

by symmetry. Hence
E[Vfi%)} = N7 > Elbis - bis)

1<iy <-<iy

—r—1 _ -
= N E E B[k Ohyiy  * * Ty Wiy

1<in, - ir SN 1<k1,...kr <N

= N7 ElGniig T i i) (2.5)
1<iy, - ior <N

Each term (; = @iy Qigis = * * Qigy 14y, Qigyiy 11 the sum corresponds to a cyclic sequence I =
11 ---1g. Then I may be associated to a closed walk on the complete graph with vertices
labeled by the elements of the set {iy,...,i5.} in the order that the vertices are visited.
Define the weight of I to be the number of distinct entries of I. If the weight of I is at least
r + 2, then there is a factor a in (; independent from all the rest, and thus the expectation
E[¢;] = 0 (recall we have zeroed out all deterministic entries because we are considering the

hollow ensemble, and the random variables are all mean 0).
The sequences of weight at most r contribute negligibly, o(N"*!). This is because the

sequences may be partitioned into a finite number of equivalence classes by the isomorphism
11



class of the corresponding walk. An isomorphism class of weight ¢ < r then gives rise to
O(N") walks of weight ¢ by choosing labels for the distinct nodes in any such walk.

Closer analysis is required for a sequence I of weight r 4+ 1. First, the walk corresponding
to I visits r + 1 distinct nodes and traverses r distinct edges. Hence the walk consists of 2r
steps on a tree with r + 1 nodes.

Note that E[(;] contributes to the sum precisely when all the factors, a;;, are matched
with their conjugates, @;;, in which case E[(;] = 1. Indeed, if a;; is an entry of a complex
symmetric k-checkerboard matrix A with ¢ # j (mod k), note that E [a;;a;;] = E [a;;a;;] = 0
while E [a@;;a;;] = 1. This is because if a;; ~ X + 1Y for XY iidrv mean zero variance 1/2
random variables, then

Elaja;] = E[X?]+2E[X]EY]-E[Y?] = 0 (2.6)

E[a;a;] = E[X?]+E[Y?] = 1 (2.7)
Thus it suffices to count the number of sequences I satisfying the above condition. In the
graph correspondence, the condition on [ is equivalent to the walk traversing each tree edge
exactly twice, where, for an edge corresponding to {i,j} in I, one traversal corresponds to
a;; and the other traversal to @;; in (;. For a given edge e and the corresponding subwalk
w between the first and second traversal of e, each edge in w must be traversed and later

retraced in the reverse direction, since trees are acyclic. Thus w has an even number of steps,
so the two traversals of e occur on steps of opposite parity.

Remark 2.3. This implies that the same result holds for the corresponding asymmetric
ensemble, since this parity requirement ensures that the combinatorics must be the same in
both cases.

This corresponds in ¢; to matching a;; with @;;; if the steps occurred with the same parity,
then a;; would be matched with a;; (or @; with @;), resulting in zero expectation. In
summary, it suffices to count the number of non-isomorphic trees on r 41 nodes with a given
starting node, and a given absolute order on the leaves—there is a bijection between such
walks and such ordered trees given by the order in which the leaves are visited in the walk.

As is well known, there are C,. ordered trees on r + 1 nodes, where C, is the r** Catalan
number [S|. There is a further restriction: since a;; = 0 if ¢ = j (mod k), an appearance
of any such term in the cyclic product will contribute zero expectation. We may then label
the nodes in the tree in such a way that no two adjacent nodes have the same congruence
in N+ (B2)" + o(N"*1) ways. Thus we have

G (D IRTD S M E'S

weight I<r+1  weight I=r+1  weight I>r+1

= N1 (o(N’““) + C, (N7”+1 (%) + o(N’““)) + 0)

= C, (%) +o(1). (2.8)

Hence we have proved

) 1 r 2r
mept] o () e (.
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which are the moments of the (square of the) quarter circle distribution of radius R =
24/1 — 1/k as in Proposition 2.2, which suffices. O

2.2. Singular values of complex checkerboard matrices: blip.
Throughout this entire subsection, we follow the notation and terminology in [B—|. For

convenience, the relevant terminology from that paper is collected in Appendix A.1. We
analyze the blip using the method of moments.

Lemma 2.4. The expected " moment of the EBSSSM is given by

E MSZ(T) _ 1 & 2n A T+.] 1 r—1 k 4”+2i+TE Tr(A* A 2n+1 21
] = = ()T ) e (R [Tr(A" 4> +] . (2.10)
j=0 =0

= \J

S (5) (3 ()]

el () ()

- e[y (5) (5 -1-0) (-3

v (B e[S (1 e () (- )]
e (5SS () e ]

IR (8) e,

1=0

Proof. By definition

1
E[MY] = -E

where the last equality follows by the eigenvalue trace lemma. O

Observe that the (i, 7)™ entry of A*A is given by Z%Zl Qi Gmj = Z%Zl Gimmj (using the
symmetry condition of A). By definition of the trace
E[Tr(A*A)"] = Z E [ailklam1i2ai2m2ak2i3 . -ainmnamnil} ) (2.12)

1<i1,..,in <N
1<my,..my<N

Terms of the form
E [TI(A*A)n] = Z E [ai1m1 Amyip Qigmy Amais * * ainmnamnil]

1<it, e sin<N
1<my,..my<N

will be our cyclic products. Degrees of freedom arguments allow us to restrict our attention

o “configurations” of “l-blocks” and “2-blocks.” See Appendix A.1 for terminology taken
13



from [B-] and [B—, Lemma 3.13] for proof of the claim. We compute the contribution to the
expectation E [Tr(A*A)"].

Lemma 2.5. The total contribution to E[Tr(A*A)"] of an S-class C with ry 1-blocks and
(|S]| —r1) 2-blocks is

p() <|f1|) (k — 1)lsi-n (%)W E,TrB" ((%)%_SI 40 ((%QW_SH))) L (213)

where

5]
) = EB 40 (2.14)

and the expectation E [TrB,"| is taken over the k x k hollow GOE as defined in Definition
1.5.

Proof. The quantity p(n) expresses the number of ways to set the position of |S| blocks
(which we have established must be 1-blocks or 2-blocks) among a cyclic product of length
2n which arises from E [Tr(A*A)"]. We can estimate p(n) = (‘2S77|) +0O (n/*1=1). The term (fS”I)
counts the number of ways to choose positions of the blocks (ignoring overlap). The error
term O (n's ‘_1) counts the number of ways in which some two blocks will be less than one
term apart, which will occur non-generically as n — oo.

