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CENTRAL LIMIT THEOREMS FOR GAPS OF GENERALIZED ZECKENDORF
DECOMPOSITIONS

RAY LI AND STEVEN J. MILLER

ABSTRACT. Zeckendorf proved that every integer can be written uniquely as a sum of non-
adjacent Fibonacci numbers {1, 2, 3, 5, . . . }. This has been extended to many other recurrence
relations {Gn} (with their own notion of a legal decomposition) and to proving that the distribu-
tion of the number of summands of an m ∈ [Gn, Gn+1) converges to a Gaussian as n → ∞. We
prove that for any non-negative integer g the average number of gaps of size g in many general-
ized Zeckendorf decompositions is Cµn+dµ+o(1) for constants Cµ > 0 and dµ depending on
g and the recurrence, the variance of the number of gaps of size g is similarly Cσn+ dσ + o(1)
with Cσ > 0, and the number of gaps of size g of an m ∈ [Gn, Gn+1) converges to a Gaussian
as n → ∞. The proof is by analysis of an associated two-dimensional recurrence; we prove a
general result on when such behavior converges to a Gaussian, and additionally re-derive other
results in the literature.
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1. INTRODUCTION

1.1. Previous Results. Zeckendorf [Ze] proved that if the Fibonacci numbers are defined by
F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1, then every integer can be written as a sum of non-
adjacent terms. The standard proof is by the greedy algorithm, though combinatorial approaches
exist (see [KKMW]). More generally, one can consider other sequences of numbers and rules
for a legal decomposition, and ask when a unique decomposition exists, and if it does how the
summands are distributed.

There has been much work on these decomposition problems. In this paper we concen-
trate on the class of positive linear recurrences (see [Al, DDKMV] for signed decompositions,
[DDKMMV] for f -decomposition, and [CFHMN1, CFHMN2, CFHMNPX] for some recur-
rences where the leading term vanishes, which can lead to different limiting behavior).

Definition 1.1. A positive linear recurrence sequence (PLRS) is a sequence {Gn} satisfying

Gn = c1Gn−1 + · · ·+ cLGn−L (1.1)

with non-negative integer coefficients ci with c1, cL, L ≥ 1 and initial conditions G1 = 1 and
Gn = c1Gn−1 + c2Gn−2 + · · ·+ cn−1G1 + 1 for 1 ≤ n ≤ L.

Informally a legal decomposition is one where we cannot use the recurrence relation to re-
place a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded. We first describe four results on these sequences (see
[DG, Ha, Ho, Ke, LT, Len, LT, MW1, MW2, PT, Ste1, Ste2], especially [MW1] for proofs),
and then discuss our new work.

Theorem 1.2 (Generalized Zeckendorf Theorem). Let {Gn} be a positive linear recurrence
sequence. For each integer m > 0, there exists a unique legal decomposition

m =

N
∑

i=1

aiGN+1−i (1.2)

with a1 > 0 and the other ai ≥ 0, and one of the following two conditions, which define a legal
decomposition, holds.

(1) We have N < L and ai = ci for 1 ≤ i ≤ N .
(2) There exists an s ∈ {1, . . . , L} such that a1 = c1, a2 = c2, . . . , as−1 = cs−1 and

as < cs, as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}
N−s−ℓ
i=1 (with bi = as+ℓ+i) is

either legal or empty.

The next result concerns the average number of summands in decompositions, generalizing
Lekkerkerker’s [Lek] work on this problem for the Fibonacci numbers. Given {Gn} a PLRS,
we have the legal decomposition

m =

N
∑

i=1

aiGN+1−i = Gi1 +Gi2 + · · ·+Gik (1.3)

for some positive integer k = a1 + a2 + · · · + aN and i1 ≥ i2 ≥ · · · ≥ ik. The gaps in
the decomposition of m are the numbers i1 − i2, i2 − i3, . . . , ik−1 − ik (for example, 101 =

F10 + F5 + F3 + F1, and thus has gaps 5, 2, and 2). Throughout this paper we let k̂(m) denote
the number of summands of m and kg(m) the number of gaps of size g in m’s decomposition.
Let K̂n be the random variable equal to k̂(m) for an m chosen uniformly from [Gn, Gn+1),
and let Kg,n be a random variable equal to kg(m) for an m chosen uniformly from [Gn, Gn+1).
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Thus kg(m) is a decomposition of k̂(m), as

k̂(m) = 1 +

∞
∑

g=0

kg(m). (1.4)

Theorem 1.3 (Generalized Lekkerkerker’s Theorem for PLRS). Let {Gn} be a PLRS, let K̂n

be the random variable defined above, and let µn = E[K̂n]. Then there exist constants Cµ > 0,
dµ, and γµ ∈ (0, 1) depending only on L and the ci’s of the recurrence relation such that

µn = Cµn+ dµ +O(γnµ). (1.5)

Theorem 1.4 (Variance is Linear for PLRS). Let {Gn} be a PLRS, let K̂n be the random
variable defined above, and let σ2

n = Var[K̂n]. Then there exist constants Cσ > 0, dσ, and
γσ ∈ (0, 1) depending only on L and the ci’s of the recurrence relation such that

σ2
n = Cσn+ dσ +O(γnσ ). (1.6)

Theorem 1.5 (Gaussian Behavior for Number of Summands in PLRS). Let {Gn} be a PLRS
and let K̂n be the random variable defined above. The mean µ̂n and variance σ̂2

n of K̂n grow
linearly in n, and (K̂n − µ̂n)/σ̂n converges weakly to the standard normal N(0, 1) as n → ∞.

Surprisingly, much less has been written on kg(m) and Kg,n. We show that similar Central
Limit results hold for gaps. The techniques we introduce to prove these results allow us to
easily prove some results already in the literature which are often done through tedious technical
calculations, which we can bypass.

1.2. NewResults. Beckwith et al. [BBGILMT] and Bower et al. [BILMT] (see also [DFFHMPP])
explored the distribution of gaps in Generalized Zeckendorf Decompositions arising from PLRS,
proving (as n → ∞) exponential decay in the probability of a gap of length g in the decom-
position of m ∈ [Gn, Gn+1) as g grows and determining that the distribution of the longest
gap between summands behaves similarly to what is seen in the distribution of the longest run
of heads in tossing a biased coin. We improve on the first result and establish lower order
terms (previous work had O(1) instead of d below), then prove the variance has a similar linear
behavior, and finally show Gaussian behavior for fixed g.

Theorem 1.6 (Generalized Lekkerkerker’s Theorem for Gaps of Decompositions). Let g ≥ 0
be a fixed positive integer. Let {Gn} be a PLRS. Suppose there exists n0 ∈ N such that Kg,n,
the random variable defined above, is non-trivial (i.e., is not the constant 0) for n ≥ n0. Let
µg,n = E[Kg,n]. Then there exists constants Cµ,g > 0, dµ,g , and γµ,g ∈ (0, 1) depending only
on g, L, and the ci’s of the recurrence relation such that

µg,n = Cµ,gn+ dµ,g +O(γnµ,g). (1.7)

Theorem 1.7 (Variance is Linear for Gaps of Decompositions). Let g ≥ 0 be a fixed positive
integer. Let {Gn} be a PLRS. Suppose there exists n0 ∈ N such that Kg,n, the random variable
defined above, is non-trivial (i.e., is not the constant 0) for n ≥ n0. Let σ2

g,n = Var[Kg,n].
Then there exists constants Cσ,g > 0, dσ,g , and γσ,g ∈ (0, 1) depending only on g, L, and the
ci’s of the recurrence relation such that

σ2
g,n = Cσ,gn+ dσ,g +O(γnσ,g). (1.8)

These two theorems follow as intermediate results in the proof of the next theorem, which is
the main result of this paper. The next theorem proves that we also obtain Gaussian behavior if
we fix the gap size and if that gap size occurs; note we have to be careful, as there are never gaps
of length 1 between summands in Zeckendorf decompositions arising from Fibonacci numbers,
and we must make sure to exclude such cases.
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Theorem 1.8 (Gaussian Behavior for Gaps of Decompositions). Let g ≥ 0 be a fixed positive
integer. Suppose there exists n0 ∈ N such that Kg,n, the random variable defined above, is
non-trivial for n ≥ n0. The mean µg,n and variance σ2

g,n of Kg,n grow linearly in n, and
(Kg,n − µg,n)/σg,n converges weakly to the standard normal N(0, 1) as n → ∞.

Our proof uses the fact that pg,n,k, the number of m ∈ [Gn, Gn+1) with exactly k gaps of size
g, satisfies a homogenous two-dimensional recursion (see §3). We then prove that under certain
conditions, the “rows” {pg,n,k}k≥0 of these two-dimensional homogenous recursions converge
to a Gaussian (see §2.2). Our proof depends only on the recurrence relation and not the initial
conditions of the recursion. This is reasonable because if the number of initial conditions is
finite, then as n grows large the recurrence essentially behaves as if all the initial conditions
were lumped on a single term. This result should not be surprising, as a specific case is the two
dimensional recurrence an,k = an−1,k + an−1,k−1. This recurrence produces the binomials

(

n
k

)

(or sums of them), and binomials
(

n
·

)

are well known to converge to a normal distribution.
Similar to the work of Miller and Wang [MW1, MW2], we use the method of moments

to prove that our random variables converge to Gaussians. More precisely, we prove that the
moments of the nth random variable Kg,n (or K̂n), µ̃n(m), satisfy

lim
n→∞

µ̃n(2m)

µn(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µn(2)
m+ 1

2

= 0. (1.9)

While Miller and Wang use generating functions to directly compute the moments µ̃n(m), we
instead compute them recursively (see, for example, Theorem 2.10), which leads to a cleaner
computation and could be of use in other investigations.

