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Inferring 3D Shapes of Unknown Rigid Objects in
Clutter through Inverse Physics Reasoning

Changkyu Song and Abdeslam Boularias1

Abstract—We present a probabilistic approach for building, on
the fly, 3-D models of unknown objects while being manipulated
by a robot. We specifically consider manipulation tasks in piles of
clutter that contain previously unseen objects. Most manipulation
algorithms for performing such tasks require known geometric
models of the objects in order to grasp or rearrange them
robustly. One of the novel aspects of this work is the utilization
of a physics engine for verifying hypothesized geometries in
simulation. The evidence provided by physics simulations is
used in a probabilistic framework that accounts for the fact
that mechanical properties of the objects are uncertain. We
present an efficient algorithm for inferring occluded parts of
objects based on their observed motions and mutual interactions.
Experiments using a robot show that this approach is efficient
for constructing physically realistic 3-D models, which can
be useful for manipulation planning. Experiments also show
that the proposed approach significantly outperforms alternative
approaches in terms of shape accuracy.

Index Terms—RGB-D Perception, Computer Vision for Au-
tomation, Perception for Grasping and Manipulation

I. INTRODUCTION

PRIMATES learn to manipulate all types of unknown
objects from an early age. Yet, this seemingly trivial ca-

pability is still a major challenge when it comes to robots [1],
[2]. Consider for instance the task of searching for an object
inside a drawer, as illustrated in Figure 1. To perform this
task, the robot needs to detect the objects in the scene, and to
plan grasping, pushing, and poking actions that would reveal
the position of the searched object. The majority of motion
planning algorithms, such as RRT and PRM [3], require
geometric models of the objects involved in the task. The
need for models has been put on display particularly during
the Amazon Picking Challenge [4], where robots were tasked
with retrieving objects from narrow shelves, and collisions of
the picked objects with other objects were a major source of
failure, due to inaccurate estimates of the objects’ poses.

In warehouses and factories, manipulated objects are typi-
cally known in advance, with their CAD models obtained from
full 3D scans [5]–[8]. Recent research efforts in grasping and
manipulation are focused rather on tasks where object models
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Fig. 1: Experiments are performed
using a Kuka arm mounted on
a Clearpath mobile platform and
equipped with a Robotiq hand and
a depth-sensing camera SR300.

are unavailable [9]–[13].
While most of these new
methods ignore object
modeling all together and
focus on learning actions
directly, other works have
also explored automated
modeling of unknown
3D objects [14]. A
common approach consists
in taking point clouds
from multiple views and
merging them using the
popular Iterative Closest
Point (ICP) technique [15],
[16]. A large body of
related works, known as
active vision, is concerned
with selecting the point
of view of the camera to maximize information gain with
respect to the location of an object [17]–[19]. There is also
a growing interest in robotics on interactive perception,
wherein a manipulator intervenes on the scene by pushing
certain objects so as to improve segmentation or object
recognition [20]–[23]. Our approach differs form these works
in two aspects. First, our goal is to construct full CAD
models that can be used by manipulation planning algorithms,
and not to improve segmentation or object recognition.
Second, we are concerned here only with predicting shapes
of manipulated objects from RGB-D images, and not with
optimizing the data collection process, which can be achieved
by combining our approach with techniques for selecting
camera views or poking/pushing actions. In this work, the
camera is fixed and the objects pushed by the robot are
chosen randomly.

Volumetric shape completion for partially occluded objects
is an increasingly popular topic in computer vision [24]–[26].
Learning-based approaches typically focus on known objects
or specific categories, such as furniture [27]–[30]. Approaches
for unknown objects use energy minimizing solutions that
penalize curvature variation [31], extract geometric primi-
tives (planes or cylinders) from 3D meshes [32], or exploit
symmetry and Manhattan properties [33]. Some works have
also considered physical reasoning for shape completion. For
instance, [34], [35] presented an approach for scene under-
standing by reasoning about the physical stability of objects
in a point cloud. Our method differs by its use of a physics
engine to simulate both a robot’s action and the gravitational
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Fig. 2: Work-flow of the integrated system

and normal forces exerted upon a pile of objects, in addition
to probabilistically reasoning about the unknown mechanical
properties, and visually tracking the objects being pushed.
This approach is inspired from previous works in cognitive
science that have shown that knowledge of intuitive Newtonian
principles and probabilistic representations are important for
human-level complex scene understanding [36], [37]. Note
also that there are works that use physical reasoning to predict
the stability of a scene from an image [38]. We are interested
in the inverse problem here, i.e predicting shapes of objects
based on observed motions or stability of a scene.

