
ar
X

iv
:1

70
6.

08
42

4v
4

 [m
at

h.
N

T]
 1

8
D

ec
 2

01
8

ON ALGORITHMS TO CALCULATE INTEGER COMPLEXITY

KATHERINE CORDWELL, ALYSSA EPSTEIN, ANAND HEMMADY, STEVEN J. MILLER, EYVINDUR PALSSON,

AADITYA SHARMA, STEFAN STEINERBERGER, AND YEN NHI TRUONG VU

ABSTRACT. We consider a problem first proposed by Mahler and Popken in 1953 and later developed by

Coppersmith, Erdős, Guy, Isbell, Selfridge, and others. Let f(n) be the complexity of n ∈ Z+, where f(n)
is defined as the least number of 1’s needed to represent n in conjunction with an arbitrary number of +’s,

∗’s, and parentheses. Several algorithms have been developed to calculate the complexity of all integers up

to n. Currently, the fastest known algorithm runs in time O(n1.230175) and was given by J. Arias de Reyna

and J. van de Lune in 2014. This algorithm makes use of a recursive definition given by Guy and iterates

through products, f(d) + f
(

n

d

)

, for d | n, and sums, f(a) + f(n − a), for a up to some function of n.

The rate-limiting factor is iterating through the sums. We discuss potential improvements to this algorithm

via a method that provides a strong uniform bound on the number of summands that must be calculated for

almost all n. We also develop code to run J. Arias de Reyna and J. van de Lune’s analysis in higher bases

and thus reduce their runtime of O(n1.230175) to O(n1.222911236). All of our code can be found online at:

https://github.com/kcordwel/Integer-Complexity.

1. INTRODUCTION

1.1. Introduction. In this paper, log denotes ln, and logb denotes the logarithm in base b. Given n ∈ N,

the complexity of n, which we denote f(n), is defined as the least number of 1’s needed to represent n
using an arbitrary number of additions, multiplications, and parentheses. For example, because 6 may be

represented as (1 + 1)(1 + 1 + 1), f(6) ≤ 5. Calculating f(n) for arbitrary n is a problem that was posed

in 1953 by Mahler and Popken [MP]. Guy [G] drew attention to this problem in 1986 when he discussed

it and several other simply stated problems in an Am. Math. Monthly article. The following recursive

expression for integer complexity highlights the interplay of additive and multiplicative structures:

f(n) = min
d | n

2≤d≤√
n

1≤a≤n/2

{

f(d) + f
(n

d

)

, f(a) + f(n− a)
}

. (1.1)

Some unconditional bounds on f(n) are known. In particular, [G] attributes a lower bound of f(n) ≥
3 log3(n) to Selfridge. Also, an upper bound of f(n) ≤ 3 log2(n) is attributed to Coppersmith. Extensive

numerical investigation (see [IBCOOP]) suggests that f(n) ∼ 3.3 log3(n) for n large but it is not even

known whether f(n) ≥ (3 + ε0) log3 n for some ε0 > 0. As a step towards understanding these problems

Altman and Zelinsky [AZ] introduced the discrepancy δ(n) = f(n) − 3 log3(n) and provided a way to

classify those numbers with a small discrepancy. This classification was taken further by Altman [A1, A2]

where he obtained a finite set of polynomials that represent precisely the numbers with small defects. As a

consequence Altman [A3] was able to calculate the integer complexity of certain classes of numbers. Any

progress on these difficult questions likely requires a substantial new idea; the main difficulty, the interplay

between additive and multiplicative structures, is at the core of a variety of different open problems, which

we believe adds to its allure.

1.2. Algorithms. Much of the progress on this problem has been algorithmic. Using the above recursive

definition, it is possible to write algorithms to calculate f(n) for large values of n where the rate-limiting

step of the algorithm is iterating through the summands, f(a) + f(n − a), for many values of a. In par-

ticular, the brute-force algorithm that iterates over all a′s such that 1 ≤ a ≤ n/2 runs in time O(n2), but

there are ways to bound the number of summands that must be checked so as to significantly decrease the

Date: December 19, 2018.

2010 Mathematics Subject Classification. 60B10, 11B39, 11B05 (primary) 65Q30 (secondary).

Key words and phrases. Integer Complexity.

1

http://arxiv.org/abs/1706.08424v4

2

computational complexity. Srinivar and Shankar [SS] used the unconditional upper and lower bounds on

f(n) to bound the number of summands, obtaining an algorithm that runs in time O(nlog2(3)) < O(n1.59).

