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CENTRAL LIMIT THEOREMS FOR GAPS OF GENERALIZED ZECKENDORF
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ABSTRACT. Zeckendorf proved that every integer can be written uniquely as a sum of non-
adjacent Fibonacci numbers {1,2, 3,5, ... }. This has been extended to many other recurrence
relations {G, } (with their own notion of a legal decomposition) and to proving that the distribu-
tion of the number of summands of anm € [G,, Gn+1) converges to a Gaussian as n — co. We
prove that for any non-negative integer g the average number of gaps of size g in many general-
ized Zeckendorf decompositions is C,n + d,, + o(1) for constants C, > 0 and d,, depending on
g and the recurrence, the variance of the number of gaps of size g is similarly Con + do + 0(1)
with C,, > 0, and the number of gaps of size g of an m € [G,,, Gpn41) converges to a Gaussian
as n — oo. The proof is by analysis of an associated two-dimensional recurrence; we prove a
general result on when such behavior converges to a Gaussian, and additionally re-derive other
results in the literature.
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1. INTRODUCTION

1.1. Previous Results. Zeckendorf [Ze] proved that if the Fibonacci numbers are defined by
Fy =1,F =2and F,,y1 = F, + F,_1, then every integer can be written as a sum of non-
adjacent terms. The standard proof is by the greedy algorithm, though combinatorial approaches
exist (see [KKMW]). More generally, one can consider other sequences of numbers and rules
for a legal decomposition, and ask when a unique decomposition exists, and if it does how the
summands are distributed.

There has been much work on these decomposition problems. In this paper we concen-
trate on the class of positive linear recurrences (see [Al, DDKMV] for signed decompositions,
[DDKMMV] for f-decomposition, and [CFHMN1, CFHMN2, CFHMNPX] for some recur-
rences where the leading term vanishes, which can lead to different limiting behavior).

Definition 1.1. A positive linear recurrence sequence (PLRS) is a sequence {G,, } satisfying

G, = c1Gpo1+ - +erGnor (L.1)
with non-negative integer coefficients ¢; with ¢, cp, L > 1 and initial conditions G; = 1 and
Gn = c1Gpo1+2Gpa+ -+ cp_1Gr+1for1 <n < L.

Informally a legal decomposition is one where we cannot use the recurrence relation to re-
place a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded. We first describe four results on these sequences (see
[DG, Ha, Ho, Ke, LT, Len, LT, MW1, MW2, PT, Stel, Ste2], especially [MW1] for proofs),
and then discuss our new work.

Theorem 1.2 (Generalized Zeckendorf Theorem). Let {G,} be a positive linear recurrence
sequence. For each integer m > 0, there exists a unique legal decomposition

N
m =) @Gy (1.2)
1=1

with a; > 0 and the other a; > 0, and one of the following two conditions, which define a legal
decomposition, holds.

(1) We have N < L and a; = ¢; for 1 <i < N.

(2) There exists an s € {1,...,L} such that ay = c¢1,a2 = Ca,...,a5—1 = Cs_1 and
as < Cs, Qsi1,---,051¢ = 0 for some £ > 0, and {bi}i]i_ls_g (with b; = agyp14) is
either legal or empty.

The next result concerns the average number of summands in decompositions, generalizing
Lekkerkerker’s [Lek] work on this problem for the Fibonacci numbers. Given {G),} a PLRS,
we have the legal decomposition

N
m = ZaiGN-i-l—i = Gil +Gi2 +"'+Gik (1.3)

i=1
for some positive integer k = a; + as + --- + ay and i1 > 15 > --- > 4. The gaps in
the decomposition of m are the numbers i1 — ig,%9 — i3,...,ik_1 — % (for example, 101 =

Fio + F5 + F3 + F, and thus has gaps 5, 2, and 2). Throughout this paper we let k(m) denote
the number of summands of m and k4(m) the number of gaps of size g in m’s decomposition.
Let K,, be the random variable equal to l%(m) for an m chosen uniformly from [G),, Gp+1),
and let K, ,, be a random variable equal to k4(m) for an m chosen uniformly from [G,,, Gy, 41).
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Thus kg (1m) is a decomposition of k(m), as
k(m) = 14 ky(m). (1.4)
g=0

Theorem 1.3 (Generalized Lekkerkerker’s Theorem for PLRS). Ler {G,,} be a PLRS, let K,,

be the random variable defined above, and let 1, = E[K,,|. Then there exist constants Cu > 0,
dy, and v, € (0,1) depending only on L and the c; s of the recurrence relation such that

pn = Cun+dy+ O(vy). (1.5)

Theorem 1.4 (Variance is Linear for PLRS). Let {G,} be a PLRS, let K, be the random
variable defined above, and let afl = Var|K,,|. Then there exist constants C, > 0, d,, and
Yo € (0,1) depending only on L and the c¢;’s of the recurrence relation such that

o2 = Con+dy +O0(72). (1.6)

Theorem 1.5 (Gaussian Behavior for Number of Summands in PLRS). Let {G,,} be a PLRS
and let K,, be the random variable defined above. The mean fi,, and variance 52 of K, grow

linearly in n, and (K, — [i,,) /6y, converges weakly to the standard normal N(0,1) as n — oc.

Surprisingly, much less has been written on k4 (m) and K, ,,. We show that similar Central
Limit results hold for gaps. The techniques we introduce to prove these results allow us to
easily prove some results already in the literature which are often done through tedious technical
calculations, which we can bypass.

1.2. New Results. Beckwith etal. [BBGILMT] and Bower et al. [BILMT] (see also [DFFHMPP])
explored the distribution of gaps in Generalized Zeckendorf Decompositions arising from PLRS,
proving (as n — oo) exponential decay in the probability of a gap of length ¢ in the decom-
position of m € [G,,Gp+1) as g grows and determining that the distribution of the longest
gap between summands behaves similarly to what is seen in the distribution of the longest run
of heads in tossing a biased coin. We improve on the first result and establish lower order
terms (previous work had O(1) instead of d below), then prove the variance has a similar linear
behavior, and finally show Gaussian behavior for fixed g.

Theorem 1.6 (Generalized Lekkerkerker’s Theorem for Gaps of Decompositions). Let g > 0
be a fixed positive integer. Let {Gy} be a PLRS. Suppose there exists ng € N such that K,
the random variable defined above, is non-trivial (i.e., is not the constant 0) for n > ng. Let
tgn = E[Kg,). Then there exists constants Cy 4 > 0, dy, g, and vy, 4 € (0,1) depending only
on g, L, and the c;’s of the recurrence relation such that

tgn = Cugn+dug+ 07 ,) (L.7)

Theorem 1.7 (Variance is Linear for Gaps of Decompositions). Let g > 0 be a fixed positive
integer. Let {G} be a PLRS. Suppose there exists ng € N such that K ,,, the random variable
defined above, is non-trivial (i.e., is not the constant 0) for n > ng. Let a;n = Var[K, ,].
Then there exists constants Cy g > 0, dy g, and 54 € (0,1) depending only on g, L, and the

¢; s of the recurrence relation such that
0o = Cogn+deg+ O, (1.8)

These two theorems follow as intermediate results in the proof of the next theorem, which is
the main result of this paper. The next theorem proves that we also obtain Gaussian behavior if
we fix the gap size and if that gap size occurs; note we have to be careful, as there are never gaps
of length 1 between summands in Zeckendorf decompositions arising from Fibonacci numbers,
and we must make sure to exclude such cases.
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Theorem 1.8 (Gaussian Behavior for Gaps of Decompositions). Let g > 0 be a fived positive
integer. Suppose there exists ng € N such that K, the random variable defined above, is
non-trivial for n > ng. The mean g4, and variance Ugm of Ky, grow linearly in n, and
(Kgn — tgn)/0gn converges weakly to the standard normal N (0, 1) as n — oc.

Our proof uses the fact that p, ;, 1, the number of m € (G, Gp41) With exactly & gaps of size
g, satisfies a homogenous two-dimensional recursion (see §3). We then prove that under certain
conditions, the “rows” {pg,n,k}kzo of these two-dimensional homogenous recursions converge
to a Gaussian (see §2.2). Our proof depends only on the recurrence relation and not the initial
conditions of the recursion. This is reasonable because if the number of initial conditions is
finite, then as n grows large the recurrence essentially behaves as if all the initial conditions
were lumped on a single term. This result should not be surprising, as a specific case is the two
dimensional recurrence a,, ; = an—1 + an—1k—1. This recurrence produces the binomials (Z)
(or sums of them), and binomials (”) are well known to converge to a normal distribution.

Similar to the work of Miller and Wang [MW1, MW2], we use the method of moments
to prove that our random variables converge to Gaussians. More precisely, we prove that the
moments of the n'™ random variable K g,n (OF Kn), fin(m), satisfy

(1, (2 (i, (2 1
i P (2m) i An(Zm+1)

= (2m — 1! d
M — G e e

(1.9)
While Miller and Wang use generating functions to directly compute the moments fi,,(m), we
instead compute them recursively (see, for example, Theorem 2.10), which leads to a cleaner
computation and could be of use in other investigations.

