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THE ZECKENDORF GAME

PAUL BAIRD-SMITH, ALYSSA EPSTEIN, KRISTEN FLINT, AND STEVEN J. MILLER

ABSTRACT. Zeckendorf [Ze] proved that every positive integer n can be written uniquely
as the sum of non-adjacent Fibonacci numbers. We use this to create a two-player
game. Given a fixed integer n and an initial decomposition of n = nF, the two play-
ers alternate by using moves related to the recurrence relation F,,+; = F,, + F},_1, and
whoever moves last wins. The game always terminates in the Zeckendorf decomposi-
tion, though depending on the choice of moves the length of the game and the winner
can vary. We find upper and lower bounds on the number of moves possible. The up-
per bound is on the order of n log n, and the lower bound is sharp at n — Z(n) moves,
where Z(n) is the number of terms in the Zeckendorf decomposition of n. Notably,
Player 2 has the winning strategy for all n > 2; interestingly, however, the proof is
non-constructive.
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1. INTRODUCTION

1.1. History. The Fibonacci numbers are one the most interesting and famous se-
quences. They appear in many varied settings, from Pascal’s triangle to mathemat-
ical biology. Among their fascinating properties, the Fibonacci numbers lend them-
selves to a beautiful theorem of Zeckendorf [Ze]: each positive integer n can be writ-
ten uniquely as the sum of distinct, non-adjacent Fibonacci numbers. This is called
the Zeckendorf decomposition of n and requires that we define the Fibonacci numbers
by Iy = 1,F, = 2, F3 = 3,F; = 5... instead of the usual 1,1,2,3,5... to create
uniqueness. The Zeckendorf theorem has been generalized many times (see for ex-
ample [Ho, Ke, MW1, MW2]), allowing the game explored in this paper potentially
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to be played similarly on other recurrences. For details on these generalizations, as
well as references to the literature on generalizations of Zeckendorf’s theorem, see the
companion paper [BEFM].

1.2. Main Results. We introduce some notation. By {1"} or { F;"} we mean n copies
of 1, the first Fibonacci number. If we have 3 copies of F}, 2 copies of F5, and 7 copies
of F, we could write either { F1* A Fy* A Fy"} or {13 A 22 A 57

Definition 1.1 (The Two Player Zeckendorf Game). At the beginning of the game, there
is an unordered list of n 1’s. Let 'y = 1, Fy = 2, and F;,1 = F; + F;_4; therefore the
initial list is { F\"}. On each turn, a player can do one of the following moves.
(1) If the list contains two consecutive Fibonacci numbers, F;_1, F;, then a player
can change these to F; 1. We denote this move {F;_1 N F; — F;1}.
(2) If the list has two of the same Fibonacci number, F;, F;, then
(a) ifi = 1, a player can change Fy, Fy to Fs, denoted by {F; \ F| — Fy},
(b) if i = 2, a player can change F,, F» to F, Fs, denoted by {Fy \ Fy —
F1 AN F3 }, and
(c) ifi > 3, a player can change F;, F; to F;_,, F;,1, denoted by {F; N\ F; —
Fi o N Fiqr}
The players alternative moving. The game ends when one player moves to create the
Zeckendorf decomposition.

The moves of the game are derived from the recurrence, either combining terms to
make the next in the sequence or splitting terms with multiple copies. We first show the
game is well-defined, and then provide bounds on its length.

Theorem 1.2. Every game terminates within a finite number of moves at the Zeckendorf
decomposition.

Now that we know that the Zeckendorf game is playable, we might wonder how long
it will take to play.

Theorem 1.3. The shortest game, achieved by a greedy algorithm, arrives at the Zeck-
endorf decomposition in n — Z(n) moves, where Z(n) is the number of terms in the
Zeckendorf decomposition of n. The longest game is bounded by i x n, where i is the
index of the largest Fibonacci number less than or equal to n.

The theoretical upper bound presented here grows on a log-linear scale because the
index of the largest Fibonacci number less than or equal to n is less than 10g¢(\/5Fi +
1/2), where ¢ is the golden ratio. This relation comes from Binet’s formula. Since
there is a wide span between the lower bound and the theoretical bound, we simulated
random games and were led to the following conjectures.

Conjecture 1.4. As n goes to infinity, the number of moves in a random game de-
composing n into it’s Zeckendorf expansion, when all legal moves are equally likely,
converges to a Gaussian.

