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LIMITING DISTRIBUTIONS IN GENERALIZED ZECKENDORF

DECOMPOSITIONS

ALEXANDRE GUEGANIC, GRANGER CARTY, YUIJIN H. KIM, STEVEN J. MILLER, ALINA SHUBINA,

SHANNON SWEITZER, ERIC WINSOR, AND JIANING YANG

ABSTRACT. An equivalent definition of the Fibonacci numbers is that they are the unique sequence
such that every integer can be written uniquely as a sum of non-adjacent terms. We can view this
as we have bins of length 1, we can take at most one element from a bin, and if we choose an
element from a bin we cannot take one from a neighboring bin. We generalize to allowing bins of
varying length and restrictions as to how many elements may be used in a decomposition. We derive
conditions on when the resulting sequences have uniqueness of decomposition, and (similar to the
Fibonacci case) when the number of summands converges to a Gaussian; the main tool in the proofs

here is the Lyaponuv Central Limit Theorem.
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1.1. Preliminaries. The Fibonacci numbers are normally defined by the recurrence ), = F), +
F,, 4, with, of course, two initial conditions. If we take /|, = 1 and F, = 2 one of many prop-
erties is Zeckendorf’s Theorem [Ze]: Every positive integer can be written uniquely as a sum of
non-adjacent Fibonacci numbers. Interestingly, this is an equivalent definition of the Fibonaccis;
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explicitly, they are the unique sequence of numbers such that every integer can be written as a sum
of non-adjacent elements of the set. This correspondence has led to numerous papers investigat-
ing connections between sequences and decomposition laws, and properties of the decompositions
(such as on average how many summands are needed, what is the distribution of gaps between
summands, what is the longest gap between summands). We often refer to these as generalized
Zeckendorf decompositions or legal decompositions for the given law; for 2019 we have

2019 = 1597+ 377+ 34+ 8+ 3 = Fig + Fis + Fg+ I5 + F5.

There is now an extensive literature on the subject; see for example [Al, BBGILMT, BILMT,
Brl, Br2, CFHMN1, CFHMN2, CFHMNPX, Day, DDKMMV, KKMW, Fr, GTNP, Ha, Ho, HW,
Ke, KKMW, MW1, MW2, Stel, Ste2]. Of these, the most relevant for our investigations below is
[CFHMN1]. There the authors generalize the Fibonacci decomposition law by adopting a binning
perspective. Explicitly, fix positive integers s and b. The (s, b)-Generacci sequence is defined as
follows. Consider a series of bins of length b. We can choose at most one element from a bin,
and if we choose an element we cannot take an element from any of the s bins immediately to
the left (and thus we also cannot take an element from any of the s bins immediately to the right).
The Fibonaccis correspond to the case s = b = 1, and choosing the appropriate initial conditions
always yields unique decomposition. For example, the (1, 2)-Generacci sequence begins

1,2, 34,5 8, 11,16 , 21,32, 43,64 , 85, 128 , 171,256 , ....  (1.1)
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

In previous works all bins had the same length, and a legal decomposition could have at most
one element from a bin. We extend these results by now letting the n'™ bin have length b,, > 1,
for each n. Furthermore, we choose a set A, C {0,1,2,...,b,}, which is the set of the number
of allowable elements we can choose from the n™ bin in our decomposition. Finally, we select an
adjacency number a such that we cannot take elements from two different bins unless there are
at least a bins between them. Thus, if by = 5, As = {0,1,3}, and @ = 2, then we may take
0, 1 or 3 elements from the eighth bin (which has length 5); if we do take an element from the
eighth bin, then we may not take any elements from the sixth, seventh, ninth or tenth bins in our
decomposition. We construct the sequence as follows. We set 1 as the first element of the first
bin (we choose 1 and not 0 to retain the possibility of having unique decompositions). If we have
constructed the first £ elements, the next term in the sequence is the least integer which cannot be
obtained by our construction rule. We refer to these as a ({b,}, {4, }, a)-Sequence; the Fibonacci
sequence is b, = 1, A, = {0,1} and a = 1.

1.2. Results. In Section 2 we study sequences with no adjacency condition (i.e., ({b,}, {A4.},0)-
Sequences), and exactly determine when these sequences give us unique decomposition of the
positive integers (see [CHHMPV] for conditions on when generalized Zeckendorf decompositions
have the minimal number of summands among all decompositions). In particular, we prove the
following.