In this paper, we present an integrated system that combines:
a robotic manipulator for pushing/poking objects in clutter,
a segmentation and clustering module that detects objects
from RGB-D images, and an inverse physical reasoning unit
that infers missing parts of objects by replaying the robot’s
actions in simulation using multiple hypothesized shapes
and assigning higher probabilities to hypotheses that better
match the observed RGB-D images. The main contributions
of this work are: (1), a novel approach utilizing a physics
engine to infer invisible matter in a scene and systematically
construct 3D models of new objects, (2), a Monte Carlo
search method that returns a distribution of models, and (3),
a system that integrates the components mentioned above and
that is deployed on the robot shown in Figure 1. The first
contribution is perhaps the most important. We demonstrate in
our experiments that explicitly reasoning about all the physical
interactions between the objects, and between the robot and
the manipulated objects, does help improve shape inference in
comparison with purely geometric, learning-based, or stability-
checking methods. To the best of our knowledge, this result
was not shown before. A video of the experiments along with
a dataset containing annotated robotic actions and ground-
truth 3D models and 6D poses of objects are available at
https://goo.gl/1oYLB7.

II. OVERVIEW OF THE PROPOSED METHOD

A high-level overview of the proposed system is illustrated
in Figure 2. The system takes as inputs a sequence of RGB-

D images of a clutter as well as recorded pushing or poking
actions performed by a robot, and returns complete 3D models
of the objects in the clutter. The system proceeds by first
segmenting and clustering the given point clouds into objects.
The parts of the objects that are hidden are hypothesized
and sampled from a spectrum of possibilities. Each hypoth-
esized object model is assigned a probability. The system
then proceeds by replaying the robot’s actions using various
hypothesized object models, and comparing the movements of
the objects in simulation to their observed real motions. The
probabilities of the models that result in the most realistic
simulations are systematically increased by using the reality
gap as a likelihood function.

III. SCENE SEGMENTATION

A. Segmentation

RGB-D images of the clutter scene are obtained from a
depth camera and is segmented as follows. We start by re-
moving the known planes (tabletops and containers) using the
RANSAC method. The robot’s arm and hand are also removed
from the point cloud using a known model of the robot and
the corresponding forward kinematics. Each point cloud is
segmented into a set of supervoxels by using the mean shift
algorithm. A supervoxel is a small cluster of 3D points that
share the same color. Then, a graph of supevoxels is created
by connecting pairs of supevoxels that share a boundary in the
corresponding point cloud. The edges connecting supervoxels
are weighted according to the directions of their average
surface normals, as proposed in [39]. A convexity prior is
enforced here, by assigning smaller weights to edges that
connect concave surfaces. An edge (i, j) is weighted with
wi,j = max{vti .(ci− cj), vtj .(cj − ci), 0}, where ci and cj are
the 3D centers of adjacent supervoxels i and j respectively, vi
and vj are their respective surface normals. Using the spectral
clustering technique [40], the supervoxels are clustered into
objects based on the weights of their connections. Namely, the
normalized Laplacian Lsym of the weighted adjacency matrix
of the graph is computed, and the first n eigenvectors of Lsym

https://goo.gl/1oYLB7


SONG et al.: INFERRING 3D SHAPES OF UNKNOWN RIGID OBJECTS IN CLUTTER THROUGH INVERSE PHYSICS REASONING 3

are retained. n is automatically determined by ranking the
eigen values and cutting off at the first value that significantly
differs from the others. Finally, the objects are obtained by
clustering the supervoxels according to their coordinates in the
retained eigenvectors, using the k-means algorithm. Thanks to
this hierarchical approach, we reduced the running time of the
spectral clustering layer by orders of magnitude. For example,
segmenting the scenes shown in Figure 2 required about ten
milliseconds on a single CPU.

