
INFINITE FAMILIES OF PARTITIONS INTO MSTD SUBSETS

HÙNG VIÊ. T CHU, NOAH LUNTZLARA, STEVEN J. MILLER, AND LILY SHAO

ABSTRACT. A set A is MSTD (more-sum-than-difference) if |A + A| > |A − A|.
Though MSTD sets are rare, Martin and O’Bryant proved that there exists a positive
constant lower bound for the proportion of MSTD subsets of {1, 2, . . . , r} as r → ∞.
Asada et al. [AMMS] showed that there exists a positive constant lower bound for
the proportion of decompositions of {1, 2, . . . , r} into two MSTD subsets as r → ∞,
which implies the result of Martin and O’Bryant. However, the method is probabilistic
and does not give explicit decompositions.

Continuing this work, we provide an efficient method to partition {1, 2, . . . , r} (for
r sufficiently large) into k ≥ 2 MSTD subsets, positively answering a question raised
in [AMMS] as to whether or not this is possible for all such k. Next, let R be the
smallest integer such that for all r ≥ R, {1, 2, . . . , r} can be k-decomposed into MSTD
subsets, while {1, 2, . . . , R − 1} cannot be k-decomposed into MSTD subsets. We
establish rough lower and upper bounds for R and the gap between the two bounds
grows linearly with k. Lastly, we provide a sufficient condition on when there exists
a constant lower bound for the proportion of decompositions of {1, 2, . . . , r} into k
MSTD subsets as r → ∞. This condition offers an alternative proof of Theorem 1.4 in
[AMMS] and can be a promising approach to generalize the theorem.
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1. INTRODUCTION

1.1. Background. Given a set A of natural numbers, define A+A = {ai+aj |ai, aj ∈
A} and A − A = {ai − aj |ai, aj ∈ A}. Then A is said to be sum-dominant or MSTD
(more-sums-than-differences) if |A+A| > |A−A|, balanced if |A+A| = |A−A| and
difference-dominated if |A+A| < |A−A|; see [He, Ma, Na1, Na2, Ru1, Ru2, Ru3] for
some history and early results in the subject. Research on MSTD sets has made great
progress in the last twenty years. In particular, Martin and O’Bryant [MO] showed
that with the uniform model, where each element is chosen with probability 1/2, the
proportion of MSTD subsets of {1, 2, . . . , r} is uniformly bounded below by a positive
constant for large enough r. Zhao [Zh2] showed that the proportion converges as r →
∞ and improved the lower bound to 4.28 · 10−4. On the other hand, Hegarty and Miller
[HM] proved that with a sparse model, where each element is chosen with probability
p(r) such that r−1 = o(p(r)) and p(r) → 0 as r → ∞, almost all sets are difference-
dominated. These two results do not contradict each other since the probability of being
MSTD subsets depends on which model we are using. In proving a lower bound for the
proportion of MSTD subsets, Martin and O’Bryant used the probabilistic method and
did not give explicit constructions of MSTD sets. Later works gave explicit construction
of large families of MSTD sets: Miller et al. [MOS] gave a family of MSTD subsets
of {1, 2, . . . , r} with density Θ(1/r4)1, while Zhao [Zh1] gave a denser family with
density Θ(1/r), the current record.
In [AMMS], the authors used a technique introduced by Zhao [Zh2] to show that the

proportion of 2-decompositions (i.e., parititons into two sets) of {1, 2, . . . , r} that gives
two MSTD subsets is bounded below by a positive constant. This result is surprising
in view of the conventional method of constructing MSTD sets, which is to fix a fringe
pair (L,R) of two sets containing elements to be used in the fringe of the interval and
argue that all the middle elements appear with some positive probability. (The fringe
pair ensures that some of the largest and smallest differences are missed and that our set
is MSTD.) However, the result in [AMMS] seems to suggest that we can find two (or
more) disjoint fringe pairs (L1, R1) and (L2, R2) such that L1∪L2 and R1∪R2 cover a
full set of left and right elements of {1, 2, . . . , r} and (L1, R1), (L2, R2) are two fringe
pairs for two disjoint MSTD sets. Previous research has focused on each fringe pair
independently, so it is interesting to see that two (or more) fringe pairs can complement
each other nicely on both sides of {1, 2, . . . , r}. Motivated by that, we provide a method
to construct these fringe pairs and study partitions of {1, 2, . . . , r} into MSTD subsets
more thoroughly.

1[ILMZ2] showed that with slightly more work, the density is improved to Θ(1/r2).
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1.2. Notation and Main Results. Let [a, b] denote {ℓ ∈ Z|a ≤ ℓ ≤ b} and Ir denote
[1, r]. We use the idea of Pn sets described in [MOS]. A set A is said to be Pn if the
following conditions are met. Let a = minA and b = maxA. Then,

A + A ⊇ [2a + n, 2b− n] (1.1)
A− A ⊇ [(a− b) + n, (b− a)− n]. (1.2)

A set A is Pn with respect to sums (SPn) if condition (1.1) is satisfied, and Pn with
respect to differences (DPn) if condition (1.2) is satisfied. Next, let [a, b]2 denote {ℓ ∈
Z|a ≤ ℓ ≤ b and ℓ− a is even}. Finally, a 2−decomposition of a set S is A1 ∪A2 = S,
where A1 ∩ A2 = ∅. We use the word decomposition and partition interchangeably.
Our main result is:

Theorem 1.1. Let A1 and A2 be chosen such that both are MSTD and Pn for some
n ∈ N, and also

(1) (A1, A2) partition [1, 2n],

(2) Ai = Li ∪Ri with Li ⊆ [1, n] and Ri ⊆ [n+ 1, 2n] for i = 1, 2,

(3) [1, 4] ∪ {n} ⊆ L1 and {n + 1} ∪ [2n− 3, 2n] ⊆ R1, and

(4) [5, 7] ⊆ L2, [n+2, n+5] ⊆ L2+L2, [2n− 6, 2n− 4] ⊆ R2 and [3n− 3, 3n] ⊆
R2 +R2.

(See Remark 1.2 for an example of such sets A1 and A2).
Pick k ≥ n/2 + 2 andm ∈ N0. Set

R′
1 = R1 +m+ 4k + 4,

R′
2 = R2 +m+ 4k + 4,

O11 = {n+ 4} ∪ [n + 5, n+ 2k + 1]2 ∪ {n+ 2k + 2},

O12 = {n+m+ 2k + 3} ∪ [n+m+ 2k + 4, n+m+ 4k]2 ∪ {n+m+ 4k + 1},

O21 = [n+ 1, n+ 3] ∪ [n+ 6, n+ 2k]2 ∪ [n + 2k + 3, n+ 2k + 5],

O22 = [n+m+ 2k, n+m+ 2k + 2] ∪ [n+m+ 2k + 5, n+m+ 4k − 1]2

∪ [n+m+ 4k + 2, n+m+ 4k + 4].