2. PRELIMINARIES

We first collect some notation we will use throughout the paper, then isolate two technical
lemmas on convergence, and then apply these to prove Gaussian behavior for certain two di-
mensional recurrences. This final result is the basis for the proof of our main result on Gaussian
behavior of gaps for a fixed g, Theorem 1.8.

2.1. Notation. For this paper, all big-Os are taken as n — oo unless otherwise specified.

For a polynomial A(x) = Zgzo apz®, let [2*] (A(z)) = ai be the notation for extracting
the k™ coefficient of A.

For a real number A\; > 0, a polynomial A(x) has the maximum root property with maximum
root \1 if A1 is a root of A with multiplicity 1 and all other roots have magnitude strictly less
than \q.

A sequence of real numbers {a,,} converges exponentially quickly to a if lim, .~ a, = a
and there exists v € (0,1) and a constant C' such that |a — a,,| < C+™ for all n (alternatively,
anp =a+0"")).

Let d be a fixed positive integer, and let { A, (z)} be a sequence of degree-d polynomials
where A, (x) = Z;lzo ajn®’. We say {A, ()} converges exponentially quickly to A(z) =
Z?:o ajx? if {a;, }nen converges exponentially quickly to a; for j = 0,1,...,d.

From the above definitions we immediately obtain the following useful result.
Lemma 2.1. Let {a,},{b,} be sequences that converge exponentially quickly to a and b re-
spectively. Then

(1) {an + by} converges exponentially quickly to a + b,
(2) {an — by} converges exponentially quickly to a — b,
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(3) {an - by} converges exponentially quickly to a - b,
(4) if'b, # 0 for all nand b # 0, then {a,, /b, } converges exponentially quickly to a/b.

We end by recalling some useful results from [BBGILMT].

Theorem 2.2 (Generalized Binet’s Formula). Consider a linear recurrence (not necessarily a
positive linear recurrence)

Gn = aGpo1+ -+ crGn-r 2.1

with non-negative integer coefficients c; with ci,cr,, L > 1. Then the characteristic polynomial
k- (clgnL_1 +egxl 24 4 cr,) has the maximum root property with maximum root A\; > 1,
and there exist constants such that Gy, = a; \} + O(n*=2\%) with | \a| < \1 the second largest
root in absolute value.

Corollary 2.3. Consider a linear recurrence (not necessarily a positive linear recurrence)
Gn = c1Gpo1+ - +erGnor (2.2)

with non-negative integer coefficients c; with ¢, cp, L > 1 and arbitrary initial conditions. Let
A1 be the maximum root of the characteristic polynomial given by Theorem 2.2. Then, for every
fixed positive integer i, Gy,_; /Gy, converges to 1/} exponentially quickly.

2.2. Convergence on non-homogenous linear recurrences with noise. The following two
lemmas follow immediately from the previous definitions and book-keeping, and play a key
role in the convergence analysis later. In particular, these two lemmas allow us to pin down the
exact behavior of the moments of our random variables K, ,, as we prove convergence to the
standard normal (see Lemmas 2.11 and 2.12).

Lemma 2.4. Let iy be a positive integer. Let {ry}nen be a sequence of real numbers and
Jor each 1 < i < ig let {s;n}nen be a sequence of non-negative real numbers such that

22021 sin = 1 for all n. With slight abuse of notation, suppose also that there exist constants 7
and 5; for 1 < < iy, along with ,~s € (0,1) such that

rp = T+ 0(7?)7 Sin = S + O(’Y;L) (23)

Suppose further that the polynomial
10
S(z) = 20 =) sal (2.4)
i=1

has the maximum root property with maximum root 1. Let {ay }n>n, be a sequence with arbi-
trary initial conditions an,, . .., po+i,—1, and for n > ng + i,

0
an = (Z Si,nan—i> + . (25)
i=1

Then there exists a positive integer d and a real number ~ € (0, 1) such that

7
a, = —-n+d+0n"). 2.6
S (") (2.6)

Roughly speaking, Lemma 2.4 is true because, modulo exponentially small terms, every a,
is a constant plus the weighted average of previous a,,_;s, so it should be linear in n.
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Proof. 1t suffices to prove the lemma for ng = 0. Let b, = a, — Ziof n. Set ~
i=1 S
max(7,,7s). Simple manipulations yield
Z 1 15 noo_
b == S; =+ 7 == . r
n Z (2 n n—i n ZZO 12 SZ
0 S .G
= Z Sinbn—i + 7 <T—n -3 2201 Z—. sm)
i=1 " D iy i Si
10
= 3 sibusi + 7+ (L4+0(™) = (1+0(")
i=1
0
= Sinbni +0("). (2.7)
i=1

We finish by showing that the sequence b,, converges exponentially quickly to a constant.
Simple algebra yields that b,, is bounded (see Appendix A). Let M be an integer such that
|bn,| < M for all n. Then

20 10 ()
bn - Z gibn—i = bn - Z Si,nbn—i + Z(Si,n - §i)bn—i
i=1 i=1 i=1

< O(Y")+Y_0(Y") b

IN

O(y") +3_ 00" M = O(y"). (2.8)

Thus we can write

bn = (203 Sibn—i> + f(n) (29)

for some function f : {ip,io + 1,...} — Rsuch that f(n) = O(y") asn — oo. Letay >0
be a constant such that | f(n)| < ay™.

From here, the intuition for the finish is as follows. If f(n) = 0 for all n, then Theorem 2.2
implies that b,, approaches a constant exponentially quickly. However, since v < 1, we have
that b,, should still approach a constant exponentially quickly when f(n) = O(y™).

Let {bS““’}neN, {bﬁf‘))}neN, {bgOH)}neN, ... be sequences defined (for m > ig) by

n - Zz E _Zb(mlt) n> i
0 n<m
bim) = f(m) n=m (2.10)
S5 bﬁl )Z n>m.
By induction, we can verify that
b = b+ > b 2.11)

m=ig
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for all n (see Appendix B). By the restrictions of s;, the characteristic polynomials of {b (init) }
and {bn } are equal to S(x) in (2.4) and thus have the maximum root property with maximum
root 1. Hence, by generalized Binet’s formula {b,(;mt)} and {b,(lm)} all converge to a constant.
Suppose that {b%mlt)} converges to b and {bSZ”)} converges to b(™) for each m > 4. Let
A2 < 1 be the second largest magnitude of a root of S(x). Choose vy, € (max(y,A2),1). By
the generalized Binet’s formula
b — B = O(n" - AF) < O(), (2.12)
so there exists agl) such that
plinit) — pniv| < o, (2.13)
m)

For all m, we can bound b, similarly. However, note that for all m, {b%m) /f(m)}nen is the

same sequence with the indices shifted. Thus there exists 041(12) such that

bslm) —pm < al(f)f(m)’y?_m < al() )af’ym’y? m. (2.14)
Set oy, = max(al()l),ozl()z)). Then
|bn —b| < ‘b(imt b(mlt Z ‘b ‘
m=ig
0L e NEAY
< oy + Z apa ] <%>
m=ig
. y\° 1 0
Sl taap- | — | - x| = O(1) (2.15)
n Y1
as desired. U

The next lemma generalizes Lemma 2.4.

Lemma 2.5. Let D be a nonnegative integer and let iq be a positive integer. Let { Ry, (x)}neN
be a sequence of D degree polynomials with R, (x) = ZJD:O rjvna:j . For each 1 < i < 19
let {s;n}nen be a sequence of non-negative real numbers such that y_;° | s;,, = 1 for all n.
Suppose also that there exist a polynomial R(x) = Fpx® + rp_12P~1 + --- + 7y and real
numbers §; for 1 < i < iy, along with v.,7vs € (0,1), such that, for all 0 < j < D and
1 <@ <,

Tin = T +0(),  sin = 5 +0(7y). (2.16)
Suppose further that the polynomial, S(z) = 2% — 22021 5,207 has the maximum root property
with maximum root 1. Let {ay }n>n, be a sequence with arbitrary initial conditions ay,, . ..,
Qng+io—1, and for n > ngy + 1o,

= <§0: Si,nan—i) + Rn(n) (217)
i=1

Then there exists a degree D + 1 polynomial Q(x) and a v; € (0, 1) such that
an = Q(n)+O(}) 2.18)

where

2P (Q(x)) = "D 2.19
[P+ (Q(x)) IS (2.19)
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In contrast to in Lemma 2.4, a,, is, modulo exponentially small terms, a D degree polynomial
in n plus the weighted average of previous a,,_;s. Since for any D degree polynomial A(x) the
sum A(1) + A(2) +---+ A(n) is an D + 1 degree polynomial in n, we expect a,, to essentially
be a D + 1 degree polynomial in n.