Next, the term ('f; ‘) counts the number of ways to choose which of the |S| blocks are
1-blocks (equivalently, the number of ways to choose which of the |S| blocks are 2-blocks).
As in [B—, Proposition 3.14], the congruence classes modulo & of all the indices is completely
determined by the choices of congruence class for the indices of the r; 1-blocks, and the
following (k — 1)!¥1=™* choices of congruence class for the shared index of each 2-block. The
r1 1-blocks form a cyclic product of length 71, and the number of ways of choosing the
congruence classes modulo & of their indices is equivalent to an expectation of the form

> E[biibiis bin] = E[TrBy] (2.15)

1<i1 ouuyip) <k

for By, as defined prior to Theorem 1.6. This is because the number of valid choices of index
congruence classes corresponds precisely to the number of ways to match terms in a length
r1 cyclic product, with the restriction that consecutive indices cannot be equal (which would
correspond to a deterministic entry in the original checkerboard matrix, and not a 1-block
type entry). Further details in the argument for this reduction are similar to those in the
proof of [B—, Proposition 3.14].

However, our extension to singular values requires a modification to the combinatorics. As
in (2.6) and (2.7), we see that the paired entries in our cyclic product must be matched in
conjugate pairs if they are to contribute to the expectation. This is automatically the case
for every 2-block, since the two terms side by side are already conjugate pairs. However, as
n — oo and |S| remains fixed, this will be true with probability 1/2 for each pair of 1-blocks,
and since there are /2 pairs of 1-blocks, we see that the number of valid configurations

should be scaled by (%)Tlﬂ.
The last piece of the expression in Lemma 2.5 is the term ((%)277_‘5| + 0 <<%2n—\5|—1))>7

which arises from the degree of freedom count 27 — |S| — 1 for the indices once we have fixed
14



their congruence classes, and the big O error term arises from the lower degree of freedom
terms we are ignoring, when only considering configurations of 1-blocks and 2-blocks. U

Proof of Theorem 1.6. We can now compute the 7" moment E [M ] of the EBSSSM. By

a combinatorial lemma [B—, Lemma 3.16] copied as Lemma A.10 in Appendix A.1, we see
that only S-classes of size r contribute: if |S| > r, then the contribution vanishes in the limit
of N — oo by a degree of freedom count, and if |S| < r, the contribution cancels via the
combinatorial lemma. Then the outer sum in Lemma 2.4 collapses to only the j = 0 term.
We can substitute Lemma 2.5 into Lemma 2.4 (after adding a sum over the parameter ry
which counts the number of 1-blocks in our S-class):

i =] = g ()i S (v [ (G58) |

=0 r1=0
1 ! r 1 1
= 2" k—1)"""E, |Tr (| —=B . 2.1
ket Z<)< v ( ) | (216)
To compute the r'" centered moments, we need the first moment:
_  2(k—-1)
lim E [MAN] -5 Z < ) (4n+20k(k—1) = =—. (2.17)

Thus the 7" centered moments are given by

MF0) = lim E { / (x — Mii%?) d/iiiN}
N—o0

B b o

r1=0

Substituting the expression from Equation (2.16) gives

o= () (@) HE (o

r1=0 =0

Next, using the identity () (?) = () (%), we obtain
wto = 5 ()oY o
=3 (e (7)o

AW ,
_ <?> B, [Tx(B)'] (2.19)

which proves Theorem 1.6 via the moment method. O

2.3. Eigenvalues of complex checkerboard matrices: bulk.

15



The standard Hermitization process via the log potential is done as follows (see for ex-
ample [Tao2]). Given a sequence of N x N random matrices Ay with normalized spectral
distribution Ly O0 C, we have the logarithmic potential

N

) = [ logh =2l g ). (2:20)
The key tool is the logarithmic potential continuity theorem.

Proposition 2.6 (Log Potential Continuity Theorem, see [Tao2]). If for almost every z € C,
fn(z) converges almost surely to

f(z) = /log|w — 2| dp(w) (2.21)
C
for some probability measure p, then K a, converges almost surely to p [Tao2].
N

Thus to show that p L4y CODVerges almost surely to the uniform measure ;™ on the
N

unit disk, it suffices to show that the log potential fy(z) converges to the corresponding
log potential of u®™. For the checkerboard ensembles, we instead show that the re-scaled

measure p_i_,, CONVErges to pr, where R = /1 — 1/k.
RV N
We can reduce the study of fy(z) to the spectra of Hermitian matrices by rewriting

1 N
fn(z) = NZlog
j=1

Ai(Aw) _Z‘
VN
= %log

1 o
= —/ logz dvn (), (2.22)
0

2

where dvy ,(z) is the spectral measure of the Hermitian matrix

<¢%AN - 21)* (\/LNAN - z[) (2.23)

for I the N x N identity matrix. This uses the fact that

N N
det Al = JTIMA)] = [ (2.24)
j=1 =1

We will analyze the spectral measure of the Hermitian matrices

(\/%AN _ z[)* (JLNAN - zf) (2.25)

with the method of moments.

We first have to control some convergence issues for our checkerboard ensembles, which
arise from singularities of the logarithm at 0 and co. The singularity at oo is considerably
easier to control than the one at 0, as we will see below. Our result is conditional on the
following assumption on the least singular values being sufficiently far from 0, whose role
will be made explicit in the lemma that follows.

16



Assumption 2.7. We say that a measure vy, satisfies this assumption if

lim sup
T—oo N>1 lo
=70

Remark. In the complex asymmetric case, Tao and Vu showed in 2010 that this assump-
tion is satisfied via a polynomial bound on the least singular value, and a count of the other
small singular values via the Talgrand concentration inequality, see [BC]. This difficulty of
controlling the singularity at 0 has traditionally been the case with the complex asymmetric
ensemble: Girko formulated the logarithmic potential approach in 1984 [Gi], but the circular
law for the asymmetric ensemble remained unsolved until the behavior of the least singular
values was sufficiently controlled by Tao and Vu in 2010 [TaoVu2]. Our complex symmet-
ric checkerboard ensemble presents difficulties for the control of the small singular values -
the symmetric condition (as opposed to entries being iidrv) causes the determinant to be a
quadratic function of the rows (as opposed to linear in the iidrv case), and the checkerboard
structure adds further complications. See for example [CTV] for a discussion of the compli-
cations introduced by imposing a symmetric structure on the matrices. Some recent work
has been done on extending the polynomial bound on the least singular value to complex
symmetric matrices [Ng] and asymmetric structured ensembles [Col, but we are not aware
of any adequate generalization’s of Tao’s and Vu’s small singular value count to non iidrv
matrices. We can, however, control the singular values at oo for our checkerboard ensemble.

g;J]‘IZTlogx dvy,. = 0. (2.26)
<z<1

Lemma 2.8. Fix z. For matrices Ay from either the complex asymmetric ensemble or the
complex symmetric k-checkerboard ensemble, the convergence vy , — v, tmplies the conver-
gence of the corresponding log potentials

/ logz dvy.(z) — / log  du. () (2.27)
0 0

assuming Assumption 2.7.