2. PRELIMINARIES

We first collect some notation we will use throughout the paper, then isolate two technical
lemmas on convergence, and then apply these to prove Gaussian behavior for certain two di-
mensional recurrences. This final result is the basis for the proof of our main result on Gaussian
behavior of gaps for a fixed g, Theorem 1.8.

2.1. Notation. For this paper, all big-Os are taken as n → ∞ unless otherwise specified.
For a polynomial A(x) =

∑d
k=0 akx

k, let
[

xk
]

(A(x)) = ak be the notation for extracting
the kth coefficient of A.

For a real number λ1 > 0, a polynomial A(x) has the maximum root property with maximum
root λ1 if λ1 is a root of A with multiplicity 1 and all other roots have magnitude strictly less
than λ1.

A sequence of real numbers {an} converges exponentially quickly to a if limn→∞ an = a
and there exists γ ∈ (0, 1) and a constant C such that |a− an| ≤ Cγn for all n (alternatively,
an = a+O(γn)).

Let d be a fixed positive integer, and let {An(x)} be a sequence of degree-d polynomials
where An(x) =

∑d
j=0 aj,nx

j . We say {An(x)} converges exponentially quickly to Ā(x) =
∑d

j=0 ājx
j if {aj,n}n∈N converges exponentially quickly to āj for j = 0, 1, . . . , d.

From the above definitions we immediately obtain the following useful result.

Lemma 2.1. Let {an}, {bn} be sequences that converge exponentially quickly to a and b re-
spectively. Then

(1) {an + bn} converges exponentially quickly to a+ b,
(2) {an − bn} converges exponentially quickly to a− b,
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(3) {an · bn} converges exponentially quickly to a · b,
(4) if bn 6= 0 for all n and b 6= 0, then {an/bn} converges exponentially quickly to a/b.

We end by recalling some useful results from [BBGILMT].

Theorem 2.2 (Generalized Binet’s Formula). Consider a linear recurrence (not necessarily a
positive linear recurrence)

Gn = c1Gn−1 + · · ·+ cLGn−L (2.1)

with non-negative integer coefficients ci with c1, cL, L ≥ 1. Then the characteristic polynomial
xL− (c1x

L−1+c2x
L−2+ · · ·+cL) has the maximum root property with maximum root λ1 > 1,

and there exist constants such that Gn = a1λ
n
1 +O(nL−2λn

2 ) with |λ2| < λ1 the second largest
root in absolute value.

Corollary 2.3. Consider a linear recurrence (not necessarily a positive linear recurrence)

Gn = c1Gn−1 + · · ·+ cLGn−L (2.2)

with non-negative integer coefficients ci with c1, cL, L ≥ 1 and arbitrary initial conditions. Let
λ1 be the maximum root of the characteristic polynomial given by Theorem 2.2. Then, for every
fixed positive integer i, Gn−i/Gn converges to 1/λi

1 exponentially quickly.

2.2. Convergence on non-homogenous linear recurrences with noise. The following two
lemmas follow immediately from the previous definitions and book-keeping, and play a key
role in the convergence analysis later. In particular, these two lemmas allow us to pin down the
exact behavior of the moments of our random variables Kg,n as we prove convergence to the
standard normal (see Lemmas 2.11 and 2.12).

Lemma 2.4. Let i0 be a positive integer. Let {rn}n∈N be a sequence of real numbers and
for each 1 ≤ i ≤ i0 let {si,n}n∈N be a sequence of non-negative real numbers such that
∑i0

i=1 si,n = 1 for all n. With slight abuse of notation, suppose also that there exist constants r̄
and s̄i for 1 ≤ i ≤ i0, along with γr, γs ∈ (0, 1) such that

rn = r̄ +O(γnr ), si,n = s̄i +O(γns ). (2.3)

Suppose further that the polynomial

S(x) = xi0 −

i0
∑

i=1

s̄ix
i0−i (2.4)

has the maximum root property with maximum root 1. Let {an}n≥n0
be a sequence with arbi-

trary initial conditions an0
, . . . , an0+i0−1, and for n ≥ n0 + i0,

an =

(

i0
∑

i=1

si,nan−i

)

+ rn. (2.5)

Then there exists a positive integer d and a real number γ ∈ (0, 1) such that

an =
r̄

∑i0
i=1 i · s̄i

· n+ d+O(γn). (2.6)

Roughly speaking, Lemma 2.4 is true because, modulo exponentially small terms, every an
is a constant plus the weighted average of previous an−is, so it should be linear in n.
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Proof. It suffices to prove the lemma for n0 = 0. Let bn = an − r̄
∑i0

i=1
i·s̄i

· n. Set γ =

max(γr, γs). Simple manipulations yield

bn =

i0
∑

i=1

si,nbn−i + rn −

∑i0
i=1 i · si,n

∑i0
i=1 i · s̄i

· r̄

=

i0
∑

i=1

si,nbn−i + r̄ ·

(

rn
r̄

−

∑i0
i=1 i · s̄i,n

∑i0
i=1 i · s̄i

)

=

i0
∑

i=1

si,nbn−i + r̄ · ((1 +O(γn))− (1 +O(γn)))

=

i0
∑

i=1

si,nbn−i +O(γn). (2.7)

We finish by showing that the sequence bn converges exponentially quickly to a constant.
Simple algebra yields that bn is bounded (see Appendix A). Let M be an integer such that
|bn| ≤ M for all n. Then

bn −

i0
∑

i=1

s̄ibn−i = bn −

i0
∑

i=1

si,nbn−i +

i0
∑

i=1

(si,n − s̄i)bn−i

≤ O(γn) +

i0
∑

i=1

O(γn) · bn−i

≤ O(γn) +

i0
∑

i=1

O(γn) ·M = O(γn). (2.8)

Thus we can write

bn =

(

i0
∑

i=1

s̄ibn−i

)

+ f(n) (2.9)

for some function f : {i0, i0 + 1, . . . } → R such that f(n) = O(γn) as n → ∞. Let αf > 0
be a constant such that |f(n)| ≤ αfγ

n.
From here, the intuition for the finish is as follows. If f(n) = 0 for all n, then Theorem 2.2

implies that bn approaches a constant exponentially quickly. However, since γ < 1, we have
that bn should still approach a constant exponentially quickly when f(n) = O(γn).

Let {b(init)
n }n∈N, {b

(i0)
n }n∈N, {b

(i0+1)
n }n∈N, . . . be sequences defined (for m ≥ i0) by

b(init)
n =

{

bn 0 ≤ n ≤ i0 − 1
∑i0

i=1 s̄ib
(init)
n−i n > i0

b(m)
n =







0 n < m
f(m) n = m

∑i0
i=1 s̄ib

(m)
n−i n > m.

(2.10)

By induction, we can verify that

bn = b(init)
n +

∞
∑

m=i0

b(m)
n (2.11)
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for all n (see Appendix B). By the restrictions of si, the characteristic polynomials of {b(init)
n }

and {b
(m)
n } are equal to S(x) in (2.4) and thus have the maximum root property with maximum

root 1. Hence, by generalized Binet’s formula {b
(init)
n } and {b

(m)
n } all converge to a constant.

Suppose that {b(init)
n } converges to b̄(init) and {b

(m)
n } converges to b̄(m) for each m ≥ i0. Let

λ2 < 1 be the second largest magnitude of a root of S(x). Choose γ1 ∈ (max(γ, λ2), 1). By
the generalized Binet’s formula

b(init)
n − b̄(init) = O(ni0 · λn

2 ) ≤ O(γn1 ), (2.12)

so there exists α(1)
b such that

∣

∣

∣b(init)
n − b̄(init)

∣

∣

∣ ≤ α
(1)
b γn1 . (2.13)

For all m, we can bound b
(m)
n similarly. However, note that for all m, {b(m)

n /f(m)}n∈N is the
same sequence with the indices shifted. Thus there exists α(2)

b such that

b(m)
n − b̄(m) ≤ α

(2)
b f(m)γn−m

1 ≤ α
(2)
b αfγ

mγn−m
1 . (2.14)

Set αb = max(α
(1)
b , α

(2)
b ). Then

|bn − b| ≤
∣

∣

∣
b(init) − b(init)

n

∣

∣

∣
+

∞
∑

m=i0

∣

∣

∣
b(m) − b(m)

n

∣

∣

∣

≤ αbγ
n
1 +

∞
∑

m=i0

αbαfγ
n
1

(

γ

γ1

)m

≤ γn1

(

αb + αbαf ·

(

γ

γ1

)i0

·
1

1− γ
γ1

)

= O(γn1 ) (2.15)

as desired. �

The next lemma generalizes Lemma 2.4.

Lemma 2.5. Let D be a nonnegative integer and let i0 be a positive integer. Let {Rn(x)}n∈N
be a sequence of D degree polynomials with Rn(x) =

∑D
j=0 rj,nx

j . For each 1 ≤ i ≤ i0

let {si,n}n∈N be a sequence of non-negative real numbers such that
∑i0

i=1 si,n = 1 for all n.
Suppose also that there exist a polynomial R̄(x) = r̄Dx

D + r̄D−1x
D−1 + · · · + r̄0 and real

numbers s̄i for 1 ≤ i ≤ i0, along with γr, γs ∈ (0, 1), such that, for all 0 ≤ j ≤ D and
1 ≤ i ≤ i0,

rj,n = r̄j +O(γnr ), si,n = s̄i +O(γns ). (2.16)

Suppose further that the polynomial, S(x) = xi0−
∑i0

i=1 s̄ix
i0−i has the maximum root property

with maximum root 1. Let {an}n≥n0
be a sequence with arbitrary initial conditions an0

, . . . ,
an0+i0−1, and for n ≥ n0 + i0,

an =

(

i0
∑

i=1

si,nan−i

)

+Rn(n). (2.17)

Then there exists a degree D + 1 polynomial Q(x) and a γ1 ∈ (0, 1) such that
an = Q(n) +O(γn1 ) (2.18)

where
[

xD+1
]

(Q(x)) =
r̄D

(D + 1)
∑i0

i=1 i · s̄i
. (2.19)
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In contrast to in Lemma 2.4, an is, modulo exponentially small terms, a D degree polynomial
in n plus the weighted average of previous an−is. Since for any D degree polynomial A(x) the
sum A(1)+A(2)+ · · ·+A(n) is an D+1 degree polynomial in n, we expect an to essentially
be a D + 1 degree polynomial in n.