Conjecture 1.5. The longest game on any n is achieved by applying splitting moves
whenever possible. Specifically, the longest possible game applies moves in the follow-
ing order: merging ones, splitting from smallest to largest, and adding consecutives,
from smallest to largest.
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Conjecture 1.6. The average game is of a length linear with n.
Of course, we are interested not just in how long the game takes, but who wins.

Theorem 1.7. For all n > 2, Player 2 has the winning strategy for the Zeckendorf
Game.'

Since someone must always make the final move, and the game always terminates,
for each n one of the two players must have a winning strategy. In other words, someone
must always be able to force their victory. This theorem shows that for all nontrivial
games, Player 2 has this strategy. The proof is not constructive: it merely shows the
existence of Player 2’s winning strategy; we cannot identify how they should move.
Though we can give exact winning strategies for small n, we leave the general winning
strategy for future research.

2. THE ZECKENDORF GAME

2.1. The Game is Playable. In this section, we provide many proofs related to the
Zeckendorf Game. We begin with the proof of Theorem 1.2, which shows that the
game is well defined and playable, starting with an important lemma.

Lemma 2.1 (Fibonacci Monovariant). The sum of the square roots of the indices on any
given turn is a monovariant.>

Proof. Our moves cause the following changes in the proposed monovariant. We ob-
serve that we only have to consider the affected terms because the suggested monovari-
ant is a sum, so unaffected terms contribute the same before and after the move. Here,
k is the index of F}, a term in the current decomposition.

e Adding consecutive terms: —vk — 2 — vk — 1+ Vk

e Splitting: —2vk + vk — 2+ vk + 1
e Adding I’s: —2 ++/2
e Splitting 2’s: —2V2+ 1+ /3.

We note that for all positive & > 2, in other words all indices not addressed in a
special case above, all of these moves cause negative changes. We can see this by the
fact that \/x is a monotonically increasing, concave function. So this is a monovariant;
the sum of the square roots of the indices constantly decrease with each move, so it is
strictly decreasing. 0

With this lemma, we now prove Theorem 1.2.

Proof of Theorem 1.2. At the beginning of the game, we have a sum of the square roots
of the indices of our list of numbers equal to \/n, where n is the number we have chosen
for the game. From the monovariant of Lemma 2.1, we know that the listed moves

fp = 2, there is only one move, and then the game is over.
%For us, monovariant is a quantity which is either non-increasing or non-decreasing.
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always decrease this sum. Therefore, no two moves can have the same monovariant
value, and there will be no repeat turns. Since the game essentially moves among a
subset of partitions of n, of which there are a finite number, this implies that the game
must always end within a finite number of turns. Moreover, the game always ends at the
Zeckendorf decomposition. If it terminated elsewhere, there would either be duplicate
terms or the recurrence would apply, by definition. So, there would still be a valid move
and the game would not have terminated. This concludes the proof. U

Now that we know for sure that we can play the Zeckendorf Game, we wonder how
long the game will take. First, we address the question of whether the game must
always take the same amount of turns. If it does, this game is definitely not fair because
it predetermines a victor! Fortunately, this is not the case as long as we choose an n
greater than 3.

Lemma 2.2. Given any positive integer n such thatn > 3, there are at least two distinct
sequences of moves M = {m;} where the application of each set of moves to the initial
set, denoted M ({F} },), leads to Z,, the Zeckendorf decomposition of n.

Proof. If we show that there are two distinct sets of moves that arrive at the Zeckendorf
decomposition of 4, we have proved the claim because for all n > 4: we can follow the
two different identified games up to 4, both of which are valid paths to the Zeckendorf
decomposition.

The following two sequences of moves result in the Zeckendorf composition of 4:

My ={{FiNFy — B} {FLAFy — B}, {2F — Fy A Byt
My, ={{Fi N F| — E} {Fi N F, — F3}}
Therefore, there are multiple games for any n > 3. U

Remark 2.3. If n < 3 there is one unique sequence of moves that arrives at the Zeck-
endorf decomposition. If n = 1, M = {}. If n = 2, M = {F} N F} — Fy}. If
n = 3,M = {{Fl N F1 — FQ}, {Fl N F2 — Fg}}

Corollary 2.4. For any positive n > 3, there are at least two games with different
numbers of moves. Further, there is always a game with an odd number of moves and
one with an even number of moves.

