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LIMITING DISTRIBUTIONS IN GENERALIZED ZECKENDORF

DECOMPOSITIONS

ALEXANDRE GUEGANIC, GRANGER CARTY, YUJIN H. KIM, STEVEN J. MILLER, ALINA SHUBINA,

SHANNON SWEITZER, ERIC WINSOR, AND JIANING YANG

ABSTRACT. An equivalent definition of the Fibonacci numbers is that they are the unique sequence

such that every integer can be written uniquely as a sum of non-adjacent terms. We can view this

as we have bins of length 1, we can take at most one element from a bin, and if we choose an

element from a bin we cannot take one from a neighboring bin. We generalize to allowing bins of

varying length and restrictions as to how many elements may be used in a decomposition. We derive

conditions on when the resulting sequences have uniqueness of decomposition, and (similar to the

Fibonacci case) when the number of summands converges to a Gaussian; the main tool in the proofs

here is the Lyaponuv Central Limit Theorem.
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1. INTRODUCTION

1.1. Preliminaries. The Fibonacci numbers are normally defined by the recurrence Fn+1 = Fn +
Fn−1, with, of course, two initial conditions. If we take F1 = 1 and F2 = 2 one of many prop-

erties is Zeckendorf’s Theorem [Ze]: Every positive integer can be written uniquely as a sum of

non-adjacent Fibonacci numbers. Interestingly, this is an equivalent definition of the Fibonaccis;
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explicitly, they are the unique sequence of numbers such that every integer can be written as a sum

of non-adjacent elements of the set. This correspondence has led to numerous papers investigat-

ing connections between sequences and decomposition laws, and properties of the decompositions

(such as on average how many summands are needed, what is the distribution of gaps between

summands, what is the longest gap between summands). We often refer to these as generalized

Zeckendorf decompositions or legal decompositions for the given law; for 2019 we have

2019 = 1597 + 377 + 34 + 8 + 3 = F16 + F13 + F8 + F5 + F3.

There is now an extensive literature on the subject; see for example [Al, BBGILMT, BILMT,

Br1, Br2, CFHMN1, CFHMN2, CFHMNPX, Day, DDKMMV, KKMW, Fr, GTNP, Ha, Ho, HW,

Ke, KKMW, MW1, MW2, Ste1, Ste2]. Of these, the most relevant for our investigations below is

[CFHMN1]. There the authors generalize the Fibonacci decomposition law by adopting a binning

perspective. Explicitly, fix positive integers s and b. The (s, b)-Generacci sequence is defined as

follows. Consider a series of bins of length b. We can choose at most one element from a bin,

and if we choose an element we cannot take an element from any of the s bins immediately to

the left (and thus we also cannot take an element from any of the s bins immediately to the right).

The Fibonaccis correspond to the case s = b = 1, and choosing the appropriate initial conditions

always yields unique decomposition. For example, the (1, 2)-Generacci sequence begins

1, 2

Bin 1

, 3, 4

Bin 2

, 5, 8

Bin 3

, 11, 16

Bin 4

, 21, 32

Bin 5

, 43, 64

Bin 6

, 85, 128

Bin 7

, 171, 256

Bin 8

, . . . . (1.1)

In previous works all bins had the same length, and a legal decomposition could have at most

one element from a bin. We extend these results by now letting the nth bin have length bn ≥ 1,

for each n. Furthermore, we choose a set An ⊂ {0, 1, 2, . . . , bn}, which is the set of the number

of allowable elements we can choose from the nth bin in our decomposition. Finally, we select an

adjacency number a such that we cannot take elements from two different bins unless there are

at least a bins between them. Thus, if b8 = 5, A8 = {0, 1, 3}, and a = 2, then we may take

0, 1 or 3 elements from the eighth bin (which has length 5); if we do take an element from the

eighth bin, then we may not take any elements from the sixth, seventh, ninth or tenth bins in our

decomposition. We construct the sequence as follows. We set 1 as the first element of the first

bin (we choose 1 and not 0 to retain the possibility of having unique decompositions). If we have

constructed the first k elements, the next term in the sequence is the least integer which cannot be

obtained by our construction rule. We refer to these as a ({bn}, {An}, a)-Sequence; the Fibonacci

sequence is bn = 1, An = {0, 1} and a = 1.

1.2. Results. In Section 2 we study sequences with no adjacency condition (i.e., ({bn}, {An}, 0)-
Sequences), and exactly determine when these sequences give us unique decomposition of the

positive integers (see [CHHMPV] for conditions on when generalized Zeckendorf decompositions

have the minimal number of summands among all decompositions). In particular, we prove the

following.

Theorem 1.1. A ({bn}, {An}, 0)-Sequence has uniqueness of decomposition (i.e., there is a unique

legal decomposition for each positive integer) if and only if for every positive n we have

An ∈ {{0, 1} , {0, 1, . . . , bn − 1} , {0, 1, . . . , bn}} . (1.2)

In Section 3 we establish the following Lyapunov central limit type theorems associated to cer-

tain (bn, An, 0)-Sequences. These results are similar to those from earlier work on Zeckendorf
2



decompositions. Lekkerkerker [Le] proved that the average number of summands in a Zeckendorf

decomposition for integers in [Fn, Fn+1] tends to n
ϕ2+1

, where ϕ = 1+
√
5

2
; others (see for example

[KKMW]) extended this result to prove that as n → ∞, the distribution of the number of sum-

mands in the Zeckendorf decomposition for integers in [Fn, Fn+1] is Gaussian. In Section 3.1 we

prove a similar result for our sequences, using Lyapunov’s Central Limit Theorem (see Theorem

3.1).