Theorem 1.1. A ({b,,}, {A,.},0)-Sequence has uniqueness of decomposition (i.e., there is a unique
legal decomposition for each positive integer) if and only if for every positive n we have

A, € {{0,1}, {0,1,...,b, — 1}, {0,1,...,b,}}. (1.2)

In Section 3 we establish the following Lyapunov central limit type theorems associated to cer-

tain (b, A,, 0)-Sequences. These results are similar to those from earlier work on Zeckendorf
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decompositions. Lekkerkerker [Le] proved that the average number of summands in a Zeckendorf
decomposition for integers in [F},, F},.1] tends to #, where p = 1+—2\/5; others (see for example
[KKMW]) extended this result to prove that as n — oo, the distribution of the number of sum-
mands in the Zeckendorf decomposition for integers in [F,,, F}, ;1] is Gaussian. In Section 3.1 we

prove a similar result for our sequences, using Lyapunov’s Central Limit Theorem (see Theorem
3.1).

Theorem 1.2. Considera ({b,},{0,1},0)-Sequence. For an integer z, let Y,,(x) = 1 if an element
of the n'™ bin appears in x’s decomposition, and Y, (x) = 0 otherwise; thus, if the largest summand
in x’s decomposition is from bin N then the total number of summands in this decomposition is
Yi(z) + -+ Yn(x). If >.07, 1/b, diverges, then the distribution of the number of summands of
integers whose largest summand is in bin N converges to a Gaussian in the sense of Lyapunov as
N — 0.

In Section 3.2, we relax our assumptions to allow multiple summands from each bin, and let A,,
vary with n; we examine how the conditions for Gaussianity change given this generalization in
the following two theorems.

Theorem 1.3. Consider a ({b,},{A},0)-Sequence, where each A, = A C {0,1,...,b} withb <
min({b,}). Let {Y,,} be the sequence of independent random variables representing the number of
summands chosen from each bin. Thus if the largest summand of the decomposition of an integer x
is from bin N, then the total number of summands in this decomposition is Yy(z) + - - -+ Yn(z). If

i ,
the growth of {b, } is slower than nm-", where m = max(A) and m = max(A — {m}), then the
distribution of the number of summands of integers whose largest summand is in bin N converges
to a Gaussian distribution in the Lyapunov sense as N — o0.

Theorem 1.4. Consider a ({b,},{A,},0)-Sequence, where for alln € N, b, = n, and A, €
{{0,...,n — 1},{0,...,n}}. Let {Y,} be the sequence of independent random variables rep-
resenting the number of summands chosen from each bin. For any integer choice of & > 0, the
distribution of the number of summands satisfies the Lyapunov Central Limit Theorem, and thus
converges to a Gaussian distribution as N — oo.

We conclude in Section 4 with a discussion of related lines for future research.

2. UNIQUENESS OF DECOMPOSITION WITH NO ADJACENCY CONDITION

We consider an arbitrary ({b,}, {A,}, 0)-Sequence; as a = 0 there is no adjacency restriction.
We categorize what choices of the sequence A,, give uniqueness of decomposition for the resulting
generalized Zeckendorf decompositions. We usually require that 0 and 1 are in each A,, i.e,
{0,1} C A,, to ensure that our original construction creates a sequence where every positive
integer has a decomposition.1 In Section 4.2, we consider a scenario where A,, = {0, 2}, but we
do not require our sequence to generate the positive integers.

To understand the proof of Theorem 1.1, we use the following intuition. In our construction of
a generalized Zeckendorf sequence, we ensure that each integer is generated by the construction

¢ A,, does not contain 0, then any decomposition must include an element of bin n, which forces the sum of a
decomposition to be at least that of the minimal element of A,,, destroying our hopes of having either uniqueness or a
decomposition for every positive integer. Note that if A,, does not contain 1, zeroes can be added to bin n so that way
are able to pick any one particular element, though at the cost of uniqueness. For example, if we want to use just one
element of bin n, and A,, = {k,k+ 1,...,b}, then we can place k — 1 zeros in b,,.

3



“in order”, that is, if we look at the first k£ terms of our ({b,},{A,},0)-Sequence, we will see
that a consecutive block of positive integers is uniquely decomposable using these terms. When
we allow A, to violate the conditions of Theorem 1.1, the first £ terms of our sequence no longer
generate a consecutive block; the decomposable integers form multiple disconnected blocks. The
block containing 1 continues to grow as we add terms to our sequence and eventually meets another
block, causing a failure of uniqueness of decomposition for some integer.

Lemma 2.1. Fix a (b,, A,,0)—Sequence, and an integer ng > 2. Suppose that the set of integers
generated by the first ng — 1 bins is the set {1,. .., k}. Then all future terms of our sequence are
divisible by k + 1.