LetM1 ⊆ [n + 2k + 6, n +m + 2k − 1] such that withinM1, there exists a sequence
of pairs of consecutive elements, where consecutive pairs in the sequence are not more
than 2k − 1 apart and the sequence starts with a pair in [n + 2k + 6, n + 4k + 1] and
ends with a pair in [n+m+4, n+m+2k−1]. LetM2 ⊆ [n+2k+6, n+m+2k−1]
such that withinM2, there exists a sequence of triplets of consecutive elements, where
consecutive triplets in the sequence are not more than 2k apart and the sequence starts
with a triplet in [n+2k+6, n+4k+5] and ends with a triplet in [n+m,n+m+2k−1].
Also,M1∩M2 = ∅ andM1∪M2 = [n+2k+6, n+m+2k−1]. SetR′

i = Ri+m+4k+4
for i ∈ {1, 2}. Then

A′
1 = L1 ∪ O11 ∪M1 ∪O12 ∪R′

1

A′
2 = L2 ∪ O21 ∪M2 ∪O22 ∪R′

2
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are both MSTD and partition [1, 2n+m+ 4k + 4].

Remark 1.2. To show that our family is not empty, we need to show the existence of at
least one pair of A1 and A2. Note that our technique is similar to many other papers:
[He, MO, MOS, MPR, PW] in the sense that we need a good fringe to start with. A
random search yielded

A1 = {1, 2, 3, 4, 8, 9, 11, 13, 14, 15, 20, 21, 26, 27, 28, 31, 33, 37, 38, 39, 40},

A2 = {5, 6, 7, 10, 12, 16, 17, 18, 19, 22, 23, 24, 25, 29, 30, 32, 34, 35, 36}.

We have
A1 + A1 = [2, 80]

A1 − A1 = [−39, 39]\{±21}
and

A2 + A2 = [10, 72]

A2 − A2 = [−31, 31]\{±21}.

Clearly, both A1 and A2 are P20. It can be easily checked that all conditions mentioned
in Theorem 1.1 are satisfied. These pairs of sets A1 and A2 are not hard for computers
to find: for n = 20, computer search shows that there are about 48 such pairs.

Remark 1.3. Our method of decomposing [1, r] into two MSTD sets allows a lot of
freedom in choosing the middle elements. This is because once the fringe elements are
chosen, the conditions placed onM1 andM2 are relatively weak.

Next, we answer positively question (3) in [AMMS], where the authors ask: Can we
decompose {1, 2, . . . , r} into three sets which are MSTD? For any finite number k, is
there a sufficiently large r for which there is a k-decomposition into MSTD sets?

Theorem 1.4. Let k ∈ N≥2 be chosen. There exists the smallest R ∈ N such that
for all r ≥ R, [1, r] can be k-decomposed into MSTD subsets, while IR−1 cannot be
k-decomposed into MSTD subsets.
In particular, we find some rough bounds2:
(1) when k is even, 8k ≤ R ≤ 10k,
(2) when k ≥ 5 odd, 8k ≤ R ≤ 20k − 14, and
(3) when k = 3, 24 ≤ R ≤ 24T + 24,

where T = min{maxA : |A+ A| − |A−A| ≥ 10|A|.}.

We prove Theorem 1.4 using sets constructed by the base expansion method3 that
helps generate an infinite family of MSTD sets from a givenMSTD sets. The method is
a very powerful tool and has been used extensively in literature including [He],[ILMZ1]
and [ILMZ2]. However, the base expansion method turns out to be inefficient in terms
of our MSTD sets’ cardinality. Hence, we present a second, more efficient approach
by using a particular family of MSTD sets. We present both proofs since they are of
independent interest: the first proof is less technical but less efficient. Also, the second
proof cannot resolve the case k = 3 while the first can.

2We make no attempt to optimize these bounds. Finer analysis may give us better bounds.
3We can generate an infinite family of MSTD sets from a given MSTD set through the base expansion

method. Let A be an MSTD set, and let Ak,m = {
∑k

i=1
aim

i−1 : ai ∈ A}. If m is sufficiently large,
then |Ak,m ±Ak,m| = |A±A|k and |Ak,m| = |A|k.
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Lastly, we give a sufficient condition on when there exists a positive constant lower
bound for the proportion of k-decompositions of [1, r] into MSTD subsets. The con-
dition offers an alternative proof of Theorem 1.4 in [AMMS] (k = 2). Due to the
condition, we make the following conjecture.

Conjecture 1.5. For any finite k ≥ 2, the proportion of k-decompositions into MSTD
subsets is bounded below by a positive constant.

The outline of the paper is as follows. In section 2, we provide an efficient method to
decompose [1, r] into two MSTD subsets; section 3 presents two method to decompose
[1, r] into k ≥ 3MSTD subsets; Appendix B is devoted to establishing the bounds men-
tioned in Theorem 1.4 and the sufficient condition for a positive constant lower bound
of the proportion of k−decompositions into MSTD subsets in Appendix A. Appendix
D contains many examples illustrating our lemmas and theorems.

2. EXPLICIT 2-DECOMPOSITION INTO MSTD SUBSETS

In this section, we show how we can decompose [1, r] into two MSTD subsets. We
believe that the method can be applied to the case of k-decompositions, but the proof
will be much more technical. However, for k ≥ 4, we have a way to decompose [1, r]
into kMSTD subsets by simply using 2−decompositions, which will be discussed later.

2.1. Explicit Construction of Infinite Families of MSTD sets. The following lemma
is useful in proving many of our results.

Lemma 2.1. Let A = L∪R be an MSTD, Pn set where L ⊆ [1, n] andR ⊆ [n+1, 2n].
Form A′ = L∪M ∪R′, whereM ⊆ [n+1, n+m] and R′ = R+m for somem ∈ N0.
If A′ is a SPn set, then A′ is MSTD.