Theorem 1.2. Consider a ({bn}, {0, 1}, 0)-Sequence. For an integer x, let Yn(x) = 1 if an element

of the nth bin appears in x’s decomposition, and Yn(x) = 0 otherwise; thus, if the largest summand

in x’s decomposition is from bin N then the total number of summands in this decomposition is

Y1(x) + · · ·+ YN(x). If
∑∞

n=1 1/bn diverges, then the distribution of the number of summands of

integers whose largest summand is in bin N converges to a Gaussian in the sense of Lyapunov as

N → ∞.

In Section 3.2, we relax our assumptions to allow multiple summands from each bin, and let An

vary with n; we examine how the conditions for Gaussianity change given this generalization in

the following two theorems.

Theorem 1.3. Consider a ({bn}, {A}, 0)-Sequence, where each An = A ⊆ {0, 1, . . . , b} with b ≤
min({bn}). Let {Yn} be the sequence of independent random variables representing the number of

summands chosen from each bin. Thus if the largest summand of the decomposition of an integer x
is from bin N , then the total number of summands in this decomposition is Y1(x) + · · ·+ YN(x). If

the growth of {bn} is slower than n
1

m−m
′

, where m = max(A) and m
′

= max(A−{m}), then the

distribution of the number of summands of integers whose largest summand is in bin N converges

to a Gaussian distribution in the Lyapunov sense as N → ∞.

Theorem 1.4. Consider a ({bn}, {An}, 0)-Sequence, where for all n ∈ N, bn = n, and An ∈
{{0, . . . , n − 1}, {0, . . . , n}}. Let {Yn} be the sequence of independent random variables rep-

resenting the number of summands chosen from each bin. For any integer choice of δ > 0, the

distribution of the number of summands satisfies the Lyapunov Central Limit Theorem, and thus

converges to a Gaussian distribution as N → ∞.

We conclude in Section 4 with a discussion of related lines for future research.

2. UNIQUENESS OF DECOMPOSITION WITH NO ADJACENCY CONDITION

We consider an arbitrary ({bn}, {An}, 0)-Sequence; as a = 0 there is no adjacency restriction.

We categorize what choices of the sequence An give uniqueness of decomposition for the resulting

generalized Zeckendorf decompositions. We usually require that 0 and 1 are in each An, i.e,

{0, 1} ⊂ An, to ensure that our original construction creates a sequence where every positive

integer has a decomposition.1 In Section 4.2, we consider a scenario where An = {0, 2}, but we

do not require our sequence to generate the positive integers.

To understand the proof of Theorem 1.1, we use the following intuition. In our construction of

a generalized Zeckendorf sequence, we ensure that each integer is generated by the construction

1If An does not contain 0, then any decomposition must include an element of bin n, which forces the sum of a

decomposition to be at least that of the minimal element of An, destroying our hopes of having either uniqueness or a

decomposition for every positive integer. Note that if An does not contain 1, zeroes can be added to bin n so that way

are able to pick any one particular element, though at the cost of uniqueness. For example, if we want to use just one

element of bin n, and An = {k, k + 1, . . . , b}, then we can place k − 1 zeros in bn.

3



“in order”, that is, if we look at the first k terms of our ({bn}, {An}, 0)-Sequence, we will see

that a consecutive block of positive integers is uniquely decomposable using these terms. When

we allow An to violate the conditions of Theorem 1.1, the first k terms of our sequence no longer

generate a consecutive block; the decomposable integers form multiple disconnected blocks. The

block containing 1 continues to grow as we add terms to our sequence and eventually meets another

block, causing a failure of uniqueness of decomposition for some integer.

Lemma 2.1. Fix a (bn, An, 0)−Sequence, and an integer n0 ≥ 2. Suppose that the set of integers

generated by the first n0 − 1 bins is the set {1, . . . , k}. Then all future terms of our sequence are

divisible by k + 1.

Proof. Note that the first term in bin n0 must be k + 1. The terms in the first n0 − 1 bins can form

any sum from 1 to k, and thus as we have no adjacency conditions, if we can represent a number x
using numbers from bin n0 and on, we can also obtain x+ 1, x+ 2, . . . , x+ k. Thus once we add

a multiple α(k + 1) of k + 1, there is no need to add α(k + 1) + β for any β ∈ {1, . . . , k}, and

therefore the next possible term in our sequence is (α + 1)(k + 1). Continuing we see that all the

numbers added are multiples of k + 1, proving the claim. �

For example, consider the sequence with bn = n+ 1, An = {0, 1}:

1, 2

Bin 1

, 3, 6, 9

Bin 2

, 12, 24, 36, 48

Bin 3

, 60, 120, . . .