Proof. We proceed by induction on D, the degree of the polynomials Rn(x). Lemma 2.4 estab-
lishes the base case D = 0. Now assume D > 0 and that the assertion is true for D − 1. Let
bn = an − C · nD+1 for C = r̄D

(D+1)
∑i0

i=1
i·s̄i

. Straightforward manipulations yield

bn =

i0
∑

i=1

si,nbn−i +

D−1
∑

j=0

nj ·

[(

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ rj,n

]

+ f(n)

(2.20)

for some function f(n) ≤ O(γn0 ) for some γ0 ∈ (0, 1) (see Appendix C). The constant C is
chosen so that the right side contains an D − 1 degree polynomial in n, as opposed to an D

degree polynomial, which is the case in the recursion for {an}. Let R∗
n(x) =

∑D−1
j=0 r∗j,nx

j be
the polynomial given by

r∗0,n :=

(

i0
∑

i=1

Csi,n(−1)D+1

(

D + 1

0

)

iD+1

)

+ r0,n + f(n)

r∗j,n :=

(

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ rj,n (2.21)

for 1 ≤ j ≤ D − 1. Since, as n → ∞, si,n converges exponentially fast to s̄i, rj,n converges
exponentially fast to r̄j , and f(n) converges exponentially fast to 0, we have r∗j,n converges
exponentially fast to

lim
n→∞

r∗j,n =

(

i0
∑

i=1

Cs̄i(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ r̄j. (2.22)

for 0 ≤ j ≤ D − 1. Writing

bn =

(

i0
∑

i=1

si,nbn−i

)

+R∗
n(n), (2.23)

we can apply the induction hypothesis to bn to obtain a a degree D polynomial Q∗(x) such that
bn = Q∗(n) + O(γn1 ) for some γ1 ∈ (0, 1). Set Q(x) = Q∗(x) + CxD+1. Then Q(x) is a
degree D + 1 polynomial satisfying an = Q(x) +O(γn1 ), as desired. �

2.3. Gaussian Behavior of 2D Recursions. The result below is the key ingredient in proving
Gaussian behavior of gaps.

Theorem 2.6. Let i0 and j0 be positive integers. Let ti,j be real numbers for 1 ≤ i ≤ i0, 0 ≤

j ≤ j0 such that for all i, t̂i :=
∑j0

j=0 ti,j ≥ 0. Suppose that the polynomial T (x) = xi0 −
∑i0

i=1 t̂ix
i0−i has the maximum root property with some maximum root λ1. Suppose pn,k is a

two-dimensional recurrence sequence satisfying, for n ≥ n0,

pn,k =

i0
∑

i=1

j0
∑

j=0

ti,jpn−i,k−j. (2.24)
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Suppose further that pn,k ≥ 0 for all n and k, pn,k = 0 when n < 0 or k < 0, and finitely
many pn,k are nonzero for n < n0. Let Xn be the random variable whose mass function is
proportional to pn,k over varying k so that

Pr[Xn = k] =
pn,k

∑∞
i=0 pn,i

. (2.25)

Let

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

, Cσ =

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

(2.26)

be constants, and assume Cσ > 0. Then there exist constants dµ, dσ ∈ R, and γµ, γσ ∈ (0, 1)
such that µn = Cµn+ dµ+O(γnµ) and σ2

n = Cσn+ dσ+O(γnσ ). Furthermore, (Xn−µn)/σn
converges weakly to the standard normal N(0, 1) as n → ∞.

In this theorem, imagine we have fixed a gap size g and think of pn,k as the number of
m ∈ [Gn, Gn+1) whose decomposition has exactly k gaps of size g. Under this interpretation,
the random variable Xn is be identical to Kg,n.

We approach this problem using the method of moments, a common method for proving
random variables converge in distribution to the standard normal distribution.

Lemma 2.7 (Method of Moments). Suppose X1,X2, . . . are random variables such that for all
integers m ≥ 0, we have

lim
n→∞

E[X2m
n ] = (2m− 1)!! and lim

n→∞
E[X2m+1

n ] = 0. (2.27)

Then the sequenceX1,X2, . . . converges weakly in distribution to the standard normalN(0, 1).

The proof of Theorem 2.6 proceeds by using generating functions to compute the moments
of Xn. Let

Pn(x) :=
∞
∑

k=0

pn,kx
k

Ωn := Pn(1) =
∞
∑

k=0

pn,k

P̃n,0(x) :=
Pn(x)

xµ+1

P̃n,m(x) := (xP̃n,m−1(x))
′

µ̃n(m) :=
P̃n,m(1)

Ωn
. (2.28)

Then it follows from definitions that

µn =
P ′
n(1)

Pn(1)

µ̃n(m) = E[(Xn − µn)
m]

σ2
n = µ̃n(2). (2.29)

We now prove several lemmas about the above moments and generating functions. We ulti-
mately obtain a formula in Theorem 2.10 that recursively computes the moments µ̃n(m), which
will yield Theorem 2.6.
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Lemma 2.8. For n ≥ n0, we have

Pn(x) =

i0
∑

i=1

j0
∑

j=0

ti,jPn−i(x)x
j . (2.30)

Proof. This follows immediately from the definitions:

Pn(x) =

∞
∑

k=0

pn,kx
k

=

∞
∑

k=0

i0
∑

i=1

j0
∑

j=0

ti,jpn−i,k−jx
k

=

i0
∑

i=1

j0
∑

j=0

ti,jx
j

∞
∑

k=0

pn−i,k−jx
k−j

=

i0
∑

i=1

j0
∑

j=0

ti,jx
jPn−i(x). (2.31)

�

From the above we immediately deduce the following relations.

Corollary 2.9. For n ≥ n0, we have

Ωn = Pn(1) = P̃n,0(1) =

i0
∑

i=1

j0
∑

j=0

ti,jPn−i(1) =

i0
∑

i=1

j0
∑

j=0

ti,jΩn−i. (2.32)

and

µn =

i0
∑

i=1

j0
∑

j=0

ti,jΩn−i

Ωn

(µn−i + j). (2.33)

Theorem 2.10. For n ≥ n0, we have

µ̃n(m) =

m
∑

ℓ=0

(

m

ℓ

) i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ · µ̃n−i(m− ℓ). (2.34)

Proof. Applying Lemma 2.8, we find

P̃n,0(x) =

i0
∑

i=1

j0
∑

j=0

ti,jP̃n−i,0(x) · x
j+µn−i−µn . (2.35)

By induction, we can establish (see Appendix D)

P̃n,m(x) =

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x) · x

j+µn−i−µn , (2.36)
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so

µ̃n(m) =
P̃n,m(1)

Ωn

=
1

Ωn

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(1)

=
1

Ωn

m
∑

ℓ=0

(

m

ℓ

) i0
∑

i=1

j0
∑

j=0

ti,j(j + µn−i − µn)
ℓΩn−iµ̃n−i(m− ℓ)

=

m
∑

ℓ=0

(

m

ℓ

) i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ · µ̃n−i(m− ℓ),

(2.37)

completing the proof. �

Out next goal is to prove.

lim
n→∞

µ̃n(2m)

µ̃n(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µ̃n(2)
m+ 1

2

= 0. (2.38)

By Lemma 2.7, these equalities imply Theorem 2.6. To do prove these equalities, we first show
µn is essentially linear in n. Then we determine for all m the behavior of µ̃n(m), the mth

moment of Xn − µn, up to an exponentially small term. We prove µ̃n(m) is a degree (at most,
if m is odd) ⌊m/2⌋ polynomial in n, and for even moments µ̃n(2m) we addtionally compute
the leading coefficient of this polynoimal. We rely heavily on Lemmas 2.4 and 2.5 to pin down
the polynomial behavior of the moments.

Lemma 2.11. There exists a real number dµ and a γµ ∈ (0, 1) such that

µn = Cµ · n+ dµ +O(γnµ). (2.39)

Proof. Recall

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

. (2.40)

Choose si,n = Ωn−i

Ωn

∑j0
j=0 ti,j = Ωn−i

Ωn
t̂i and rn =

∑i0
i=1

∑j0
j=0

ti,j ·j·Ωn−i

Ωn
. Using Lemmas 2.1

and 2.3, we have that, for each i, si,n converges exponentially quickly to s̄i =
1
λi
1

∑j0
j=0 ti,j = t̂i

and rn converges exponentially quickly to r̄ =
∑i0

i=1

∑j0
j=0

ti,j ·j

λi
1

. By Lemma 2.9, we have

µn =

(

i0
∑

i=1

si,nµn−i

)

+ rn. (2.41)

Furthermore, the polynomial S(x) := xi0 −
∑i0

i=1 s̄ix
i0−i satisfies S(x) = T (x/λ1), so S has

the maximum root property with maximum root 1. Then, by Lemma 2.4, there exist dµ ∈ R and
γµ ∈ (0, 1) such that

µn =
r̄

∑i0
i=1 is̄i

· n+ dµ +O(γnµ) = Cµ · n+ dµ +O(γnµ). (2.42)

�
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Lemma 2.12. For each integer m ≥ 0, there exist γ2m, γ2m+1 ∈ (0, 1) and polynomials Q2m

of degree exactly m and Q2m+1 of degree at mostm such that

µ̃n(2m) = Q2m(n) +O(γn2m)

µ̃n(2m+ 1) = Q2m+1(n) +O(γn2m+1). (2.43)

Furthermore, if C2m := [xm]Q2m and C2m+1 := [xm]Q2m+1, then for all m ≥ 0, C2m =
(2m− 1)!! · Cm

σ (We take (−1)!! := 1).