Proof. We prove that A′ is MSTD by showing that the increase in the number of differ-
ences is at most the increase in the number of sums. As shown in the proof of Lemma
2.1 in [MOS], the number of new added sums is 2m. Because R′ = R +m, all differ-
ences in [−(2n+m− 1),−(n+m)] can be paired up with differences in [1− 2n,−n]
from L− R and differences in [n +m, 2n +m− 1] can be paired up with differences
in [n, 2n − 1] from R − L. Because the set A is Pn, A contains all differences in
[−n+ 1, n− 1]. In the worst scenario (in terms of the increase in the number of differ-
ences), A′ − A′ contains all differences in [−(n + m) + 1, (n + m) − 1]. So, at most
|A′ −A′| − |A−A| = |[−(n+m) + 1, (n+m)− 1]| − |[−n+ 1, n− 1]| = 2m. This
completes our proof. �

Lemma 2.2. Let an MSTD, Pn set A be chosen, where A = L ∪ R for L ⊆ [1, n]
and R ⊆ [n + 1, 2n]. Additionally, L and R must satisfy the following conditions:
[1, 4]∪{n} ⊆ L and {n+1}∪ [2n−3, 2n] ⊆ R. Pick k ≥ n/2+2 andm ∈ N0. Form

O1 = {n+ 4} ∪ [n+ 5, n+ 2k + 1]2 ∪ {n+ 2k + 2}

O2 = {n+m+ 2k + 3} ∪ [n +m+ 2k + 4, n+m+ 4k]2 ∪ {n +m+ 4k + 1}.

LetM ⊆ [n + 2k + 3, n+m+ 2k + 2] be such that withinM , there exists a sequence
of pairs of consecutive elements, where consecutive pairs in the sequence are not more
than 2k − 1 apart and the sequence starts with a pair in [n + 2k + 3, n + 4k + 1] and
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ends with a pair in [n+m+ 4, n+m+ 2k+ 2]. Denote A′ = L∪O1 ∪M ∪O2 ∪R′,
where R′ = R +m+ 4k + 4. Then A′ is MSTD.

Proof. We know that A′ ⊆ [2, 4n+2m+8k+8]. To prove that A′ is MSTD, it suffices
to prove thatA′ is S−Pn. In particular, we want to show that [n+2, 3n+2m+8k+8] ⊆
A′+A′. Due to symmetry4, it suffices to show that [n+2, 2n+m+4k+5] ⊆ A′+A′.
We have:

[n + 2, n+ 4] ⊆ A′ + A′ (because 2, 3, 4, n ∈ A′)

(1 +O1) ∪ (2 +O1) = [n+ 5, n+ 2k + 4]

O1 +O1 = [2n+ 8, 2n+ 4k + 4].

Since n + 2k + 4 ≥ 2n + 8, [n + 2, 2n + 4k + 4] ⊆ A′ + A′. Consider M + O1. In
the worst scenario (in terms of getting necessary sums), the two smallest elements of
M are n + 4k and n + 4k + 1, while the two largest elements of M are n + m + 4
and n + m + 5. So, M + O1 ⊇ [2n + 4k + 4, 2n + m + 2k + 7]. We complete the
proof by showing that [2n + m + 2k + 8, 2n + m + 4k + 5] ⊆ A′ + A′. We have:
((n + 4) + O2) ∪ ((n + 5) + O2) = [2n +m + 2k + 7, 2n + m + 4k + 6]. So, A′ is
S − Pn and thus, MSTD by Lemma 1.1. �

Lemma 2.3. Let an MSTD, Pn set A be chosen, where A = L ∪ R for L ⊆ [1, n]
and R ⊆ [n + 1, 2n]. Additionally, L and R must satisfy the following conditions:
[5, 7] ⊆ L, [n + 2, n + 5] ⊆ L + L, [2n − 6, 2n− 4] ⊆ R and [3n − 3, 3n] ⊆ R + R.
Pick k ≥ ⌊n/2⌋ andm ∈ N0. Form

O1 = [n+ 1, n+ 3] ∪ [n+ 6, n+ 2k]2 ∪ [n + 2k + 3, n+ 2k + 5],

O2 = [n+m+ 2k, n+m+ 2k + 2] ∪ [n+m+ 2k + 5, n+m+ 4k − 1]2

∪ [n+m+ 4k + 2, n+m+ 4k + 4].

Let M ⊆ [n + 2k + 6, n + m + 2k − 1] such that within M , there exists a sequence
of triplets of consecutive elements, where consecutive triplets in the sequence are not
more than 2k apart and the sequence starts with a triplet in [n + 2k + 6, n + 4k + 5]
and ends with a triplet in [n+m,n+m+2k−1]. DenoteA′ = L∪O1∪M ∪O2∪R′,
where R′ = R +m+ 4k + 4. Then A′ is MSTD.

Proof. Similar as above, it suffices to prove that [n+ 2, 2n+m+ 4k + 5] ⊆ A′ + A′.5
We have

[n+ 2, n+ 5] ⊆ L+ L

(5 +O1) ∪ (6 +O1) ∪ (7 +O1) = [n + 6, n+ 2k + 12]

O1 +O1 = [2n+ 2, 2n+ 4k + 10].

4Due to symmetry,A′ has the same structure as 2n+m+4k+5−A′. If [n+2, 2n+m+4k+5] ⊆
A′ + A′, then [n + 2, 2n + m + 4k + 5] ⊆ (2n + m + 4k + 5 − A′) + (2n + m + 4k + 5 − A′) =
4n+ 2m+ 8k + 10− (A′ +A′) and so, [2n+m+ 4k + 5, 3n+ 2m+ 8k + 8] ⊆ A′ +A′.

5Due to symmetry,A′ has the same structure as 2n+m+4k+5−A′. If [n+2, 2n+m+4k+5] ⊆
A′ + A′, then [n + 2, 2n + m + 4k + 5] ⊆ (2n + m + 4k + 5 − A′) + (2n + m + 4k + 5 − A′) =
4n+ 2m+ 8k + 10− (A′ +A′) and so, [2n+m+ 4k + 5, 3n+ 2m+ 8k + 8] ⊆ A′ +A′
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Because n + 2k + 12 ≥ 2n + 2, A′ + A′ contains [n + 2, 2n + 4k + 10]. Consider
M + O1. In the worst scenario (in terms of getting sums), the smallest elements in
M are n + 4k + 3, n + 4k + 4 and n + 4k + 5, while the largest elements in M are
n +m,n +m+ 1 and n +m+ 2. ThenM + O1 ⊇ [2n + 4k + 4, 2n+m+ 2k + 7].
We only need to show that [2n+m+ 2k + 8, 2n+m+ 4k + 5] ⊆ A′ + A′. We have:
((n+1)+O2)∪ ((n+2)+O2)∪ ((n+3)+O2) = [2n+m+2k+1, 2n+m+4k+7].
This completes our proof that A′ is MSTD. �

Remark 2.4. In order that our families of MSTD sets are nonempty, we must first find
such a set A satisfying the conditions mentioned in each of the lemmas. For Lemma 2.2,
an example of our setA isA1 = {1, 2, 3, 4, 7, 10, 12, 13, 14, 15, 20, 21, 23, 24}. We have

A1 + A1 = [2, 48],

A1 −A1 = [−23, 23]\{±15}.