Bin 4

, . . . . (2.1)

Letting n0 = 2 we find k = 11 (i.e., the first two bins allow us to obtain precisely the integers

from 1 to 11), and see that any legal combination of terms outside the first two bins is a multiple

of 12.

Proof of Theorem 1.1. We want to show that a ({bn}, {An}, 0)-Sequence has uniqueness of de-

composition if and only if all An are in the form of {0, 1} , {0, 1, . . . , bn − 1} or {0, 1, . . . , bn}.

To reduce the cases that we need to discuss, we assume that the first n0 − 1 bins have An’s that

satisfy the condition and the set of legal sums from these bins form the interval {1, . . . k}, where

each element has unique decomposition. Then by Lemma 2.1, we have that all following terms

of the sequence are divisible by k + 1. Therefore, we can take the subsequence of our original

sequence starting from the n0
th bin to be our new sequence, and divide every term by k + 1. For

notational convenience we denote An0
, bn0

of the original sequence as A1, b1 of the new sequence

which we now analyze.

We first show that if A1 satisfies one of the conditions for which we claim uniqueness holds,

then it yields intervals of integers, so by induction the first n bins of the sequence always yield an

interval for any n ∈ N. Since every element of this interval has unique decomposition, we can

prove the backwards direction of Theorem 1.1. Next we consider the case where the new sequence

has A1 outside of our stated set. We are then able to show that uniqueness fails in such sequences,

so only the options stated in Theorem 1.1 give uniqueness, therefore proving the forwards direction

of the theorem.

We now consider each case for uniqueness.
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Case I: A1 = {0, 1}. Fix b1 and let A1 = {0, 1}. Then the first b1 terms of our sequence are

1, 2, . . . , b1. The integers generated by this bin form the set S = {1, 2, . . . , b1}, which is an interval

of integers. Since A1 = {0, 1}, and each element of S must be written as a sum of elements in b1,

we clearly have unique decomposition.

Case II: A1 = {0, 1, . . . ,b1}. Fix b1 and let A1 = {0, 1, . . . , b1}. Then the first b1 terms of our

sequence are 1, 2, 4, . . . , 2b1−1. The integers generated by this bin form the set S = {1, 2, . . . , 2b1−
1}, which is an interval of integers. Because binary decomposition of the integers is unique, we

have unique decomposition.

Case III: A1 = {0, 1, . . . ,b1 − 1}. Fix b1 and let A1 = {0, 1, . . . , b1 − 1}. Then the first b1
terms of our sequence are 1, 2, 4, . . . , 2b1−1. The integers generated by this bin form the set S =
{1, 2, . . . , 2b1−2}, which is an interval of integers. We also note that this choice of A1 gives unique

decomposition, for the same reason as Case II.

We have now explicitly analyzed the cases we claim give uniqueness and have shown that they

yield intervals of integers. We are thus able to reduce to the cases where A1 is not in the given set.

We split non-uniqueness of these other choices of A1 into several cases.

Case I: {0, 1, . . . ,k} ⊂ A1, with k + 1 /∈ A1 and 2 ≤ k ≤ b1 − 2. 0 Because we have full

freedom with the first k elements of b1, we have 1, 2, 4, . . . , 2k as the first k + 1 elements of

this bin. Arguing as before, we also have that the (k + 2)nd element of our bin must be 2k+1 − 1.

We must use this term to form larger integers, so we are left with only k − 1 terms to work with,

meaning we can form all integers up to but not including 2k+1 − 1 + 2k − 2 + 1 = 2k+1 + 2k − 2.

Thus, this is the (k + 3)rd element of our sequence (it will not matter whether this is in the first or

second bin). We note that we can decompose 2k+1 + 2k − 1 as

(

2k+1 − 1
)

+ 2k = 2k+1 + 2k − 1 =
(

2k+1 + 2k − 2
)

+ 1, (2.2)

so uniqueness fails.

Case II: {0, 1} ( A1, 2 /∈ A1. Pick k := inf{x ∈ A1 : x > 1}. This is the case where there is

a gap in A1. Since we are only allowed to choose 0, 1 or at least k elements from a bin, the first k

terms of the sequence are going to be 1, . . . , k. Since k ≥ 3,
∑k

m=1m = k(k+1)
2

> k + 2, so the

(k + 1)st and the (k + 2)nd terms are k + 1 and k + 2, respectively.
5



If we have b1 ≥ k + 2 for the first bin, then


























k/2
∑

m=1

m+

k+2
∑

m=k/2+3

m =

k+1
∑

m=2

m =
k(k + 3)

2
when k is even

(k−1)/2
∑

m=1

m+

k+2
∑

m=(k+5)/2

m =

k
∑

m=2

m+ (k + 2) =
(k − 1)(k + 2)

2
+ k + 2 when k is odd,

(2.3)

and we lose uniqueness of decomposition. Therefore, we only need to consider the cases where

b1 = k or k + 1. As the two follow similarly, we only provide the details for the first.