The fastest known algorithm runs in time O(n1.230175) and is due to J. Arias de Reyna and J. van de

Lune [AV]. Also, the experimental data in [IBCOOP] is based on an algorithm that calculates f(n) for n
up to n = 1012. They derive many interesting results from their data, but they do not analyze the runtime

of their algorithm. We obtain both an overall improvement on the runtime of the J. Arias de Reyna and

J. van de Lune algorithm and a potential internal improvement to the workings of the algorithm. The

overall improvement is derived from running the analysis of [AV] in much higher bases, while the internal

improvement gives a strong uniform bound on the number of summands f(a) + f(n − a) that must be

calculated for almost all n. We detail the overall improvement in Section 2. We introduce the potential

internal improvement in Section 3 and test it in Section 4. We end the paper by proposing a new approach

for improving the current unconditional upper bound on f(n).

2. ALGORITHMIC ASPECTS

2.1. The de Reyna & van de Lune algorithm. J. Arias de Reyna and J. van de Lune [AV] developed

code in Python to perform the analysis of their algorithm, which they have generously shared with us.

Additionally, Fuller has published open-source code [F] written in C to calculate integer complexities.

Using these, we have developed code1 in C that is comparable to J. Arias de Reyna and J. van de Lune’s

Python code. The heart of the code is the calc_count method, which calculates D(b, r) for varying values

of b and r, where D(b, r) is an upper bound on how much multiplying by b and adding r increases the

complexity of any given number. More precisely, we define D(b, r) to be the smallest integer such that

f(r + bn) ≤ f(n) +D(b, r) (2.1)

for all n. As an example, notice that D(b, 0) ≤ f(b), because we can always represent b with f(b) 1’s and

n with f(n) 1’s and then multiply these two representations to achieve a representation of bn—and thus

f(bn) ≤ f(n) + f(b). Similarly, D(1, r) ≤ f(r) because we can represent r with f(r) 1’s and n with

f(n) 1’s, and then add these two representations to achieve a representation of n+ r that uses f(n)+ f(r)
1’s.

These integers D(b, r) are useful for bounding f(n) in the following way: [AV] defined Cavg as the

infimum of all C such that f(n) ≤ C log(n) for a set of natural numbers of density 1 and showed that

Cavg ≤
1

b log(b)

b−1
∑

r=0

D(b, r). (2.2)

In this calculation, we refer to b as the base in which we are working. Our code closely follows the logic

of J. Arias de Reyna and J. van de Lune’s program, making the following slight optimization.

Theorem 2.1. Take b = 2i3j where b < 1012 and i+j > 0. If r | b for 2 ≤ r < b, then D(b, r) = f(b)+1.

Proof. From the equality r + bn = r(1 + n · b
r), notice that:

f(bn+ r) ≤ 1 + f(r) + f

(

n ·
b

r

)

≤ 1 + f(r) + f(n) + f(
b

r
) (2.3)

From [IBCOOP], we know that f(2v3w) = 2v + 3w for 2v3w < 1012 and v + w > 0. We know that

b = 2i3j , and since r divides b, r is of the form 2x3y for x ≤ i, y ≤ j. This means that b/r is of the form

2i−x3j−y . Since r ≥ 2, we have x+ y > 0 and since r < b, we have (i− x) + (j − y) > 0.

Then applying the result of [IBCOOP] to both r and b
r , we obtain

f(bn+ r) ≤ 1 + f(r) + f(n) + f

(

b

r

)

= 1 + 2x+ 3y + f(n) + 2(i− x) + 3(i− y)

= 1 + 2i+ 3j + f(n)

= 1 + f(b) + f(n).

(2.4)

1See the “calculate_complexities.c” file at https://github.com/kcordwel/Integer-Complexity

3

This shows that D(b, r) ≤ f(b) + 1.

Now we wish to argue that D(b, r) ≥ f(b) + 1. While this makes sense intuitively, in order to be

rigorous we do a computer aided proof2. Our computer calculations work as follows: First, we calculate

the complexities of b+r for all b, r as in the theorem. For the vast majority of the b, r, f(b+r) = f(b)+1,

meaning that D(b, r) ≥ f(b) + 1 from the definition of D(b, r). However, there are 372 pairs of b, r such

that f(b + r) 6= f(b) + 1. For these pairs, we do a second pass and calculate the complexities of 2b + r.