Clearly,A1 is P12 andA1 satisfies all conditions required by Lemma 2.2. For Lemma 2.3,
an example of our set A is A2 = {5, 6, 7, 9, 11, 16, 17, 18, 19, 22, 23, 24, 25, 29, 31, 33,
34, 35, 36}. We have:

A2 + A2 = [10, 72]\{19},

A2 −A2 = [−31, 31]\{±21}.

Clearly, A2 is P20 and A2 satisfies all conditions required by Lemma 2.3.

2.2. Explicit Partitions into Two MSTD Sets. We are now ready to prove Theo-
rem 1.1. The proof follows from Lemmas 2.2 and 2.3.

Proof. As indicated in Remark 1.2, there exists pairs of sets A1 and A2 such that all
conditions in Theorem 1.1 are satisfied. Pick k ≥ n/2 + 2 and m ∈ N0. Set R′

i =
Ri +m+ 4k + 4 for i = 1, 2. Form
O11 = {n+ 4} ∪ [n + 5, n+ 2k + 1]2 ∪ {n+ 2k + 2},

O12 = {n+m+ 2k + 3} ∪ [n+m+ 2k + 4, n+m+ 4k]2 ∪ {n+m+ 4k + 1},

O21 = [n+ 1, n+ 3] ∪ [n+ 6, n+ 2k]2 ∪ [n + 2k + 3, n+ 2k + 5],

O22 = [n+m+ 2k, n+m+ 2k + 2] ∪ [n+m+ 2k + 5, n+m+ 4k − 1]2

∪ [n+m+ 4k + 2, n+m+ 4k + 4].

We see thatO11∪O21 = [n+1, n+2k+5] andO12∪O22 = [n+m+2k, n+m+4k+4].
By Lemma 2.2 and Lemma 2.3, we know that A′

1 = L1 ∪ O11 ∪ M1 ∪ O12 ∪ R′
1 and

A′
2 = L2∪O21∪M2∪O22∪R

′
2 are MSTD sets and (A′

1, A
′
2) partition [1, 2n+m+4k+4],

given that three following conditions are satisfied:
(1) M1 ⊆ [n+2k+6, n+m+2k−1] such that withinM1, there exists a sequence of

pairs of consecutive elements, where consecutive pairs in the sequence are not
more than 2k−1 apart and the sequence starts with a pair in [n+2k+6, n+4k+1]
and ends with a pair in [n +m+ 4, n+m+ 2k − 1],

(2) M2 ⊆ [n+2k+6, n+m+2k−1] such that withinM2, there exists a sequence
of triplets of consecutive elements, where consecutive triplets in the sequence
are not more than 2k apart and the sequence starts with a triplet in [n + 2k +
6, n+ 4k + 5] and ends with a triplet in [n+m,n +m+ 2k − 1], and
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(3) M1 ∪M2 = [n+ 2k + 6, n+m+ 2k − 1] andM1 ∩M2 = ∅.
This completes the proof of the theorem. �

Remark 2.5. Observe that our fringe pairs in this case are (L1 ∪ O11, R
′
1 ∪ O12) and

(L2 ∪ O21, R
′
2 ∪ O22). Though disjoint, the union of the two fringe pairs gives us a full

set of left and right elements of [1, 2n + m + 4k + 4] and each is a fringe pair for a
MSTD set.

3. EXPLICIT k-DECOMPOSITION INTO MSTD SUBSETS

3.1. Overview. Theorem 1.1 gives us a way to partition [1, r] into two MSTD subsets.
Due to linear transformations, we can partition any (long enough) arithmetic progres-
sions into two MSTD subsets. If we can find an MSTD subset S of [1, r] such that
[1, r]\S is a union of k arithmetic progressions ∪k

j=1Ij , then we can partition [1, r] into
1 + 2k MSTD subsets (because each Ij can be partitioned into two MSTD subsets).
This is the central idea in both methods we use to k-decompose Ir into MSTD subsets
presented later.

3.2. Base Expansion Method (k ≥ 3). We explicitly provide a way to k-decompose
[1, r] into MSTD subsets. First, we need to define a “strong MSTD” set. We call a
set S a 10−strong MSTD set if |S + S| − |S − S| ≥ 10|S|.6 This type of MSTD
set does exist. For example, using the base expansion method, we can construct them.
Using S̃ = {0, 2, 3, 4, 7, 11, 12, 14}, by the method, we can construct S such that |S| =
|S̃|2 = 84 = 4096, |S + S| = 264 = 456976 and |S − S| = 254 = 390625; then,
|S + S| − |S − S| > 10|S|.

Lemma 3.1. If S is a 10−strong MSTD set, then S ∪ {a1, a2, a3, a4}, where a4 > a3 >
a2 > a1 > maxS, is a MSTD set. Similarly, S ∪ {b1, b2, b3, b4}, where b1 < b2 < b3 <
b4 < minS, is also a MSTD set.

Proof. We want to show that S∪{a1, a2, a3, a4} is MSTD. Adding one more element to
a set S produces at least 0 new sums and at most 2|S| new differences. So, |(S∪{a1})+
(S∪{a1})|−|(S∪{a1})−(S∪{a1})| ≥ 10|S|+0−2|S| = 8|S|. So, S∪{a1} is MSTD.
Define S1 = S ∪ {a1} with |S1| = |S| + 1. Similarly, |(S1 ∪ {a2}) + (S1 ∪ {a2})| −
|(S1∪{a2})− (S1 ∪{a2})| ≥ 8|S|+0− 2|S1| = 8|S| − 2(|S|+1) = 6|S| − 2. Again,
S1∪{a2} is MSTD. Repeating this argument, we can show that S4 = S∪{a1, a2, a3, a4}
is a MSTD set. The proof is similar for S ∪ {b1, b2, b3, b4}. �

Remark 3.2. The following fact will be useful later: An arithmetic progression of
integers (assumed long enough) can contain an arbitrarily large number of disjoint
10−strong MSTD sets.

With the above remark, we are ready to prove the following.

Lemma 3.3. There existsN ∈ N such that for all r ≥ N , Ir = [1, r] can be partitioned
into exactly three MSTD subsets.

6We pick the number 10 just to be safe for our later arguments. We make no attempt to provide an
efficient way to decompose Ir into k MSTD subsets.
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Proof. We use a pair of fringe elements described in [MO]: L = {1, 3, 4, 8, 9, 10, 11}
and R = {r− 10, r− 9, r− 8, r− 7, r− 5, r− 2, r− 1, r}. We see that Ir\(L ∪R) =
{2, 5, 6, 7} ∪ [12, r − 11] ∪ {r − 3, r − 4, r − 6}. We have

L+ L = [2, 22] \ {3}

L+R = [r − 9, r + 11]

R +R = [2r − 20, 2r].