Proof. The condition we need is uniform integrability. For a Borel function f: E — R and
a sequence {nx(x)}n>1 of probability measures on R*, we say that f is uniformly integrable
with respect to that sequence of measures if

lim sup/ |f| dny = 0. (2.28)
|f1=T

T—o00 N>1

If f satisfies this condition with respect to the sequence {nn(x)}n>1 and is continuous, and
the sequence of measures converges weakly 1y — 7 for some probability measure 7, then

lim [E fdny = /E £ dn. (2.29)

N—o0

For further detail see [BC].

In our case, we will have (for fixed z) E =R", ny = vy, n = v,, and f(z) = logz. Since
log = has singularities at 0 and oo, in order to satisfy uniform integrability we need to control
the behavior of the measures vy, at 0 and co. To emphasize this we split the integral:

1 00
/ logz dvy, = / logz dvn . + / logz dvy . (2.30)
R+ 0 1

17



At infinity, we must treat the asymmetric and complex symmetric checkerboard ensembles
differently. For the complex asymmetric ensemble, we note that the squared singular values
of \/LNAN — zI are O(1) with probability 1, which trivially suffices for uniform integrability

(for sufficiently large T', vn . has 0 mass wherever x > 1 and logz > T'). To control the
checkerboard ensemble at infinity, we use Weyl’s inequalities for singular values to see that
the squared singular values of R\I/NAN — zI have (N — k)/N mass that is O(1), and k/N

mass that is N/(R?k?) + O (N'/2). This also gives uniform integrability:

k
I 1 dv@s™ < lim C—=logT = 0. 2.31
ngojsvuzplfbgi'ﬂ|ogx\ v Jim O log 0 (2.31)

The behavior at the origin (the least singular values) is more difficult to control. However,
using Assumption 2.7, which is known to be satisfied for the complex asymmetric ensemble
[TaoVu2], we have uniform integrability for both the the complex asymmetric ensemble and
our complex symmetric k-checkerboard ensemble. O

asym

Girko showed that, for the complex asymmetric ensemble, the corresponding v con-
verges almost surely to an explicit measure v, that satisfies
1 [ee]
5/ logz dv,(z) = /log lw — 2| dp(w), (2.32)
0 C

which shows the circular law, i.e., LAy — pr¢ almost surely, via log potential continuity
N

and Lemma 2.8.

Thus, to show that the checkerboard ensembles have an eigenvalue bulk that converges to
po, it suffices to show that our measures converge l/ChCCk — v, as well. This is accomplished
as follows.

Theorem 2.9. Let vy and vgs™ be probability measures with
1 o
5/ logz dvy"" (z) /log|w—z| duasym (w)
0
1 oo
and : / log . d*(z) = / loguw — 2| dus*, (w) (239
0
check
R\/_

A, Ore the spectral measures of matrices normalized

obtained as above, where ™3’ A and ps
VN

as labeled for R = \/%, and where the Ayx are drawn from complex asymmetric ensemble

and the compler symmetric k-checkerboard ensemble, respectively. Then as N — oo, vy,"
and VChCCk both converge to a distribution with the same r*™™ moments M given by
r r 27
MD = ch. V2% (2.34)

for some coefficients c , where 0 < c(r) < 4rC, with C, the ' Catalan number.

Since for almost all z, V33" is ]mown to converge as N — oo to a measure v, independent
N,z

of N, this allows us to conclude that VCheCk — v, as well.
18



Proof. For any matrix Ay (here Ay can denote either a complex asymmetric matrix, or a
hollow complex checkerboard matrix) write

1 VAR
By, = | —=ANy — 21 — Ay — 21| .
" (wv : ) (VN ! )
When studying the measures I/JC\}iCZCk, it suffices to consider instead “hollow” checkerboard

matrices Ay where, for i = j (mod k) we set a;; = 0 instead of 1. This is because the
original checkerboard ensemble is a rank k perturbance of this modified ensemble, i.e., we
can write Ay = AR‘,)HOW + P for a finite rank matrix P, which will also amount to a finite
rank perturbance of the matrix By . to the analogous By °". Then by [B-, Theorem 1.3]
the two measures converge to the same distribution almost surely.

Returning to the general setting, note that By . has entries

1 T
bi' - —F—Qijm — 52mz —F—Qmj — 5m'z
= (i) (o —0o)

@iz + 0ij|z|° (2.35)

WE

1 1
- AmiQm; — —F—=0Q; iz — ——
N J \/N J \/N
for ¢;; the Kronecker delta (9,5 = 1 if i = j and is 0 otherwise).

By the eigenvalue trace lemma, the r** moment M ](\;l of vy, is given by the following
cyclic product:

. 1
My, = ¥ > Ebiibii il (2.36)
1<itoip <N
By linearity of expectation we can expand the above expectation in terms of a;; using (2.35)
and re-indexing. This is done via the following notation. Take ¥ : {1,2,..., 7} — {«, 5,7,0}
to represent an arbitrary map of sets, and write A = [¥~1(a)|, B = |U71(B)|, C = [T71(v)],

and D = [U~'(0)]. Then My7™" ™) and M]CV]iCk ") can be expressed by

C=B.C |.|2D
asym (1) (=1)PrzPC 2 (W) ((¥(2) || (¥(r)
My, = Z NA+B/2+1 Z E [51 & e }

v 1<y, ir <N
1<m;<N for je¥~!(a)

check (r) (_1)B+02Bzc |Z‘2D (W(1)) ¢(¥(2)) (¥(r)
My, =D, R2A+E NATB/2+1 > E [51 S }
o 1<iy,oyin <N
1<m;<N for je¥~1(a)
(2.37)
where
Wjijamjiﬁq \I](j) =a
(vt _ ) i v) =75 (2.38)
[ ()=~
6ijij+1 \I](j) = 5
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We also define notation to write down the conjugacy structure of the above expectation.
That is, for fixed U, after we factor out the Kronecker deltas d; ;,,, by collapsing the indices
i; and ;41 together, the cyclic product above will become a product of 24 4 B terms of the
form a;; (entries of Ay) or @;; (conjugates of entries of Ay.) Each a;; or @;; will be referred
to as a term. Then, for 1 < j' <2A+ B (j indices meant to enumerate m; indices as well),
let )T denote those indices j’ such that the j'** term in the product is an entry from Ay,
and let ¢~ denote those indices j' such that the j/*! term in the product is an entry from
An.

Example 2.10. The function {1,2,3,4,5,6,7} kN {B,B,a,d,7,7,a} corresponds to the
CyCliC pI‘OdU.Ct E [(ailiz) (aizig) (amgiaanmizl) (5i4i5) (aieis) (aiﬂ'e) (am7i7a'm7i1)]'
We can now give a different characterization of the above expectations. Below, we use the

phrase step to refer to each traversal of an edge in a walk on a graph. First we specialize to
the complex asymmetric case.