Proof. We proceed by induction on D, the degree of the polynomials R,,(x). Lemma 2.4 estab-
lishes the base case D = 0. Now assume DD > 0 and that the assertion is true for D — 1. Let

— o _ (., D41 ____ip_ : . . .
bp=a, —C-n for C DY s Straightforward manipulations yield

- - j - D1 (D +1\ .py1j
b, = Z Sinbn—i + Z n’ - Z Csin(—1) . )i +7jn
i=1 =0 i=1

+ f(n)
(2.20)

J

for some function f(n) < O(v) for some 79 € (0,1) (see Appendix C). The constant C' is
chosen so that the right side contains an D — 1 degree polynomial in n, as opposed to an D
degree polynomial, which is the case in the recursion for {a,}. Let R} (x) = ZJ»D:_Ol r;nxj be
the polynomial given by

0 D+1
T = (chm(—l)DH( SL )z‘D“) + 7o + f(n)
i=1

10

. D41\

= (Z Csin(—1)PH! J( ; >ZD+1 J) +Tjm (2.21)
=1

for1 < j < D —1. Since, as n — 00, s;, converges exponentially fast to 5;, r;,, converges
exponentially fast to 7;, and f(n) converges exponentially fast to 0, we have T, converges
exponentially fast to

‘0 /D +1 .
lim 1}, = (Z C§Z-(—1)D+1‘Y< ; >¢D+1—9> + 7. (2.22)
=1

for0 <7 < D — 1. Writing

0
=1

we can apply the induction hypothesis to b,, to obtain a a degree D polynomial Q*(x) such that
by, = Q*(n) + O(y7) for some v; € (0,1). Set Q(z) = Q*(x) + CxPTL. Then Q(z) is a
degree D + 1 polynomial satisfying a,, = Q(x) + O(~7), as desired. O

2.3. Gaussian Behavior of 2D Recursions. The result below is the key ingredient in proving
Gaussian behavior of gaps.

Theorem 2.6. Let ig and jo be positive integers. Let t; j be real numbers for 1 < i < ip,0 <
j < jo such that for all i, t; = ;0:0 tij > 0. Suppose that the polynomial T(x) = x% —
220:1 t;2"0~" has the maximum root property with some maximum root \i. Suppose Dk IS a
two-dimensional recurrence sequence satisfying, for n > ny,

io  Jo

Pk = D> tiPnik—j (2.24)

i=1 j=0
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Suppose further that py . > 0 for all n and k, p, 1 = 0 when n < 0 or k < 0, and finitely
many py, . are nonzero for n < ng. Let X,, be the random variable whose mass function is
proportional to py, i, over varying k so that

Pnk
Pr(X, — k| = —Lnk (2.25)
S
Let
PIEED I S S (f — Ci)?
v = S —e g G = e (2.26)
2.i =0 AT >t 7=0 "X

i=1 7=0 )\Zi

be constants, and assume C, > 0. Then there exist constants d,,d, € R, and v,,7, € (0,1)
such that pu, = Cyn+d, +O(v)!) and o7, = Con+dy + O(YY). Furthermore, (X, — jin) /0
converges weakly to the standard normal N(0,1) as n — oc.

In this theorem, imagine we have fixed a gap size g and think of p,, ;, as the number of
m € [Gy, Gp+1) whose decomposition has exactly & gaps of size g. Under this interpretation,
the random variable X, is be identical to K ,.

We approach this problem using the method of moments, a common method for proving
random variables converge in distribution to the standard normal distribution.

Lemma 2.7 (Method of Moments). Suppose X1, Xo, ... are random variables such that for all
integers m > 0, we have

lim E[X*" = (2m —1)!! and lim E[X>"H1] = . (2.27)

Then the sequence X1, X, ... converges weakly in distribution to the standard normal N (0, 1).

The proof of Theorem 2.6 proceeds by using generating functions to compute the moments
of X,,. Let

oo
Pn(x) = an,k:Ek
k=0

Qn = Pn(l) - an,k
k=0

s . Py ()
n,o(x) = xp,-i—l
pn,m(x) = (‘fﬁn,m—l(ﬂj)),
N Pl
fin(m) = T() (2.28)
Then it follows from definitions that
P/ (1
A
P(1)
fin(m) = E[(X; — pn)™]
on = fin(2). (2.29)

We now prove several lemmas about the above moments and generating functions. We ulti-
mately obtain a formula in Theorem 2.10 that recursively computes the moments fi,, (1), which
will yield Theorem 2.6.
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Lemma 2.8. For n > ng, we have

io

ZZt P_i(x)a? (2.30)

=1 j=0

Proof. This follows immediately from the definitions:

oo
Pn(l') = an,kxk

oo 10

= Zzzt,jpn ik— yx

kale

)
= Zzt,jw an ik— jx —J

11]0

io

_ Zztmma’pn_i@). 231

i=1 j=0

From the above we immediately deduce the following relations.

Corollary 2.9. For n > ng, we have

10 10

Q, = P,(1) = ZZtJPn (1) = ZZt,JQn i (2.32)

i=1 7=0 i=1 j=0

and

ZZ”Q" “(n—i + 9)- (233)

=1 j=0

Theorem 2.10. For n > ng, we have

/]n(m) Z < > ] + fn—i ,Un)e : ﬂn—z(m - 6) (2.34)
=1 j=0
Proof. Applying Lemma 2.8, we find
io  Jo ~ '
= Z Z ti,an—i,O(w) - g THn—i—Hn, (2.35)

i=1 j=0

By induction, we can establish (see Appendix D)

10
=D Zt i Z < > G+ tn—i — pn) Poime(z) - g THn=imin (2 36)

i=1 7=0 /=0
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SO
B ~n m 1 1 0 jO m m ' ~
:un(m) = b ( ) = Q_ Z Z ti,j <€ > (] + fp—i — /‘n)epn—i,m—ﬁ(l)
n "i=1j=0  ¢=0
1 I /m\ & Jo
= Q. Z <€> Z Zti,j(j + pn—i — ﬂn)eﬂn—i[ln—i(m — )
(=0 i=1 j=0
m io  Jo
m Qpitij . -
= Z . (] + p—i — /Ln)g : ,Un—i(m - E))
0 ) < Q,
/=0 i=1 7=0
(2.37)
completing the proof. O
Out next goal is to prove.
(i, (2 . (2 1
fm 2o i and tim 22D (2.38)
noe fin(2)" ne i, (2)7 S

By Lemma 2.7, these equalities imply Theorem 2.6. To do prove these equalities, we first show
{in is essentially linear in n. Then we determine for all m the behavior of fi,,(m), the m™"
moment of X,, — i, up to an exponentially small term. We prove fi,,(m) is a degree (at most,
if m is odd) |m/2| polynomial in n, and for even moments /i,,(2m) we addtionally compute
the leading coefficient of this polynoimal. We rely heavily on Lemmas 2.4 and 2.5 to pin down
the polynomial behavior of the moments.

Lemma 2.11. There exists a real number d, and a vy, € (0,1) such that
pn = Cu-n+dy,+ O(vy). (2.39)
Proof. Recall

ziol Jo  tigg

i=1 24j=0 "I

C, = Zio LT (2.40)
i=124j=0 "\

Qni Qi ; 0t GO .
Choose s, = ~§— 2-0:0 tij = gtiandr, = >y 2.0:0 %ﬂ’” Using Lemmas 2.1

1 Jo 4. F.
)\_zi 7=0 tz,j - tz

and 2.3, we have that, for each i, s; ,, converges exponentially quickly to 5; =

. . _ i o tiig
and r,, converges exponentially quickly to 7 = >"° ;0:0 X J
1

. By Lemma 2.9, we have

10
[ = (Z si,nun_i> + 7. (2.41)
i=1

Furthermore, the polynomial S(z) := z% — 3% | 5,270~ satisfies S(z) = T'(z/A1), so S has
the maximum root property with maximum root 1. Then, by Lemma 2.4, there exist d, € R and
Yu € (0,1) such that
7
D it 15

O
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Lemma 2.12. For each integer m > 0, there exist Yam, Vom+1 € (0, 1) and polynomials Qo
of degree exactly m and Qo1 of degree at most m such that

fin(2m) = Qam(n) + O(3)
fin(@m+1) = Qo1 (1) + 0. (2.43)

Furthermore, if Copy := [2™] Qo and Copi1 = [2™]Qom+1, then for all m > 0, Coy, =
(2m — DI - C* (We take (—1)!! := 1).

The idea for the proof is as follows. In the calculation of x,(m) in Theorem 2.10 the co-
efficients of y,,—;(m) sum to 1, the coefficients of ji,,—;(m — 1) sum to 0, and the coefficients
of pip—i(m — 2) sum to (221) - (constant). The m™ moments can thus be written in the form
of (2.17), so we can apply Lemma 2.5 and compute the degrees and leading coefficients ap-
propriately. Because the coefficients of the (m — 1) moments sum to 0, the degrees of the
polynomials increase by one with every two values of m as opposed to every one.