B. Facet Decomposition
The result of segmentation and tracking process is a set

of n partial objects, {O1, O2, . . . , On}, wherein each partial
object Oi is a set of facets, i.e. Oi = {F o

1 , F
o
2 , . . . F

o
k }. A

facet is a small homogeneous region that belongs to a side of
an object. For instance, a cubic object is made of six facets,
whereas a spherical object can be approximately modeled as a
large set of small facets. The facets of an object are obtained
by clustering its supervoxels into larger regions, using the
curvature calculated from the normals as a distance in the
mean shift algorithm. Figure 3 shows simple examples of
partial objects segmented into facets using this process.

Fig. 3: Observed facets, and domains of potential hidden facets

IV. INVERSE PHYSICS REASONING

The objective of the inverse physics reasoning is the infer-
ence of plausible full models that complete the observed partial
models of objects {Oi}ni=1, by simulating the forces applied
on the objects by the robot and environment and weighing the
hypothesized models based on how accurately they predict
the observations. We start by describing the range of shapes
considered here, then we formulate the inference problem, and
present our solution to the problem.

A. Probabilistic Object Models
We define an object model Xi as a set of facets

{F1, F2, . . . Fm}, wherein each facet is itself a set of 3D points
in a common coordinate system. A partial object Oi is a set
of observed facets that belong to Xi, i.e. Oi ⊆ Xi. Therefore,
an object model is the union of two sets of facets, observed
ones and hypothesized unseen ones, i.e. Xi = Oi ∪Hi where
Hi = {Fh

j }lj=1 is the set of imagined hidden facets. We
define P (Xi) as the probability that the object with observed
facets Oi has exactly l additional hidden facets given in
Hi = Xi −Oi. Our goal is to estimate P (Xi).

B. Facet Hypotheses
Figure 3 shows an example of a self-occluded object.

The space occluded by the object defines the range of its
hidden facets {Fh

j }lj=1. Any surface inside the invisible space

Surface normal of the observed facet

Two new hypothesized 
hidden facets

Fig. 4: Sampling possible hidden
facets of a partially occluded book
from the scene of Figure 2

could potentially belong to
the object. Figure 4 shows
an example of a hypotheti-
cal hidden surface of an ob-
ject. Inferring hidden facets
in the space of all pos-
sible 3D surfaces is com-
putationally challenging for
robotic manipulation tasks
that require real-time infer-
ence. Therefore, we limit
the space of hypotheses by
exploiting the Manhattan
properties that are commonly made in the literature [33]. The
Manhattan structure assumption states that the occluded facets
have curvatures similar to the observed ones. This is not true
in general but holds for most everyday objects. Therefore,
the first m imagined facets are obtained by mirroring the m
observed facets along with their surface normals. Specifically,
for each observed facet F o

j of an object we calculate the
average surface normal of the facet and use the average tangent
plane of the normal as a plane of symmetry. The point cloud of
the observed facet F o

j is then mirrored along the tangent plane
to generate a hypothesis facet Fh

j after translating the mirrored
facet along the opposite direction of the surface normal by a
distance dj . Distance dj is a free parameter that controls the
position of Fh

j , it is iteratively sampled from an interval of
[Dmin

j , Dmax
j ], where Dmin

j is the minimum length for objects
to have a volume, and Dmax

j is the maximum length. Dmax
j ,

computed using ray tracing, ensures that no point in the space
between the observed facet F o

j and its mirrored facet Fh
j

would belong to the visible volume of the scene.

One would not be able to cover for all types of occlu-
sions if the hypothetical facets are limited to be dj-distant
mirror images of the observed facets, as described above.
This solution covers only for self-occlusions. To account for
occlusions caused by surrounding objects in clutter, we need
to hypothesize additional facets. Consider the example of
the book in Figure 2. This book is inside a drawer and a
significant part of it is occluded by the drawer’s front. To
solve these problems, we create a convex hull of all the
facets (observed and hypothesized) every time we mirror the
observed facets and we look for new facets in the convex hull.
The new facets are then inserted to the set Hi that contains
all hypothetical facets of object model Xi. The new facets
are also mirrored along their tangent planes, translated along
new sampled distance, and inserted to set Hi. This process is
repeated until no new facets can be generated by mirroring
or translating the existing ones without stepping out of the
invisible space of the scene. A large number of models, with
different volumes and geometries, can be generated with this
procedure. The principal steps of this process are provided
in Algorithm 1. Figure 4 shows how a hypothetical model
of the object is sampled. We first mirror the only observed
facet (part of the front cover) and translate it by a random
distance. The convex hull of the two facets (front cover and
hypothesized back cover) gives rise to six new side facets,
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which are also added to the set and mirrored in their turn to
get different shapes and sizes of the book. This simple process,
when repeated, can generate increasingly complex shapes.