Lemma 2.11. For Ay from the complex asymmetric ensemble and for fired ¥, as N — oo
the expectation

1
Z E[ {\pa))gém(z))_,_&gwr)) , (2.39)

NA+B/2+1
1<i1,nnyin <N
1<m;<N for je¥~!(a)
counts the number of non-isomorphic closed walks on trees with A+ B/2+ 1 nodes such that

e if B/2 is not an integer then this quantity is understood to be zero,

e cach edge is traversed exactly twice (once in each direction),

e cach step is given a sign *, and

e if some edge is traversed first on the ji*™* step and then later on the j,™™ step, then
either ji has positive sign and jh has negative sign, or vice versa.

We refer to such walks as signed closed walks on trees.

Proof. First, note that in such a cyclic product there will be 2A+ B terms and 2A+ B indices,
once we have collapsed the indices corresponding to Kronecker delta terms d;;. Suppose we
set some of the indices to be equal, so that there are ¢ free indices for 1 < ¢ < 2A + B.
If ¢ < A+ B/2+ 1, then the contribution vanishes in the limit N — oo. Else, define a
graph on ¢ vertices by drawing an edge between vertices ¢ and j if there exists a term with
indices ¢ and j (respecting the given identification of vertices/indices). There must be at
least ¢ — 1 edges, and if { > A+ B/2+ 1, then there are more than A + B/2 distinct edges.
By construction, two distinct edges are given by two independent terms. Thus, there are
more than A + B/2 terms in our cyclic product, so that there exists one term independent
from the rest. Note that all terms are drawn from mean 0 distributions, so that if any one
term is independent from the rest, then the entire expectation is immediately zero. So we
conclude that, for a nonzero expectation, our graph will contain A + B/2 + 1 vertices and
A + B/2 edges, and thus is a tree on A+ B/2 + 1 nodes. We show first that every cyclic
product of nonzero expectation corresponds to a walk satisfying the above conditions.
Define a walk on this tree as follows (see Figure 3 for a useful example). Start at the
index corresponding to ¢ := ;. If the first term is a;;, walk from vertex ¢ to vertex j, and
assign this step a + sign. If instead the first term is @;;, also walk from vertex i to vertex j,

but assign this step a — sign. These are the only possibilities. By construction, the cyclic
20



i3 i4:i5

FiGURE 3. The graph associated to the cyclic product from Example 2.10
if we consider the matching i; = iy, is = m3 = ig, and iy = i5 (which is
valid, i.e., gives nonzero expectation). The arrows represent steps of the walk,
numbered in order, with dotted arrows representing steps of negative sign and
solid arrows representing steps of positive sign.

product above will yield a walk on the constructed tree with A+ B/2 edges. Since we started
with 2A+ B edges, each edge is traversed exactly twice. For the third condition, note by the
computations in (2.6) and (2.7) that two dependent terms (i.e., the two times we traverse
the same edge) with a nonzero expected product must be of different conjugacy classes (i.e.,
one is an entry from Ay, and another is an entry from A—N) This translates to the third
condition above: since the sign of each step keeps track of the conjugacy class that gave that
step, this means that the two steps for every edge must have opposite sign.

Now we claim that every walk on a tree with A+ B/2 nodes satisfying the above conditions
corresponds to a cyclic product with nonzero expectation. Given such a walk, with first step
from i to j, set the first term in the cyclic product to be a;; if the step has sign +, and @;; if
the step has sign —. Doing this for all steps will generate a cyclic product where every term
is paired with exactly one other term, in a conjugate pair. To ensure we count only terms of
nonzero expectation, we need to check that all conjugate pairs are of the form E[a;;a;;] = 1
and not E[a,;;aj;] = 0, since we are working with a complex asymmetric ensemble, and a;; is
independent from a;;. However, the second situation cannot happen, since our walk occurs
on a tree, i.e., if each edge is traversed exactly twice, the two steps must occur in opposite
directions, so one step goes from i to j, while the other goes from j to 7. Then, forcing the
steps to have opposite signs implies our paired expectations are of the form Ea;;a;] = 1.
This shows the bijection between our cyclic expectations and walks satisfying the above
conditions.

Then, once we have fixed a valid identification of the starting 2A+ B indices to A+ B/2+1
free indices, each free index has N choices (un-identified indices being assigned the same index
will happen non-generically as N — oo for r fixed, and will vanish in the limit as lower order
terms by degree of freedom counts as above), so each nonzero expectation will contribute
NA+B/2+1 which equals 1 after dividing out by the normalizing factors of N present above,
which suffices for the lemma. O
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Corollary 2.12. For Ay from the complex symmetric k-checkerboard ensemble and for fixed
U, Lemma 2.11 holds for the analogous expectation:

1 (W) (T2)
R2A+B NA+B/2+1 Z E [51 2 fﬁ ( ))] . (2.40)

1<i1,00yin <N
1<m;<N for je¥~1(a)

Proof. The interpretation of cyclic products as walks as above for a;; entries of checkerboard

matrices is similarly valid up to the last two paragraphs of the proof of Lemma 2.11.

It is clear that every identification of indices that gives a nonzero expectation for the
asymmetric ensemble also gives a nonzero expectation for the symmetric ensemble. We
should check that we can find no additional matchings from the symmetric condition. This
is something we have already seen: above, we argued given a walk satisfying the above
conditions and the associated cyclic product it generates, none of the pairings in the cyclic
product are of the form E[a;;a;;], because of the restriction that steps on the same edge are
of opposite sign.

However, we have an additional restriction that when choosing our indices, if there exists
an edge between i and j, then ¢ Z j (mod k). This is because if i = j (mod k) then
a;; = 0, and the expectation is zero. The modification is clear from the interpretation of
walks on a tree: since trees are acyclic, once we have fixed the congruence class of one
vertex, (recalling ¢ = A + B/2 + 1 there will be (k — 1)*~! ways to choose congruence
classes of the other vertices such that adjacent vertices on the tree do not share the same
congruence class, so there are k(k — 1)*~! ways to choose the congruence classes. After
fixing the congruence classes there are (N/k)¢ ways to choose indices for each vertex, so we

see there are N* (%)Z_l = NAHBRHIR2A+B wavs to choose the vertices that will give a
nonzero expectation. Dividing by the normalizing factors of N and R in front then give the

result. O

This shows that for all z € C, limy_,oc My%" ™ —Jimy_, o Mg}fk ™ A few observations
reduce the moments to the form claimed in Theorem 2.9. Since above we saw that every term
must be paired with exactly one other conjugate term to produce a nonzero expectation, we
conclude B = C, so our moments must take the form claimed in Theorem 2.9.