For all of the pairs, f(2b+ r) = f(b) + 3 = f(b) + 1 + f(2), meaning that D(b, r) ≥ f(b) + 1. �

J. Arias de Reyna and J. van de Lune [AV] suggest that their algorithms will be more powerful when

implemented in C and Pascal. [AV] proved that their algorithm has running time O(Nα) where

α = −1 +
1

log b
log

(

b−1
∑

d=0

3
1
3D(b,d)

)

. (2.5)

They calculated the runtime of their algorithm for bases 2n3m up to 3188646, and found the best value

of α as

α = −1 +
log(48399164638047+ 31/3 · 33606823799088+ 32/3 · 23231513379231)

log(210 · 37)
≈ 1.230175

in base 21037 = 2239488. Using C is advantageous because it runs much faster than Python, and so we

are able to calculate values for higher bases. We calculated values for bases 2n3m ≤ 57395628.3 In base

21338 = 53747712, we find that the runtime is O(nα) where

α = −1 +
log(50903564566217859+ 35271975106952037 · 31/3 + 24493392174530898 · 32/3)

log(21338)
,

so that the runtime is O(n1.222911236).4

2.2. Improved asymptotic results. Probably Guy [G] was the first who remarked that while pointwise

bounds seem difficult, it is possible to establish bounds that are true for almost all (in the sense of asymptotic

density 1) numbers. His method showed that f(n) ≤ 3.816 log3 n for a subset of integers with density 1.

Using their definition of Cavg as the infimum of all C where f(n) ≤ C log(n) for a set of natural

numbers of density 1, [AV] showed that for any base b ≥ 2

Cavg ≤
1

b log b

b−1
∑

r=0

D(b, r). (2.6)

In base b = 2938, they obtain

Cavg ≤
166991500

2938 log(2938)
, (2.7)

so that f(n) ≤ 3.30808 log(n), or f(n) ≤ 3.63430 log3(n), for a set of natural numbers of density 1.

We find that in base 21139,

Cavg ≤
2326006662

21139 log(21139)
, (2.8)

so that f(n) ≤ 3.29497 log(n), or f(n) ≤ 3.61989 log3(n), for a set of natural numbers of density 1.5

2See the code in the “Thm2.1” folder at https://github.com/kcordwel/Integer-Complexity
3After submission of this paper, we ran the code even longer, for bases 2n3m ≤ 100663296. See the “calculate_complexities.txt”

file on GitHub for our data.
4Further, in base 80621568 = 21239, we obtain O(n1.22188). See the “calculate_complexities.txt” file on GitHub for the exact

numbers involved in this calculation.
5Further, in base 80621568 = 21239, we find f(n) ≤ 3.29180 log(n), or f(n) ≤ 3.61642log3(n). See the “calcu-

late_complexities.txt” file for the exact numbers involved in this calculation.

4

3. POSSIBLE IMPROVEMENTS VIA BALANCING DIGITS

3.1. Balancing Digits. Our goal is to improve the algorithm for calculating complexity given in [AV]. The

rate-limiting factor in this algorithm is checking, for all n ≤ N , f(a)+ f(n− a) for all 1 ≤ a ≤ kMax for

some kMax that is specially calculated for each n. We will show that we can give a strong uniform bound

on the number of summands that must be checked for almost all n.

We say that n ∈ Z is digit-balanced in base b if each of the digits 1, . . . , b− 1 occurs roughly 1/b times

in the base b representation of n, or digit-unbalanced if some digits occur significantly more often than

others. We will show that almost all numbers are digit-balanced, although the exact threshold of variation

that we allow will depend on the base b. Finally, assuming that we have a set S of digit-balanced numbers

in base b, we will use Guy’s method to find that for any n ∈ S, f(n) ≤ c log3(n) for some c. Then, using

this bound on f(n) and assuming that f(n) = f(a) + f(n − a), we are able to bound a, which, in turn,

narrows the search space that a reasonable algorithm has to cover.

3.2. Bounds on Digit-Balanced Numbers. Our main result is as follows.

Proposition 3.1. There exists a constant cb > 0 only depending on the base b such that

#

{

1 ≤ n ≤ N : max
1≤i≤b

∣

∣

∣

∣

number of digits of n in base b that are i

number of digits of n in base b
−

1

b

∣

∣

∣

∣

≥ ε

}

≤ N1−cbε
2

.