Proof. In Lemma 2.2, we showed that two different sets of moves M; and M, arrive at
the Zeckendorf Decomposition of 4. Notice that | M| = 3 but | M| = 2. As there are no
losing games, for any n > 4, we can follow either of these games up to the Zeckendorf
decomposition of 4. Regardless of the number or sequence of moves it takes to resolve
the rest of the game (call the sequence M}, with | M| = k), we have already identified
two sets of moves with different orders, My A M, and My A My, that describe a complete
game. |M; A My| = 3+ k,but |[My A M| =2+ k. If kis even, 3+ kisodd and 2 + k
is even. If k is odd, 3 + k is even and 2 + k is even. This proves the claim. O

2.2. Bounds on the Lengths of Games. We have now established that this game has
variation in both game length and parity. It is natural to ask how much variety there is
between short, long, and average games. To this end, we provide a proof of Theorem
1.3. To do so, we first include a lemma about the structure of a game following a greedy
algorithm.
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Lemma 2.5. Let m(n) be the number of moves in a deterministic game where the
players must always move on the largest valued number. Let Z(n) be the number of
terms in the Zeckendorf decomposition of n. Then m(n) =n — Z(n).

Proof. Each player acts on the largest valued summand with an available move. The
game on n takes m(n) moves. Looking at the game on 1+ 1, we observe that the list of
summands will eventually reach {1,a,b,c, ...} where {a,b,c,...} is the Zeckendorf
decomposition of n. Thus m(n + 1) = m(n) + k(n + 1), where k is a function that is
always non-negative.

If the smallest summand in the Zeckendorf decomposition for n is greater than or
equal to 3, there are no additional moves that can be made and k(n + 1) = 0. However,
if the smallest summand is 1 or 2, the smallest summand can be combined with the
additional 1. Because an additional move was completed, k(n + 1) > 1. It then may be
possible to now make another move with the decomposition that was just created. For
every additional move that can be made, k(n + 1) increases by 1. We also know that for
each additional move, the number of terms in the Zeckendorf decomposition decreases
by 1, because each move combines two numbers into one. We have

Zn+1) = Zn)+1—-kn+1)
m(n+1) = m(n)+k(n+1). (2.1)
Define ¢(n) by
t(n) = Z(n)+m(n). (2.2)

By adding the equations given by (2.1) we see that ¢(n) satisfies a simple recurrence:
Zin+ 1D 4+mn+1) = Zn)+mn)+1
tin+1) = tn)+1
= tn—1)+2
= t(n—2)+3
= t(1) +mn. (2.3)
Since 1 is a Fibonacci number, the Zeckendorf decomposition of 1 is just 1, and we
have Z(1) = land m(1) = 0. Thus
ttn+1) = t(1)+n
= Z(1)+m()+n
= 1+0+n
ttn+1) = n+1. (2.4)

From this, we see that for any positive integer n, t(n) = n and so, with the definition
of t(n), we have that

t(n) = Z(n)+m(n)
n = Z(n)+m(n)
m(n) = n—Z(n). (2.5)
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We have shown that for any positive integer n, when starting from a list of length
n that contains all 1’s, the number of moves it takes to reach the Zeckendorf decom-
position for n will be equal to n minus the number of terms in the final Zeckendorf
decomposition for n. Thus, we have shown Lemma 2.5. O

Proof. A quick way to arrive at the Zeckendorf decomposition would be to decrease one
term on every move. This would make a short game happen in n — Z(n) moves. No
game would be faster, because each possible move decreases the number of terms by at
most one. That this game is achievable follows from Lemma 2.5. Since this number of
moves is theoretically shortest and is actually possible, it is a sharp lower bound on the
number of moves in the Zeckendorf game.

For the longest game, we return to the monovariant established in Lemma 2.1. We
observe that the least each move can change the sum is by a splitting move way late
into the game. Splitting moves cost at least 2¢// — v/ — 2 — \/{ + 1, where ( is the
index of the largest Fibonacci number less than or equal to n. We notice that 2v// —
VI=2 —\T+1 > { — /T =1 because square root is concave and increasing.
Then, we observe that 1 = n — (n — 1) = (y/n — v/n —1)(/n + v/n — 1), which
implies that v/ — v —1 = o=t > 1. So, 2V/0 =Vl =2 — VI +1 > 1/L.
This gives that it will take at most ¢ - n moves to reach the Zeckendorf decomposition.
Since 7 is a Fibonacci index, we recall Binet’s formula to get a bound in terms of n:

Fy = 2=(¢" — (—¢)™"). We note that |¢—\;§| < %, which implies that v/5F, < ¢ — 1/2.
Taking a base ¢ logarithm of both sides, we get log¢(\/3Fg +1/2) > (. This shows that
(- n <log,(v5n+1/2)n. O

2.3. Conjectures on Game Lengths. Using Mathematica code (see Appendix A), we
support the conjectures on game length introduced in the introduction with simulation
data. We address Conjecture 1.4 first. Observing Figure 1, the best fit Gaussian seems to
align well with the distribution of moves taken over 9,999 simulations of the Zeckendorf
Game with n = 60. Figure 2 shows the same experiment on n = 200 with 9,999
simulations.