Subcase (i): b1 = k. As b1 = k, the sum of terms from the first bin is
k(k+1)

2
. As argued before,

all multiples of k + 1 less than this sum, including k−1
2
(k + 1), can be expressed as a legal sum of

terms not in the first bin. Therefore, when k is odd,

k(k + 1)

2
=

k − 1

2
(k + 1) +

k + 1

2
, (2.4)

where k+1
2

is a term in the first bin. We lose uniqueness of decomposition. When k is even,
k(k+1)

2

is not in the sequence and the next term is
k(k+1)

2
+ 1. Then we can decompose (k + 1) + k(k+1)

2
two ways:

(k + 1) +
k(k + 1)

2
=

(

k(k + 1)

2
+ 1

)

+ k, (2.5)

where k + 1 and k are terms of the sequence. We lose uniqueness of decomposition.

Subcase (ii): b1 = k+ 1. A similar argument holds on losing uniqueness of decomposition.

�

3. GAUSSIANITY OF NUMBER OF SUMMANDS: a = 0

Now that we have exactly determined the decomposition rules which yield sequences giving

rise to unique decomposition of integers in the a = 0 case, we investigate the Gaussianity of the

distribution of the average number of summands in these decompositions. The following result

(see [Bi]) is a key ingredient in several proofs in this section.

Theorem 3.1 (Lyapunov Central Limit Theorem). Let {Y1, Y2, . . . } be a sequence of independent

random variables, each with finite expected value µi and variance σ2
i . Let s2n :=

∑n
i=1 σ

2
i . If there

exists a δ > 0 such that limn→∞
1

s2+δ
n

∑n
i=1 E[|Yi − µi|

2+δ] = 0, then 1
sn

∑n
i=1(Yi − µi) converges

in distribution to the standard normal as n → ∞.

We use the following standard notation below. We write f(x) = Θ(g(x)) if there exist positive

constants C1, C2 such that for all x sufficiently large we have

0 < C1g(x) ≤ f(x) ≤ C2g(x). (3.1)
6



3.1. At most one summand per bin. We begin by proving Theorem 1.2, which concerns se-

quences with variable bin sizes, An = {0, 1}, and no adjacency condition.

Proof of Theorem 1.2. For n < N , we have bn + 1 options for the nth bin: we have no element or

exactly one of the bn terms. Each of these choices is equally likely, and thus P (Yn = 0) = 1
bn+1

and P (Yn = 1) = bn
bn+1

. Therefore the expected value for Yn (and Y 2
n as Yn = Y 2

n ) is

µn := E[Yn] =
bn

bn + 1
= E[Y 2

n ], (3.2)

and its variance is

σ2
n := E[Y 2

n ]− E[Yn]
2 =

bn
bn + 1

−

(

bn
bn + 1

)2

=
bn

(bn + 1)2
. (3.3)

Let s2N :=
∑N−1

n=1 σ2
n =

∑N−1
n=1 bn/(bn + 1)2. We now apply the Lyapunov Central Limit Theorem.

Note

E[|Yn − µn|
2+δ] =

bn
bn + 1

(

1

bn + 1

)2+δ

+
1

bn + 1

(

bn
bn + 1

)2+δ

=
bn

(bn + 1)2
1 + b1+δ

n

(bn + 1)1+δ
<

bn
(bn + 1)2

. (3.4)

Define ρ2+δ
n := E[|Yn − µn|

2+δ] and eN :=
∑N

n=1 ρ
2+δ
n . Then

eN =
N−1
∑

n=1

E[|Yn − µn|
2+δ] <

N−1
∑

n=1

bn
(bn + 1)2

= s2N . (3.5)

We note that σ2
n is asymptotically similar to 1/bn (i.e., 1/bn ≪ σn ≪ 1/bn), so {s2N} converges if

and only if
∑N

n=1 1/bn converges.

Suppose
∑N

n=1 1/bn diverges. Then s2N diverges, and for all δ > 0

lim
N→∞

(

eN

s2+δ
N

)2

< lim
N→∞

(s2N)
2

(s2N)
2+δ

= lim
N→∞

1

(s2N )
δ

= 0 (3.6)

(the limit tends to zero as we are assuming the sum of the reciprocals of bn diverges, and thus

nn must tend to infinity). Thus, the Lyapunov condition is satisfied, and by Theorem 3.1 the

distribution of number of summands, 1
N

∑N
i=1 Yi, converges to a Gaussian in the sense of Lyapunov.

�

Remark 3.2. If
∑n

i=1 1/bi converges, then the denominator of the Lyapunov limit converges to a

finite limit. Furthermore, the numerator is nonzero, so the limit is nonzero. Thus, the Lyapunov

condition fails if
∑n

i=1 1/bi converges. While this does not prove that the distribution of the number

of summands does not approach a Gaussian distribution, it provides some evidence against this

behavior.
7



3.2. Multiple summands per bin. We now prove Theorem 1.3.

Proof of Theorem 1.3. Assume |A| ≥ 2. We begin in a similar manner as Theorem 1.2 by noting

that the probability of choosing exactly i summands from the nth bin is

P (Yn = i) =

(

bn
i

)

∑

t∈A
(

bn
t

) , (3.7)

and the expectated values of Yn and Y 2
n are

E[Yn] =

∑

t∈A t
(

bn
t

)

∑

t∈A
(

bn
t

) , E[Y 2
n ] =

∑

t∈A t2
(

bn
t

)