Proof. The main idea behind the argument is to replace a combinatorial counting argument by the prob-

abilistic large deviation theory. Let N = bk, and consider all k-digit numbers in base b, let Xi be a

random variable such that Xi = 1 with probability 1/b and 0 otherwise for 1 ≤ i ≤ k. For any given

digit 0 ≤ d < b, each Xi gives the probability that this digit will appear in a fixed position i in the base b
representation of a number. Since we are considering k-digit numbers, we need to understand the average

value of X1 + · · ·+Xk and to analyze how close this average is to 1
b . Let X = 1

k (X1 + · · ·+Xk). Next,

we can use Hoeffding’s inequality, which gives

P

(

X −
1

b
≥ ǫ

)

≤ e−2kǫ2 . (3.1)

We know that k ≈ logb(N) = log(N)
log(b) , so:

e−2kǫ2 = e−2ǫ2 log(N)
log(b) = (elog(N))−2ǫ2 1

log(b) = N
−2ǫ2

log(b) . (3.2)

So, the probability that a number with k digits in its base b representation has some digits that appear more

often than the average is less than or equal to N
−2ǫ2

log(b) , meaning that |S| ≤ N ·N
−2ǫ2

log(b) = N1− 2ǫ2

log(b) . �

3.3. Bound on Number of Summands. Assume now that f(n) = f(n− a) + f(a) and that this is the

optimal representation using the least number of 1’s. We assume that f(n) = c log3(n) for some c > 0.

Our goal is to derive a bound on a. The main idea is to show that the logarithmic growth implies that a
cannot be very large (otherwise the growth of f(n) would be closer to linear). Using the lower bound due

to Selfridge [G], we attain:

c log3(n) ≥ 3(log3(n− a) + log3(a)). (3.3)

This is equivalent to:

log3(n
c/3) ≥ log3(n− a) + log3(a). (3.4)

Say that a = qn, where necessarily q ≤ 1
2 . Then we have:

log3(n
c/3) ≥ log3((1 − q)n · a). (3.5)

Exponentiating both sides and simplifying gives

nc/3−1

1− q
≥ a. (3.6)

Since q ≤ 1
2 , then 1− q ≥ 1

2 , and so

5

nc/3−1

1/2
≥

nc/3−1

1− q
≥ a, (3.7)

or:

2nc/3−1 ≥
nc/3−1

1− q
≥ a. (3.8)

Thus, we need only check for values of a at most 2nc/3−1.

3.4. Binary Analysis. To see how our result works, we analyze it in the simplest possible base, which is

binary. Consider k-digit numbers less than N (so that k ≈ log2(N)). The average case in Guy’s method,

illustrated in [G] and based on Horner’s scheme of representing binary numbers, gives f(n) ≤ 5 log2(n)/2,

or f(n) < 3.962407 log3(n). “Bad” numbers in base 2 are those that have many 1’s, as that is when the

representation is rather inefficient. If we move away from the average case to numbers which have, say,

75% 1’s and 25% 0’s, then the constant in Guy’s method is

1

log(2)
(3 · .75 + 2 · .25) log(3) < 4.358647. (3.9)

This is already much worse than the original average case constant of 3.962407, and so we need to stay

much closer to the average case. In particular, the following percentages of 1’s and 0’s give the following

values for the constant in Guy’s method:

Percent 0’s Percent 1’s Constant

46 54 4.02581

47 53 4.00997

48 52 3.99411

49 51 3.97826

49.9 50.1 3.96399

49.99 50.01 3.962565

Consider numbers with at most 46% 0’s and 54% 1’s. The previous section affords a bound of a ≤
2n4.02581/3−1 ≤ 2n0.342 for such numbers. We want to understand how often this case occurs. Recall that

we are considering k-digit numbers. We need to bound the number of times that 0 occurs at most 46k
100 times,

or the number of times that 1 occurs at least 54k
100 times. Say that Xi is the Bernoulli variable corresponding

to digit i, 1 ≤ i ≤ k. Then P (Xi = 1) = 1
2 . Let Sk = X1 + · · · + Xk, so that Sk represents the total

number of 1’s in our number. Since 1
2 < 54

100 < 1, we may apply Theorem 1 from [AG] to achieve the

following bound:

P

(

Sk ≥
54k

100

)

≤ e−kD(54
100 || 12) (3.10)

where

D

(

54

100
||
1

2

)

=
54

100
log

(

2

(

54

100

))

+

(

1−
54

100

)

log

(

2

(

1−
54

100

))

. (3.11)

Because k ≈ log2(N), we get that

P

(

Sk ≥
54k

100

)

≤ N−D(54
100 || 1

2)
1

log 2 . (3.12)

In particular, then, there are at most N1− 1
log(2)

·D(54
100 || 12) < N1−.004622 “bad” numbers, i.e. we have the

desired bound a ≤ 2n0.342 for the other > N .004622 numbers, which is significant as N grows large. Call

this set of numbers for which we have this bound U .