Proof. Note that the first term in bin ng must be k& + 1. The terms in the first no — 1 bins can form
any sum from 1 to k, and thus as we have no adjacency conditions, if we can represent a number x
using numbers from bin ng and on, we can also obtain z + 1, x + 2, ..., x + k. Thus once we add
a multiple a(k + 1) of k + 1, there is no need to add «(k + 1) + 8 for any 8 € {1,...,k}, and
therefore the next possible term in our sequence is (o + 1)(k + 1). Continuing we see that all the
numbers added are multiples of k£ + 1, proving the claim. 0

For example, consider the sequence with b, =n + 1, A, = {0,1}:
1,2, 3,6,9, 12,24, 36, 48 , 60, 120, ..., .... 2.1)

Bin 1 Bin 2 Bin 3 Bin 4

Letting ny = 2 we find £ = 11 (i.e., the first two bins allow us to obtain precisely the integers
from 1 to 11), and see that any legal combination of terms outside the first two bins is a multiple
of 12.

Proof of Theorem 1.1. We want to show that a ({b,},{A,},0)-Sequence has uniqueness of de-
composition if and only if all A, are in the form of {0,1}, {0,1,...,b, — 1} or {0,1,...,b,}.

To reduce the cases that we need to discuss, we assume that the first ng — 1 bins have A,,’s that
satisfy the condition and the set of legal sums from these bins form the interval {1,. ..k}, where
each element has unique decomposition. Then by Lemma 2.1, we have that all following terms
of the sequence are divisible by k 4+ 1. Therefore, we can take the subsequence of our original
sequence starting from the ny™ bin to be our new sequence, and divide every term by k + 1. For
notational convenience we denote A, , b, of the original sequence as A, b; of the new sequence
which we now analyze.

We first show that if A; satisfies one of the conditions for which we claim uniqueness holds,
then it yields intervals of integers, so by induction the first n bins of the sequence always yield an
interval for any n € N. Since every element of this interval has unique decomposition, we can
prove the backwards direction of Theorem 1.1. Next we consider the case where the new sequence
has A; outside of our stated set. We are then able to show that uniqueness fails in such sequences,
so only the options stated in Theorem 1.1 give uniqueness, therefore proving the forwards direction
of the theorem.

We now consider each case for uniqueness.



Case I: A; ={0,1}. Fix b; and let Ay = {0,1}. Then the first b; terms of our sequence are
1,2,...,b;. The integers generated by this bin form the set S = {1,2,...,b;}, which is an interval
of integers. Since A; = {0, 1}, and each element of .S must be written as a sum of elements in by,
we clearly have unique decomposition.

Case II: A; ={0,1,...,by}. Fix b; and let A; = {0, 1,...,b;}. Then the first b; terms of our
sequence are 1,2, 4, ...,2" ! The integers generated by this bin form the set S = {1,2,..., 201
1}, which is an interval of integers. Because binary decomposition of the integers is unique, we
have unique decomposition.

Case III: A; ={0,1,...,b; —1}. Fix b; and let A; = {0,1,...,b; — 1}. Then the first b,
terms of our sequence are 1,2, 4,...,2" 1. The integers generated by this bin form the set S =
{1,2,...,2% —2}, which is an interval of integers. We also note that this choice of A; gives unique
decomposition, for the same reason as Case II.

We have now explicitly analyzed the cases we claim give uniqueness and have shown that they
yield intervals of integers. We are thus able to reduce to the cases where A; is not in the given set.
We split non-uniqueness of these other choices of A; into several cases.

Case I: {0,1,... k} C A;, withk+1¢ A;and2 <k <b; —2. 0 Because we have full
freedom with the first k& elements of b;, we have 1,2,4,...,2" as the first k£ + 1 elements of
this bin. Arguing as before, we also have that the (k + 2)™ element of our bin must be 2! — 1.
We must use this term to form larger integers, so we are left with only £ — 1 terms to work with,
meaning we can form all integers up to but not including 28! — 1 4+ 2F —2 41 = 2k+F1 4 2k _ 2,
Thus, this is the (k + 3)™ element of our sequence (it will not matter whether this is in the first or
second bin). We note that we can decompose 2! + 2% — 1 as

<2k+1 B 1) Lok — oktl ok 1 _ (2k+1 Lok _ 2) +1, (2.2)

so uniqueness fails.

CaseII: {0,1} C Ay, 2 ¢ A;. Pick k := inf{x € A; : x > 1}. This is the case where there is
a gap in A;. Since we are only allowed to choose 0, 1 or at least & elements from a bin, the first &

terms of the sequence are going to be 1,..., k. Since k > 3, Z]:n=1 m = 2D S k4 2 5o the

2
(k + 1)** and the (k + 2)"! terms are k + 1 and k + 2, respectively.
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If we have b; > k + 2 for the first bin, then

((k/2 k42 k41 /{:—1—3)
Zm+ Z m:Zmzi when k is even
m=k/2+3
(k 1/2 k+2
kEk—1(k+2
> m+ Z m = Zm+(k+2) _ | )2( "2 L k+2 whenkisodd,
\ m= 1 k+5 m=

(2.3)

and we lose uniqueness of decomposition. Therefore, we only need to consider the cases where
by = k or k + 1. As the two follow similarly, we only provide the details for the first.