ConsiderK = {ℓ | 12 ≤ ℓ ≤ r− 11, ℓ is even} ∪ {r− 11}. We have ({11} ∪K ∪ {r−
10})+({11}∪K∪{r−10}) = [22, 2r−20]. So, (L∪K∪R)+(L∪K∪R) = [2, 2r]\{3}.
Because ±(R−L) lacks ±(r− 7), L∪K ∪R is a MSTD set. It is not hard to see that
adding numbers in [12, r − 11]\K to L ∪K ∪ R still gives a MSTD set.
Now, [12, r − 11]\K contains an arithmetic progression of consecutive odd inte-

gers. We can make this arithmetic progression arbitrarily large by increasing r. By
Remark 3.2, this arithmetic progression can contain two disjoint 10−strong MSTD
sets, called S1 and S2. We write [12, r − 11]\K = S1 ∪ S2 ∪ M . By Lemma 3.1,
S∗
1 = S1 ∪{2, 5, 6, 7} and S∗

2 = S2 ∪{r− 6, r− 4, r− 3} are both MSTD. By what we
say above,K∗ = M ∪L∪K ∪R is also MSTD. Because S∗

1 ∪S∗
2 ∪K∗ = Ir, we have

completed the proof. �

Proof of Theorem 1.4. Let k ≥ 2 be chosen. Write k = 2m1 + 3m2 for some m1 and
m2 ∈ N0. We can find N ∈ N such that IN = [1, N ] =

(
[1, k1] ∪ [k1 + 1, k2] ∪ · · · ∪

[km1−1 +1, km1
]
)
∪
(
[km1

+1, km1+1]∪ [km1+1+1, km1+2]∪ · · · ∪ [km1+m2−1+1, N ]
)
.

Each of the first m1 intervals are large enough to be partitioned into two MSTD sets
while the next m2 intervals are large enough to be partitioned into three MSTD sets.
So, IN can be partitioned in exactly k MSTD sets. This completes our proof. �

3.3. Efficient Methods (k ≥ 4).

3.3.1. Notations and Preliminary Results. We introduce a notation to write a set; this
notation was first used by Spohn [Sp]. Given a set S = {a1, a2, . . . , an}, we arrange its
elements in increasing order and find the differences between two consecutive numbers
to form a sequence. Suppose that a1 < a2 < · · · < an, then our sequence is a2 −
a1, a3 − a2, a4 − a3, . . . , an − an−1. Then we represent

S = (a1|a2 − a1, a3 − a2, a4 − a3, . . . , an − an−1).

Take S = {3, 2, 5, 10, 9}, for example. We arrange the elements in the increasing order
to have 2, 3, 5, 9, 10 and form a sequence by looking at the difference between two
consecutive numbers: 1, 2, 4, 1. So, we write S = (2|1, 2, 4, 1). All information about a
set is preserved in this notation.
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Lemma 3.4. The following are also MSTD sets for a givenm ∈ N:

(1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1, 2),

(1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1, 2, 1),

(1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1).

We present the proof in Appendix C.

3.3.2. Efficient Methods (k ≥ 4). In our decomposition of Ir into k MSTD subsets for
k ≥ 3, we use the base expansion method. However, the base expansion method is
inefficient in terms of cardinalities of our sets. Is there a more efficient way to decom-
pose? In answering this question, we present a method of decomposing Ir into kMSTD
subsets (k ≥ 4) that helps reduce the cardinalities of sets. We use the infinite family of
MSTD sets in Lemma 3.4 to achieve this.
We want to decompose Ir for sufficiently large r into k (k ≥ 4) MSTD subsets. If

k is even, we can simply write Ir as the union of k/2 arithmetic progressions, each of
which, by Theorem 1.1, can be decomposed into two MSTD subsets in an efficient way.
If k ≥ 5 is odd, then we consider r mod 4. If r ≡ 1 mod 4, write r = 4m + 13 for
somem ∈ N and consider (1|1, 1, 2, 1, 4 . . . , 4

︸ ︷︷ ︸

m-times

, 3, 1, 1, 2). We have

Ir\{1, 2, 3, 5, 6, 10, 14, 18, 22, 26, . . . , 6 + 4m, 9 + 4m, 10 + 4m, 11 + 4m, 13 + 4m}

= {4, 8, 12, 16, 20, . . . , 8 + 4m, 12 + 4m} ∪ {7, 9, 11, 13, . . . , 7 + 4m}.

Notice that both {4, 8, 12, 16, 20, . . . , 8+ 4m, 12+ 4m} and {7, 9, 11, 13, . . . , 7+ 4m}
are arithmetic progressions and each of these sets can be decomposed into an even num-
ber of MSTD sets. So, our original sets Ir = [1, 13 + 4m] can be decomposed into ex-
actly kMSTD sets. If r ≡ 2mod 4, write r = 4m+14 and consider (1|1, 1, 2, 1, 4 . . . , 4

︸ ︷︷ ︸

m-times

,

3, 1, 1, 2, 1). If r ≡ 3mod 4, write r = 4m+11 and consider (1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1).

If r ≡ 0 mod 4, write r = 4m+12 and consider (2|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1). Using the

same argument as above, we can show that Ir can be decomposed into exactly kMSTD
sets. We prove the upper and lower bounds for R in Appendix B.

4. FUTURE WORK

We end with several additional questions to pursue.
(1) In [AMMS], the authors show that there is a positive constant lower bound

for the percentage of decompositions into two MSTD sets? Is there a positive
constant lower bound for the percentage of decompositions into k MSTD sets
for k ≥ 3? In other words, is Conjecture 1.5 true? A method is to find a family
of sets (Ai)

k
i=1 that satisfies the condition in Theorem A.4.
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(2) Is there a method of k-decomposition that is of high density, for exampleΘ(1/rc)
for small c?

(3) For the 3−decomposition, we use the base expansion method, which is ineffi-
cient. Can we find an efficient way to decompose [1, r] into threeMSTD subsets.

(4) Can we find some better bounds for R in Theorem 1.4? There is a yawning gap
between our upper and lower bounds.

(5) Suppose that Ir can be decomposed into k MSTD subsets. Can we conclude
that Ir+1 can be decomposed into k MSTD subsets?