Frequency

0.12}
0.10}
0.08
0.06
0.04

0.02f

] Moves
60 65 70 75 80 85

FIGURE 1. Frequency graph of the number of moves in 9,999 simula-
tions of the Zeckendorf Game with random moves when n = 60 with
the best fit Gaussian over the data points.
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FIGURE 2. Frequency graph of the number of moves in 9,999 simula-
tions of the Zeckendorf Game with random moves when n = 200 with
the best fit Gaussian over the data points.

To see how Conjecture 1.5 may be true, we provide two pieces of evidence. The first
is the move count from simulation of the deterministic algorithm stated in the conjec-
ture. Recall that the order of moves is adding ones, splitting from smallest to largest,
then adding consecutives from smallest to largest. Figure 3 shows an array with the x
component being n and the y component being the number of moves in the hypothe-
sized deterministic longest game algorithm. The second piece of evidence comes from
a Java program, a link to and readme for which is included in Appendix A. The Java
program explores all possible moves in the Zeckendorf game for a given n. The data
produced here is the longest possible move length for the n listed. Observe that the
two arrays provide identical data. This suggests that the hypothesized longest game
algorithm may actually be the theoretically longest game on each n.

({1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 5}, {6, 6}, {7, 8}, (8, 10},

{9, 11}, {10, 13}, {11, 15}, {12, 17}, {13, 20}, {14, 21}, {15, 23},
{16, 25}, {17, 26}, {18, 29}, {19, 31}, {20, 34}, {21, 37},

{22, 38}, {23, 40}, {24, 42}, {25, 44}, {26, 47}, {27, 48}, {28, 50},
{29, 53}, {30, 54}, {31, 57}, {32, 60}, {33, 63}, {34, 67}, {35, 68},
{36, 70}, {37, 72}, {38, 73}, {39, 76}, {40, 78}, {41, 81}, {42, 84},
{43, 85}, {44, 87}, {45, 89}, {46, 91}, {47, 95}, {48, 96}, {49, 98}}

FIGURE 3. Data taken from the simulation of the deterministic longest
game proposed by the algorithm in Conjecture 1.5.

In support of Conjecture 1.6, we offer the graph in Figure 5. Using data from sim-
ulating the Zeckendorf game on varying n, we plot the average number of moves in a
game against n. We observe that a best fit line with slope of around 1.2 fits the data
points well. Due to computer restraints, we are unable to provide data beyond n = 200
(not pictured in the graph, but included in the data). The average taken on n = 200 is
239, very close to 1.2 - 200.

2.4. Winning Strategies. Since someone must always make the final move, and the
game always ends at the Zeckendorf decomposition, there are no ties. Therefore one
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13 36 70
15 37 72
17 38 73
20 39 76
21 40 78
23 41 81
25 42 84
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31 45 89
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40 49 98
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44
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FIGURE 4. Computer proven data of the number of moves in the longest
route to victory courtesy of the Java code written by Paul Baird-Smith.

player or the other has a winning strategy on each n. This section is devoted to the proof
that Player 2 has the winning strategy for all n > 2, the statement of Theorem 1.7. For
this proof, we use a visual aid provided in Figure 6.

Proof. Assume that Player 1 wins the game. Therefore, Player 1 must have the winning
strategy from the node in the first row with the caption {1(™}. We color this node red
in Figure 7. Since this node only has one child, Player 1 must have the winning strategy
from {1"=2 A 2} in row two. Player 2 makes the next move, so Player 1 must have the
winning strategy from both the nodes in row 3; if not, Player 2 would move to the one
from which Player 1 did not have the winning strategy. We focus on the children of the
node {1=* A3} in row 3. This node has one descendant only; therefore {1™=> A2A3}
in row 4 must have a winning strategy for Player 1. Player 2 makes the move next, so
all three children of {1("=%) A 2 A 3} in row 5 must be a winning strategy for Player 1.
Observe that one such child is {1~ A5} inrow 5. If Player 1 has the winning strategy
from that node in row 5, if that node is on the next layer, in row 6, following the same
winning strategy, Player 2 can win from the row 6 node {1"=% A 5}. So we color that
node blue on row 6 of Figure 7 to indicate Player 2 having a winning strategy. Since
that node has only one child, {1"=7) A 2 A 5} in row 7, Player 2 must have a winning
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Average Mumber of Movesina Game

Number of Moves

FIGURE 5. Graph of the average number of moves in the Zeckendorf
game with simulations ranging from 999 to 9,999 for varying n with the
best fit line over the data points.