Subcase (i): b; = k. As b; = k, the sum of terms from the first bin is (Hl) . As argued before,

all multiples of & + 1 less than this sum, including % 1(k: + 1), can be expressed as a legal sum of
terms not in the first bin. Therefore, when & is odd,

k(k+1) k—1 kE+1
= k+1)+ —— 24
where k"ZH is a term in the first bin. We lose uniqueness of decomposition. When £ is even, k(k; L)
is not in the sequence and the next term is (Hl) + 1. Then we can decompose (k + 1) + (Hl)
two ways:
kE(k+1 E(E+1
(k+1)+%: (%4‘1)4‘]{?, (2.5)

where k + 1 and k are terms of the sequence. We lose uniqueness of decomposition.

Subcase (ii): b; = k + 1. A similar argument holds on losing uniqueness of decomposition.
O

3. GAUSSIANITY OF NUMBER OF SUMMANDS: a = 0

Now that we have exactly determined the decomposition rules which yield sequences giving
rise to unique decomposition of integers in the a = 0 case, we investigate the Gaussianity of the
distribution of the average number of summands in these decompositions. The following result
(see [Bi]) is a key ingredient in several proofs in this section.

Theorem 3.1 (Lyapunov Central Limit Theorem). Let {Y1,Y5, ...} be a sequence of independent
random variables, each with finite expected value ; and variance o?. Let s2 := " | o?. If there
exists a & > 0 such that lim,, 82% S ElIY: — i) = 0, then =37 (Y; — ;) converges
in distribution to the standard normal as n — .

We use the following standard notation below. We write f(z) = ©(g(z)) if there exist positive
constants C'7, Cs such that for all x sufficiently large we have

0 < Ciy(z) < f(z) < Cagla). 3.1
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3.1. At most one summand per bin. We begin by proving Theorem 1.2, which concerns se-
quences with variable bin sizes, A,, = {0, 1}, and no adjacency condition.

Proof of Theorem 1.2. For n < N, we have b,, + 1 options for the n'" bin: we have no element or
exactly one of the b, terms. Each of these choices is equally likely, and thus P(Y,, = 0) =

b+l
and P(Y, = 1) = 725 2asY, =Y?)is
— ElY,] = —2 — B} (32)
Un = n| — bn+‘1 - nl .
and its variance is
b b\’ b
2 . _ 2 2 n n _ n
Let s := S V"1 g2 = SN /(b, + 1)2. We now apply the Lyapunov Central Limit Theorem.
N n=1 "n n=1
Note
b 1\ 2 1 b 245
E[Y, — "] = — .
(¥ = paf™] bn+1<bn+1> +bn+1<bn+1>
by, 14 bto b,
_ o . (3.4)

(by, +1)2 (b, + 1)1+9 (b, +1)2

Define p2™0 := E[|Y,, — u1,|>*"] and ey := 32, p2*%. Then

N-1 N-1
ey = STEY, -] < 3T . +1 = 5. (3.5)
n=1 n=1

We note that o2 is asymptotically similar to 1/b,, (i.e., 1/b, < 0, < 1/b,), so {s%} converges if
and only if 25:1 1/b,, converges.
Suppose ZnN:1 1/b,, diverges. Then s3 diverges, and for all § > 0

li v\ lm N L _ 3.6
Moo \s2F ) T R ()P T N (%) (3:6)

(the limit tends to zero as we are assuming the sum of the reciprocals of b, diverges, and thus
n, must tend to infinity). Thus, the Lyapunov condition is satisfied, and by Theorem 3.1 the
distribution of number of summands, % Zf\il Y;, converges to a Gaussian in the sense of Lyapunov.

O

Remark 3.2. If Y""" | 1/b; converges, then the denominator of the Lyapunov limit converges to a
finite limit. Furthermore, the numerator is nonzero, so the limit is nonzero. Thus, the Lyapunov
condition fails if Y _, 1/b; converges. While this does not prove that the distribution of the number
of summands does not approach a Gaussian distribution, it provides some evidence against this

behavior.
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3.2. Multiple summands per bin. We now prove Theorem 1.3.