Proof. We proceed by induction on m. The base case m = 0 follows from noting that
fin(0) = E[(Xp, — )" = 1
fin(1) = B[(X,, — pn)'] = 0 (2.44)

for all n > ng. Now assume the statement is true for m’ < m. That is, there exist yg, V1, .. .,
Yom—1 € (0,1) and polynomials Qqg, Q1, ..., Q2m—1, where Qi has degree |k/2], such that

ﬂn(2m - 2) = Q2m—2(n) + O(’ng—2)
fin(2m —1) = Qam-1(n) + O(V3m_1) (2.45)

By induction we may assume further that Cs,,, 5 = (2m — 3)!! - C™~!. First, we compute
firn,(2m). Define a sequence of polynomials { R, (x)} via

2m 19
t .
ZZZM (G + pni = )" - Qome(w —1).  (246)
/=1 1=1 j=0
Furthermore, set
0 - Jo 1 Jo
n = S‘ZZ% and 5 = Vzn,j. (2.47)
" =0 1 j=0
Then
0
fin(2m) =" $infin-i(2m) + Rn(n). (2.48)

i=1

Note that R,,(z) is the sum of finitely many polynomials that, by Lemma 2.1, converges expo-
nentially quickly. Thus R, (x) converges exponentially quickly to

2m 19

ZZZ (= Cui)’ - Qome(a — ). (2.49)

lele
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Furthermore, we have deg R(z) < m — 1 since each R, (x) has degree at most m — 1. We can
compute the leading coefficient of R using (2.49) to get

m—11/ D & 2m ' V4 m—1 .
& ]<R<x>>=222( ) = G ™) Qumt — 1))

(=1 i=1 57=0
10
2m ; .
S  an
(=1 i1=1 57=0
- C 2m) ¢ iy 4 Comr - 2mS, tw '
= Com—2-{ Z - (j = Ci)? + Comer - mzz (J = Cui)
=1 j= 0 i=1 j= 0
2m 10 .70
:o2m2-<2)zz b |~ i) + Cams - 2m -0
i=1 j=0
2m 10 .70 g ' 9
= Coam—2- (7, ZZ— (7 = Cui)™. (2.50)
i=1 j=0
Recalling
) 1 ti i . . 1 1 ti . .
oo il Yo 3¢ (G — Cui)? s Lot (7= Cui)? s
7 Zzol ;Ootl)\]zi ZZOZMEZ ) .
we have

[z (R(z)) = Com—z- <2;n > Cy - (Zzs) . (2.52)

By Lemma 2.5, there exists a degree deg R(x)+ 1 polynomial Qs,, (x) with 2™ coefficient Cy,,
and a ¥, € (0,1) such that

pn(2m) = Qam(n) + O(v2) (2.53)

and
Com—2 - (2m) Cs (220:1 i 52‘)
m- Y0 -5
By the inductive hypothesis, we conclude Cy,,, = (2m —1)!!-CZ". By our technical assumption,
C, # 0, 50 Cyy, # 0 and thus the degree of (9, is exactly m.
We can perform the same computation to show that the fi,,(2m + 1) can be expressed as the

sum of an m™ degree polynomial in n and an exponentially small term. To see this, define a
sequence of polynomials {Rn(ac)} via

Cgm = = sz_z . (2m — 1) . CU. (2.54)

2m+1 i

Z ZZ ity A+ pnei — tin)" - Qamg1—e(x — ). (2.55)

(=1 i=1 j=0

Just as for the 2m™ moments, set

n

Q . jO
Sim = s;_l Ztm. (2.56)
=0
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Then

0
fin(2m +1) = > 8 nfin—i(2m + 1) + Ry (n). (2.57)
=1

Note that R, (x) is the sum of finitely many polynomials that, by Lemma 2.1, converge expo-
nentially quickly. Thus R, (x) converges exponentially quickly to

2m~+1 g

= > Zzt” (j — Cui)" - Qame1—e(z — ). (2.58)

/=1 i=1 =0

Furthermore, we have deg R(zr) < m — 1. Indeed, Qa,, has degree m, so to show that
deg R(x) < m — 1, we simply need to show that the coefficient of ™ is 0. Indeed, look-
ing at the 2" coefficients of (2.58) gives

[="(R(x)) = ZZZ(%) (G = Cud)’ - [2™)(Qamsr—e(z — 1))

612130

10

= sz-zzm —Cui)' = Copm-2m-0 = 0. (2.59)

=1 j=0

Again, applying Lemma 2.5 gives that there exists a degree deg R(z)+1 polynomial Qg +1(x)
such that fi,,(2m 4 1) = Qam+1(n) + O(5,,41). Since deg R(x) + 1 < m, this completes the
induction. (]

Proof of Theorem 2.6. Lemma 2.11 proves the first part of Theorem 2.6. Lemma 2.12 implies
that 02 = [i,(2) = Q2(n) + O(¥%). Writing Q2(n) = Cyn + d,, for some d, € R, we have

2 = Oyn + dy + O(4#), proving the second part of Theorem 2.6. We finish the proof of
Theorem 2.6 by noting that (2.38) is an immediate consequence of Lemma 2.12. O

3. GAP THEOREMS

3.1. Gap Recurrence. We start by finding a recurrence relation for an m € [G,,, G,,+1) having
exactly k gaps of size g.

Lemma 3.1. Let {G,,} be a positive linear recurrence satisfying
Gn = c1Gpo1 4+ +cerGhor. 3.1

Let kq(m) denote the number of gaps of size g in the Zeckendorf Decomposition of m. Slightly
abusing notation (reusing the letter p), let

Pank = {m € [Gn,Gny1) : kg(m) = k}|. (3.2)

Define dy = 0and d; = c1 +co+ -+ ¢; for1 <i < Landsetc; = c; forl <i < L and
c;, = cr, — 1. Then there exists ng = L + g and ko = d, such that, for n > ng, k > ko,g > 2,
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we have
L ¢;—1

Pon,k = ZZPOTL i,k—(di—1—(i—1)+(j—1)) +Zp0n t,k—(di—1—(i—1))
=1 j=1

Pink = Pln-— 1k+z _1p1n i,k— (zl+zpln 1,k—(i—2)
=2

+

M=

(¢i = 1) ((PLn—ik—i = PLn—ih—(i-1)) — (PLn—ic1k—i = Pln—im1k—(i-1)))

=1
L L
Pgn,k = Z CiPgn—ik + Z C: ((pg,n-l-l—i—g,k—l - pg,n-{—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k)) .
=1 =1
(3.3)
Proof. Define
ok = [{m € [1,Gp) : ky(m) = k}| = Zpg,z,;m (3.4)

thus while py ,, 1 is the number of m in (G, Gpn1) such that k,(m) = k, g,n,k 18 the corre-
sponding quantity for integers in [1,G,,). Set H, o = 0 and H,,; = Z;,:l ¢i'Gpa1_y so that,
foralln, H, 1 = Gp41. Let

Z = {(i,)) €Z*:0<i<L—1,0<j<c—1,(i,) # (0,0)}. (3.5)

Forn € Nand (i,j) € Z,let I, ; ; = [Hp; + jGn—i, Hni + (j + 1)G,,—;) be an interval of
integers. The ¢i +co+- - -+c¢ — lintervals {I,, ; ; : (¢,7) € Z} form a partition of [G,, Gn41),
and the sequential order of these intervals is equal to their lexicographical order by (i, 7). For
each (i,j) € Z, we can express |[{m € I,,;; : ky(m) = k} in terms of py,, . and g, ,, 1 With
smaller values of n by case work on whether the smallest term in H,, ; + jG,,—; (either G414
or G,_; depending on whether j = 0) is part of a gap of size g:

H{m € Lo : ko(m) =k} = qon—ik—(d—i)

H{m € Lo ki(m) =k} = qup—ik—(i-1)

‘{m € In,i,O : kg(m) = k}’ = dgn—ik +pg,n+1—i—g,k—1 — Pgn+1—i—g,k

{m € Inij : ko(m) =k} = GQon—ik—(di—i+(i-1))

Hm € Inij:ki(m) =k} = qun—ik—i+ Pgn—i—1k—(i+1) — Pgn—i—1k—i

’{m € [n,i,j : kg(m) = k}’ = dgn—ik +pg,n—i—g,k—1 — Pgn—i—g,k (36)

(see Appendix E.1 for details). These formulas are clean because the number of size g gaps in
anm = Hy,; + jG,—; +m’ € I,,; ; is simply the number of size g gaps in Hy, ; + jGp—; plus
the number of size g gaps in m’ plus possibly one more gap between the two decompositions.
By definition, for g > 0 we have

Dok = Z {m € L : ko(m) =k} (3.7)
(4,7)eZ

From this equation, we can substitute from (3.6), plug in the result for p, ,, 1. and pg ,,—1 . in the
expression py p, 1 — Pg,n—1,k> Use the identity qg », k. — Gg.n—1,k = Dg,n—1,k» and apply straightfor-
ward manipulations to obtain the desired result (see Appendix E.2 for calculations). U



16 RAY LI AND STEVEN J. MILLER

3.2. Proof of Gap Theorems. Lemma 3.1 allows us to apply Theorem 2.6 to the distribution of
the number of fixed sized gaps. The proof is essentially verifying that the conditions of Theorem
2.6 are met by our gap recurrences.