The idea for the proof is as follows. In the calculation of µn(m) in Theorem 2.10 the co-
efficients of µn−i(m) sum to 1, the coefficients of µn−i(m − 1) sum to 0, and the coefficients
of µn−i(m − 2) sum to

(2m
2

)

· (constant). The mth moments can thus be written in the form
of (2.17), so we can apply Lemma 2.5 and compute the degrees and leading coefficients ap-
propriately. Because the coefficients of the (m − 1)th moments sum to 0, the degrees of the
polynomials increase by one with every two values of m as opposed to every one.

Proof. We proceed by induction on m. The base case m = 0 follows from noting that

µ̃n(0) = E[(Xn − µn)
0] = 1

µ̃n(1) = E[(Xn − µn)
1] = 0 (2.44)

for all n ≥ n0. Now assume the statement is true for m′ ≤ m. That is, there exist γ0, γ1, . . . ,
γ2m−1 ∈ (0, 1) and polynomials Q0, Q1, . . . , Q2m−1, where Qk has degree ⌊k/2⌋, such that

µ̃n(2m− 2) = Q2m−2(n) +O(γn2m−2)

µ̃n(2m− 1) = Q2m−1(n) +O(γn2m−1). (2.45)

By induction we may assume further that C2m−2 = (2m − 3)!! · Cm−1
σ . First, we compute

µ̃n(2m). Define a sequence of polynomials {Rn(x)} via

Rn(x) :=

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ ·Q2m−ℓ(x− i). (2.46)

Furthermore, set

si,n =
Ωn−i

Ωn

j0
∑

j=0

ti,j and s̄i =
1

λi
1

j0
∑

j=0

ti,j. (2.47)

Then

µ̃n(2m) =

i0
∑

i=1

si,nµ̃n−i(2m) +Rn(n). (2.48)

Note that Rn(x) is the sum of finitely many polynomials that, by Lemma 2.1, converges expo-
nentially quickly. Thus Rn(x) converges exponentially quickly to

R̄(x) :=

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
ℓ ·Q2m−ℓ(x− i). (2.49)
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Furthermore, we have deg R̄(x) ≤ m− 1 since each Rn(x) has degree at most m− 1. We can
compute the leading coefficient of R using (2.49) to get

[xm−1](R̄(x)) =

2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

(

2m

ℓ

)

ti,j
λi
1

· (j − Cµi)
ℓ · [xm−1](Q2m−ℓ(x− i))

=

2
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

(

2m

ℓ

)

ti,j
λi
1

· (j − Cµi)
ℓ · C2m−ℓ

= C2m−2 ·

(

2m

2

) i0
∑

i=1

j0
∑

j=0

ti,j

λi
1

· (j − Cµi)
2 + C2m−1 · 2m

i0
∑

i=1

j0
∑

j=0

ti,j

λi
1

· (j − Cµi)

= C2m−2 ·

(

2m

2

) i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
2 + C2m−1 · 2m · 0

= C2m−2 ·

(

2m

2

) i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
2. (2.50)

Recalling

Cσ =

∑i0
i=1

∑j0
j=0

ti,j

λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

=

∑i0
i=1

∑j0
j=0

ti,j

λi
1

· (j − Cµi)
2

∑i0
i=1 i · s̄i

, (2.51)

we have

[xm−1](R̄(x)) = C2m−2 ·

(

2m

2

)

· Cσ ·

(

i0
∑

i=1

i · s̄i

)

. (2.52)

By Lemma 2.5, there exists a degree deg R̄(x)+1 polynomial Q2m(x) with xm coefficient C2m

and a γ2m ∈ (0, 1) such that

µn(2m) = Q2m(n) +O(γn2m) (2.53)

and

C2m =
C2m−2 ·

(2m
2

)

· Cσ ·
(

∑i0
i=1 i · s̄i

)

m ·
∑i0

i=1 i · s̄i
= C2m−2 · (2m− 1) · Cσ. (2.54)

By the inductive hypothesis, we conclude C2m = (2m−1)!! ·Cm
σ . By our technical assumption,

Cσ 6= 0, so C2m 6= 0 and thus the degree of Q2m is exactly m.
We can perform the same computation to show that the µ̃n(2m+ 1) can be expressed as the

sum of an mth degree polynomial in n and an exponentially small term. To see this, define a
sequence of polynomials {Rn(x)} via

Rn(x) :=

2m+1
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

Ωn−iti,j
Ωn

· (j + µn−i − µn)
ℓ ·Q2m+1−ℓ(x− i). (2.55)

Just as for the 2mth moments, set

si,n =
Ωn−i

Ωn

j0
∑

j=0

ti,j. (2.56)
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Then

µ̃n(2m+ 1) =

i0
∑

i=1

si,nµ̃n−i(2m+ 1) +Rn(n). (2.57)

Note that Rn(x) is the sum of finitely many polynomials that, by Lemma 2.1, converge expo-
nentially quickly. Thus Rn(x) converges exponentially quickly to

R̄(x) :=

2m+1
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
ℓ ·Q2m+1−ℓ(x− i). (2.58)

Furthermore, we have deg R̄(x) ≤ m − 1. Indeed, Q2m has degree m, so to show that
deg R̄(x) ≤ m − 1, we simply need to show that the coefficient of xm is 0. Indeed, look-
ing at the xm coefficients of (2.58) gives

[xm](R̄(x)) =
2m
∑

ℓ=1

i0
∑

i=1

j0
∑

j=0

(

2m

ℓ

)

ti,j
λi
1

· (j −Cµi)
ℓ · [xm](Q2m+1−ℓ(x− i))

= C2m ·

i0
∑

i=1

j0
∑

j=0

2m ·
ti,j
λi
1

· (j − Cµi)
1 = C2m · 2m · 0 = 0. (2.59)

Again, applying Lemma 2.5 gives that there exists a degree deg R̄(x)+1 polynomial Q2m+1(x)
such that µ̃n(2m+1) = Q2m+1(n) +O(γn2m+1). Since deg R̄(x) + 1 ≤ m, this completes the
induction. �

Proof of Theorem 2.6. Lemma 2.11 proves the first part of Theorem 2.6. Lemma 2.12 implies
that σ2

n = µ̃n(2) = Q2(n) + O(γn2 ). Writing Q2(n) = Cσn + dσ for some dσ ∈ R, we have
σ2
n = Cσn + dσ + O(γn2 ), proving the second part of Theorem 2.6. We finish the proof of

Theorem 2.6 by noting that (2.38) is an immediate consequence of Lemma 2.12. �

3. GAP THEOREMS

3.1. Gap Recurrence. We start by finding a recurrence relation for an m ∈ [Gn, Gn+1) having
exactly k gaps of size g.

Lemma 3.1. Let {Gn} be a positive linear recurrence satisfying

Gn = c1Gn−1 + · · ·+ cLGn−L. (3.1)

Let kg(m) denote the number of gaps of size g in the Zeckendorf Decomposition of m. Slightly
abusing notation (reusing the letter p), let

pg,n,k := |{m ∈ [Gn, Gn+1) : kg(m) = k}|. (3.2)

Define d0 = 0 and di = c1 + c2 + · · · + ci for 1 ≤ i ≤ L and set c∗i = ci for 1 ≤ i < L and
c∗L = cL − 1. Then there exists n0 = L+ g and k0 = dL such that, for n ≥ n0, k ≥ k0, g ≥ 2,



CENTRAL LIMIT THEOREMS FOR GAPS OF GENERALIZED ZECKENDORF DECOMPOSITIONS 15

we have

p0,n,k =
L
∑

i=1

ci−1
∑

j=1

p0,n−i,k−(di−1−(i−1)+(j−1)) +
L
∑

i=1

p0,n−i,k−(di−1−(i−1))

p1,n,k = p1,n−1,k +

L
∑

i=1

(ci − 1)p1,n−i,k−(i−1) +

L
∑

i=2

p1,n−i,k−(i−2)

+
L
∑

i=1

(ci − 1)
((

p1,n−i,k−i − p1,n−i,k−(i−1)

)

−
(

p1,n−i−1,k−i − p1,n−i−1,k−(i−1)

))

pg,n,k =

L
∑

i=1

cipg,n−i,k +

L
∑

i=1

c∗i ((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k)) .