Remark 2.13. Note that the proof of Corollary 2.12 also goes through for the complex asym-
metric k-checkerboard ensemble. Because of the restriction of matching terms in conjugate
pairs, the symmetry condition is immaterial for this specific bulk calculation as is discussed
above.

Corollary 2.14. We have 0 < cg»r) < 47C, with C, the r'™ Catalan number.

Proof. Note that there are 4" choices of W. Then, since A+ B/2+1 < r+1 and the number
of non-isomorphic closed walks on trees with r + 1 nodes such that each edge is traversed
exactly twice is given by C, (equivalently the number of ordered trees on r 4+ 1 nodes), we
obtain the claimed upper bound via Lemma 2.11 and Equation (2.37). Note that this upper
bound is far from tight, as we have not removed any walks corresponding to zero expectation,
from the assignment of signs to steps. O

Example 2.15. The coefficients cg»r) can be computed by hand. For example, there is one

choice of ¥ such that B+ C + 2D = 0 (i.e., A = r), which corresponds to signed closed
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walks on trees with r nodes. Then, as in the proof of Theorem 1.3, every closed walk on a
tree where every even step has sign 4+ and every odd step has sign — always satisfies the
condition that the two steps on the same edge are of opposite sign, i.e., the number of valid
walks is counted by the Catalan number C,., so we conclude c(()r) = (.. There is also only
one choice of ¥ such that B+ C +2D = 2r (i.e., D = r), which corresponds to signed closed

walks on trees with one node, of which there is one, so = 1.

Example 2.16. The first few moments are
MY = 14|z
MP = 2432 + |2
M® = 54152 +62* +2°. (2.41)

z

In particular, Corollary 2.14 implies that Carleman’s condition is satisfied for our moments
at each fixed z, since for fixed z the moments are bounded by some scaling of the Catalan
numbers (which satisfy Carleman’s condition as in Wigner’s semicircle law). Thus the mo-
ments uniquely characterize the distribution for every fixed z, i.e., uﬁlfz‘:k — v, and we have

proved Theorem 2.9. O

Proof of Theorem 1.7. Applying Proposition 2.6 and Lemma 2.8 to Theorem 2.9 suffices for
the proof of Theorem 1.7. 0

3. GENERALIZED CHECKERBOARD ENSEMBLES

3.1. Analogs of bulk and blip results for generalized checkerboard ensembles.

The ensembles that follow in this subsection will have random variables iidrv (up to a
symmetry restriction). Many of the main results above hold for generalized checkerboard
ensembles as well.

Proof of Corollary 1.11. As in the proof of Theorem 1.3 we can reduce to the case where
the deterministic entries are all zero by a perturbation argument, apply the eigenvalue trace
lemma up to Equation (2.5), and also interpret the cyclic products as closed walks on trees
with 7+ 1 nodes. The number of closed walks traversing each edge twice on trees with r +1
nodes is again given by the number of ordered trees on r + 1 nodes, which is C,.. As before,
it is not true that all N"** 4 O (N") choices of indices will yield a nonzero expectation in the
cyclic product, since if ¢ and j are adjacent indices then we cannot have a;; = 0. Before, this
reduced to the condition ¢ # j (mod k). In the m-regular k-checkerboard case, however,
the correct condition is that, having fixed any congruence class modulo k of some index 1,
there are k — m congruence classes for the index j such that a;; # 0. This is because m is
a constant dependent only on the entire ensemble. Thus we see that (R/2)* N™! + O (N")
choices of indices will yield a nonzero expectation in the cyclic product. Indeed, there are N
choices for the root of the tree, N(1 — m/k) choices for each of their children, N(1 — m/k)
choices for each of the children in the next level down, etc., which shows that all moments

of the squared singular value bulk are M, = (%)% C, as claimed. ]

Example 3.1. In general, a non-regular generalized k-checkerboard ensemble need not have

singular values following a quarter-circular bulk. Consider the generalized 2-checkerboard
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ensemble tiled with 2 x 2 matrices of the form

() (3.1)

where, as before, each * represents an iidrv complex random variable with mean 0 variance
1/2 that respects the symmetric structure . As in the proof of Theorem 1.3 the bulk of this
ensemble will converge to the bulk of the ensemble with the entries 1 replaced with 0. Brute
force computing the small moments (counting by hand the appropriate walks on trees as is
done to compute the quarter-circular bulk above) gives My = 3/4, My = 10/8, M3 = 42/16,
and M, = 198/32. In particular the bulk cannot be quarter-circular of radius R, which
would correspond to moments M, = (R/2)*C,, e.g. My = (1/2)(R?/2), My = (2/4)(R"/4),
Ms =5/8(R5/8), and M, = (14/16)(R8/16).2

Proof of Corollary 1.12. The discussion of the log potential in the proof of Theorem 1.7 is
done in the same way for our generalized checkerboard ensemble up to Lemma 2.8. The proof
of that lemma goes through as well, assuming the appropriate analogy to Assumption 2.7
(replace instances of the checkerboard ensemble with the generalized checkerboard ensemble),
when we note that Weyl’s inequality for singular values of \/—%AN — 21 for fixed z gives at

least N —k squared singular values of size O (1), and at most k squared singular values of size
O (N), in which case the argument in Lemma 2.8 for the behavior at oo can be applied as
well. The qualifiers “at least” and “at most” come from the fact that the perturbation from
the hollow ensemble (deterministic 1’s replaced with 0’s) for a generalized k-checkerboard is
rank at most &, possibly less.

Then, the expansions of Theorem 2.9 in the checkerboard context can also be done for the
generalized checkerboard ensembles, with the necessary modifications arising in an analogous
proof of Corollary 2.12. As discussed in that proof, the restriction of symmetry on the
ensemble does not affect the combinatorics that arise when counting signed closed walks on
trees. Again, the modification comes when counting how many ways there are to choose
indices, given a walk, since adjacent indices ¢, j must have a;; # 0 for the expectation to be
nonzero as discussed in the proof of Corollary 2.12. Here, there are N ways to choose the
index of the root, R2N ways to choose the indices of the root’s children, RY ways to choose
the indices of those children’s children, etc. which shows as in Corollary 2.12 that the bulk
converges to a uniform disc centered at the origin scaled by R. U

3.2. Eigenvalues of complex checkerboard matrices: blip.

The main steps in the proof of Theorem 1.15 are to first restrict our attention to regions
Q. to avoid the singularity at 0, show that the distribution must be discrete and finitely
supported, show that discrete distributions are characterized by (holomorphic) moments,
compute moments via the eigenvalue trace lemma, and to control the error arising from
restricting to €.