Proofs of Theorems 1.6, 1.7, and 1.8. Let kq(m) denote the number of gaps of size g in the
Zeckendorf Decomposition of m, let

Do = [{m € (G, Guy1) : by(m) = }| (3.8)
and let g = L + g, jo = dr. By Lemma 3.1, for every g > 0, there exist ¢; ; for1 <¢ < L+g¢g
and 0 < j < dp, such that for n > i

io  Jo

Pomk = D tijDom—ik—j (3.9)

i=1 j=0

Define #; = 2% t;; = ¢;. By (33), % = ¢ for 1 <i < Land#; = 0for L < i < ig. To
see this, note that in each recursive formula of (3.3) the terms of the form py s y; — Pgn—z,ys
contribute 0 to Z;O:o tzj, and for each 0 < i < L — 1 the remaining coefficients of pg ;1 %
(over varying k) sum to c; 1. Thus the polynomial

i0 L
T(z) = zho — Z £i$io—i = gho—L <3:L — Z CiSEL_i> (3.10)
i=1 1=1

has the maximum root property with some maximum root A\; > 1 by Theorem 2.2. As pg ,
counts something that is well defined when n > 1 and k > 0, we have p,,, , > 0 for all n, k
and py 1 = 0 forn < 0or k < 0. Also, there are finitely many pairs (n, k) with n < ig such
that py 1 # 0, as pg,, ; = 0 for all k& > n, since no m € [G),, Gp41) can have a gap greater
than n. Lastly, for every g, if the random variable K, ;, is nontrivial then the ¢; ; satisfy

i Jo  ligJ io Jo  lig - 2
P 7=0 "A7 >t 7=0 '\ - (J = Cui)
Cy = : — L, = : — . (3.11)
Zlo Jo  lig-i Zlo Jo  tig-i
i=1 £2j=0 )‘Zi i=1 £4j=0 )\zi

To prove each of C;, > 0 and C, > 0, we split into cases on whether g = 0, g = 1, or g > 2,
for each case substituting into (3.11), and performing standard manipulations (see Appendix F).
Putting these observations together, the proofs follow by applying Theorem 2.6. 0

4. LEKKERKERKER AND GAUSSIAN SUMMANDS

We show the power of Theorem 2.6 by reproving Theorems 1.3, 1.4, and 1.5. We borrow
from the proof given by Miller and Wang [MW 1] the recursion established for p,, ;, the number
of m € [G,, Gp+1) with exactly & summands. This recursion is extracted as (4.1) from gener-
ating functions in [MW1]. Their arguments quickly show the mean and variance grow linearly
in n, but a lot of technical calculations are needed to show the coefficients of n are positive
(which is a key ingredient in the proof of the Gaussian behavior). See [CFHMNPX] for another
approach, which bypasses the difficulties through an elementary argument involving conditional
probabilities, or [B-AM] for a proof through Markov processes.

Similar to §3.2, the proof is essentially verifying that the conditions of Theorem 2.6 are met
by the summands recursion given by Miller and Wang.

Proofs of Theorems 1.3, 1.4, and 1.5. Let p,, j, be the number of m € [G,,, G,,+1) with exactly

A~

k summands. Then Pr[K,, = k] = —&=t . Again, Pnk > 0 for all n, k, p,r = 0 for

o Zoo: Pn,k
alln < Oand k < 0, and p,,;; > 0 forkﬁ(r)litely many pairs with n < L as p,, ; = 0 for all
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k > n - max;(c;), since each m has, for each a € {1,...,n}, at most max;(c;) copies of G, in
each decomposition.

Define d; = ¢1 +co + - - +¢; for 1 <4 < L. By Proposition 3.1 from [MW?2], p,, ;. satisfies,
forn > Land k > dj,,

L d'm_l
Pnk = Z Z Prn—ik—j- (41)
=1 j=dm—1

For1 <i<L,0<j<dp,sett;jtobelifd,_1 <j < d; —1and 0 otherwise. Defining

t; = Z?i 81 t; ; gives t; = c;, and the polynomial

10 L
T(x) = 2™ =) fu'o" = aio~F <3:L - Zci:L"L_i> 4.2)
i=1 i=1

has the maximum root property with some maximum root A\; > 1 by Theorem 2.2. Lastly, since
all the ¢; ; are nonnegative and ¢,,_y (4, —1) = 1 with k — (dr, — 1) >0, (2.26) tells us

io jo  tigJ k—(dLL—l)
Doil1 20 3 A
C,= —— M N oy, (4.3)
20 Jjo  lig-t 20 Jo  tigt
>t 2550 A 21 2550 by

Since 19 = 1, we have

i o5 (- Ci)? 50— Cul)?

_ =0 3] N
C, = S0 Zjo 5 > SE o 0. (4.4)
i=1 245=0 "XT i=1 245=0 "77
Thus we can apply Theorem 2.6, implying the theorems. U

5. FURTHER WORK AND OPEN QUESTIONS

We end with a few natural questions for future work.

(1) Are there other two-dimensional recurrences to which we can apply our central limit
type result? The second named author is currently investigating two dimensional se-
quences and associated notions of legality with colleagues. These lead to recurrence
relations, though the resulting sequences do not have unique decomposition.

(2) Can one remove the constraint that every coefficient ¢; must be positive and obtain the
same results? Notice that with negative constraints one loses some of the interpretations
for the algebra.

(3) What is the rate at which K ,, converges to a normal distribution?
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APPENDIX A. b, IS BOUNDED IN LEMMA 2.4
Since s; , = 5; + O(7"), there exist a1, g > 0,9 € N such that, for all n > ng + i,

10
> (5 +0(")bu—i + O(7")
i=1

10
> G+ a1y bo—il + aay"
=1

‘bn’ =

IN

+ ay"

max | 1, max b,_;
<71<i<i0 nz>

< ) n ;
< (I +doany )'113%0 bp—i

< (14 (ipaq + c2)¥™)

< elioantaz)y” i ]
< e ‘max <1, 11%1;22;0 bn_z> (A.1)
Let B = maxo<;<i, |bny+i|.- We prove by induction that
b, < (B+ 1)e(ioa1+a2)(’yno+'Y”0+1+~--+’Yn)‘ (A.2)
For n < ng + 9, we have
bn| < (B+1) < (B + 1)elioo1+a2)(704970 T 4oty™) (A.3)
Now assume n > ng + ig, and suppose the assertion is true for n’ < n. Then, by (A.1),
|bn| < elioonta2)y™ 1y <1, max bn_i> ‘
1<i<ip
< eliomta2)™ lmax (1, max (B 4 1)eloar+a2)(y™ FYOT 4y
- " 1<i<io
— elioantaz)y® (B + 1)e(ioa1+az)('y"0 +ym0 T 4oyl
< (B + 1)elioontaz)(ano4am0 ity (A4)
completing the induction. Thus we have
. 70
bl < (B4 1)eortoaiz, (A.5)
so the sequence {b,,} is bounded.
APPENDIX B. DECOMPOSITION OF b,, INTO SIMILAR SEQUENCES 2.4
We prove by induction that
[ee]
b = b+ > b, (B.1)
m=ig
Forn < 7y, we have
[ee]
by = o™ = o 4 " pim), (B.2)

m=ig
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Suppose the statement is true for n’ < n. Using the fact that f(n) = b%") and the recursive
definitions for bgmt) and bslm) , wWe obtain

= +Z (‘“‘t+ibm>

m=ig
_ _|_ Z b(lmt + f: i Slb(m
i=1 m=ig
— +Z b(m—i—Zislb )+ZZsb
m=ig 1=1 m=n =1
= p{™ 4 plinit) 4 i ™) i f:g,--o
m=1ig m=n i=1
— bgnit) + Zn: bglm)
m=1ig
I S I ST
m=ig m=n+1
b0 4 3 g, (B.3)
m=1ig

completing the induction.

APPENDIX C. COMPUTING b,, IN LEMMA 2.5

Our goal this section is to simplify (2.17) using the substitution a,, — b, = C - n”*! where

ﬁ We compute a recursive formula for b,, to obtain a linear combination of
1155

smaller b,,_;s plus a polynomial in n. For any choice of C, the resulting coefficient of n
in this polynomial is 0, but for our specific choice of C, the n” term also disappears, so the
remaining polynomial has degree at most D — 1.

Let vo € (max(yy,7s),1). Since a,, = 22021 8inGn—i + ZjD:O 7;nn’, We can write

b, = a, —C -nPt!