∑

t∈A
(

bn
t

) . (3.8)

Then

σ2
n = E[Y 2

n ]− E[Yn]
2

=

(
∑

t∈A t2
(

bn
t

)) (
∑

t∈A
(

bn
t

))

(
∑

t∈A
(

bn
t

))2 −

(
∑

t∈A t
(

bn
t

))2

(
∑

t∈A
(

bn
t

))2

=

∑

i,j∈A i2
(

bn
i

)(

bn
j

)

−
∑

i,j∈A ij
(

bn
i

)(

bn
j

)

(
∑

t∈A
(

bn
t

))2 . (3.9)

The terms where i = j cancel, so we are left with

σ2
n =

∑

i,j∈A,i6=j i
2
(

bn
i

)(

bn
j

)

−
∑

i,j∈A,i6=j ij
(

bn
i

)(

bn
j

)

(
∑

t∈A
(

bn
t

))2 =

∑

i,j∈A,i6=j(i− j)2
(

bn
i

)(

bn
j

)

2
(
∑

t∈A
(

bn
t

))2 . (3.10)

Define ρ2+δ
n := E

[

|Yn − µn|
2+δ

]

. We find that

ρ2+δ
n =

∑

i∈A

∣

∣

∣

∣

∣

i−

∑

t∈A t
(

bn
t

)

∑

t∈A
(

bn
t

)

∣

∣

∣

∣

∣

2+δ (

bn
i

)

∑

t∈A
(

bn
t

)

=

∑

i∈A
(

bn
i

)
∣

∣i
∑

t∈A
(

bn
t

)

−
∑

t∈A t
(

bn
t

)
∣

∣

2+δ

(
∑

t∈A
(

bn
t

))3+δ

=

∑

i∈A
(

bn
i

)
∣

∣

∑

t∈A (i− t)
(

bn
t

)
∣

∣

2+δ

(
∑

t∈A
(

bn
t

))3+δ
. (3.11)

We now find asymptotics for σ2
n and ρ2+δ

n . We first note that
(

bn
t

)

= Θ(btn); we do not need to have

a t subscript on the Θ relation as t ≤ b and b is fixed. Therefore
(

∑

t∈A

(

bn
t

)

)2

=

(

∑

t∈A
Θ
(

btn
)

)2

= Θ (bmn )
2 = Θ

(

b2mn
)

. (3.12)

We also note that

∑

i,j∈A,i6=j

(i− j)2
(

bn
i

)(

bn
j

)

=
∑

i,j∈A,i6=j

Θ
(

binb
j
n

)

= Θ
(

bm+m′

n

)

. (3.13)

8



Therefore

σ2
n =

Θ(bm+m
′

n )

Θ(b2mn )
= Θ

(

1

bm−m′

n

)

. (3.14)

Similarly, for ρ2+δ
n we have

ρ2+δ
n =

Θ(b
(2+δ)m
n bm

′

n )

Θ(b
(3+δ)m
n )

= Θ(bm
′−m

n ). (3.15)

Thus

Θ(ρ2+δ
n ) = Θ(σ2

n). (3.16)

Now let r2+δ
N :=

∑N
n=1 ρ

2+δ
n , and s2N :=

∑N
n=1 σ

2
n. We consider the Lyapunov limit limN→∞ r2+δ

N /s2+δ
N .

We have

lim
N→∞

(

r2+δ
N

s2+δ
N

)2

= lim
N→∞

(r2+δ
N )2

(s2N)
2+δ

= lim
N→∞

Θ(s2N)
2

(s2N)
2+δ

= lim
N→∞

1

Θ(s2N)
δ
. (3.17)

If the bin size bn grows slower than n
1

m−m
′

, then
∑N

n=1Θ
(

1/(bm−m
′

n )
)

→ ∞, and thus sN → ∞.

Thus, the above limit tends to 0 and the Lyapunov condition is satisfied for any δ > 0. So we

conclude that the distribution of the number of summands converges to a Gaussian distribution as

N → ∞. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. We will prove the case An = {0, . . . , n}, as the case An = {0, . . . , n− 1}
is similar.

Taking bn = n and An = {0, . . . , n} in (3.10) and (3.11), we have

ρ2+δ
n =

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2

σ2
n =

n

4
. (3.18)

From the Lyapunov CLT limit, we seek to show

lim
N→∞

∑

n≤N ρ2+δ
n

(
∑

n≤N σ2
n

)
2+δ

2

= 0, or equivalently lim
N→∞

(
∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

= ∞. (3.19)

Substituting gives, for fixed N ,

(
∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

=
cN2+δ

∑

n≤N

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2

, (3.20)

for a constant c > 0. It thus suffices to show that
∑

n≤N

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

N1+δ
)

, for

which it is enough to prove that
∑n

i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

nδ
)

. (3.21)
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We assume δ > 0 is even in this proof for ease of computations. Then

n
∑

i=0

(

n

i

)

|2i− n|2+δ =
n

∑

i=0

(

n

i

)

(n− 2i)2+δ

=
n

∑

i=0

(

n

i

) 2+δ
∑

j=0

(

2 + δ

j

)