(3.3)

Proof. Define

qg,n,k := |{m ∈ [1, Gn) : kg(m) = k}| =

n−1
∑

i=1

pg,i,k; (3.4)

thus while pg,n,k is the number of m in [Gn, Gn+1) such that kg(m) = k, qg,n,k is the corre-
sponding quantity for integers in [1, Gn). Set Hn,0 = 0 and Hn,i =

∑i
i′=1 ci′Gn+1−i′ so that,

for all n, Hn,L = Gn+1. Let

Z = {(i, j) ∈ Z
2 : 0 ≤ i ≤ L− 1, 0 ≤ j ≤ ci − 1, (i, j) 6= (0, 0)}. (3.5)

For n ∈ N and (i, j) ∈ Z , let In,i,j = [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) be an interval of
integers. The c1+c2+ · · ·+cL−1 intervals {In,i,j : (i, j) ∈ Z} form a partition of [Gn, Gn+1),
and the sequential order of these intervals is equal to their lexicographical order by (i, j). For
each (i, j) ∈ Z , we can express |{m ∈ In,i,j : kg(m) = k} in terms of pg,n,k and qg,n,k with
smaller values of n by case work on whether the smallest term in Hn,i + jGn−i (either Gn+1−i

or Gn−i depending on whether j = 0) is part of a gap of size g:

|{m ∈ In,i,0 : k0(m) = k}| = q0,n−i,k−(di−i)

|{m ∈ In,i,0 : k1(m) = k}| = q1,n−i,k−(i−1)

|{m ∈ In,i,0 : kg(m) = k}| = qg,n−i,k + pg,n+1−i−g,k−1 − pg,n+1−i−g,k

|{m ∈ In,i,j : k0(m) = k}| = q0,n−i,k−(di−i+(j−1))

|{m ∈ In,i,j : k1(m) = k}| = q1,n−i,k−i + pg,n−i−1,k−(i+1) − pg,n−i−1,k−i

|{m ∈ In,i,j : kg(m) = k}| = qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k (3.6)

(see Appendix E.1 for details). These formulas are clean because the number of size g gaps in
an m = Hn,i + jGn−i +m′ ∈ In,i,j is simply the number of size g gaps in Hn,i + jGn−i plus
the number of size g gaps in m′ plus possibly one more gap between the two decompositions.
By definition, for g ≥ 0 we have

pg,n,k =
∑

(i,j)∈Z

|{m ∈ In,i,j : kg(m) = k}|. (3.7)

From this equation, we can substitute from (3.6), plug in the result for pg,n,k and pg,n−1,k in the
expression pg,n,k− pg,n−1,k, use the identity qg,n,k− qg,n−1,k = pg,n−1,k, and apply straightfor-
ward manipulations to obtain the desired result (see Appendix E.2 for calculations). �
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3.2. Proof of Gap Theorems. Lemma 3.1 allows us to apply Theorem 2.6 to the distribution of
the number of fixed sized gaps. The proof is essentially verifying that the conditions of Theorem
2.6 are met by our gap recurrences.

Proofs of Theorems 1.6, 1.7, and 1.8. Let kg(m) denote the number of gaps of size g in the
Zeckendorf Decomposition of m, let

pg,n,k := |{m ∈ [Gn, Gn+1) : kg(m) = k}| (3.8)

and let i0 = L+ g, j0 = dL. By Lemma 3.1, for every g ≥ 0, there exist ti,j for 1 ≤ i ≤ L+ g
and 0 ≤ j ≤ dL such that for n > i0

pg,n,k =

i0
∑

i=1

j0
∑

j=0

ti,jpg,n−i,k−j. (3.9)

Define t̂i =
∑j0

j=0 ti,j = ci. By (3.3), t̂i = ci for 1 ≤ i ≤ L and t̂i = 0 for L < i ≤ i0. To
see this, note that in each recursive formula of (3.3) the terms of the form pg,n−x,y1 − pg,n−x,y2

contribute 0 to
∑j0

j=0 tx,j , and for each 0 ≤ i ≤ L − 1 the remaining coefficients of pg,n−i−1,k

(over varying k) sum to ci+1. Thus the polynomial

T (x) = xi0 −

i0
∑

i=1

t̂ix
i0−i = xi0−L

(

xL −

L
∑

i=1

cix
L−i

)

(3.10)

has the maximum root property with some maximum root λ1 > 1 by Theorem 2.2. As pg,n,k
counts something that is well defined when n ≥ 1 and k ≥ 0, we have pg,n,k ≥ 0 for all n, k
and pg,n,k = 0 for n < 0 or k < 0. Also, there are finitely many pairs (n, k) with n ≤ i0 such
that pg,n,k 6= 0, as pg,n,k = 0 for all k ≥ n, since no m ∈ [Gn, Gn+1) can have a gap greater
than n. Lastly, for every g, if the random variable Kg,n is nontrivial then the ti,j satisfy

Cµ :=

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

, Cσ :=

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

. (3.11)

To prove each of Cµ > 0 and Cσ > 0, we split into cases on whether g = 0, g = 1, or g ≥ 2,
for each case substituting into (3.11), and performing standard manipulations (see Appendix F).
Putting these observations together, the proofs follow by applying Theorem 2.6. �

4. LEKKERKERKER AND GAUSSIAN SUMMANDS

We show the power of Theorem 2.6 by reproving Theorems 1.3, 1.4, and 1.5. We borrow
from the proof given by Miller and Wang [MW1] the recursion established for pn,k, the number
of m ∈ [Gn, Gn+1) with exactly k summands. This recursion is extracted as (4.1) from gener-
ating functions in [MW1]. Their arguments quickly show the mean and variance grow linearly
in n, but a lot of technical calculations are needed to show the coefficients of n are positive
(which is a key ingredient in the proof of the Gaussian behavior). See [CFHMNPX] for another
approach, which bypasses the difficulties through an elementary argument involving conditional
probabilities, or [B-AM] for a proof through Markov processes.

Similar to §3.2, the proof is essentially verifying that the conditions of Theorem 2.6 are met
by the summands recursion given by Miller and Wang.

Proofs of Theorems 1.3, 1.4, and 1.5. Let pn,k be the number of m ∈ [Gn, Gn+1) with exactly
k summands. Then Pr[K̂n = k] =

pn,k∑
∞

k=0
pn,k

. Again, pn,k ≥ 0 for all n, k, pn,k = 0 for
all n < 0 and k < 0, and pn,k > 0 for finitely many pairs with n < L as pn,k = 0 for all
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k > n ·maxi(ci), since each m has, for each a ∈ {1, . . . , n}, at most maxi(ci) copies of Ga in
each decomposition.

Define di = c1+ c2+ · · ·+ ci for 1 ≤ i ≤ L. By Proposition 3.1 from [MW2], pn,k satisfies,
for n ≥ L and k ≥ dL,

pn,k =

L
∑

i=1

dm−1
∑

j=dm−1

pn−i,k−j. (4.1)

For 1 ≤ i ≤ L, 0 ≤ j < dL, set ti,j to be 1 if di−1 ≤ j < di − 1 and 0 otherwise. Defining
t̂i :=

∑dL−1
j=0 ti,j gives t̂i = ci, and the polynomial

T (x) = xi0 −

i0
∑

i=1

t̂ix
i0−i = xi0−L

(

xL −
L
∑

i=1

cix
L−i

)

(4.2)

has the maximum root property with some maximum root λ1 > 1 by Theorem 2.2. Lastly, since
all the ti,j are nonnegative and tn−L,k−(dL−1) = 1 with k − (dL − 1) > 0, (2.26) tells us

Cµ =

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

≥

k−(dL−1)

λn−L
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

> 0. (4.3)

Since t1,0 = 1, we have

Cσ =

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

≥

t1,0
λ1
1

· (0− Cµ1)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

> 0. (4.4)

Thus we can apply Theorem 2.6, implying the theorems. �

5. FURTHER WORK AND OPEN QUESTIONS

We end with a few natural questions for future work.

(1) Are there other two-dimensional recurrences to which we can apply our central limit
type result? The second named author is currently investigating two dimensional se-
quences and associated notions of legality with colleagues. These lead to recurrence
relations, though the resulting sequences do not have unique decomposition.

(2) Can one remove the constraint that every coefficient ci must be positive and obtain the
same results? Notice that with negative constraints one loses some of the interpretations
for the algebra.

(3) What is the rate at which Kg,n converges to a normal distribution?
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APPENDIX A. bn IS BOUNDED IN LEMMA 2.4

Since si,n = s̄i +O(γn), there exist α1, α2 > 0, n0 ∈ N such that, for all n ≥ n0 + i0,

|bn| =

∣

∣

∣

∣

∣

i0
∑

i=1

(s̄i +O(γn))bn−i +O(γn)

∣

∣

∣

∣

∣

≤

i0
∑

i=1

(s̄i + α1γ
n)|bn−i|+ α2γ

n

≤ (1 + i0α1γ
n)

∣

∣

∣

∣

max
1≤i≤i0

bn−i

∣

∣

∣

∣

+ α2γ
n

≤ (1 + (i0α1 + α2)γ
n)

∣

∣

∣

∣

max

(

1, max
1≤i≤i0

bn−i

)∣

∣

∣

∣

≤ e(i0α1+α2)γn

∣

∣

∣

∣

max

(

1, max
1≤i≤i0

bn−i

)∣

∣

∣

∣

. (A.1)

Let B = max0≤i<i0 |bn0+i|. We prove by induction that

|bn| ≤ (B + 1)e(i0α1+α2)(γn0+γn0+1+···+γn). (A.2)

For n < n0 + i0, we have

|bn| < (B + 1) ≤ (B + 1)e(i0α1+α2)(γn0+γn0+1+···+γn). (A.3)

Now assume n ≥ n0 + i0, and suppose the assertion is true for n′ < n. Then, by (A.1),

|bn| ≤ e(i0α1+α2)γn

∣

∣

∣

∣

max

(

1, max
1≤i≤i0

bn−i

)∣

∣

∣

∣

≤ e(i0α1+α2)γn

∣

∣

∣

∣

max

(

1, max
1≤i≤i0

(B + 1)e(i0α1+α2)(γn0+γn0+1+···+γn−i)

)∣

∣

∣

∣

= e(i0α1+α2)γn

(B + 1)e(i0α1+α2)(γn0+γn0+1+···+γn−1)

≤ (B + 1)e(i0α1+α2)(γn0+γn0+1+···+γn) (A.4)

completing the induction. Thus we have

|bn| ≤ (B + 1)e(i0α1+α2)·
γn0

1−γ , (A.5)

so the sequence {bn} is bounded.