Algorithm 1: Hypothesis Generation
Input: A partial object model Oi made of observed facets;
Output: Set Hi of hypothetical facets of object Oi;

1 Hi ← ∅;S ← Oi;
2 repeat
3 foreach F ∈ S do
4 Calculate ( ~N,L), the average surface normal and the tangent

plane at the center of facet F ;
5 Generate F ′, the point cloud that is symmetrical to F with

respect to plane L;
6 Sample distance x ∼ Uniform(Dmin

j , Dmax
j );

7 Translate each point in F ′ by −x ~N ;
8 Hi ← Hi ∪ {F ′};
9 Find U , the set of all facets in the convex hull of Hi ∪Oi;

10 S ← U −
(
Hi ∪Oi

)
;

11 Remove from S all the facets that share the same surface normals
as the ones already in

(
Hi ∪Oi

)
;

12 until S = ∅ or Timeout;

C. Global Geometric Constraints

After performing the segmentation and facet decomposition
steps described in Section III, we call Algorithm 1 several
times to sample a large number of different models for every
detected object i. Each model j of an object i is a set
Xj

i = Oi∪Hj
i made of observed facets set Oi, and generated

facets set Hj
i . If the number of detected objects is n, and

the number of models per object is m, then the total set of
hypotheses is {Xj

i }ni=1
m
j=1. In cluttered scenes, it is important

to reason about combinations of models. What could look
like a good model for an object may limit the choices of a
neighboring object to unrealistic models. Therefore, the gen-
erated hypotheses should satisfy certain geometric constraints,
such that an object’s surface cannot penetrate another object
or the support surface, and a hypothesized hidden facet cannot
intersect with the observed and known space of the scene.

We define a joint model for n objects in the scene as an
n-tuple X = (Xj1

1 , X
j2
2 , . . . , X

jn
n ). Constraints(X, {Vt}Tt=0)

is a Boolean-valued function, defined as true if and only if:

∀F, F ′ ∈ ∪ni=1X
ji
i : (F 6= F ′) =⇒ (F ∩ F ′ = ∅).

The constraint implies that all the facets are distinct, which
ensures that there are no nonempty intersections of objects.
These geometric constraints immediately prune a large number
of hypotheses before starting the physics-based inference.

D. Inference Problem

Given a sequence {µt}Tt=0 of pushing forces applied by the
robot on the 3D points in the clutter along with the gravita-
tional and normal forces, and a list {Oi,t}ni=1

T
t=0 of extracted

partial models of n objects obtained from segmentation, the
problem consists in calculating

P (X|{Oi,t}ni=1
T
t=0, {µt}Tt=0)

∝ P ({Oi,t}ni=1
T
t=0|X, {µt}Tt=0)P (X), (1)

wherein P (X) is a prior of object models, which is uniform
if the objects are completely unknown or a more informed

Fig. 5: An example of hypothesized shapes and reconstructed scene

distribution if the robot had already observed or manipulated
similar objects, and P ({Oi}ni=1

T
t=0|X, {µt}Tt=0) is the likeli-

hood of the observations given a joint model X , which is
described in the next section. Note that P (X) = 0 for any
model X for which Constraints(X, {Vt}Tt=0) = false.