D+1

70 D
= Z si,nan_i + Z ijnj . (Cl)
=1 7=0

Substituting a,, — b, = C' - nP*1 gives

= (f: Sin (bn_i +C(n— D+1 ) + Z T nnj Z Cs; nn (C2)
=1
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We now expand (n — )P+ to get

10 D+1 D+1 D 10
g Sin | bn—i +C - E (—1)Pri= ’< > nd P10 + E rjnn’ — E CsipnP T
=1 Jj=0 J j=0 i=1
D+1 1o D iQ
(D +1 . . .
1)P+1- Dt1— D+1
= E Sinbn—i + E E Csin(— + 9( . ntiPT=0 ) 4+ E 7inn’ — g Csinn +1
7=0 =1 J 7=0 i=1

(C3)

As >0 | Cs;,, is the coefficient of nP*1in the binomial expansion, we can cancel to get

io D2 D+1\ : 2 :
b, = Z Sinbn—i + Z Z Csin(—1) D+1 —J ( >n]iD+l—] + Z riand. (C.4)
i=1 §=0

=0 i=1 J j=0

We can also pull out the n” terms of the binomial expansions to get

D—1 19 D+
n—zsznnz"i' S Csin(—1)PH- ]< ) J;D¥1—j
7=0 =1 ‘7
D 0
+ Zr]mn] — Z Csin(D+ 1)nDz
7=0 =1
D—1 i
_ io bt ZZO:CSM D+1 J<D—|—1>]D+1g
=1 7=0 =1 J
D—-1
+ T, W’ 47D nn -C(D+1) DZS, ni. (C.5)
7=0 i=1

Now we substitute the value of C' in. Note that C' is chosen so that the coefficient of n becomes
0
O(vg)- This will happen as % and DD” are of the form 1 + O(v7) and 1 + O(v}")

1085
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respectively. We find
0 D—1 1o
D+1\ .. .
b, = g Sinbn—i + E E Csin(—1) yP+L= ]< ndiP+1=
i=1 7=0 =1 ‘7
D-1 _ i
Z j D D - nP ° .
+ Tj,nn + TD,nn - o - si,n © 1
j=0 dliliiSi i
D—1 19
D+1\ .. i
= E Sinbn—i + E Csin(— DH ]< ndiP1=
7=0 i=1 ‘7
D-1 io -
+ > rjan? —rpn” <Zlml — — — n)
=0 Yot D
D—1 1o
D+1\ .. .
= g Sinbpn—i + Csin(— D+1 ]< nd P17
7=0 i=1 ‘7
D-1
D
+ E rjan? — Fpn® - O(max (v, vs)™)
J=0
i0 D—1 19
D+1\ . ,
D+1— D41—
= E Sinbn—i + E Csin(—1)"" ]< nt¢P I
i=1 7=0 =1 ]
D—1
+ > i’ +0(%)
Jj=0
io D—1 io
D+1
_ E : E : } : D+1 D+1
= Sz,nbn—z + n’ [( Csi,n( 1) J < . T+ Tin| + O(’YSL)
i=1 =0 i=1 J
(C.6)

APPENDIX D. RECURSIVE FORMULA FOR Pn,m(a;) (EQUATION (2.36))

We wish to prove
_ io Jo _ )
Pnle) = 3303 ( > J o+ i = ) P el) - (DL

i=1 j=0 /=0

The base case m = 0 is given by (2.35). Now let m > 1, and suppose

5 2 — 1\, - L
Prm-1(z) = Z Z L Z < >(] + pini = ) Prim1_p(x) - i THn=i =k,

=1 j=0
(D.2)
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Then

PIPIL

t;
0
t;

i=

PIPILY

0

i=

=

=
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= (:Eﬁ)n,m—l(l‘))/

10
— 1y, - L
e3 350 S (7)) P

i=1 j=0 /=0

20

20

)

m—1
=2 th > (mg_ 1) (J + tn—i — tin) P m—g(x)ad THni=n

0

7

1=

)

=2 Z tij

0

1=

1j=

1j=

0

1

1j=

7

1=

0

Jo

Jo

Jj=

Y

1=

m—1
1 ~ . /
Z ( >(] + Hn—i — ,un)é <xPn—i,m—l—é($) . x]+ﬂvl—i_un)

(=0

+ (xpn—i,m—l—é($) ’ (] + pn—i — /Ln)l‘j—i_mki_ml_l) :|

/=0

m—1 m—1 ) .
< i >(] i — pin) T Py i1 () T

(=0

m—1

0

m— - ) B
< / > J = Hn—i — :u'n)é] n—i,m—é(x)xj—i_u”*l Hn
=

m—1 . -
+ Z Z tlv] < /-1 > (] + Hn—i ,Un)épn—i,m—é(x)x]—i_u"ﬂ fn (D.3)
/=1
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Taking out the ¢ = 0 term from the first sum and the ¢/ = m term from the latter one, and pairing
the remaining terms by common ¢, we obtain

i Jo
m—1 m—1 . - _ -
=22t Z <<e - 1) ! < l >> (G + bnmi = tn) P m—g()a? Fhin=iiin

i=1 j=0

10
m — i o
+zz%< ; ) R

zle

_l_
N
Fﬁ
=
33

20 m—1
tl,j < ) (] + fhn—i — ,un)gpn—i,m—é($)$]+un7i_un

(j + Hn—i Nn)opn—i,m—o(x)xj+“"*i_“n

m) (J + Hnmi = bn) ™ Pri o () 27 THinmi i
( ) (J + Bni = bn) P () Thin—i=hin (D.4)

as desired. This completes the induction.

APPENDIX E. DETAILS FOR RECURSIVELY COUNTING GAPS IN LEMMA 3.1

E.1. Computing [{m € [Hy,; + jGn—i, Hni + (j + 1)Gp—i) : kg(m) = k}|. In this section,
we compute a recursive formula for [{m € I,,;; : k;(m) = k}|. Note that the number of
size g gaps in an m = H,; + jG,—; +m' € I, ; is simply the number of size g gaps in
H,,; + jGpn—; plus the number of size g gaps in m’ plus possibly one more gap between the two
decompositions. This observation gives a clean way to produce the desired recursions. We need
to be careful in our case work as the number of size g gaps in H,, ; + jG,,—; varies depending
on whether ¢ is 0, 1, or at least 2, and the the existence of the gap between the smallest term in
the decomposition of H,, ; + jG,,—; and the largest term in the decomposition of m’ depends on
whether j is nonzero.

For j > 0, the decomposition of any element of 1, ; j = [H,, i + jGrn—i, Hp i+ (7 +1)Gr—i)
begins with the decomposition of H,, ;4 jG,—;, and the decomposition of H,, ;4 jG,—; contains
only gaps of sizes 0 and 1 by definition of H,, ;. In particular, when j = 0, the decomposition of
H,, ; contains d; — 7 gaps of size 0 and 7 — 1 gaps of size 1. When j > 1, the decomposition of
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H, ;+ jG,_; contains d; — i + (j — 1) gaps of size 0 and 7 gaps of size 1. For i > 1, this gives

{m € [Hyi, Hyi + Gn—i) : ko(m) = k}|
= |{m € [Gni1-i; Gny1-i + Gn—i) t ko(m) =k — (d; — 1)}
H{m € [Hyi, Hyi + Gn—i) : ki(m) = k}|
= {m € [Gnt1-i; Gny1—i + Gni) 1 ka(m) =k — (i = 1)}
H{m € [Hyi, Hyi + Gn—i) : kg(m) =k}
= [{m € [Gni1-i; Gni1-i + Gn—i) : kg(m) = K}, (E.T)

and for7 > 0,5 > 1, we have

Hm € [Hy;i+ jGn—i, Hni+ (j +1)Gni)  ko(m) = k}|
= |[{m € [Gn—i,2Gn—i) t ko(m) =k — (d; —i+ (§ — 1))}
H{m € [Hy;+ jGn—i, Hni+ (j +1)Gri) : ki(m) = k}|
= [{m € [Gn—i,2Gp—i) : k1(m) = k — i}|
Hm € [Hy;i+ jGn—i, Hni+ (j +1)Gni) : kg(m) = k}|
= {m € [Gn-i,2Gn—;) : kg(m) = k}|. (E.2)

We can further push (E.1) by noting that, form € [Gy,+1-i, Gnt1—i+Gn—;), the decomposition
of m begins with GG, +1_;, and furthermore G,,+1_; is not a part of a gap of size 0 or 1. Thus

H{m € 1,0 : ko(m) = k}|

= {m € [Hni, Hni+ Gni) : ko(m) = k}|

= {{m € [Gni1-i; Gny1—i + Gni) : ko(m) = k — (d; —i)}|

= {{m €10,Gn—i) : ko(m) =k — (di — i)}

= q0,n—i,k—(d;—1)
H{m €10 ki(m) = k}|

= |{m € [Gnt1-i; Gn1—i + Gni)  kai(m) =k — (i = 1)}

= {m €[0,Gni) s ki(m) =k — (i = 1)}|
= N,n—ik—(i—1)" (E.3)
Similarly, the decomposition of any m € [G,,—;, 2G,,—;) begins with G,,_;, and G,,—; is not a
part of a gap of size 0, so we have