Lemma 3.2. For all € > 0, assume almost sure convergence to some measure fiy — [i as
measures on 2e. With any fized € > 0, the measure fi on 2 must be a discrete measure with
finite support.

2We note that the numerators (starting with the 0 — th moment) 2,3,10,42,198 are the first five terms of
the OEIS sequence A007226, which relates to counting certain ternary trees.
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Proof. Consider 0 < ¢ < € and write fiy and iy for the restrictions to 2. and Q. respectively.
Write also fiy — i and iy — [’ via our convergence assumption. Note i’ restricts to i on
Q..

Write p(z) for the (degree k) characteristic polynomial of B, and define f(z) := zp(z),
viewed as a function f: C — C. Note f has fixed degree as N — oc.

Consider the pushforward measures f.fiy — fofi' on f(Qe). Note that f.fiy is also the
spectral distribution of f (% Ay) restricted to f(€) with total (restricted) measure scaled
by N/k, and in particular has the same support. We can control the support of the spectral
distribution of f (%AN) via its largest singular value, which majorizes all its eigenvalues.
If ¢ is the constant term of p(z), the Cayley-Hamilton theorem shows that p (%P) —cisa
block matrix consisting of repeating k x k identity blocks scaled by —kc/N. This then shows
f (%P) = 0. Note f (%AN) =f (%P) + 0 (%M) =0 (%M), where the big O term is a
sum of mixed products of %M and %P at least linear in %M . The number of terms in this
sum is fixed as N — oo because f has fixed degree. The largest singular value of %P is
O(1) and the largest singular value of £ is almost surely O(N~/*™) for all € > 0 via a
standard method of moments argument, see the proof of Proposition 2.1 and Lemma B.3 of
[B-] (recall that M has all deterministic entries set to zero).?

Thus the largest singular value of f (£Ay) is almost surely O (N=Y/2T) for all € > 0.
In particular, as N — oo the spectral measure of f (%AN) and thus f./i}y almost surely
has support contained in any fixed radius ball at the origin. Considering the neighborhood
f(Be) of the origin, we find that f./iy is almost surely supported on f(Be) as N — oc.
Fixing any 6 > 0, we can then select ¢ > 0 small such that f,f/y vanishing outside f(B.)
implies that, on Q, ity vanishes outside balls of radius J centered at the zeroes of f.

Since fi’y restricts to fiy on €2, as long as € < ¢, sending § — 0 and then N — oo shows
that fi, restricted to € is finitely supported at the (nonzero) zeroes of f. O

We would like to analyze the moments of fiy — fi. However, the formula from the
eigenvalue trace lemma applies to moments of iy on all of C rather than restricted €2.. We
first control this error.

Lemma 3.3. As N — oo, the measure fiy restricted to B, contributes at most (1/k)(2k+2)e
to the r'" moments, for r > 6.

Proof. Applying Weyl’s inequalities as in Proposition 2.1 shows that, almost surely, the
k largest singular values of Ay are O(N) and the remaining N — k singular values are
O(N'/2%€). Recall that the product of the m largest singular values majorizes the product of
m largest eigenvalues. The m product of the m largest eigenvalues of Ay thus have growth
) (Nk+(m_k)3/5) as N — oo. Thus the total measure of fiy outside of By-1/5 is bounded
above by (1/k)(2k+ 1) as N — oo since m(4/5) > k+ (m — k)(3/5) when m > 2k + 1. The
measure fiy restricted to the region outside of By -1/5 but within B, thus contributes at most
(2k + 1)e to any positive moments, while the measure fiy restricted to By-1/5 contributes
at most N - N5 = O(N~'%) to r*® moments for » > 6 as N — oo, which we bound by
(1/k)e. Adding these two contribution gives the claimed bound. O

3This bound alternately follows from the Gershgorin Circle Theorem applied to M — central limit theorem
on the at most N random variables in each row gives Gershgorin discs of radii O(N'/?) with centers at
distance O(1) from the origin.
4Note C\ f(Q) C f(Be) by surjectivity of f.
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Remark 3.4. The part of the proof of Lemma 3.3 bounding the total measure outside By-1/s
also shows that [i viewed as a measure on ). has finite total measure, for all € > 0.

We next show how the (holomorphic) moments characterize discrete distributions.

Lemma 3.5. Any finite discrete measure p on C with finite support in C\ {0} is uniquely
determined by its v integer moments for r > «, for any fized integer o > 0.

Proof. Given distinct nonzero complex numbers {z;}7_; with nonzero coefficients {\;}7_;,
and distinct nonzero complex numbers and {z; }7, with nonzero coefficients {\} }7; such

that
Z)\jz;f = Z)\;z;j (3.2)
j=1 k=1

for all » > N, we wish to show that n = m and, for some appropriate permutation of the
indices, A; = A} for j =k, and z; = z; for j = k.
We can associate to any complex number z the sequence z = (2%, 2°T! 292 ) € CN.
Then Equation (3.2) becomes
m

iszj =) Nz (3.3)
j=1

k=1
Under the left-shift linear operator in the sequence space CY, note that z is a nonzero eigen-
vector with eigenvalue z. In particular, sequences associated with distinct complex numbers
have distinct eigenvalues and are thus linearly independent. Applying this to Equation (3.3)
gives the claim. O

Lemma 3.6. The expected r'™™ moments E []\;[](\;)] converge to the r'" moment of the spectral

measure of the deterministic k X k matrix B as N — oo.

Proof. Write M ](\;) for the ™™ moment of fiy. By the eigenvalue trace lemma, the expected
r*® moment is given by
~ (T‘) o N 1 kJ‘
EY] = 257 D Eltwn-aial. (3.4)

1<y, in<N

We analyze this with a standard degree of freedom count. Fix a cyclic product E [a;,;, - - - @;,4,]-
Consider some a;; appearing in this cyclic product that corresponds to a random variable,
i.e. not a deterministic entry of the matrix. If a;; is independent from the the other entries,
the contributed expectation is zero since the random variables in the matrix ensemble have
mean 0. Else, a;; matches another term in the cyclic product, which loses at least one degree

of freedom for the indices. In particular, such a contribution to E [M ](\;)] must be O(1/N)
which vanishes as N — oo.