Proof of Theorem 1.3. Assume |A| > 2. We begin in a similar manner as Theorem 1.2 by noting
that the probability of choosing exactly 7 summands from the n™ bin is

()

BEE)

(3.7

and the expectated values of Y,, and Y,? are

Sieatls)
Sres (1)

2 (bn
E[Y?] = M. (3.8)

E[Y, :
[l = Srea ()

Then
or = E[Y;] - E[Y,]
_ (Zea() (Ziea () (Sieat ()

(Crea (7)) (Ciea (7))’
2igeat’ (1) () = Eigeati (7) ()

= ’ ) (3.9)
(Siea ()
The terms where 7 = j cancel, so we are left with
2 _ S iienin (%) (bf) — > jenini 10 (%) (bf) _ > igening(i—02(7) (bf) . (.10)

n

(Siea (7)) 2(Sea (7))
Define p?*? .= E [\Yn — ,un|2+5} . We find that

| St )
GV S 5N I Sy
5y ) [ o ()~ Sacat )
(Son )
e [Sieali -0 G
(Son ()

We now find asymptotics for o2 and p?°. We first note that ( ) O(bt); we do not need to have
a t subscript on the O relation as ¢ < b and b is fixed. Therefore

(50) - (5ew) -owr oo on

We also note that

246

240

> ar()(h) - 5 ewm o).
1,jEAi#£] 1,JEAIF£]
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Therefore

o (bm+m ) 1
2 n
=20 ) g ). 3.14
Similarly, for p2*° we have
OB’y ,
240 n n _ m'—m
= T o™ —m). (3.15)
Thus
O(pi) = O(ay). (3.16)
Now let 720 .= SN p2+9 and 5% := S° | 2. We consider the Lyapunov limit limy ., %7 /s%™.
We have
246\ 2 2432 2\2
: N o () esy)t
e <3§v+6) T AR T A RS T A O(h ) G-17)

1 ’
If the bin size b,, grows slower than nm-", then Zivzl © (1/(bg_m )) — 00, and thus sy — oo.

Thus, the above limit tends to 0 and the Lyapunov condition is satisfied for any 6 > 0. So we
conclude that the distribution of the number of summands converges to a Gaussian distribution as
N — oo. U

We now prove Theorem 1.4.
Proof of Theorem 1.4. We will prove the case A, = {0,...,n}, asthecase A, = {0,...,n — 1}
is similar.

Taking b, = n and A,, = {0,...,n} in (3.10) and (3.11), we have

ors _ iz (3) 20— 0"

Pn = on+6+2
o2 = % (3.18)
From the Lyapunov CLT limit, we seek to show
249
248 2\ 2z
Nlim Z"SN P 575 = 0, orequivalently ]\}lm (2 =X 2)+5 = 0. (3.19)
—00 (z: 02)—3— —00 nSAfpn
n<N “n
Substituting gives, for fixed IV,
(Sueno?) * N2+
Zn_gN pr+o - > ico (?) |20 — n|2+5 ’ (320
anN In++2
r ()20 =0
for a constant ¢ > 0. It thus suffices to show that > _ 20 %Zl 5o | = O (N'?), for
which it is enough to prove that
P (M) 12— n?
Yo () S (n%). (3.21)

2n+5+2
9



We assume o > 0 is even in this proof for ease of computations. Then

z": (ZL) 20 =™ = i CL) (n — 22+

i=0 i=0
n 245
=S ()X (P
im0 \'/ 5=\ J
2+6 n
_ Z(—l)j (2 ;r 5) 9 p2+0= Z (7;) i (3.22)
j=0 =0

We wish to show that the n2792" and n'*°2" terms in (3.22) go to zero, which correspond to
the n2"~7 and n/ 12"~ terms in Y (7)#/. We compute > ., ()i’ by noting that the sum
represents the number of ways to choose a subset A C {1,...,n} along with an ordered j-tuple
(ai,...,a;), where each a;, € A. Alternatively, we could pick our ordered j-tuple (by,...,b;)
first, so that each b, € {1,...,n}, and then choose a subset B C {1,...,n} that includes the
distinct elements of {by,...,b;}. It is easily checked that these two counting schemes are the
same by showing that the set of possible (A, (a1, ...,a;)) is in bijection with the set of possible
((b1,...,b;), B). Following our second scheme, we note that if all elements in our j-tuple are

distinct, then there are
nin—1)---(n—j+1)2""7 (3.23)

ways to pick our tuple and subset. Similarly, if 7 — 1 elements in the j-tuple are distinct, then we
have

(j ﬁ 1) (j I 1) %!2"’”1 = n(n—1)---(n—j+2)(j —1)52"~ (3.24)

ways to choose. In general, if j—k elements in our tuple are distinct, then there are O (nj —kon—j +’“)
ways to choose our tuple and subset. Therefore, the expressions in (3.23) and (3.24) make the only
contributions to the n/~'2"~7~! term, while the only contribution to the n/2"~7 term comes from
(3.23). The coefficient of the n/2" 7 term is simply 1, and thus from (3.22), the coefficient of
n2toom is

2+6
S (-1 (2 + 5) _o (3.25)
j=0 J

Now, the coefficient of the n/~! term from (3.23) is — > 72"/ = —(j — 1)j2" 7. The
coefficient of the n/~! term from (3.24) is (j — 1)72" 7. We add these two expressions together to
obtain j* — j as the coefficient of n/~12"~~1in 3" (")il. Again, from (3.22), the coefficient of
nl+o2m is

LT (2 B 5). (3.26)

j=0 J

Note that the above is equal to

=0 (3.27)




for & > 0, and thus we are done. O

Conjecture 3.3. The Lyapunov condition holds for any for any A,, = {0, 1, ..., [n/k|}. Numerics
suggest this is true.