Following the analysis in [AV], Arias de Reyna and van de Lune’s algorithm has a runtime of nα in base

2 where

α = −1 +
log(3D(2,0)/3 + 3D(2,1)/3)

log(2)
= −1 +

log(32/3 + 3)

log(2)
≈ 1.3448. (3.13)

6

Recall that in their complexity proof, Arias de Reyna and van de Lune denote the number of summands

that must be checked for each n by kMax. Our bound on the numbers in U compares well to [AV]’s bound

in that if kMax were uniform for all numbers in [AV], our bound would be lower on all u ∈ U . More

explicitly, in binary, if kMax were uniform, then [AV] would require checking summands up to ≈ n0.3448

whereas we require checking summands up to ≈ 2n0.342 for numbers in U .

Unfortunately, kMax is not uniform in this way, and so we cannot claim a definitive improvement with

our uniform bound on α. It is possible that some of the u ∈ U have a low value of kMax to begin with, and

for such numbers our bound may not afford an improvement. Conversely, it is possible that our bound will

improve some numbers that are not in U . Overall, since kMax is not uniform, it is not easy to theoretically

compare our bound to [AV]. Given this, and given that the ideal bases are much larger than binary (which

significantly complicates theoretical analysis), we performed a number of empirical tests to understand

how our algorithm compares to [AV] in the general case.

4. EMPIRICAL CALCULATIONS

To see whether our method improves J. Arias de Reyna and J. van de Lune’s algorithm in practice, we

modified J. Arias de Reyna and J. van de Lune’s code by adding various precomputations and calculating

how many numbers would be improved with these precomputations6.

The first precomputation uses a greedy algorithm due to Steinerberger [St], which gives that f(n) ≤
3.66 log3(n) for most n. The recursive algorithm works as follows: if n ≡ 0 mod 6 or n ≡ 3 mod 6,

take n = 3(n/3) and run the algorithm on n/3. If n ≡ 2 mod 6 or n ≡ 4 mod 6, take n = 2(n/2) and

run the algorithm on n/2. If n ≡ 1 mod 6, take n = 1+ 3(n− 1)/3 and run the algorithm on (n− 1)/3.

If n ≡ 5 mod 6, take n = 1 + 2(n− 1)/2 and run the algorithm on (n− 1)/2.

The method is as follows: First, run the greedy algorithm on all of the numbers up to some limit and

store the results in a dictionary. Then, use these values to compute a bound on the number of summands

for each number (using the formula derived in Section 3.3). Store a counter that is initialized to 0. Next,

run J. Arias de Reyna and J. van de Lune’s algorithm. For each number, test whether the precomputed

summand bound is better than the summand bound in the original algorithm. If an improvement is found,

increment the counter. When we use this algorithm to precompute summands, we improve 7153 numbers

out of the first 200000, or less than 3.6% of numbers. If we compute complexities further, up to 2000000,

we improve 60864 numbers, or less than 3.05% of numbers.

We can also combine Steinerberger’s algorithm with a stronger algorithm, due to Shriver [Sh]. Shriver

developed a greedy algorithm in base 2310. If we use the best upper bound on complexities from Shriver

and Steinerberger’s greedy algorithm, we improve 11188 numbers out of 200000, or about 5.6% of num-

bers. If we compute complexities up to 2000000, we improve 107077 numbers, or less than 5.36% of

numbers.

Shriver conjectures that his best algorithm, which uses simulated annealing, produces a bound of

f(n) ≤ 3.529 log3(n) for generic integers. In fact, only 824 numbers up to 2000000 would be improved

by assuming a uniform bound of f(n) ≤ 3.529 log3(n). Of course, this is a purely theoretical result—if we

were to actually introduce a uniform bound, then we would not be able to accurately calculate complexities.