(−1)jn2+δ−j(2i)j

=

2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

2jn2+δ−j
n

∑

i=0

(

n

i

)

ij . (3.22)

We wish to show that the n2+δ2n and n1+δ2n terms in (3.22) go to zero, which correspond to

the nj2n−j and nj−12n−j−1 terms in
∑n

i=0

(

n
i

)

ij . We compute
∑n

i=0

(

n
i

)

ij by noting that the sum

represents the number of ways to choose a subset A ⊂ {1, . . . , n} along with an ordered j-tuple

(a1, . . . , aj), where each ak ∈ A. Alternatively, we could pick our ordered j-tuple (b1, . . . , bj)
first, so that each bk ∈ {1, . . . , n}, and then choose a subset B ⊂ {1, . . . , n} that includes the

distinct elements of {b1, . . . , bj}. It is easily checked that these two counting schemes are the

same by showing that the set of possible (A, (a1, . . . , aj)) is in bijection with the set of possible

((b1, . . . , bj), B). Following our second scheme, we note that if all elements in our j-tuple are

distinct, then there are

n(n− 1) · · · (n− j + 1)2n−j (3.23)

ways to pick our tuple and subset. Similarly, if j − 1 elements in the j-tuple are distinct, then we

have
(

n

j − 1

)(

j − 1

1

)

j!

2
2n−j+1 = n(n− 1) · · · (n− j + 2)(j − 1)j2n−j (3.24)

ways to choose. In general, if j−k elements in our tuple are distinct, then there are O
(

nj−k2n−j+k
)

ways to choose our tuple and subset. Therefore, the expressions in (3.23) and (3.24) make the only

contributions to the nj−12n−j−1 term, while the only contribution to the nj2n−j term comes from

(3.23). The coefficient of the nj2n−j term is simply 1, and thus from (3.22), the coefficient of

n2+δ2n is

2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

= 0. (3.25)

Now, the coefficient of the nj−1 term from (3.23) is −
∑j−1

i=0 i2
n−j = −(j − 1)j2n−j−1. The

coefficient of the nj−1 term from (3.24) is (j − 1)j2n−j. We add these two expressions together to

obtain j2 − j as the coefficient of nj−12n−j−1 in
∑n

i=0

(

n
i

)

ij . Again, from (3.22), the coefficient of

n1+δ2n is

1

2

2+δ
∑

j=0

(−1)j(j2 − j)

(

2 + δ

j

)

. (3.26)

Note that the above is equal to

d2

dx2
(1− x)2+δ

∣

∣

∣

∣

x=1

= 0 (3.27)
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for δ > 0, and thus we are done. �

Conjecture 3.3. The Lyapunov condition holds for any for any An = {0, 1, . . . , ⌊n/k⌋}. Numerics

suggest this is true.

4. FUTURE DIRECTIONS (HIGHER DIMENSIONAL SEQUENCES)

4.1. Zeckendorf Involution Tree. It would be natural after studying bin decompositions to look

at 2-dimensional sequences that have similar properties; the Fibonacci quilt [CFHMN2, CFHMNPX]

is one such generalization. We could ask many questions, such as: What types of sequence con-

structions yield unique decomposition of positive integers? How do statistics such as average

number of summands change in the two-dimensional case? However, in many cases (including

the Fibonacci quilt), seemingly two-dimensional sequences reduce to one-dimensional relations,

such as conditions imposed on bins; see [CCGJMSY] for an example that is fundamentally not

one-dimensional. As an example, we construct a “two-dimensional” sequence of integers, which

we call the Zeckendorf tree, as follows.

Let a1,1 = 1. For a term ai,j , i ≥ 1, 1 ≤ j ≤ i, i corresponds to the level in the tree in which the

term is located, and j is the term’s position within the level. The ith level has precisely i terms. We

add an integer to the tree if it is not the sum of terms from nonadjacent levels. As 2 is not the sum

of terms of nonadjacent levels, we add it to the tree as the first term of the second level. Similarly,

3 is the second term of the second level. Next, 4 is the first term of the third level, but 5 can be

represented as 4 + 1, a sum of terms from nonadjacent levels. So 6 is the next term. We continue

this process indefinitely to construct the Zeckendorf tree.

Interestingly, the left diagonal of the tree 1, 2, 4, 10, 26, ... is the sequence of involutions on i
letters, also known as the Telephone Numbers. These diagonal terms are defined by the recurrence

relation a1 = 1, a2 = 2, and an = an−1 + (n− 1)an−2 for n > 2.

The recurrence relation for the terms of the tree is given by

ai,j =

{

ai,j−1 + ai−1,0, j > 1

ai−1,i−1 + ai,0, j = 1.
(4.1)

Using techniques similar to those of the proof of Zeckendorf’s theorem, one can show that

every positive integer n can expressed uniquely as a sum of terms from nonadjacent levels of the

Zeckendorf tree. However, while the recurrence relation for the terms of the tree seems to depend

both on i and j, the tree can be described one-dimensionally using a condition on bins: Let bi = i
be the size of the ith bin. Then the Zeckendorf tree sequence is the unique sequence constructed by

disallowing summands from adjacent bins.
11



Variations of the Zeckendorf tree retain their two-dimensional nature, but do not always retain

uniqueness of decomposition. For example, consider the following tree.