APPENDIX B. DECOMPOSITION OF bn INTO SIMILAR SEQUENCES 2.4

We prove by induction that

bn = b(init)
n +

∞
∑

m=i0

b(m)
n . (B.1)

For n < i0, we have

bn = b(init)
n = b(init)

n +

∞
∑

m=i0

b(m)
n . (B.2)
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Suppose the statement is true for n′ < n. Using the fact that f(n) = b
(n)
n and the recursive

definitions for b(init)
n and b

(m)
n , we obtain

bn = f(n) +

(

i0
∑

i=1

s̄ibn−i

)

= f(n) +

i0
∑

i=1

s̄i

(

b
(init)
n−i +

∞
∑

m=i0

b
(m)
n−i

)

= f(n) +

i0
∑

i=1

s̄ib
(init)
n−i +

i0
∑

i=1

∞
∑

m=i0

s̄ib
(m)
n−i

= f(n) +

i0
∑

i=1

s̄ib
(init)
n−i +

n−1
∑

m=i0

i0
∑

i=1

s̄ib
(m)
n−i +

∞
∑

m=n

i0
∑

i=1

s̄ib
(m)
n−i

= b(n)n + b(init)
n +

n−1
∑

m=i0

b(m)
n +

∞
∑

m=n

i0
∑

i=1

s̄i · 0

= b(init)
n +

n
∑

m=i0

b(m)
n

= b(init)
n +

n
∑

m=i0

b(m)
n +

∞
∑

m=n+1

b(m)
n

= b(init)
n +

∞
∑

m=i0

b(m)
n , (B.3)

completing the induction.

APPENDIX C. COMPUTING bn IN LEMMA 2.5

Our goal this section is to simplify (2.17) using the substitution an − bn = C · nD+1 where
C = r̄D

(D+1)
∑i0

i=1
i·s̄i

. We compute a recursive formula for bn to obtain a linear combination of

smaller bn−is plus a polynomial in n. For any choice of C , the resulting coefficient of nD+1

in this polynomial is 0, but for our specific choice of C , the nD term also disappears, so the
remaining polynomial has degree at most D − 1.

Let γ0 ∈ (max(γr, γs), 1). Since an =
∑i0

i=1 si,nan−i +
∑D

j=0 rj,nn
j , we can write

bn = an − C · nD+1

= an −

i0
∑

i=1

Csi,nn
D+1

=

i0
∑

i=1

si,nan−i +

D
∑

j=0

rj,nn
j. (C.1)

Substituting an − bn = C · nD+1 gives

bn =

(

i0
∑

i=1

si,n
(

bn−i + C(n− i)D+1
)

)

+

D
∑

j=0

rj,nn
j −

i0
∑

i=1

Csi,nn
D+1. (C.2)
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We now expand (n− i)D+1 to get

bn =





i0
∑

i=1

si,n



bn−i + C ·
D+1
∑

j=0

(−1)D+1−j

(

D + 1

j

)

njiD+1−j







+
D
∑

j=0

rj,nn
j −

i0
∑

i=1

Csi,nn
D+1

=

i0
∑

i=1

si,nbn−i +





D+1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j



+

D
∑

j=0

rj,nn
j −

i0
∑

i=1

Csi,nn
D+1.

(C.3)

As
∑i0

i=1 Csi,n is the coefficient of nD+1 in the binomial expansion, we can cancel to get

bn =

i0
∑

i=1

si,nbn−i +





D
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j



+
D
∑

j=0

rj,nn
j. (C.4)

We can also pull out the nD terms of the binomial expansions to get

bn =

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+
D
∑

j=0

rj,nn
j −

i0
∑

i=1

Csi,n(D + 1)nDi

=

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+
D−1
∑

j=0

rj,nn
j + rD,nn

D − C(D + 1)nD

i0
∑

i=1

si,ni. (C.5)

Now we substitute the value of C in. Note that C is chosen so that the coefficient of nD becomes
O(γn0 ). This will happen as

∑i0
i=1

i·si,n
∑i0

i=1
i·s̄i

and rD,n

r̄D
are of the form 1 + O(γns ) and 1 + O(γnr )
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respectively. We find

bn =

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+

D−1
∑

j=0

rj,nn
j + rD,nn

D −
r̄D · nD

∑i0
i=1 i · s̄i

i0
∑

i=1

si,n · i

=

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+

D−1
∑

j=0

rj,nn
j − r̄Dn

D

(

∑i0
i=1 i · si,n

∑i0
i=1 i · s̄i

−
rD,n

r̄D

)

=

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+

D−1
∑

j=0

rj,nn
j − r̄Dn

D ·O(max(γr, γs)
n)

=

i0
∑

i=1

si,nbn−i +





D−1
∑

j=0

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

njiD+1−j





+

D−1
∑

j=0

rj,nn
j +O(γn0 )

=

i0
∑

i=1

si,nbn−i +
D−1
∑

j=0

nj ·

[(

i0
∑

i=1

Csi,n(−1)D+1−j

(

D + 1

j

)

iD+1−j

)

+ rj,n

]

+O(γn0 ).

(C.6)

APPENDIX D. RECURSIVE FORMULA FOR P̃n,m(x) (EQUATION (2.36))

We wish to prove

P̃n,m(x) =

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x) · x

j+µn−i−µn . (D.1)

The base case m = 0 is given by (2.35). Now let m ≥ 1, and suppose

P̃n,m−1(x) =

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−1−ℓ(x) · x

j+µn−i−µn .

(D.2)
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Then

P̃n,m(x) = (xP̃n,m−1(x))
′

=



x

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−1−ℓ(x) · x

j+µn−i−µn





′

=

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓ
(

xP̃n−i,m−1−ℓ(x) · x
j+µn−i−µn

)′

=

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓ

[

(

P̃n−i,m−ℓ(x) · x
j+µn−i−µn

)

+
(

xP̃n−i,m−1−ℓ(x) · (j + µn−i − µn)x
j+µn−i−µn−1

)

]

=

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓ+1P̃n−i,m−1−ℓ(x)x

j+µn−i−µn

=

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=0

(

m− 1

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=1

(

m− 1

ℓ− 1

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn . (D.3)
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Taking out the ℓ = 0 term from the first sum and the ℓ = m term from the latter one, and pairing
the remaining terms by common ℓ, we obtain

P̃n,m(x) =

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=1

((

m− 1

ℓ− 1

)

+

(

m− 1

ℓ

))

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

(

m− 1

0

)

(j + µn−i − µn)
0P̃n−i,m−0(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

(

m− 1

m− 1

)

(j + µn−i − µn)
mP̃n−i,m−m(x)xj+µn−i−µn

=

i0
∑

i=1

j0
∑

j=0

ti,j

m−1
∑

ℓ=1

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

(

m

0

)

(j + µn−i − µn)
0P̃n−i,m−0(x)x

j+µn−i−µn

+

i0
∑

i=1

j0
∑

j=0

ti,j

(

m

m

)

(j + µn−i − µn)
mP̃n−i,m−m(x)xj+µn−i−µn

=

i0
∑

i=1

j0
∑

j=0

ti,j

m
∑

ℓ=0

(

m

ℓ

)

(j + µn−i − µn)
ℓP̃n−i,m−ℓ(x)x

j+µn−i−µn (D.4)

as desired. This completes the induction.

APPENDIX E. DETAILS FOR RECURSIVELY COUNTING GAPS IN LEMMA 3.1

E.1. Computing |{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : kg(m) = k}|. In this section,
we compute a recursive formula for |{m ∈ In,i,j : kg(m) = k}|. Note that the number of
size g gaps in an m = Hn,i + jGn−i + m′ ∈ In,i,j is simply the number of size g gaps in
Hn,i+ jGn−i plus the number of size g gaps in m′ plus possibly one more gap between the two
decompositions. This observation gives a clean way to produce the desired recursions. We need
to be careful in our case work as the number of size g gaps in Hn,i + jGn−i varies depending
on whether g is 0, 1, or at least 2, and the the existence of the gap between the smallest term in
the decomposition of Hn,i+ jGn−i and the largest term in the decomposition of m′ depends on
whether j is nonzero.

For j ≥ 0, the decomposition of any element of In,i,j = [Hn,i+ jGn−i,Hn,i+(j+1)Gn−i)
begins with the decomposition of Hn,i+jGn−i, and the decomposition of Hn,i+jGn−i contains
only gaps of sizes 0 and 1 by definition of Hn,i. In particular, when j = 0, the decomposition of
Hn,i contains di − i gaps of size 0 and i− 1 gaps of size 1. When j ≥ 1, the decomposition of
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Hn,i + jGn−i contains di − i+ (j − 1) gaps of size 0 and i gaps of size 1. For i ≥ 1, this gives

|{m ∈ [Hn,i,Hn,i +Gn−i) : k0(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : k0(m) = k − (di − i)}|

|{m ∈ [Hn,i,Hn,i +Gn−i) : k1(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : k1(m) = k − (i− 1)}|

|{m ∈ [Hn,i,Hn,i +Gn−i) : kg(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : kg(m) = k}|, (E.1)

and for i ≥ 0, j ≥ 1, we have

|{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : k0(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : k0(m) = k − (di − i+ (j − 1))}|

|{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : k1(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : k1(m) = k − i}|

|{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : kg(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : kg(m) = k}|. (E.2)

We can further push (E.1) by noting that, for m ∈ [Gn+1−i, Gn+1−i+Gn−i), the decomposition
of m begins with Gn+1−i, and furthermore Gn+1−i is not a part of a gap of size 0 or 1. Thus

|{m ∈ In,i,0 : k0(m) = k}|

= |{m ∈ [Hn,i,Hn,i +Gn−i) : k0(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : k0(m) = k − (di − i)}|

= |{m ∈ [0, Gn−i) : k0(m) = k − (di − i)}|

= q0,n−i,k−(di−i)

|{m ∈ In,i,0 : k1(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : k1(m) = k − (i− 1)}|

= |{m ∈ [0, Gn−i) : k1(m) = k − (i− 1)}|

= q1,n−i,k−(i−1). (E.3)

Similarly, the decomposition of any m ∈ [Gn−i, 2Gn−i) begins with Gn−i, and Gn−i is not a
part of a gap of size 0, so we have

|{m ∈ In,i,j : k0(m) = k}|

= |{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : k0(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : k0(m) = k − (di − i+ (j − 1))}|