Thus, as N — oo, the quantity E [M ](VT)} can be computed only considering cyclic products
with all entries deterministic. Reducing modulo & (and recalling that the deterministic entries
of k-checkerboard matrices repeat modulo k)

0 1
E [M](V)] = % Z E (@i, - - Qi (3.5)
1<it,0in <k
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where the expectations E [a;,;, - - - a;,4,] are understood to be taken over deterministic entries
only. This is precisely the ™ moment of the spectral measure of the matrix B as claimed. [

Proof of Theorem 1.15. Fix e > 0 and consider 0 < € < e. By Lemma 3.3 the 7" moments of
i on Qg differ from the 7" moments of the spectral measure of B by at most (1/k)(2k +2)¢,
when r > 6. Since i on €2, restricts to ji on €2 when € < €, and i is supported on the zeroes
of f, the r*" moments of i on Q. are equal to the r® moments of fi on €2 whenever € is
smaller than the smallest nonzero eigenvalue of B (i.e. smallest nonzero zero of f). Sending
¢ — 0 shows that the 7" moments of & on €, must be equal to the r*® moments of the
spectral measure of B restricted to (). when r > 6. By Lemma 3.2, ft on (). is a discrete
measure with finite support at the nonzero zeroes of f. By Remark 3.4 the total measure is
finite. Lemma 3.5 shows that these two measures must be equal as claimed. O

Proof of Corollary 1.17. By Theorem 1.15, the k' largest eigenvalues of Ay are all of size
O(N). Applying Weyl’s inequalities as in Proposition 2.1 shows that, almost surely, the
k' largest singular values of Ay are O(N) and the remaining N — £’ singular values are
O(N'/2%9). The product of the m largest singular values majorize the product of the m

largest eigenvalues, which suffices for the claim with a similar argument as in the proof of
Lemma 3.3. U

3.3. Conjectures.

Although in Section 3 we only analyzed ensembles resulting in “discrete-type” blip dis-
tributions, it is natural to ask whether we can naturally construct other ensembles where
the resulting blip distribution will not be discrete. For example, if we modify the complex
k-checkerboard ensemble and replace the deterministic 1’s with complex numbers on the unit
circle, drawn with uniform probability, our result trivially implies that the blip will consist
of a ring of eigenvalues on the unit circle, in the same sense of Theorem 1.15; see Figure 1
(right).

One can attempt to construct non-discrete blip distributions in other ways, for example
with an analogy of a generalized complex k-checkerboard ensemble with B matrix having
eigenvalues at the k-th roots of unity, except where k = /N is growing as N — oo over the
squares. Heuristically, one expects the blip distribution to be a ring of vanishing thickness,
in some sense, but one would need different techniques than those used to describe the
discrete-type blip distributions characterized by Theorem 1.15.

As a final note, the bulk also seems to deviate from standard circular law behavior in more
general ensembles when, for example the entries are no longer iidrv, and different entries are
assigned different means or variances. Instead we observe some sharpened bulk distributions,
that are distinctly non-uniform.

APPENDIX A.

A.1. Notation and terminology for cyclic products. Throughout we have used some
convenient terminology borrowed from [B-| to analyze the cyclic products. The definitions
are copied and adapted below.
Recall that
E [Tl“Mn] = Z E[mi1i2mi2i3 e minh]' (Al)
1§i17~~~7i7L§N
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FIGURE 5. Three different

FIGURE 4. Sharp bulk variance values for the ran-
distribution, two different dom entries. There appear
variance vglues for the to be three bulks “stacked”
random entries. on top of each other.

We refer to terms E[my,,miyi, - - - M4, ] as cyclic products and m’s as entries of cyclic
products. Occasionally, some of our cyclic products appear in altered form, with certain
terms m; ;. ., replaced instead with m;  ;, or perhaps with complex conjugates m;;  or
mi,_i;, but we extend this terminology to those scenarios as well. In many of our moment
arguments, we are interested in computing these cyclic products, which reduces to a combi-
natorics problem of understanding the contributions of different cyclic products. We develop
the following vocabulary to classify types of cyclic products according to the aspects of their

structure that determine overall contributions.

Definition A.1. A term refers to a single component m;

of the cyclic product.
Definition A.2. A block is a set of adjacent a’s surrounded by w’s in a cyclic product,
where the last entry of a cyclic product is considered to be adjacent to the first. We refer to

a block of length ¢ as an /-block or sometimes a block of size £.

Definition A.3. A configuration is the set of all cyclic products for which it is specified
(a) how many blocks there are, and of what lengths, and (b) in what order these blocks
appear. However, it is not specified how many w’s there are between each block.

Example A.4. The set of all cyclic products of the form w - - - waw - - - waaw - - - waw - - - w,
where each - - - represents a string of w’s and the indices are not yet specified, is a configu-
ration.

Definition A.5. Let S be a multiset of natural numbers. An S-class, or class when S is
clear from context, is the set of all configurations for which there exists a unique s-block for
every s € S counting multiplicity. In other words, two configurations in the same class must
have the same blocks but they may be ordered differently and have different numbers of w’s
between them.

Definition A.6. Given a configuration, a matching is an equivalence relation ~ on the a’s
in the cyclic product which constrains the ways of indexing (see Definition A.9) the a’s as
follows: an indexing of a’s conforms to a matching ~ if, for any two a’s a;,;,,, and a;, ;,,,,
we have {ig, g1} = {4,441} if and only if a;,,, ~ as,i,,,. We further constrain that each
a is matched with at least one other by any matching ~.
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Remark A.7. Noting that the a;; are drawn from a mean-0 distribution, any matching with
an unmatched a would not contribute in expectation, hence it suffices to only consider those
with the a’s matched at least in pairs.
Example A.8. Given a configuration a;, i, Wiy, QigiyWiyis GisigWigiz GinisWigi, (the indices are
not yet specified because this is a configuration), if a;,;, ~ a;;, we must have either i; = i
and ’ig = ’i6 or ’il = ’i6 and ig = i5.
Definition A.9. Given a configuration, matching, and length of the cyclic product, then
an indexing is a choice of

(1) the (positive) number of w’s between each pair of adjacent blocks (in the cyclic sense),

and
(2) the integer indices of each a and w in the cyclic product.

Lemma A.10. (Lemma 8.16 from [B-].) For any 0 < p <m
(—1) (W)jp = 0. (A-2)

Furthermore

m 'm
(—1)m_3< ,)jm = ml (A.3)

j=0 J

A.2. Joint density for singular values of complex symmetric Gaussian ensemble.

We give a proof of the joint density of singular values for complex symmetric matrices found

in [AZ, Fol.

Theorem A.11 (Joint Density of Singular Values for Complex Symmetric Matrices). Sup-

pose M is a random complex symmetric N x N matriz (not necessarily Hermitian), with

entries in the upper triangle half and the diagonal iidrv mean 0 variance 1 complexr Gaussian

random variables. The joint density of the singular values of M is given by

N N
pN(T1,...,TN) = cN }A(ﬁa--wﬁv)‘H|%|H€_|le2/2- (A.4)
j=1 j=1

We adapt a proof of Ginibre’s formula for the eigenvalue joint density of complex asym-
metric matrices as presented by Stephen Ge [Ge|, who cites Mehta [Me, DM].