We begin the first row with the number 1 for uniqueness reasons. We construct the sequence

using the rule that a term is included if it cannot be composed of summands that are linked in an

upwards chain. For example, we do not include 30 because 30 = 22+6+2, all of which are linked

in an upwards chain.

Example: For 30, we have

However, we do include 38 because we cannot construct it using such a chain (note we cannot

get from 22 to 16). While this sequence cannot be reduced to a condition on bins, it does not have

uniqueness of decomposition (for example, 48 = 44 + 4 and 48 = 38 + 10). We can still prove

Gaussianity for the distribution of the number of summands; see [CCGJMSY] for details (as well

as extensions to d-dimensions).

4.2. Uniqueness of decomposition in g-nary sequences. We explore another generalization of

Zeckendorf sequences: a class of sequences that we call g-nary sequences. These sequences are

quite different from ({bn}, {An}, 0)-Sequences in that they are no longer constrained by the re-

quirement to represent every positive integer. We characterize g-nary sequences which give a

unique decomposition for any integer that has a decomposition. Theorems 4.1, 4.2, and 4.3 iden-

tify three distinct classes of g-nary sequences that preserve uniqueness in this way.

We construct a g-nary sequence by requiring that the summands are monotonically increasing

(starting at 1), setting An = {0, g} for some constant g, allowing a number to be in a given bin at

most once, and at each step taking the smallest number that preserves uniqueness. The resulting

g-nary sequence is well-defined if and only if after computing n numbers of the sequence, we

can find an (n+ 1)st number which satisfies the constraints of our construction (most importantly,

uniqueness). For simplicity we begin with g = 2, constant bin size 3 (bn = 3), and no adjacency

condition (a = 0). Let In be the set of all legally decomposable numbers using bins b1 through bn.

Let Gn,j be the gap between the (j − 1)st summand and j th summand in the nth bin, and Ωn be the

largest number legally representable using only elements from the first n bins. Then we have the

following.

Theorem 4.1. For bn = 3, An = {0, 2} and a = 0, the resulting g-nary sequence is well-defined

and we have Gn,j > Ωn−1.
12



Note that while the gap between adjacent summands in the bin can differ, to keep uniqueness

we need the gap between any two adjacent summands in bin n to be larger than the maximum

decomposition using all the bins n− 1.

Proof. We begin with the base case. The first two intervals are

1, 2, 3

Bin 1

, 3, x, y

Bin 2

, . . . (4.2)

with x < y; this is due to our requirement that the sequence is monotonically increasing and a

number is in a bin at most once. A straightforward calculation shows that the first combination of

x and y for which we retain uniqueness is x = 9 and y = 15. For more details on computing the

sequence see Appendix A.

Now suppose that we retain uniqueness with bins b1 through bk and for all n such that 1 ≤ n <
k + 1, Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with bins b1 through bk+1

and Gk+1,j > Ωk. We have

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (4.3)

Thus if Gk+1,j ≤ Ωk, ∃D1, D2 ∈ In, D2 > D1 such that

b+ c+D1 = a+ c +D2, (4.4)

because by construction D2−D1 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, if Gk+1,j >
Ωk, there does not exist a combination of D1, D2 such that a + b + D1 = a + c + D2, nor

b+ c+D1 = a + c+D2. Therefore, we keep uniqueness and

Gk+1,j > Ωk. (4.5)

By induction we keep uniqueness and we have Gn+1,j > Ωn for all n, so this g-nary sequence is

well-defined. �

Theorem 4.2. For bn = k, An = {0, g} for a pair of constants g ∈ {1, k − 1}, and a = 0, the

resulting g-nary sequence is well-defined and we have Gn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ak
Bin 1

, ak, ak + Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . ; (4.6)

this is due to the fact that if G2,j ≤ Ω1, ∃D1, D2 ∈ I1, D2 > D1 and p ∈ {2, 3, . . . , k − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.7)

because by construction D2 −D1 ∈ {1, 2, ...,Ω1}.

Now suppose that we retain uniqueness with bins b1 through bn and for all 1 < n < k + 1,

Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with bins b1 through bk+1 and

Gk+1,j > Ωk. We have

1, 2, . . . , ak
Bin 1

, ak, ak + Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . x1, x2, x3, . . . , xk

Bin k+1

.

(4.8)
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Thus if Gk+1,j ≤ Ωk, ∃D3, D4 ∈ In, D4 > D3 and p ∈ {2, 3, . . . , k − g + 1} such that

p+g−3
∑

i=p−1

xi + xp+g−1 +D3 =

p+g−1
∑

i=p

xi +D4, (4.9)

because by construction D4−D3 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, if Gk+1,j >
Ωk, it is clear that there does not exist a linear combination of D3, D4 and xi’s such that we lose

uniqueness.

By induction we keep uniqueness and we have Gn+1,j > Ωn for all n, so this class of g-nary

sequences is well-defined. �

Theorem 4.3. For bn = bl, An = {0, g} for some constant g < bl for all ℓ and a = 0, the resulting

g-nary sequence is well-defined and we have Gn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 + Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ; (4.10)

this is due to the fact that if G2,j ≤ Ω1, ∃D1, D2 ∈ I1, D2 > D1 and p ∈ {2, 3, . . . , b1 − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.11)

because by construction D2 −D1 ∈ {1, 2, ...,Ω1}.