{m €L : ko(m) =k}
= {m € [Hn; + jGn—i, Hni + (5 + 1)Gn—i) : ko(m) = k}|
= [{m € [Gn-i,2Gn—;) : ko(m) =k — (d; — i+ ( — 1)) }|
= {m €0,Gni) : ko(m) =k — (di =i+ (j — 1))}|

= Q0n—ik—(di—i+(j—1))- (E.4)
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For g > 2 we have
H{m €10 kg(m) = k}|

= |{m € [Hpi,Hpi + Gn—i) : kg(m) = k}|

= {m € [Gri1-i; Gny1-i + Gni) : kg(m) = kY|

= [{m € [Gny1—i, Gny1—i + Grny1-i—g) : kg(m) = k}|
+H{m € [Gny1—i + Gni1—i—g, Gni1—i + Guaa—i—y) : ky(m) = k}|
+ {m € [Gny1-i + Gni2—i—g, Gnyi—i + Gni) : kg(m) = k}|

= [m € [0, Gut1-i-g) : kolm) = K}
+ [{m € [Gni1-i—g, Gnia—i—g) : kg(m) =k — 1}
£ {m € [Guamiogs Gaos) ¢ ky(m) = kY]

= {m € [0,Gni) : kg(m) = k}|
+ [{m € [Gni1-i—g, Gni2—i—g) : kg(m) =k — 1}
— {m € [Gny1-i—g, Gnya—i—g) : kg(m) = k}|

= qgn—ik t Pgn+l—i—gk—1 — Pgn+l—i—gks (E.5)

where the third equality comes from noting that for m € [Gy41—i, Gni1—i + Gn—i), Gni1—i is
part of a gap of size ¢ in the decomposition of m if and only if m € [G11-i+Gri1—i—g, Gny1—i+
Gpn42-i—g). Using the same argument, we obtain, for g > 1 and j > 1,

[{m € [Gmiy 2C0—i) : ky(m) = k)|
= [{m € [Gumir Cuci + Cuicg) : hy(m) = K}
+{m € [Gnoi+ Gnoi—g,Gnoi+ Gnyi—i—g) : kg(m) = k}|
+ {m € [Gni + Gnyi—i—g,2Gn—i) : kg(m) = k}|
= |{m € [0,Gp—i—g) : kg(m) = k}|
+ {m € [Gnoi—g, Gnt1-i—g) : kg(m) =k — 1}|
+ {m € [Gni1-ig, Gni) : kg(m) = k}|
= {m € [0,Gni) : kg(m) = k}|
+ {m € [Gnoi—g, Gnt1-i—g)  kg(m) =k — 1}|
—H{m € [Gn-i—g,Gnr1-i—g) : kg(m) = k}|
= gn—ik t+ Pgn—i—gk—1— Pgn—i—gk- (E.0)
Combining with (E.2), we have, for g > 2,
{m € Inij: ki(m) =k}
= {m € [Hn;i+ jGn—i, Hni+ (§ + 1)Gn—i) : k1(m) = k}|
= |{m € [Gn—-i,2Gp—;) : ki(m) = k — i}]
= Qin—ik—i T Pln—i—1,k—i—1 — Plin—i—1k—i
{m € Inij : kg(m) = ki
= {m € [Hni+ jGni, Hni+ (j + 1)Gni) : kg(m) = k}
= |{m € [Gn—i,2Gn—;) : kg(m) = k}|
= Qgn—ik + Pgn—i—gk—1 — Pgn—i—g,k- (E.7)
This establishes all six equalities that we desire.



26 RAY LI AND STEVEN J. MILLER
E.2. Computing p, ,, ;. This section uses careful bookkeeping to produce homogenous two

dimensional recursive formulas for p,, ,, ;. using (3.6).
Recall that for g > 0 we have

ok = D {m € Lngj: kg(m) =k}

(i,5)€Z
L—1ciy1—1
=Y Y Hm € [Hni+GniHoi+ (j + 1)Gni) : kg(m) =k}
i=0 j=1
L—-1
+ Z |{m S [Hn,iaHn,i + Gn—z) : kg(m) = k}| (ES)
=1

Substituting from (3.6), we have (for g > 2)

L—1¢i+1— 1
pO,n,k:Z Z q40,n—i,k—(d;—i+(j—1) +ZQO7L i,k—(d;—1)
=0 j=1
L—1¢iy1—1
Pink = Z (q1,n—i,k—i +p1,n—i—1,k—i 1~ Pln—i—1k— + ZQ1n 1,k—(i—1)
=0 j=1
L—-1
= Z(Cz’+1 - 1) (QI,n—i,k—i +Pin—i-1k—i-1— pl,n—z’—l,k—i) + Z q1,n—ik—(i—1)
1=0 i
L—1c¢iy1—1
Pgnk = (QQ,n—i,k + Pgn—i—gk—1 — pg,n—i—g,k)
i=0 j=1
L-1
+ Z (QQ,n ik +pg,n+1 i—g,k—1 Pgn+1—i gk)
i=1
L—-1
= Z(Ci-l—l - 1) (QQ,n—i,k + Pgn—i—gk—1 — pg,n—i—g,k)
1=0
L—-1
+ (Qg,n—i,k + Pgn+1—i—gk—1 — pg,n-{—l—i—g,k) . (E9)
=1

Substituting for pg ., x and py ,—1 and using qgnk — qgn—1,k = Pgn—1,k» WE obtain for
g=0

L-1cit+1—1 L—1
Po,nk — Pon—1,k = Z Z Po,n—i—1,k—(d;—i+(j—1)) +Zp0,n—i—1,k—(di—i)
i=0 j=1 i=1
L—1¢it1—1
Ponk = Z Z Pon—i—1,k—(d;—i+(5—1) +Zp0n i—1,k—(d;j—1)*
=0 j=1
L c¢;i—1

= Zpon t,k—(di—1—(i—1)+(5—-1)) +Zp0n i,k—(di—1—(i—1)) . (E.10)

=1 j=1 i=1
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Similarly for g = 1 we obtain
L—1

Pink —Pin—-1,k = Z(Ci-i-l - 1) |:p1,n—i—1,k—i + (pl,n—i—l,k—i—l - pl,n—i—l,k—i)
i=0

L—1
— (P1p—i—2,k—im1 — pl,n—i—2,k—i)} + Zpl,n—i—l,k—(i—l)-
i=1

(E.11)
Thus
L-1 L-1
Pink = Pin—1k T Z(Ci—i-l — )p1n—ic1k—i + Zpl,n—i—l,k—(i—l)
i=0 1=1
L-1
+ Z(Ciﬂ - 1) ((pl,n—i—l,k—i—l - pl,n—i—l,k—i) - (pl,n—i—2,k—i—1 - pl,n—i—2,k—i))
i=0
L L
= Pin-1k T Z(Ci = D)p1m—ik—(i—1) + Zp17n—i7k—(i—2)
i=1 i=2
L
+ Z(Ci —1) ((pl,n—i,k—i - pl,n—i,k—(z’—l)) - (plm—z'—l,k—i - pl,n—i—l,k—(i—l))) )
i=1
(E.12)

and for g > 2 we have

L-1

Pgnk —Pgn—1k = Z(Ci-l—l - 1) [pg,n—i—l,k + (pg,n—i—g,k—l - pg,n—i—g,k)
1=0
L-1
- (pg,n—i—g—l,k—l - pg,n—i—g—l,k):| + [pg,n—i—l,k
=1

+ (pg,n-{-l—i—g,k—l - pg,n—l—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k) .
(E.13)

Thus

L—-1
Pgnk = E Ci+1Pgn—i—1,k
=0

L—1
+ Y (civ1 = 1) ((Pgm—i-gh-1 — Pgn—i—gk) — (Pgm—i—g—1k-1 — Pgm—i—g—1.k))
=0

L—-1
+ Z ((pg,n—l—l—i—g,k—l - pg,n—}—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k))
=1
L L
= Z CiPgn—i,k + Z C: ((pg,n-l-l—i—g,k—l - pg,n-{—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k))
=1 =1

(E.14)

as desired.
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APPENDIX F. PROVING C,, > 0 AND C,; > 0 IN SECTION 3.2

In this section we prove C,, > 0 and C, > 0 in (3.11). We first verify that the denominators
of C}, and C, are positive. Because the numerators of C), and C are linear in the ¢; j, we obtain
expressions for their numerators directly from the gap recurrences in (3.3). As the recurrences
for the cases g = 0, g = 1, and g > 2 are different, we check that the numerators of C, and C;,
are positive for each case separately. Each case is dealt with using standard methods.