Proof of Theorem A.11. Let |M|?> = Tr(M*M) denote the Frobenius (Hilbert-Schmidt)
norm. Then

dP = Cye M2 aM = Oy [Je ™2 dm (A.5)
Y}
gives M’s density on the space of all n x n complex symmetric matrices, where dM is
Lebesgue measure on that space and C,, is some constant.
We derive the desired formula by computing P(|M — D’| < €) in two ways, for ¢ > 0
arbitrarily small and D’ a fixed diagonal matrix with non-negative real entries. The above
density gives

P(M —D|<e) = / dP. (A.6)
|M—D'|<e
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We can treat this integral as the volume of a thin rectangle centered at D’, since € is very
small. Since we take M from a distribution of complex symmetric matrices, and such matrices
have N2 + N degrees of freedom, this volume is bounded above by C,e 1P 7*/2eN*+N  Thys
we have

P(IM — D'| <€) = (C + o(1))e IPTFR2eN+N, (A7)

We now compute this probability a second way by using the Takagi factorization of a
complex symmetric matrix M:

M = UDUT, (A.8)

where U is unitary and D is a diagonal matrix with nonnegative real entries. Since unitary
matrices U can be written as U = exp(S) for some S skew Hermitian, U has N? degrees
of freedom, while D has N. Thus, the left and the right-hand sides of (A.8) have the same
number of degrees of freedom.

Define a density 1(D)dD on the space of diagonal matrices with nonnegative real entries,
so that when U is taken from the unitary group uniformly and D with density ¥(D), M =
UDUT is a Gaussian random matrix. We eventually use both probability expressions to
compute (D), which will in turn allow us to determine the joint density formula.

Now, let M be such that |M — D'| < e. Then, following the lead of Tao [Taol], we
write U = I + O(e) and D = D' + ¢E, where E is real diagonal. After counting degrees of
freedom, S has density C'(1 + 0(1))eN*dS, where dS is the Lebesgue measure on the space
of skew-Hermitian matrices. Similarly, £ has density C”(1 + o(1))e"y(D’)dE. We have

M = UDUT
= exp(eS)(D' + eF)exp(eS)T
= exp(eS)(D' + eE)exp(eST)
= exp(e9) (D' + eE)exp(—eS). (A.9)

Thus we can write

P(IM —-D'| < ¢ = C”’// (14 0(1))eN* dSeNy(D') dE
lexp(eS)(D’+€eE)exp(—eS)—D’|<e

_ 7NN (1 4 o(1))b(D) / / . dSdE.
lexp(eS)(D’+eE)exp(—eS)—D’|<e

(A.10)
Taylor-expanding the exponential to first order gives
lexp(eS)(D' + eE)exp(—eS) — D'| = |(D' +eSD' +¢eE —eD'S + O(?)) — D/|
= |e(E+SD' — D'S + O(e))|. (A.11)
which from above we want to be at most e. As |B|?> = Tr(B*B), this implies that
|E+SD' —D'S| < 1+ 0(e). (A.12)
Consider the change of variables
A= E+SD -D'S. (A.13)
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Entry-by-entry, we have

Here we have used the fact that D’ is diagonal. Also, the skew-symmetry of S and the
diagonality of £/ and D" imply A, is symmetric.

Next, we write the real and imaginary parts of this change of coordinates separately. Let
04, denote the real part of Aj;, and 74, denote the imaginary part of Aj.. Recalling that
D is real diagonal, we have

Oay = Opy +0s,(0p, —0p)
Tay = Tsu(opy, +op). (A.15)
We can interpret this matrix change of variables A — (S, FE) as a transformation from
R+ to R™**" ie., from (for j < k) the 04, and 74, to n® 4 n-tuples with entries og,

(for j < k), 75, (for j < k), and op,,. This transformation is a direct sum of three diagonal
transformations:

OAy = Usjk(UD;m - UDg.j) for j # k
045, = OBy
TAjk = Tsjk (O-D;ck + O'/D;]) (A16)

This is a diagonal transformation, i.e., its Jacobian is the product of each of the above scaling
factors. The Jacobian for the change of coordinates (S, E) — A is

IT | D’2|H|2D = |AD?,...,D2)|” IH\zp 1L (A.17)

1<j<k<n j=1
Returning to (A.10), we have

P(IM - D'|<e) = C"VHN(1 +o(1))1p(D’)// dSdE
lexp(eS) (D’ +¢E)exp(—eS)—D’'|<e

= "N HN(1 4 o(1)0(D') / dA. (A.18)

|AI<1+0(e)
Note that as € — 0, the integral in A goes to a constant. Absorbing this into the constant
C"" and comparing the above expression for P(|M — D'| < ¢) with (A.7) gives

N
(D) = C"|A(D3,, ..., D) (H |2D;j‘> 1D/
j=1

N N
= C"|ADY,.... D2 ) [ 12D} [T e " (A.19)

As the diagonal entries D;; are precisely the singular values of M, we find
pu(@1, . an) = C" A 23| H 22, |He lil*/2, (A.20)

which proves the theorem after absorbing 2V into the constant. O
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Theorem A.11 allows us to compute the distribution of the least singular value for the
Gaussian complex symmetric ensemble. As before, we list the available distribution for the

least singular values of the complex asymmetric Gaussian ensemble as computed by Edelman
[Ed]:

Complex asymmetric Gaussian : p(oy) = Noye Nox/? (A.21)

Corollary A.12. The probability density function of the least singular value oy follows the
Rayleigh distribution

ploy) = Noye Nov/2 (A.22)

Note that, while the joint densities are distinct, the least singular value of the complex
asymmetric and complex symmetric Gaussian matrices share the same distribution.

Proof of Corollary A.12. Order the singular values 0 < oy < --- < 7. Using Theorem A.11,
we can integrate out the other parameters o4, ...,oy_1 from the joint density to obtain the
density function of the least singular value:

p(UN) = / pN(017027”-70N) doy---don_1
on<on_1<-<o1

N N

_ 2 2 —a2/2

= C’N/ H (Uk—aj)HajHe i’ doy - -don_1
onN<on-1<--<01 1<k<j<N 1 1

j=1 j=1
—No2,/2 2 2 2 2
— Cowe 402 M G- T 2-o})

ONSON-15S01 | i< N1 1<k<N-1

n n
(622

. Haj e~ TN oy - doy . (A.23)
Jj=2  j=2

As is done in [Ed], make the change of variables ; = 07 — 03, Thus, with dz; = 2do;, we
find

N-1 -1

plon) = 21_NCN0'N6_N”’2V/2/ T Gr—=) []a [[ e dor---dano.
0STN-1SS21 1< j<N-1 j=1  j=1
(A.24)
Since the integral is independent of oy, it is constant, which we denote by C'y:
2
plon) = Choye Non/2, (A.25)
As p is a probability distribution, me p(on) doy = 1 and thus C, = N, completing the
proof. O
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