= |{m ∈ [0, Gn−i) : k0(m) = k − (di − i+ (j − 1))}|

= q0,n−i,k−(di−i+(j−1)). (E.4)
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For g ≥ 2 we have

|{m ∈ In,i,0 : kg(m) = k}|

= |{m ∈ [Hn,i,Hn,i +Gn−i) : kg(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn−i) : kg(m) = k}|

= |{m ∈ [Gn+1−i, Gn+1−i +Gn+1−i−g) : kg(m) = k}|

+ |{m ∈ [Gn+1−i +Gn+1−i−g, Gn+1−i +Gn+2−i−g) : kg(m) = k}|

+ |{m ∈ [Gn+1−i +Gn+2−i−g, Gn+1−i +Gn−i) : kg(m) = k}|

= |{m ∈ [0, Gn+1−i−g) : kg(m) = k}|

+ |{m ∈ [Gn+1−i−g, Gn+2−i−g) : kg(m) = k − 1}|

+ |{m ∈ [Gn+2−i−g, Gn−i) : kg(m) = k}|

= |{m ∈ [0, Gn−i) : kg(m) = k}|

+ |{m ∈ [Gn+1−i−g, Gn+2−i−g) : kg(m) = k − 1}|

− |{m ∈ [Gn+1−i−g, Gn+2−i−g) : kg(m) = k}|

= qg,n−i,k + pg,n+1−i−g,k−1 − pg,n+1−i−g,k, (E.5)

where the third equality comes from noting that for m ∈ [Gn+1−i, Gn+1−i +Gn−i), Gn+1−i is
part of a gap of size g in the decomposition of m if and only ifm ∈ [Gn+1−i+Gn+1−i−g, Gn+1−i+
Gn+2−i−g). Using the same argument, we obtain, for g ≥ 1 and j ≥ 1,

|{m ∈ [Gn−i, 2Gn−i) : kg(m) = k}|

= |{m ∈ [Gn−i, Gn−i +Gn−i−g) : kg(m) = k}|

+ |{m ∈ [Gn−i +Gn−i−g, Gn−i +Gn+1−i−g) : kg(m) = k}|

+ |{m ∈ [Gn−i +Gn+1−i−g, 2Gn−i) : kg(m) = k}|

= |{m ∈ [0, Gn−i−g) : kg(m) = k}|

+ |{m ∈ [Gn−i−g, Gn+1−i−g) : kg(m) = k − 1}|

+ |{m ∈ [Gn+1−i−g, Gn−i) : kg(m) = k}|

= |{m ∈ [0, Gn−i) : kg(m) = k}|

+ |{m ∈ [Gn−i−g, Gn+1−i−g) : kg(m) = k − 1}|

− |{m ∈ [Gn−i−g, Gn+1−i−g) : kg(m) = k}|

= qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k. (E.6)

Combining with (E.2), we have, for g ≥ 2,

|{m ∈ In,i,j : k1(m) = k}|

= |{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : k1(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : k1(m) = k − i}|

= q1,n−i,k−i + p1,n−i−1,k−i−1 − p1,n−i−1,k−i

|{m ∈ In,i,j : kg(m) = k}|

= |{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : kg(m) = k}|

= |{m ∈ [Gn−i, 2Gn−i) : kg(m) = k}|

= qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k. (E.7)

This establishes all six equalities that we desire.
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E.2. Computing pg,n,k. This section uses careful bookkeeping to produce homogenous two
dimensional recursive formulas for pg,n,k using (3.6).

Recall that for g ≥ 0 we have

pg,n,k =
∑

(i,j)∈Z

|{m ∈ In,i,j : kg(m) = k}|

=

L−1
∑

i=0

ci+1−1
∑

j=1

|{m ∈ [Hn,i + jGn−i,Hn,i + (j + 1)Gn−i) : kg(m) = k}|

+
L−1
∑

i=1

|{m ∈ [Hn,i,Hn,i +Gn−i) : kg(m) = k}|. (E.8)

Substituting from (3.6), we have (for g ≥ 2)

p0,n,k =

L−1
∑

i=0

ci+1−1
∑

j=1

q0,n−i,k−(di−i+(j−1)) +

L−1
∑

i=1

q0,n−i,k−(di−i)

p1,n,k =
L−1
∑

i=0

ci+1−1
∑

j=1

(q1,n−i,k−i + p1,n−i−1,k−i−1 − p1,n−i−1,k−i) +
L−1
∑

i=1

q1,n−i,k−(i−1)

=

L−1
∑

i=0

(ci+1 − 1) (q1,n−i,k−i + p1,n−i−1,k−i−1 − p1,n−i−1,k−i) +

L−1
∑

i=1

q1,n−i,k−(i−1)

pg,n,k =

L−1
∑

i=0

ci+1−1
∑

j=1

(qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k)

+
L−1
∑

i=1

(qg,n−i,k + pg,n+1−i−g,k−1 − pg,n+1−i−g,k)

=

L−1
∑

i=0

(ci+1 − 1) (qg,n−i,k + pg,n−i−g,k−1 − pg,n−i−g,k)

+
L−1
∑

i=1

(qg,n−i,k + pg,n+1−i−g,k−1 − pg,n+1−i−g,k) . (E.9)

Substituting for pg,n,k and pg,n−1,k and using qg,n,k − qg,n−1,k = pg,n−1,k, we obtain for
g = 0

p0,n,k − p0,n−1,k =
L−1
∑

i=0

ci+1−1
∑

j=1

p0,n−i−1,k−(di−i+(j−1)) +
L−1
∑

i=1

p0,n−i−1,k−(di−i)

p0,n,k =
L−1
∑

i=0

ci+1−1
∑

j=1

p0,n−i−1,k−(di−i+(j−1)) +
L−1
∑

i=0

p0,n−i−1,k−(di−i).

=

L
∑

i=1

ci−1
∑

j=1

p0,n−i,k−(di−1−(i−1)+(j−1)) +

L
∑

i=1

p0,n−i,k−(di−1−(i−1)). (E.10)
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Similarly for g = 1 we obtain

p1,n,k − p1,n−1,k =

L−1
∑

i=0

(ci+1 − 1)
[

p1,n−i−1,k−i + (p1,n−i−1,k−i−1 − p1,n−i−1,k−i)

− (p1,n−i−2,k−i−1 − p1,n−i−2,k−i)
]

+

L−1
∑

i=1

p1,n−i−1,k−(i−1).

(E.11)

Thus

p1,n,k = p1,n−1,k +

L−1
∑

i=0

(ci+1 − 1)p1,n−i−1,k−i +

L−1
∑

i=1

p1,n−i−1,k−(i−1)

+
L−1
∑

i=0

(ci+1 − 1) ((p1,n−i−1,k−i−1 − p1,n−i−1,k−i)− (p1,n−i−2,k−i−1 − p1,n−i−2,k−i))

= p1,n−1,k +

L
∑

i=1

(ci − 1)p1,n−i,k−(i−1) +

L
∑

i=2

p1,n−i,k−(i−2)

+
L
∑

i=1

(ci − 1)
((

p1,n−i,k−i − p1,n−i,k−(i−1)

)

−
(

p1,n−i−1,k−i − p1,n−i−1,k−(i−1)

))

,

(E.12)

and for g ≥ 2 we have

pg,n,k − pg,n−1,k =

L−1
∑

i=0

(ci+1 − 1)
[

pg,n−i−1,k + (pg,n−i−g,k−1 − pg,n−i−g,k)

− (pg,n−i−g−1,k−1 − pg,n−i−g−1,k)
]

+

L−1
∑

i=1

[

pg,n−i−1,k

+ (pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k)
]

.

(E.13)

Thus

pg,n,k =

L−1
∑

i=0

ci+1pg,n−i−1,k

+

L−1
∑

i=0

(ci+1 − 1) ((pg,n−i−g,k−1 − pg,n−i−g,k)− (pg,n−i−g−1,k−1 − pg,n−i−g−1,k))

+

L−1
∑

i=1

((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k))

=

L
∑

i=1

cipg,n−i,k +

L
∑

i=1

c∗i ((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k))

(E.14)

as desired.
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APPENDIX F. PROVING Cµ > 0 AND Cσ > 0 IN SECTION 3.2

In this section we prove Cµ > 0 and Cσ > 0 in (3.11). We first verify that the denominators
of Cµ and Cσ are positive. Because the numerators of Cµ and Cσ are linear in the ti,j , we obtain
expressions for their numerators directly from the gap recurrences in (3.3). As the recurrences
for the cases g = 0, g = 1, and g ≥ 2 are different, we check that the numerators of Cµ and Cσ

are positive for each case separately. Each case is dealt with using standard methods.
Recall

Cµ :=

∑i0
i=1

∑j0
j=0

ti,j ·j

λi
1

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

Cσ :=

∑i0
i=1

∑j0
j=0

ti,j
λi
1

· (j − Cµi)
2

∑i0
i=1

∑j0
j=0

ti,j ·i

λi
1

. (F.1)

Let

C∗
µ :=

i0
∑

i=1

j0
∑

j=0

ti,j · j

λi
1

,

C∗
σ :=

i0
∑

i=1

j0
∑

j=0

ti,j
λi
1

· (j − Cµi)
2 (F.2)

be the numerators of Cµ, Cσ in (F.1), respectively. Note that the denomatators of Cµ and Cσ are
both always positive as

i0
∑

i=1

j0
∑

j=0

ti,j · i

λi
1

=

i0
∑

i=1

t̂i · i

λi
1

> 0 (F.3)

since t̂i = ci > 0 for 1 ≤ i ≤ L and t̂i = 0 for L < i < i0. Thus it suffices to prove C∗
µ > 0

and C∗
σ > 0 when Kg,n is nontrivial.

We first prove C∗
µ > 0. Since C∗

µ is linear in ti,j , (F.1) tells us we can obtain C∗
µ by replacing

every instance of pg,n−x,k−y in the recurrence relations of (3.3) with y/λx
1 .