Now suppose that we retain uniqueness with bins b1 through bn and for all 1 < n < k + 1,

Gn,j > Ωn−1. Now we seek to show that we retain uniqueness with bins b1 through bk+1 and

Gk+1,j > Ωk. We have

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 + Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ,

. . . , x1, x2, x3, . . . , xbk+1

Bin k+1

. (4.12)

Thus if Gk+1,j ≤ Ωk, then there exist D3, D4 ∈ In, D4 > D3 and q ∈ {2, 3, . . . , bk+1 − g + 1}
such that

q+g−3
∑

i=q−1

xi + xq+g−1 +D3 =

q+g−1
∑

i=q

xi +D4, (4.13)

because by construction D4−D3 ∈ {1, 2, ...,Ωk}. Thus we lose uniqueness. However, if Gk+1,j >
Ωk, it is clear that there does not exist a linear combination of D3, D4 and xi’s such that we lose

uniqueness. By induction we keep uniqueness and we have Gn+1,j > Ωn for all n, so this class of

g-nary sequences is well-defined. �

Remark 4.4. Note that Ωn+1 = Gn+1,j for the g-nary sequences discussed above.

Lemma 4.5. For bn = 3, An = {0, 2} and a = 0, there are 4n elements in In for all n.

Proof. We begin with the base case

1, 2, 3.

Bin 1

(4.14)
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There are 41 possible decompositions using only bin b1, yielding the numbers 0, 3, 4 and 5.

Suppose there are 4n elements in In. We will show that there are 4n+1 elements in In+1.

In+1 = 1 +
n+1
∑

i=1

(

n+ 1

i

)(

3

2

)i

= 4n+1. (4.15)

By induction, there are 4n elements in In for all n. More generally for different bi and g, we have

In = 1 +

n
∑

i=1

(

n

i

)(

bi
g

)i

. (4.16)

Thus, if each bi equals a constant b, then

In =

((

b

g

)

+ 1

)n

. (4.17)

�

In the spirit of Theorem 1.1, a natural question to ask is if one could determine necessary and

sufficient conditions on bn for when a general g-nary sequence is well-defined.

4.3. Tesselations of the Unit Disk. We end with another candidate to study for a 2-dimensional

representation. Consider the tesselation of the unit disk (or upper half plane) by copies of the

standard fundamental domain of the modular group SL2(Z); see Figure 1. We start by assigning

a1 = 1 to the standard fundamental domain, and then introduce an ordering (from the generators

S and T of the modular group), with our rule being one cannot use summands from cells that are

adjacent under generators of SL2(Z) (or their inverses).

FIGURE 1. Tesselation of the upper half plane (or unit disk) by copies of the stan-

dard fundamental domain of SL2(Z), which is generator by T sending z to z + 1
and S sending z to −1/z.

APPENDIX A. COMPUTING TERMS IN A g-NARY SEQUENCE

Here we compute terms in the g-nary sequence defined by setting bn = 3, a = 0, and An =
{0, 2}. As with all g-nary sequences, we start with a 1 in Bin 1:
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1, _, _

Bin 1

. (A.1)

The next term must be greater than 1, as the sequence must be monotonic, and a single bin cannot

contain two equal numbers. Since no positive number is legally decomposable by this sequence

yet (we have to use exactly two terms from any bin), the next term must be 2:

1, 2, _

Bin 1

. (A.2)

We can now must examine numbers greater than 2, one by one, to see if they preserve uniqueness

when added as the third term of the sequence. We see that if we include 3 as the third term, the

legal decompositions are 1 + 2 = 3, 1 + 3 = 4, and 2 + 3 = 5, which are all unique, so the third

term is 3:

1, 2, 3

Bin 1

. (A.3)

We now must start on Bin 2. Note that while the first term of Bin 2 must be at least as large

as 3, it can be equal to 3 because these terms are in separate bins. Note that we cannot use any

terms from Bin 2 after adding a single term, since we must use exactly two terms from any bin,

so the legal decompositions will remain the same as in the prevoius case. Importantly, this means

that we will add 3, the minimal possible number we can put into the bin (since uniqueness is not

in question, we simply pick the smallest number maintaining monotonicity):

1, 2, 3

Bin 1

, 3, _, _

Bin 2

. (A.4)

Now, suppose we fill in the remaining slots of Bin 2 with x and y:

1, 2, 3

Bin 1

, 3, x, y

Bin 2

. (A.5)

We can choose to use 3 and y or x and y from our bin. This changes the sum of a decomposition

by x − 3. Thus, x − 3 must be larger than a change that can be produced by using or not using

terms from Bin 1. Since Bin 1 can decompose numbers up to 5, x− 3 must be larger than 5. Thus,

x− 3 = 6, so x = 9. By similar logic, we find that y− 9 = 6, so y = 15. We now have a complete

Bin 2:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

. (A.6)

We now repeat the logic applied to Bin 2 to Bins 3 and onward. The results of the computation

can be seen below for reference:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (A.7)
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