1=2 A2
1("3>/\3/ m/\ 22
109 /\2/\3/ 1= A 3 [ (1=6) A 23
NS— 7~
1("—5)/\5/1<”—” A22A3 T(z:”) A 3? 1= A2 A3 | KN

_—— ——

10D A2AS[109AP A3 1O A 32 10942432 10 A5 10D a2 4 3] 107100 4 23

FIGURE 6. Tree depicting the general structure of the first several moves
of the Zeckendorf game.

strategy from that node. This means that any parent of this node must be a winning
strategy location for Player 2 because Player 2 could just move to {1"=7 A 2 A 5} in
row 7 from those parents. This means that {1 A 2 A 3} in row 6 must have a
winning strategy for Player 2; however, since both children in row 6 of {1("=%) A 3(2)}
in row 5 have winning strategies for Player 2, this means the row 5 node must be a
winning strategy for Player 2, not Player 1 as we had earlier deduced. This leads to a
contradiction that proves the claim for n sufficiently large (n > 9). For the small cases
of 2 < n <9, computer code such as the one referenced in Appendix A can show that
Player 2 has the winning strategy by brute force. U
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106 A 23

1= A2 A3

106 A 32

10-8) p 24

1(n—10) A 25

I 1 DA2AS 1™ A 22 A3

FIGURE 7. Tree depicting the proof of Theorem 1.7. Red boxes have a
winning strategy for Player 1, and blue boxes indicate a winning strategy
for Player 2.

This result is non-trivial and surprising. Game trees for large n have many, many
nodes, with no obvious path to victory for either player (see Figure 8 for n = 9 and
Figure 9 for n 14 for an example of how quickly the number of nodes grows).
Additionally, this is merely an existence proof, which means we cannot tell how Player 2
should move to achieve his victory. This makes the game less rigged for human players;
indeed, random simulations of the games show Players 1 and 2 winning roughly even
amounts of the time.

123 123 123 1z
50z

1235 123
4001 11z

1235 123
2101 o3

1235 12358
oz

12358
10001

12358
10001

12358
10001

FIGURE 8. Game tree for n = 9, showing a winning path in
Image courtesy of the code referenced in Appendix A.

green.
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e
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FIGURE 9. Game tree for n = 14, showing a winning path in green.
Image courtesy of the code in Appendix A.

3. FUTURE WORK

There are many more ways that studies of this game can be extended. This paper
covered the Zeckendorf Game quite extensively, but improved upper bounds may still
be found on the number of moves in any game. This work also showed the existence of
a winning strategy for player two for all n > 2, but it does not show what that strategy
is.

The Zeckendorf Game is on the Fibonacci recurrence; however, the fact that Zeck-
endorf’s theorem generalizes means that the game could be played on other recurrences.
Finding which classes of recurrences have meaningful games, bounding the moves on
those games, and considering winning strategies are all fruitful avenues for further ex-
ploration.

Expanding in another direction, the Zeckendorf Game as conceived of by this thesis
is a two-player game. What if more players want to join? Who wins in that case, for
either the Generalized or regular Zeckendorf Game? The analysis done here only shows
there is a winning strategy that takes an even number of moves for all n > 2 for the
Zeckendorf Game. It says nothing about the number of moves modulo k, where k is
odd and greater than 2!

APPENDIX A. CODE

Programs for simulating a random version of the Zeckendorf game, running a de-
terministic worst game algorithm of the Zeckendorf game, and simulating a random
Tribonacci Zeckendorf game is available at

github.com/paulbsmithl1996/ZeckendorfGame/blob/master/
ZeckGameMathematica.nb.

TreeDrawer is used to give a visual representation of the tree structure of the Zeck-
endorf game. It plays through a specified game, determining all moves that can be made,


github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
github.com/paulbsmith1996/ZeckendorfGame/blob/master/ZeckGameMathematica.nb
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and draw all possible paths to the end of this game. The ReadMe file can be found at
https://github.com/paulbsmithl996/ZeckendorfGame. TreeDrawer can
be executed, after compilation, by running the command

appletviewer TreeDrawer.java
Do not delete the comment in the preamble, as this is used at runtime by the ap-

pletviewer. Email paul.bairdsmith@gmail.com for more information.
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