Suppose g = 0. If ci = 1 for all 1 ≤ i < L and cL is 1 or 2, then no m has gaps of size 0 in
the decomposition, so the random variable Kg,n is trivial. Otherwise, ci ≥ 2 for some i < L. In
this case, dL−1 − (L− 1) > 0. Thus, evaluating C∗

µ gives

p0,n,k =

L
∑

i=1

ci−1
∑

j=1

p0,n−i,k−(di−1−(i−1)+(j−1)) +

L
∑

i=1

p0,n−i,k−(di−1−(i−1)), (F.4)

so

C∗
µ =

L
∑

i=1

ci−1
∑

j=1

k − (di−1 − (i− 1) + (j − 1))

λi
1

+
L
∑

i=1

k − (di−1 − (i− 1))

λi
1

>

L
∑

i=1

ci−1
∑

j=1

0

λi
1

+

L
∑

i=1

0

λi
1

= 0. (F.5)
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Now suppose g = 1. If c1 = c2 = 1 and L = 2 (i.e., {Gn} is the Fibonaccis), then K1,n = 0
is trivial, so we can assume otherwise. Recall

p1,n,k = p1,n−1,k +
L
∑

i=1

(ci − 1)p1,n−i,k−(i−1) +
L
∑

i=2

p1,n−i,k−(i−2)

+

L
∑

i=1

(ci − 1)
((

p1,n−i,k−i − p1,n−i,k−(i−1)

)

−
(

p1,n−i−1,k−i − p1,n−i−1,k−(i−1)

))

.

(F.6)

Note, when we perform the substitution to obtain C∗
µ, any expression of the form

(p1,n−(x−1),k−y − p1,n−(x−1),k−(y−1))− (p1,n−x,k−y + p1,n−x,k−(y−1)) (F.7)

becomes
y − (y − 1)

λx−1
1

−
y − (y − 1)

λx
1

=
λ1 − 1

λx
1

> 0. (F.8)

Thus (F.6) gives that when g = 1,

C∗
µ =

0

λ1
1

+

L
∑

i=1

(ci − 1)
(i − 1)

λi
1

+

L
∑

i=2

i− 2

λi
1

+

L
∑

i=1

(ci − 1)
λ1 − 1

λi+1
1

> 0. (F.9)

To see that the sum is in fact positive, note first that every summand is nonnegative. Furthermore,
if any ci is greater than 1, the last sum is strictly positive. Otherwise, all the ci’s are 1, in which
case L ≥ 3 since the sequence is not the Fibonaccis. Then the second to last sum will be strictly
positive.

Lastly, assume g ≥ 2. Recall

pg,n,k =

L
∑

i=1

cipg,n−i,k +

L
∑

i=1

c∗i ((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k)) .

(F.10)

Performing the same substitution gives

C∗
µ =

L
∑

i=1

ci · 0 +

L
∑

i=1

c∗i ·
λ1 − 1

λi+g
1

> 0 (F.11)

as c∗i > 0 for some i by definition. This proves that for any g, we have C∗
µ > 0, so for any g we

also have Cµ > 0 .
We can similarly casework on g to prove C∗

σ > 0 when Kg,n is nontrivial. As before C∗
σ

linear in the ti,j , so by (F.1) we can obtain C∗
σ by replacing every instance of pg,n−x,k−y in

(3.3) with (y − Cµx)
2/λx

1 . This produces an expression for C∗
σ that we prove is positive using

standard techniques.
First suppose g = 0. Recall

p0,n,k =

L
∑

i=1

ci−1
∑

j=1

p0,n−i,k−(di−1−(i−1)+(j−1)) +

L
∑

i=1

p0,n−i,k−(di−1−(i−1)). (F.12)

By considering i = 1 and j = 1 in the double sum of (F.12), we have t1,0 = 1. Since ti,j ≥ 0
for all i, j, we have C∗

σ = 0 if and only if j − Cµi = 0 for all i, j satisfying ti,j 6= 0. But this is
impossible as t1,0 = 1 implies Cµ = 0, and we already showed Cµ > 0 when Kg,n is nontrivial.
Thus C∗

σ > 0 when g = 0 and K0,n is nontrivial.



30 RAY LI AND STEVEN J. MILLER

Now suppose g = 1. Recall

p1,n,k = p1,n−1,k +
L
∑

i=1

(ci − 1)p1,n−i,k−(i−1) +
L
∑

i=2

p1,n−i,k−(i−2)

+

L
∑

i=1

(ci − 1)
((

p1,n−i,k−i − p1,n−i,k−(i−1)

)

−
(

p1,n−i−1,k−i − p1,n−i−1,k−(i−1)

))

.

(F.13)

Again, if c1 = c2 = 1 and L = 2 (i.e., {Gn} is the Fibonaccis), then K1,n = 0 is trivial, so we
can assume otherwise. Substituting for C∗

σ gives

C∗
σ =

(0− Cµ)
2

λi
1

+

L
∑

i=1

(ci − 1)
(i− 1− Cµi)

2

λi
1

+

L
∑

i=2

(i− 2− Cµi)
2

λi
1

+
L
∑

i=1

(ci − 1)

(

(i− Cµi)
2

λi
1

−
(i− 1− Cµi)

2

λi
1

−
(i− Cµ(i+ 1))2

λi+1
1

+
(i− 1− Cµ(i+ 1))2

λi+1
1

)

=
C2
µ

λi
1

+

L
∑

i=2

(i− 2− Cµi)
2

λi
1

+

L
∑

i=1

(ci − 1)

(

(i− Cµi)
2

λi
1

−
2i− 1− 2Cµ(i+ 1)

λi+1
1

)

(F.14)

By an earlier argument Cµ > 0, so we simplify to get

C∗
σ >

L
∑

i=1

(ci − 1)

(

(i− Cµi)
2

λi
1

−
2i− 1− 2Cµ(i+ 1)

λi+1
1

)

. (F.15)

Now we show that for all i ≥ 1 we have

(i− Cµi)
2 −

2i− 1− 2Cµ(i+ 1)

λ1
≥ 0. (F.16)

If 2i− 1− 2Cµ(i+ 1) ≥ 0, then since λ1 > 1, we obtain

(i− Cµi)
2 −

2i− 1− 2Cµ(i+ 1)

λ1

≥ (i− Cµi)
2 − (2i− 1− 2Cµ(i+ 1))

= (i− 1− Cµi)
2 + 2Cµ > 0. (F.17)

Otherwise, we have 2i− 1− 2Cµ(i+ 1) < 0 so

(i− Cµi)
2 −

2i− 1− 2Cµ(i+ 1)

λ1
> (i− Cµi)

2 ≥ 0. (F.18)

These two cases allow us to conclude

C∗
σ >

L
∑

i=1

ci − 1

λi
1

(

(i− Cµi)
2 −

2i− 1− 2Cµ(i+ 1)

λ1

)

≥
L
∑

i=1

ci − 1

λi
1

· 0 = 0 (F.19)

as desired.
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Finally suppose g = 2. Recall

pg,n,k =

L
∑

i=1

cipg,n−i,k +

L
∑

i=1

c∗i ((pg,n+1−i−g,k−1 − pg,n+1−i−g,k)− (pg,n−i−g,k−1 − pg,n−i−g,k)) .

(F.20)

Substituting for C∗
σ as before gives

C∗
σ =

L
∑

i=1

ci ·
(0− Cµi)

2

λi
1

+

L
∑

i=1

c∗i

(

(1− Cµ(i+ g − 1))2 − (0− Cµ(i+ g − 1)2)

λi+g−1
1

−
(1− Cµ(i+ g))2 − (0− Cµ(i+ g)2)

λi+g
1

)

=
L
∑

i=1

ci ·
(Cµi)

2

λi
1

+
L
∑

i=1

c∗i

(

1− 2Cµ(i+ g − 1)

λi+g−1
1

−
1− 2Cµ(i+ g)

λi+g
1

)

=

L
∑

i=1

ci

λi+g
1

·

(

λg
1(Cµi)

2 +
c∗i
ci

(λ1(1− 2Cµ(i+ g − 1))− (1− 2Cµ(i+ g)))

)

. (F.21)

Since λ1 > 1, the coefficient of i in λ1(1− 2Cµ(i+ g− 1))− (1− 2Cµ(i+ g)) is negative, so
it is minimized when i = L. Thus if λ1(1− 2Cµ(L+ g − 1))− (1− 2Cµ(L+ g)) ≥ 0, (F.21)
tells us C∗

σ > 0. Thus we may assume λ1(1− 2Cµ(L+ g− 1))− (1− 2Cµ(L+ g)) < 0, Since
c∗i /ci ≤ 1 with equality if and only if i 6= L, we can simplify (F.21) to get

C∗
σ >

L
∑

i=1

ci

λi+g
1

·
(

λg
1(Cµi)

2 + (λ1(1− 2Cµ(i+ g − 1))− (1− 2Cµ(i+ g)))
)

. (F.22)

Using standard techniques (such as plugging into Mathematica), one can show that xy(zw)2 +
(x(1 − 2z(w + y − 1)) − (1 − 2z(w + y)) ≥ 0 for all x ≥ 1, y ≥ 2, z ≥ 0, w ≥ 1, and
substituting x = λ1, y = g, z = Cµ, w = i gives

C∗
σ >

L
∑

i=1

ci

λi+g
1

·
(

λg
1(Cµi)

2 + (λ1(1− 2Cµ(i+ g − 1))− (1− 2Cµ(i+ g)))
)

≥

L
∑

i=1

ci

λi+g
1

· 0 = 0. (F.23)

as desired.
For every g and every sequence for which Kg,n is nontrivial, we’ve proven C∗

σ > 0 , so we
can conclude Cσ > 0 is all of these cases.
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