4. FUTURE DIRECTIONS (HIGHER DIMENSIONAL SEQUENCES)

4.1. Zeckendorf Involution Tree. It would be natural after studying bin decompositions to look
at 2-dimensional sequences that have similar properties; the Fibonacci quilt [CFHMN2, CFHMNPX]
is one such generalization. We could ask many questions, such as: What types of sequence con-
structions yield unique decomposition of positive integers? How do statistics such as average
number of summands change in the two-dimensional case? However, in many cases (including
the Fibonacci quilt), seemingly two-dimensional sequences reduce to one-dimensional relations,
such as conditions imposed on bins; see [CCGIMSY] for an example that is fundamentally not
one-dimensional. As an example, we construct a “two-dimensional” sequence of integers, which
we call the Zeckendorf tree, as follows.

Leta;; = 1. Foraterm a; j, 7 > 1,1 < j <4, i corresponds to the level in the tree in which the
term is located, and j is the term’s position within the level. The i level has precisely i terms. We
add an integer to the tree if it is not the sum of terms from nonadjacent levels. As 2 is not the sum
of terms of nonadjacent levels, we add it to the tree as the first term of the second level. Similarly,
3 is the second term of the second level. Next, 4 is the first term of the third level, but 5 can be
represented as 4 4+ 1, a sum of terms from nonadjacent levels. So 6 is the next term. We continue
this process indefinitely to construct the Zeckendorf tree.

@
® @
© © O
@ @ @ @

Interestingly, the left diagonal of the tree 1, 2,4, 10, 26, ... is the sequence of involutions on
letters, also known as the Telephone Numbers. These diagonal terms are defined by the recurrence
relation a; = 1,a9 = 2, and a,, = a,,_1 + (n — 1)a,_s forn > 2.

The recurrence relation for the terms of the tree is given by

1,j— 1—1,05 > 1
R @1
ai-14-1+ a0, Jj=1

Using techniques similar to those of the proof of Zeckendorf’s theorem, one can show that
every positive integer n can expressed uniquely as a sum of terms from nonadjacent levels of the
Zeckendorf tree. However, while the recurrence relation for the terms of the tree seems to depend
both on 7 and j, the tree can be described one-dimensionally using a condition on bins: Let b; = ¢
be the size of the i bin. Then the Zeckendorf tree sequence is the unique sequence constructed by

disallowing summands from adjacent bins.
11



Variations of the Zeckendorf tree retain their two-dimensional nature, but do not always retain
uniqueness of decomposition. For example, consider the following tree.

S

We begin the first row with the number 1 for uniqueness reasons. We construct the sequence
using the rule that a term is included if it cannot be composed of summands that are linked in an
upwards chain. For example, we do not include 30 because 30 = 22+ 6+ 2, all of which are linked
in an upwards chain.

Example: For 30, we have

However, we do include 38 because we cannot construct it using such a chain (note we cannot
get from 22 to 16). While this sequence cannot be reduced to a condition on bins, it does not have
uniqueness of decomposition (for example, 48 = 44 + 4 and 48 = 38 + 10). We can still prove
Gaussianity for the distribution of the number of summands; see [CCGIMSY] for details (as well
as extensions to d-dimensions).

4.2. Uniqueness of decomposition in g-nary sequences. We explore another generalization of
Zeckendorf sequences: a class of sequences that we call g-nary sequences. These sequences are
quite different from ({b,}, {A,},0)-Sequences in that they are no longer constrained by the re-
quirement to represent every positive integer. We characterize g-nary sequences which give a
unique decomposition for any integer that has a decomposition. Theorems 4.1, 4.2, and 4.3 iden-
tify three distinct classes of g-nary sequences that preserve uniqueness in this way.

We construct a g-nary sequence by requiring that the summands are monotonically increasing
(starting at 1), setting A,, = {0, g} for some constant g, allowing a number to be in a given bin at
most once, and at each step taking the smallest number that preserves uniqueness. The resulting
g-nary sequence is well-defined if and only if after computing n numbers of the sequence, we
can find an (n + 1)** number which satisfies the constraints of our construction (most importantly,
uniqueness). For simplicity we begin with g = 2, constant bin size 3 (b,, = 3), and no adjacency
condition (a = 0). Let [, be the set of all legally decomposable numbers using bins b, through b,,.
Let G, ; be the gap between the (j — 1)* summand and j® summand in the »" bin, and 2, be the
largest number legally representable using only elements from the first n bins. Then we have the
following.