APPENDIX A. SUFFICIENT CONDITION ON CONSTANT LOWER BOUND

Lemma A.1. Consider S ⊆ {0, 1, . . . , r − 1} and S = L ∪M ∪ R. Fix L ⊆ [0, ℓ− 1]
and R ⊆ [r − ℓ, r − 1] for some fixed ℓ. LetM be a uniformly randomly chosen subset
of [ℓ, r − ℓ− 1]. Then for any ε > 0, there exists sufficiently large r such that

P([2ℓ− 1, 2r − 2ℓ− 1] ⊆ S + S) ≥ 1− 6(2−|L| + 2−|R|)− ε. (A.1)

Proof. We write
P([2ℓ− 1, 2r − 2ℓ− 1] ⊆ S + S) = 1− P([2ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S)

= 1− P([2ℓ− 1, r − ℓ− 1] ∪ [r + ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S

or P([r − ℓ, r + ℓ− 2] 6⊆ S + S)

≥ 1− P([2ℓ− 1, r − ℓ− 1] ∪ [r + ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S

− P([r − ℓ, r + ℓ− 2] 6⊆ S + S).

(A.2)

By Proposition 8 in [MO],

P([2ℓ− 1, r− ℓ− 1] ∪ [r + ℓ− 1, 2r− 2ℓ− 1] 6⊆ S + S) ≤ 6(2−|L| + 2−|R|). (A.3)
We find a upper bound for

P([r − ℓ, r + ℓ− 2] 6⊆ S + S) ≤ P([r − ℓ, r + ℓ− 2] 6⊆ M +M). (A.4)

because [r−2ℓ, r−2] 6⊆ S+S implies [r− ℓ, r+ ℓ−2] 6⊆ M +M . By a linear shift of
ℓ, we can considerM a subset of [0, r−2ℓ−1] and P([r−ℓ, r+ℓ−2] 6⊆ M+M) turns
into P([r − 2ℓ, r − 2] 6⊆ M +M). Use the change of variable N = r − 2ℓ. We have:
M ⊆ [0, N − 1] and we estimate: P([r− 2ℓ, r− 2] 6⊆ M +M) = P([N,N +2ℓ− 2] 6⊆

M +M) ≤
∑N+2ℓ−2

k=N P(k /∈ M +M). Lemma 7 in [MO] shows that the last quantity
tend to 0 as N goes to infinity. So, for any ε > 0, there exists sufficiently large r such
that P([r − ℓ, r + ℓ− 2] 6⊆ S + S) < ε. This completes our proof. �

Lemma A.2. Consider S ⊆ {0, 1, . . . , r − 1} and S = L ∪M ∪ R. Fix L ⊆ [0, ℓ− 1]
and R ⊆ [r − ℓ, r − 1] for some fixed ℓ. LetM be a uniformly randomly chosen subset
of [ℓ, r − ℓ − 1]. Let a denote the smallest integer such that both [ℓ, 2ℓ − a] ⊆ L + L
and [2r− 2ℓ+ a− 2, 2r− ℓ− 2] ⊆ R+R. Then, for all ε > 0, there exists sufficiently
large r such that

P([2ℓ− a + 1, 2r − 2ℓ+ a− 3] ⊆ S + S)

≥ 1− (a− 2)(2−τ(R) + 2−τ(L))− 6(2−|L| + 2−|R|)− ε,
(A.5)

where τ(L) = {i ∈ L|i ≤ ℓ− a+ 1} and τ(R) = {i ∈ R|i ≥ r − ℓ+ a− 2}.
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Proof. We have:

P([2ℓ− a + 1, 2r − 2ℓ+ a− 3] ⊆ S + S)

= P([2ℓ− 1, 2r − 2ℓ− 1] ⊆ S + S and [2ℓ− a + 1, 2ℓ− 2] ⊆ S + S

and [2r − 2ℓ, 2r − 2ℓ+ a− 3] ⊆ S + S)

= 1− P([2ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S or [2ℓ− a+ 1, 2ℓ− 2] 6⊆ S + S

or [2r − 2ℓ, 2r − 2ℓ+ a− 3] 6⊆ S + S)

≥ 1− P([2ℓ− a+ 1, 2ℓ− 2] 6⊆ S + S)− P([2r − 2ℓ, 2r − 2ℓ+ a− 3] 6⊆ S + S)

− P([2ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S).

By Lemma A.1, P([2ℓ− 1, 2r − 2ℓ− 1] 6⊆ S + S) ≤ 6(2−|L| + 2−|R|) + ε. We have

P([2ℓ− a + 1, 2ℓ− 2] 6⊆ S + S) ≤
2ℓ−2∑

k=2ℓ−a+1

P(k /∈ S + S). (A.6)

Let τ(L) = {i ∈ L|i ≤ ℓ− a + 1} and τ(R) = {i ∈ R|i ≥ r − ℓ + a − 2}. For each
value of k in [2ℓ − a + 1, 2ℓ − 2], in order that k /∈ S + S, all pairs of numbers that
sum up to k must not be both in S. Take k = 2ℓ − a + 1, for example. For a number
x ≤ ℓ − a + 1, the number y that when added to x gives 2ℓ − a + 1 is at least ℓ and
y /∈ S. So,

P([2ℓ− a + 1, 2ℓ− 2] 6⊆ S + S) ≤ (a− 2)2−τ(L) (A.7)

P([2r − 2ℓ, 2r − 2ℓ+ a− 3] 6⊆ S + S) ≤ (a− 2)2−τ(R). (A.8)

We have shown that

P([2ℓ− a+ 1, 2r − 2ℓ+ a− 3] ⊆ S + S)

≥ 1− (a− 2)(2−τ(R) + 2−τ(L))− 6(2−|L| + 2−|R|))− ε.

This completes our proof. �

Corollary A.3. Let A be an MSTD, Pn set such that A = L ∪ R, where L ⊆ [0, n− 1]
and R ⊆ [n, 2n− 1]. Let m ∈ N be chosen. Set R′ = R +m ⊆ [n +m, 2n +m− 1].
Let M ⊆ [n, n + m − 1] be randomly chosen. Let a be the smallest integer such that
[n, 2n− a] ⊆ L+L and [2n+ a− 2, 3n− 2] ⊆ R+R. Then for all ε > 0, there exists
sufficiently largem such that

P([2n− a + 1, 2n+ 2m+ a− 3] 6⊆ S + S)

≤ (a− 2)(2−τ(R) + 2−τ(L)) + 6(2−|L| + 2−|R|) + ε,
(A.9)

where τ(L) = {i ∈ L|i ≤ n− a+ 1} and τ(R) = {i ∈ R|i ≥ n+ a− 2}.