If we become even more optimistic and use a uniform bound of f(n) ≤ 3.5 log3(n), we would only poten-

tially improve 4978 numbers out of the first 2000000. Similarly, using f(n) ≤ 3.4 log3(n) would improve

124707 numbers of 2000000, which is about 6.23%. If we venture significantly below Shriver’s conjecture

of 3.529 log3(n) and use f(n) ≤ 3.3 log3(n) uniformly, then we start to see a significant difference—we

would improve 726756 numbers of 2000000, or about 36%.

Overall, it seems that Arias de Reyna and van de Lune’s algorithm already has a strong bound on the

number of summands that are computed. It is possible that we are encountering difficulties because kMax

is not uniform, or it is possible that the complexity of J. Arias de Reyna and J. van de Lune’s algorithm is

significantly lower than O(n1.223). Thus, while summand precomputing improves the complexity compu-

tation for some numbers, given the overhead for performing precomputations and the current speed of J.

Arias de Reyna and J. van de Lune’s algorithm, introducing a precomputation does not seem to yield an

overall improvement to the algorithm.

6See the “ExperimentalResults” folder at https://github.com/kcordwel/Integer-Complexity

7

5. PROGRESS TOWARDS AN UNCONDITIONAL UPPER BOUND

The current unconditional upper bound on complexity, f(n) ≤ 3 log2(x), is derived from applying

Guy’s method in base 2 to n. In particular, the most complex numbers have binary expansions of the form

11 · · · 12 so that at each step, Guy’s method requires three 1’s. The resulting representation is of the form

1 + (1 + 1)[1 + (1 + 1)[· · ·]].
Say that n mod 3 ≡ k. Instead of applying Guy’s method to n, what if write n = k+(1+1+1)(n−k)/3

and then apply Guy’s method to (n − k)/3? Then in the case where n = 11 · · · 12, (n − k)/3 is either

of the form 1010 · · ·1 or 1010 · · ·0, and applying Guy’s method to (n − k)/3 gives f((n − k)/3) ≤
1 + 2.5 log2(n). Using this, we find that f(n) ≤ 6 + 2.5 log2(n), which is a significant improvement over

f(n) ≤ 3 log2(n).
This suggests the following method: If the binary representation of n contains more than a certain

percentage of 1’s, then write n as k+(1+1+1) · (n−k)/3 and apply Guy’s method instead to (n−k)/3.

Empirically, in most cases, when the binary expansion of n contains a high percentage of 1’s, (n−k)/3 has

a significantly lower percentage of 1’s. However, there are some examples where this fails. For example,

if n = 2102 − 2100 − 2, then both the binary expansion of n and the binary expansion of (n − 1)/3 have

a high percentage of 1’s. Notably, if we repeat this division process and consider ((n − 1)/3)/3, then we

will obtain a number with a nice binary expansion. Accordingly, we say that 2102 − 2100 − 2 requires two

iterations of division by 3.

Some numbers require numerous iterations of division by 3 before their binary expansions are nice. For

example, n = 23000 − 22975 − 22807 − 1 requires nine iterations. These sorts of counterexamples seem to

follow some interesting patterns. Let ni denote the number obtained after i iterations of division by 3 so

that n0 = n, n1 = (n0 − (n0 mod 3))/3, etc. In general, it seems that the number of iterations that are

necessary to produce a “nice” binary expansion is tied to the number of iterations for which n ≡ 2 mod 3.

For example, when n = 23000 − 22975 − 22807 − 1, then n0 ≡ n1 ≡ n2 ≡ · · · ≡ n7 ≡ 2 mod 3, but

n8 ≡ 0 mod 3, and n9 has the first “nice” binary expansion.

It should be noted that there is no reason to only employ division by 3. For example, when n =
23000 − 22975 − 22807 − 1, n mod 11 ≡ 5, and (n− 6)/11 has a nice binary expansion. It should be noted

that n ≡ 4 mod 5 and n ≡ 6 mod 7, and the binary representations of (n−4)/5 and (n−6)/7 both contain

a large percentage of 1’s.

In general, then, performing this process of division by appropriate numbers before applying Guy’s

method is a promising strategy for obtaining an improvement on the unconditional upper bound on f(n).
We believe that it could be an interesting problem to make these vague heuristics precise and understand

whether this could give rise to a new effective method of giving explicit constructions of n with sums and

products that use few 1’s.