Theorem 4.1. For b, = 3, A, = {0,2} and a = 0, the resulting g-nary sequence is well-defined

and we have G, ; > €),_1.
12



Note that while the gap between adjacent summands in the bin can differ, to keep uniqueness
we need the gap between any two adjacent summands in bin n to be larger than the maximum
decomposition using all the bins n — 1.

Proof. We begin with the base case. The first two intervals are

1,23, 3, 2,9y, ... 4.2)
Bin 1 Bin 2

with < y; this is due to our requirement that the sequence is monotonically increasing and a
number is in a bin at most once. A straightforward calculation shows that the first combination of
x and y for which we retain uniqueness is * = 9 and y = 15. For more details on computing the
sequence see Appendix A.

Now suppose that we retain uniqueness with bins b; through b, and for all n such that 1 < n <
k+1,G,; > Q,_1. Now we seek to show that we retain uniqueness with bins b; through b,
and Gj41,; > 2. We have

1,2,3, 3,9, 15, 15,45, 75 , 75 225 375 . ... a, b c . 4.3)
Bin 1 Bin 2 Bin 3 Bin 4 Bin k+1
Thus if Gk+17j <, ElDl, D, € 1,,, Dy > Dy such that
b+c+ Dy = a+c+ Dy, (4.4)

because by construction Dy — Dy € {1,2, ..., }. Thus we lose uniqueness. However, if G4 ; >
Q, there does not exist a combination of Dy, D, such that a + b + D; = a + ¢ + D», nor
b+ c+ Dy = a + ¢ + Ds. Therefore, we keep uniqueness and

Gk+1,j > Qk (45)
By induction we keep uniqueness and we have G4 ; > €, for all n, so this g-nary sequence is
well-defined. 0

Theorem 4.2. For b, = k, A, = {0, g} for a pair of constants g € {1,k — 1}, and a = 0, the
resulting g-nary sequence is well-defined and we have G, ; > (),,_;.

Proof. We begin with the base case. The first two intervals are

1, 2, ceey, Qg o, Ak, CLk—FQl—Fl, ak—|—2(21+1, ...,ak—i—le—l—l, ce (46)
Bin 1 Bin 2

this is due to the fact that if Go; < 4, 3Dy, Dy € 1, Dy > Dyandp € {2,3,....,k — g+ 1}
such that

p+g—3 p+g—1
> aitapg+Di =) ai+ Dy, (4.7)
i=p—1 i=p

because by construction Dy — Dy € {1,2,..., Q4 }.
Now suppose that we retain uniqueness with bins b; through 0,, and for all 1 < n < k + 1,

Gn; > ,—1. Now we seek to show that we retain uniqueness with bins b; through b, and
Gry1,; > . We have

1,2, ... a,, ag, ap+ 0 +1, ap +20 +1, ..., ap + kX + 1, ... 21, 29, T3, ..., Tp.

Bin 1 Bin 2 Bin k+1
(4.8)
13



Thus if Gy < Q, 3D3, Dy € I,,, Dy > Dz and p € {2,3,...,k — g+ 1} such that

p+g—3 pt+g-1
Z T+ Lptg—1 + D3 = Z T; + D4, (49)
i=p—1 i=p

because by construction Dy — D3 € {1,2, ..., }. Thus we lose uniqueness. However, if Gy ; >
Q, it is clear that there does not exist a linear combination of D5, D, and x;’s such that we lose
uniqueness.

By induction we keep uniqueness and we have G, ; > €, for all n, so this class of g-nary
sequences is well-defined. O

Theorem 4.3. Forb, = b, A, = {0, g} for some constant g < b, for all { and a = 0, the resulting
g-nary sequence is well-defined and we have G,, ; > (,_;.

Proof. We begin with the base case. The first two intervals are

1, 2, vy Ay oy Qpy, ab1+§21—|—1, ab1—|—2§21+1, ey abl—l—bg§21+1, ceey (410)
Bin 1 Bin 2

this is due to the fact that if Go; < Qy, 3Dy, Dy € I1, Dy > Dyandp € {2,3,...,b; —g + 1}
such that

p+g—3 p+g—1
Y ai+apga+Dr =Y ai+ Dy, 4.11)
i=p—1 i=p

because by construction Dy — Dy € {1,2, ..., }.