Proof. The corollary follows immediately by setting r = 2n + m and ℓ = n in the
theorem. Also, notice that R′ is a linear shift of R. �

For conciseness, we denote

f(L,R) = (a− 2)(2−τ(R) + 2−τ(L)) + 6(2−|L| + 2−|R|) + ε.
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Theorem A.4. Suppose that there exist sets (Ai)
k
i=1, which are pairwise disjoint, MSTD,

Pn and ∪(Ai)
k
i=1 = [0, 2n− 1]. In particular, each Ai = Li ∪Ri, where Li ⊆ [0, n− 1]

and Ri ⊆ [n, 2n − 1]. Let m ∈ N0 be chosen. Form R′
i = Ri + m and (Mi)

k
i=1 ⊆

[n, n +m − 1] such that (Mi)
k
i=1 are pairwise disjoint and ∪k

i=1Mi = [n, n +m − 1].
Then for a positive percentage of the time, all Si = Li ∪Mi ∪ Ri are MSTD given the
following condition:

1−
k∑

i=1

f(Li, Ri) > 0, (A.10)

form sufficiently large. In other words, there exists a positive constant lower bound for
the proportion of k-decompositions into MSTD subsets asm → ∞.

Proof. Let ai be the corresponding a value (defined in Lemma A.2) for Li and Ri. By
Corollary A.3, the probability

P(∀i, Si is MSTD) ≥ P(∀i, Si + Si ⊇ [2n− ai + 1, 2n+ 2m+ ai − 3])

≥ 1− P(∃i, Si + Si 6⊇ [2n− ai + 1, 2n+ 2m+ ai − 3])

≥ 1−
k∑

i=1

f(Li, Ri) > 0.

(A.11)

The first inequality is because [2n − ai + 1, 2n + 2m + ai − 3] ⊆ Si + Si guarantees
that Si is SPn and thus, MSTD. By Lemma 2.1, Si is MSTD. �

Now, we prove Theorem 1.4 in [AMMS] easily.

Corollary A.5. There exists a constant c > 0 such that the percentage of 2-decompositions
of [0, r − 1] into two MSTD subsets is at least c.

Proof. Let

L1 = {0, 1, 2, 3, 7, 8, 10, 12, 13, 14, 19},

R1 = {20, 25, 26, 27, 30, 32, 36, 37, 38, 39},

L2 = {4, 5, 6, 9, 11, 15, 16, 17, 18},

R2 = {21, 22, 23, 24, 28, 29, 31, 33, 34, 35}.

Notice that n = 20. We find that a1 = 12 and a2 = 4. From that we calculate
τ(L1) = 6, τ(R1) = 6, τ(L2) = 8 and τ(R2) = 9. So, f(L1, R1) is less than 0.33
for m sufficiently large, while f(L2, R2) is less than 0.03 for m sufficiently large. By
Theorem A.4, we are done. �

APPENDIX B. LOWER AND UPPER BOUNDS FOR R IN THEOREM 1.4

Given k ≥ 2, the lower bound is obvious since by [He], the smallest cardinality of an
MSTD sets is 8. In [AMMS], it is shown that for all r ≥ 20, Ir can be partitioned into
two MSTD subsets. To decompose Ir = [1, r] into k ≥ 2 (even) MSTD subsets, we
write Ir to be the union of k/2 arithmetic progressions and require each to be of length
at least 20. So, for all r ≥ 10k, Ir can be decomposed into k MSTD subsets. Hence,
R ≤ 10k.
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In our method to decompose Ir = [1, r] into k ≥ 5 (odd) MSTD subsets, we use
particular MSTD sets, which are

A1 = (1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1, 2),

A2 = (1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1, 2, 1),

A3 = (1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1),

A4 = (2|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1).

These sets have the property that ImaxAi
\Ai, i ∈ [1, 4] is the union of two arithmetic

progressions. Given m, ImaxA3
\S3 gives a pair of arithmetic progressions of shortest

length, m+ 2 and 2m + 1, while maxA2 = 4m + 14 = max{maxAi|i ∈ [1, 4]}. We
consider two cases.

(1) k = 4j + 1 (j ≥ 1). We require that all arithmetic progressions of length at
least m + 2 can be partitioned into 2j MSTD sets. Then m + 2 ≥ 20j and so,
m ≥ 20j − 2, which also guarantees that all arithmetic progressions of length
at least 2m + 1 can be partitioned into 2j MSTD sets. So, we find out that for
r ≥ 4(20j − 2) + 14 = 20k − 14, Ir can be partitioned into k MSTD subsets.
Hence, R ≤ 20k − 14.

(2) k = 4j + 3 (j ≥ 1). We require that all arithmetic progressions of length at
least m + 2 can be partitioned into 2j MSTD sets. Then m + 2 ≥ 20j and so,
m ≥ 20j−2, which also guarantees that all arithmetic progressions of length at
least 2m+ 1 can be partitioned into 2j + 2MSTD sets. So, we find out that for
r ≥ 4(20j − 2) + 14 = 20k − 14, Ir can be partitioned into k MSTD subsets.
Hence, R ≤ 20k − 14.

Finally, for 3−decomposition, we use the base expansion method, where we require
a run of consecutive odd numbers (an arithmetic progression) to contain two disjoint
10−strong MSTD sets. The length of the arithmetic progression is at least r−26

2
+1. Let

T bemin{maxA : A is 10− strong }. Then we require r−26
2

+ 1 ≥ T or r ≥ 2T + 24.
Hence, 24 ≤ R ≤ 2T + 24.

APPENDIX C. PROOF OF LEMMA 3.4

We prove that for a fixed m ∈ N, S = (0|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

m-times

, 3, 1, 1, 2) is MSTD. The

proof for other sets in the lemma follows similarly.
Note that maxS = 12 + 4m. We will prove that |S + S| ≥ 26 + 6m. Since S

contains 1 and 2, if the difference between two numbers, say x < y, in S is less than
or equal to 3, then S + S contains [x, y]. If a, b ∈ S and a − b = 4, then in the worst
case (in term of cardinality of the sum set), S + S does not contain a − 1. So, for the
interval [0, 12+4m], S+S misses at mostm−1 sums because there arem differences
of 4 and 8 = 4 + 4 ∈ S + S. Next, consider [13 + 4m, 24 + 8m] and observe that
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S1 = {ℓ|1 ≤ ℓ ≤ 9 + 4m and ℓ ≡ 1 mod 4} ⊆ S + S. We have

(12 + 4m) + S1 = {ℓ|13 + 4m ≤ ℓ ≤ 21 + 8m and ℓ ≡ 1 mod 4},

(10 + 4m) + S1 = {ℓ|11 + 4m ≤ ℓ ≤ 19 + 8m and ℓ ≡ 3 mod 4},

(9 + 4m) + S1 = {ℓ|10 + 4m ≤ ℓ ≤ 18 + 8m and ℓ ≡ 2 mod 4}.

Note that

16 + 4m = (12 + 4m) + 4 ∈ S + S,

16 + 8m = (8 + 4m) + (8 + 4m) ∈ S + S,

20 + 8m = (10 + 4m) + (10 + 4m) ∈ S + S,

22 + 8m = (10 + 4m) + (12 + 4m) ∈ S + S,

24 + 8m = (12 + 4m) + (12 + 4m) ∈ S + S.