Recall

Zio Jjo  tigJ
i=1 22j=0 "\
ZZO Jjo li Vig? 4
J=0 X{
i jo  tij ; )2
P 7=0 Xt (J = Cui)

C, = : : : . (F.1)
ti7 i1
22021 §-°:o ,\—]1

Oy =

Let
io  Jo tii-d
* _ 7‘7.]

DI
i=1j=0 "1
io  Jo "

G 1= 2.0 5= Gy’ (F2)
i=1j=0 "1

be the numerators of C,, C;; in (F.1), respectively. Note that the denomatators of C), and C,, are
both always positive as

A~

ZZ ZtAlz > 0 (F.3)

i=1 j=0 =1

since t; =¢; > 0for1 <i< Landt; =0 for L < i < io. Thus it suffices to prove CZ >0
and C; > 0 when K ,, is nontrivial.

We first prove C; > 0. Since C}; is linear in ¢; ;, (F.1) tells us we can obtain C; by replacing
every instance of py ,,_; 1, in the recurrence relations of (3.3) with y/A{.

Suppose g = 0. If ¢; = 1forall 1 <4 < L and ¢y, is 1 or 2, then no m has gaps of size 0 in
the decomposition, so the random variable K ,, is trivial. Otherwise, ¢; > 2 for some 7 < L. In
this case, dy—1 — (L — 1) > 0. Thus, evaluating C;j gives

L c¢;—1
Pon,k = Zpon i,k—(di—1—(—1)+(j—1) +Zp0n i,k—(di—1—(i—1))> (F4)
=1 j=1
SO
c;i—1 . . .
LS k= (di— (1) +(G—1) k- (di1—(i—1))
Z . +Z .
Al ; Al
=1 j=1 1 =1 1
L c¢;—1 0 L 0
> — = 0. F.5
22ty - (F5)

=1 j=1



CENTRAL LIMIT THEOREMS FOR GAPS OF GENERALIZED ZECKENDORF DECOMPOSITIONS 29

Now suppose g = 1. If ¢; = ¢ = 1 and L = 2 (i.e., {G), } is the Fibonaccis), then K ,, = 0
is trivial, so we can assume otherwise. Recall

L
Pink = Pln— 1k+z _1p1n i,k— 21+Zp1n i,k—(i—2)
=2
L
+ Z(Ci - 1) ((pl,n—i,k—i - pl,n—i,k—(i—l)) - (p1,n—z'—1,k—z' - pl,n—i—l,k—(i—l))) .
i=1
(F.6)
Note, when we perform the substitution to obtain C*, any expression of the form
(pl,n—(x—l),k—y - pl,n—(m—l),k—(y—l)) - (pl,n—x,k—y + pl,n—x,k—(y—l)) (E.7)
becomes
—(y—1 —(y—1 A —1
y—-1) y--1) _ M-1_ (F3)

AT A M
Thus (F.6) gives that when g = 1,

0 <& (i—1) Li-2 < A — 1
ch = FJFZ(Ci—l) X +) % +) (e — D)5 > 0. (F.9)
T =1 1 i=2 71 i=1 Al

To see that the sum is in fact positive, note first that every summand is nonnegative. Furthermore,
if any ¢; is greater than 1, the last sum is strictly positive. Otherwise, all the ¢;’s are 1, in which
case L > 3 since the sequence is not the Fibonaccis. Then the second to last sum will be strictly
positive.

Lastly, assume g > 2. Recall

L L
Pgnk = Z CiPgn—ik + Z C;f( ((pg,n+1—i—g,k—1 - pg,n—l—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k)) .

i=1 i=1
(F.10)

Performing the same substitution gives

Zc, 0+Z A;;gl >0 (F.11)

as ¢; > 0 for some ¢ by definition. This proves that for any g, we have C; > 0, so for any g we
also have C), > 0.

We can similarly casework on g to prove C; > 0 when K, ,, is nontrivial. As before C};
linear in the ; j, so by (F.1) we can obtain C}; by replacing every instance of py ;s x—y in
(3.3) with (y — C’um)2 /A{. This produces an expression for C; that we prove is positive using
standard techniques.

First suppose g = 0. Recall

L c¢;—1

Ponk = ZZpOn t,k—(di—1—(i—1)+(j—1)) +Zp0n t,k—(di—1—(i—1))" (F12)

=1 j=1

By considering 7 = 1 and j = 1 in the double sum of (F.12), we have t; o = 1. Since t; ; > 0
for all 4, j, we have C; = 0 if and only if j — C,i = 0 for all ¢, j satisfying ¢; ; # 0. But this is
impossible as t1 o = 1 implies C,, = 0, and we already showed C, > 0 when K, ,, is nontrivial.
Thus C; > 0 when g = 0 and Ky ,, is nontrivial.
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Now suppose g = 1. Recall

L L
Pink = Pln—1k T Z(Cz - 1)p1,n—i,k—(i—1) + Zpl,n—i,k—(i—2)
i=1 1=2
L
+ Z(Ci - 1) ((pl,n—i,k—i - pl,n—i,k—(i—l)) - (pl,n—i—l,k—i - pl,n—i—l,k—(i—l))) .
i=1

(F.13)

Again, if ¢; = ¢ = 1and L = 2 (i.e., {G),} is the Fibonaccis), then K ,, = 0 is trivial, so we
can assume otherwise. Substituting for C'; gives

* (O - Cu)z L (Z -1 Cui)2 L (Z —92_ CMZ')2
T Ut ) o PR Uk Sk S R gl Ut T
)\1 ; )\1 ; )\1
L . ) . N2 . . 9 ) ) )
+Z(C,_1)<(z—qﬂ) C(-1-G) (= Cu(i+1)? | (1= Culit1)) >
i=1 Al Al A+l At
2

~ C_H+ZL:(¢—2—'CH2')2+ZL:(Ci_1)<(z'—CH¢)2_2¢—1—2Cu(z'+1)>

X i
(F.14)

By an earlier argument C,, > 0, so we simplify to get

L . . . .
. i—Cui)?  2i—1-20,>+1
Cr > (ci—1)<( Ai“) — Hl“( )>. (F.15)
i=1 1 )‘1

Now we show that for all 7 > 1 we have
20 —1-2C,(i+1)

(i — Cpi)* — > 0. (F.16)
A1
If2i —1—-2C,(i+ 1) > 0, then since A\; > 1, we obtain
21 —1-2 L+ 1
(Z o Cu'i)2 o ? CN(Z + )
A1
> (i — Cui)® — (20 — 1 — 20, (i + 1))
= (i—1-Cui)* +20C, > 0. (F.17)
Otherwise, we have 2i — 1 —2C),(i + 1) < 0so
2t —1-2 + 1
(i — Ci)? — = AC”(Z LR Cyii)? > 0. (F.18)
1
These two cases allow us to conclude
L . .
X c—1/(, o 20—1-2C,(+1)
c, > 2 N <(z Cpi) N
Le—1
> ——0=0 F.19
> ; v (F.19)

as desired.
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Finally suppose g = 2. Recall

Pgnk = Z CiDg,n—ik T Z C: ((pg,n-l-l—i—g,k—l - pg,n-{—l—i—g,k) - (pg,n—i—g,k—l - pg,n—i—g,k)) :
i=1 i=1
(F.20)
Substituting for C'} as before gives

(0 C’z
ch /\zu
+§L: <<1—0H<z'+g—1>>2 —(0-Culitg—1? (1—0u<z'+g>>2—<o—0u<z'+g>2>>

= A A
L , L , ,
:ZC"(CM?F—FZC% 1_2CH(Z+9_1)_1_2CM(Z+9)
i=1 1 = A A

L k
= 35 (MG + £ =20+ 9 1) - (- 26,00 +.9)) ) - F21)

Since Ay > 1, the coefficient of 7 in A\{ (1 —2C,(i + g — 1)) — (1 — 2C,(i + g)) is negative, so
it is minimized when ¢ = L. Thus if A\;(1 — 2C,,(L +g—1)) — (1 —2C,(L +g)) > 0, (F.21)
tells us C¥ > 0. Thus we may assume A\ (1 —2C,(L+g—1))—(1—-2C,(L+g)) <0, Since
cf /¢i < 1 with equality if and only if i # L, we can simplify (F.21) to get

cr o> Z )\’+9 Cui)? + (M1 = 20,6 +g—1) — (1 -2C,(i+g)). (F22)

Using standard techniques (such as plugging into Mathematica), one can show that ¥ (zw)? +
(z(1 =22(w+y—1) —(1—22(w+y)) >0forallz > 1,y > 2,z > 0,w > 1, and
substituting x = A1,y = g, 2 = Cp, w = i gives

L
>y xcig (M(Ci)? + (M(1 = 2C,(i + g — 1)) — (1 — 2Cu(i + 9))))

L
Ci
> Z T .0 = 0. (F.23)

as desired.
For every g and every sequence for which K ,, is nontrivial, we’ve proven C; > 0, so we
can conclude C, > 0 is all of these cases.
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