Now suppose that we retain uniqueness with bins b; through 0, and for all 1 < n < k + 1,
Gn; > ,—1. Now we seek to show that we retain uniqueness with bins b; through b, and
Gk+17j > Qk We have

1,2,...,ab1,abl,abl—l—Ql—l—l,abl—l—2Ql+1,...,abl—l—bg§21+1,...,
! Bin 1 o Bin 2 I
., Ty, T, T3y ..., Th41 - (4.12)
! Bin k+1 I

Thus if Gy ; < €y, then there exist D3, Dy € I,,, Dy > Dyand g € {2,3,...,by+1 — g+ 1}
such that

q+g9—3 q+g-1
> mitagg1+Ds = > mi+ Dy, (4.13)
i=q—1 i=q

because by construction D, — D5 € {1,2, ..., }. Thus we lose uniqueness. However, if G4 ; >
Q, it is clear that there does not exist a linear combination of D5, D, and x;’s such that we lose
uniqueness. By induction we keep uniqueness and we have G, 11 ; > (2, for all n, so this class of
g-nary sequences is well-defined. U

Remark 4.4. Note that (2,11 = G,11j for the g-nary sequences discussed above.
Lemma 4.5. Forb, = 3, A, = {0,2} and a = 0, there are 4" elements in I,, for all n.

Proof. We begin with the base case
1, 2, 3. (4.14)
| I

Bin 1
14



There are 4! possible decompositions using only bin by, yielding the numbers 0, 3, 4 and 5.
Suppose there are 4" elements in I,,. We will show that there are 4"*! elements in I, ;.

n+1 i
Ly =1+ Z( )( ) = 4t (4.15)

By induction, there are 4" elements in [,, for all n. More generally for different b; and g, we have

L =1+ Y (?) (Z) . (4.16)
=1

Thus, if each b; equals a constant b, then

I, = <<b) + 1)". 4.17)
Y

O

In the spirit of Theorem 1.1, a natural question to ask is if one could determine necessary and
sufficient conditions on b,, for when a general g-nary sequence is well-defined.

4.3. Tesselations of the Unit Disk. We end with another candidate to study for a 2-dimensional
representation. Consider the tesselation of the unit disk (or upper half plane) by copies of the
standard fundamental domain of the modular group SLy(Z); see Figure 1. We start by assigning
a; = 1 to the standard fundamental domain, and then introduce an ordering (from the generators
S and 7" of the modular group), with our rule being one cannot use summands from cells that are
adjacent under generators of SLy(Z) (or their inverses).

-1 I i
e e A T 7_"‘\
T-is/ T8 /
/ \ /3718 51\ /ST‘ ST /
/ \ N R \\
ll Y ({ Y 1/ \l
5 4 -3 0 Li 1
2 223

FIGURE 1. Tesselation of the upper half plane (or unit disk) by copies of the stan-
dard fundamental domain of SLy(Z), which is generator by 7" sending z to z + 1
and S sending z to —1/z.

APPENDIX A. COMPUTING TERMS IN A g-NARY SEQUENCE

Here we compute terms in the g-nary sequence defined by setting b, = 3, a = 0, and A,, =

{0,2}. As with all g-nary sequences, we start with a 1 in Bin 1:
15



1 (A.1)

) =) —
Bin 1

The next term must be greater than 1, as the sequence must be monotonic, and a single bin cannot
contain two equal numbers. Since no positive number is legally decomposable by this sequence
yet (we have to use exactly two terms from any bin), the next term must be 2:

L2 _
| I—
Bin 1

(A.2)

We can now must examine numbers greater than 2, one by one, to see if they preserve uniqueness
when added as the third term of the sequence. We see that if we include 3 as the third term, the
legal decompositionsare 1 +2 = 3,1 + 3 = 4, and 2 + 3 = 5, which are all unique, so the third
term is 3:

1,2, 3. (A.3)
| I |
Bin 1
We now must start on Bin 2. Note that while the first term of Bin 2 must be at least as large
as 3, it can be equal to 3 because these terms are in separate bins. Note that we cannot use any
terms from Bin 2 after adding a single term, since we must use exactly two terms from any bin,
so the legal decompositions will remain the same as in the prevoius case. Importantly, this means
that we will add 3, the minimal possible number we can put into the bin (since uniqueness is not
in question, we simply pick the smallest number maintaining monotonicity):

1,2, 3, 3, _, _ (A4)
Bin 1 Bin 2
Now, suppose we fill in the remaining slots of Bin 2 with x and y:
1,2,3, 3,2, v . (A.5)

Bin 1 Bin 2

We can choose to use 3 and y or x and y from our bin. This changes the sum of a decomposition
by x — 3. Thus, x — 3 must be larger than a change that can be produced by using or not using
terms from Bin 1. Since Bin 1 can decompose numbers up to 5, z — 3 must be larger than 5. Thus,
r—3 =0,s0x =9. By similar logic, we find that y — 9 = 6, so y = 15. We now have a complete
Bin 2:

1,2,3, 3,9, 15 . (A.6)

Bin 1 Bin 2

We now repeat the logic applied to Bin 2 to Bins 3 and onward. The results of the computation
can be seen below for reference:

1,2,3, 3,0, 15, 15,45, 75 , 75,225,375 , ... a, b, c . (A.7)

Bin 1 Bin 2 Bin 3 Bin 4 Bin k+1
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