On the interval [13 + 4m, 24 + 8m], S + S misses at most the whole set {ℓ|20 + 4m ≤
ℓ ≤ 12 + 8m and ℓ ≡ 0 mod 4} ∪ {23 + 8m}, which has m numbers. Therefore, in
total, S + S misses at most 2m− 1 numbers.
Next, we show that the difference set S − S misses at least 2m numbers by proving

that S − S contains none of the elements in {6 + 4ℓ|0 ≤ ℓ ≤ m− 1}. We use proof by
contradiction. Suppose that there exists 0 ≤ ℓ ≤ m − 1 such that 6 + 4ℓ is in S − S.
Then, there must exists a run within 1, 1, 2, 1, 4 . . . , 4

︸ ︷︷ ︸

m-times

, 3, 1, 1, 2 that sums up to 6 + 4ℓ.

Because 6 + 4ℓ ≡ 2 mod 4, the run must either starts within 1, 1, 2, 1 or ends within
3, 1, 1, 2. Consider two following cases:

(1) Case I: the run starts within 1, 1, 2, 1. Because 1 + 1 + 2 + 1 = 5 < 6, the run
must end within 3, 1, 1, 2. Therefore, the run sums up to a number of the form
a+4m+b, where the value of a and b depend on where the run starts and where
it ends, respectively. Since a + 4m + b = 6 + 4ℓ ≤ 6 + 4(m− 1), a + b ≤ 2.
This is a contradiction because b ≥ 3.

(2) Case II: the run ends within 3, 1, 1, 2. Because there is no runs within 4 . . . , 4
︸ ︷︷ ︸

m-times

,

3, 1, 1, 2 that sum up to 6 + 4ℓ, the runs must start within 1, 1, 2, 1. Repeating
the argument used in Case I and we have a contradiction.

Therefore, (S − S) ∩ {6 + 4ℓ|0 ≤ ℓ ≤ m − 1} = ∅ and so, S − S misses at least 2m
elements. This completes our proof that S is MSTD. 2

APPENDIX D. EXAMPLES

D.1. Lemma 2.2. We use the set A1 mentioned in Remark 2.4. As n = 12, we have
k ≥ 8. Pick k = 8 andm = 40. Then

O1 = {16} ∪ [17, 29]2 ∪ {30}

O2 = {71} ∪ [72, 84]2 ∪ {85}.

By Lemma 2.2, we must choose M ⊆ [31, 70] such that within M , there exists a se-
quence of pairs of consecutive elements, where consecutive pairs in the sequence are
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not more than 15 apart and the sequence starts with a pair in [31, 45] and ends with a
pair in [56, 70]. We pickM :

M = {38, 39, 54, 55, 59, 60}.

Our set A′ is

A′ = {1, 2, 3, 4, 7, 10, 12} ∪ {16} ∪ [17, 29]2 ∪ {30} ∪ {38, 39, 54, 55, 59, 60}

∪ {71} ∪ [72, 84]2 ∪ {85} ∪ {89, 90, 91, 96, 97, 99, 100}.

It can be verified that |A′ + A′| = 199 > |A′ −A′| = 197, so A′ is MSTD.

D.2. Lemma 2.3. We use the set A2 mentioned in Remark 2.4. As n = 20, we have
k ≥ 10. Pick k = 12 andm = 35. Then

O1 = [21, 23] ∪ [26, 44]2 ∪ [47, 49]

O2 = [79, 81] ∪ [84, 102]2 ∪ [105, 107].

By Lemma 2.2, we must choose M ⊆ [50, 78] such that within M , there exists a se-
quence of triplets of consecutive elements, where consecutive triplets in the sequence
are not more than 23 apart and the sequence starts with a triplet in [50, 73] and ends
with a triplet in [55, 78]. We pickM :

M = {60, 61, 62}.

Our set A′ is

A′ = {5, 6, 7, 9, 11, 16, 17, 18, 19}

∪ [21, 23] ∪ [26, 44]2 ∪ [47, 49]

∪ {60, 61, 62} ∪ [79, 81] ∪ [84, 102]2 ∪ [105, 107]

∪ {109, 110, 111, 112, 116, 118, 120, 121, 122, 123}.

It can be verified that |A′ + A′| = 236 > |A′ −A′| = 235, so A′ is MSTD.

D.3. Theorem 1.1. We use A1 and A2 mentioned in Remark 1.2. Pick k = 12 and
m = 30. Set

A′
1e = {1, 2, 3, 4, 8, 9, 11, 13, 14, 15, 20}

∪ {24} ∪ [25, 45]2 ∪ {46} ∪ {50, 51} ∪ [54, 69] ∪ {72, 73}

∪ {77} ∪ [78, 98]2 ∪ {99}

∪ {103, 108, 109, 110, 113, 115, 119, 120, 121, 122},

A′
2e = {5, 6, 7, 10, 12, 16, 17, 18, 19}

∪ [21, 23] ∪ [26, 44]2 ∪ [47, 49] ∪ {52, 53, 70, 71}

∪ [74, 76] ∪ [79, 97]2 ∪ [100, 102]

∪ {104, 105, 106, 107, 111, 112, 114, 116, 117, 118}.

We have |A′
1e + A′

1e| − |A′
1e − A′

1e| = 243 − 241 = 2, |A′
2e + A′

2e| − |A′
2e − A′

2e| =
227− 225 = 2 and (A′

1e, A
′
2e) partitions [1, 122].
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D.4. 5-decompositions. We do not give an example of a 3-decomposition because our
method is inefficient and involves a large set arising from the base expansion method.
Neither do we give an example of a 4-decomposition because the method is straightfor-
ward. We use the efficient method to have a 5-decomposition into MSTD sets. Set

M1 = (1|1, 1, 2, 1, 4 . . . , 4
︸ ︷︷ ︸

119-times

, 3, 1, 1, 2)

= {1, 2, 3, 5} ∪ [6, 482]4 ∪ {485, 486, 487, 489}.

Observe that
[1, 489]\M1 = [4, 488]4 ∪ [7, 483]2.

Because [4, 488]4 is an arithmetic progression of length 122, we have
M2 = 4A′

1e and
M3 = 4A′

2e

partition [4, 488]4. Notice that in the example mentioned in D.3, we can pick m = 147
and find A′′

1e (containing 1) and A′′
2e that partition [1, 239]. We have
M4 = 2A′′

1e + 5 and
M5 = 2A′′

2e + 5

partition [7, 483]2. We have found (M1,M2,M3,M4,M5) that partition [1, 489].
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