6. ACKNOWLEDGMENTS

We would like to thank Professor Arias de Reyna for generously sharing the code that he developed

with Professor van de Lune. Thank you to the SMALL REU program, Williams College, and the Williams

College Science Center where the bulk of this work took place. We would like to thank Professor Amanda

Folsom for funding from NSF Grant DMS1449679 as well as SMALL REU for funding from NSF Grant

DMS1347804, the Williams College Finnerty Fund, and the Clare Boothe Luce Program. The fourth

listed author was supported by NSF grants DMS1265673 and DMS1561945, the fifth listed author was

supported by Simons Foundation Grant #360560 and the seventh listed author was supported by NSF Grant

DMS1763179 and the Alfred P. Sloan Foundation. Finally, we thank an anonymous referee for suggestions

that significantly improved the paper.

8

REFERENCES

[A1] H. Altman, Integer complexity and well-ordering, Michigan Math. Journal 64 (2015), no. 3, 509-538.

[A2] H. Altman, Integer complexity: Representing numbers of bounded defect, Theoretical Computer Science 652 (2016),

64-85.

[A3] H. Altman, Integer complexity: Algorithms and computational results, 2016. arXiv:1606.03635.

[AZ] H. Altman & J. Zelinsky, Numbers with integer complexity close to the lower bound, Integers 12 (2012), no. 6,

1093-1125.

[AV] J. Arias de Reyna & J. van de Lune, Algorithms for determining integer complexity, arXiv:1404.2183 [math.NT].

[AG] R. Arratia & L. Gordon, Tutorial on large deviations for the binomial distribution, Bulletin of Mathematical Biology

51 (1989), no. 1, 125-131.

[F] M. N. Fuller, C-Program to Compute A005245, Feburary 2008.

http://oeis.org/A005245/a005245.c.txt.

[G] R. K. Guy, Unsolved problems: Some suspiciously simple sequences, Amer. Math. Monthly 93 (1986), no. 3, 186-

190.

[IBCOOP] J. Iraids, K. Balodis, J.Cerenoks, M. Opmanis, R. Opmanis, and K. Podnieks, Integer complexity: Experimental

and analytical results, Scientific Papers University of Latvia, Computer Science and Information Technologies 787

(2012), 153-179.

[MP] K. Mahler and J. Popken, On a maximum problem in arithmetic (Dutch), Nieuw Arch. Wiskd. 3 (1953), no. 1, 1-15.

[Sh] C. Shriver, Applications of Markov chain analysis to integer complexity, 2016, arXiv:1511.07842 [math.NT].

[St] S. Steinerberger, A short note on integer complexity, Contributions to Discrete Mathematics, 9 (2014), no. 1.

[SS] V. V. Srinivas and B. R. Shankar, Integer complexity: Breaking the θ(n2) barrier, World Academy of Science,

Engineering and Technology 2 (2008), no. 5, 454 - 455.

E-mail address: kcordwel@cs.cmu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742

E-mail address: alye@stanford.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: ash6@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: palsson@vt.edu

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, VA 24061

E-mail address: as2718@cam.ac.uk

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267

E-mail address: stefan.steinerberger@yale.edu

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, CT 06510

E-mail address: ytruongvu17@amherst.edu

DEPARTMENT OF MATHEMATICS, AMHERST COLLEGE, AMHERST, MA 01002

http://arxiv.org/abs/1606.03635
http://arxiv.org/abs/1404.2183
http://oeis.org/A005245/a005245.c.txt
http://arxiv.org/abs/1511.07842
mailto:kcordwel@cs.cmu.edu
mailto:alye@stanford.edu
mailto:ash6@williams.edu
mailto:sjm1@williams.edu
Steven.Miller.MC.96@aya.yale.edu
mailto:palsson@vt.edu
mailto:as2718@cam.ac.uk
mailto:stefan.steinerberger@yale.edu
mailto:ytruongvu17@amherst.edu

	1. Introduction
	1.1. Introduction
	1.2. Algorithms.

	2. Algorithmic aspects
	2.1. The de Reyna & van de Lune algorithm.
	2.2. Improved asymptotic results.

	3. Possible Improvements via Balancing Digits
	3.1. Balancing Digits
	3.2. Bounds on Digit-Balanced Numbers
	3.3. Bound on Number of Summands
	3.4. Binary Analysis

	4. Empirical Calculations
	5. Progress Towards an Unconditional Upper Bound
	6. Acknowledgments
	References