E. Physical Likelihood Model

We define likelihood P ({Oi}ni=1
T
t=0|X, {µt}Tt=0) as a func-

tion of the error between the current observation Ot with
pushing force µt and the image predicted in simulation given
object model X . In other terms, the likelihood function quan-
tifies the ability of a geometric model X at predicting how the
objects in the scene move under the effect of gravity and the
robot’s pushing actions. We take advantage of the availability
of rigid-object simulators that can make such predictions. In
this work, the Bullet1 physics engine is utilized along with the
Blender 3D renderer for this purpose. The scene is recreated
in simulation using each hypothesized joint model X . The
objects are placed in their initial positions by making sure that
the observed facets have the same positions in simulation and
in the initial real scene. All the forces exerted on the objects,
including the robot’s pokes and pushes as well as gravity,
are simulated for time-steps t ∈ {0, . . . , T}. The likelihood
function is then defined as

P ({Oi,t}ni=1
T
t=0|X, {µt}Tt=0) =

exp
(
−

T∑
t=0

n∑
i=1

α‖Oi,t − Ôi(X, {µk}tk=0)‖2
)
, (2)

wherein Ôi(X, {µk}tk=0) is the predicted depth image of
object i according to a given hypothesized joint model X and
given exerted forces {µk}tk=0 up to time t. This prediction is
generated by rendering poses of all the objects. The L2 dis-
tance is the difference between the observed depth image and
the predicted one. Note that the result depends on mechanical
properties (friction and density), which are also unknown but
can be searched along with the geometric model. We found out

1http://bulletphysics.org
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from our experiments that searching for friction and density is
not necessary for the type of manipulation actions considered
in this work. Thus, we use the same density and friction
coefficient for all the objects in the simulation and we show
in Section V-F that the results are not sensitive to variations
in density and friction. In fact, the forces applied by the robot
on the objects are high enough to push them ahead but low
enough to keep them in contact with the end effector. Figures 6
and 7 show intuitive examples of how the physical likelihood
helps inferring more accurate shapes.

→ →
Hypothesis (a) Hypothesis (b)

Fig. 6: Simulating the red box from the scene in Figures 1 and 2. The bottom
of the box is occluded by the drawer. The top of the box falls down due to
gravity in model (a) while it stands stable in (b) where the bottom part is
hypothesized, which increases the probability of hypothesis (b).

(a) Two sampled hypotheses (b) Corresponding physics simulations

Fig. 7: Inferring the shape of the book from the scene in Figures 1 and 2.
The book, in yellow here, is adjacent to a red box. The white stick is the
robot’s end-effector pushing the book. The book is partially occluded by the
drawer. Replaying the robot’s horizontal pushing action in simulation using
the bottom hypothesis predicts a rotation of the book that better matches with
the real observation, compared to the small top model where the book moves
more freely. Thus, the bottom hypothesis gets a higher probability.

F. Inference through Monte-Carlo Tree Sampling

Solving the inference problem of Section IV-D is in-
tractable in practice due to its combinatorial nature. To com-
pute P (X|{Oi,t}ni=1

T
t=0, {µt}Tt=0), one needs to integrate the

physics likelihood function over all possible hypothesized
hidden facets of all objects, which has a complexity of O(mn)
where m is the number of model hypotheses and n is the
number of objects. Moreover, the integral of the marginal
likelihood does not have a closed-form solution because of the
discontinuities resulting from the collisions of the objects with
each other. We propose a Monte Carlo sampling method for
approximating P (X|{Oi,t}ni=1

T
t=0, {µt}Tt=0). This technique is

explained in Algorithm 2.
Algorithm 2 starts by generating a maximum number of

candidate 3D models for each object (Line 1), by following the
approach described in Algorithm 1. The algorithm then tries to
reconstruct, in a physics simulation, the initial scene before the
robot’s actions were executed (Lines 3-26). This reconstruction
is performed by using a Monte Carlo Tree Search (MCTS)
approach. Each attempt consists in placing the objects in the
physics engine, one after another, according to the initial
positions of their observed facets. At each stage, a new object
is placed on top or next to the other objects in simulation, until

Algorithm 2: Inverse Physics Reasoning (IPR)

Input: Sequence of robotic actions {µt}Tt=0, defined by their starting
points, directions, and durations; Set {Oi,t}ni=1

T
t=0

of n partial
objects; Sequence {Vt}Tt=0 of the visible spaces in the scene;
Prior function P (X), which is uniform by default.

Output: Set of m 3D models {Xj
i }

n
i=1

m
j=1 for each one of the n

objects, and their estimated marginal posterior probabilities
{P (Xj

i |{(Oi,t, µt)}Tt=0)}ni=1
m
j=1.

/* Sample a large number of candidate shape models for each object */

1 Use Algorithm 1 to sample m hypothetical models {Xj
i }

m
j=1 for each

object i ∈ 1, . . . , n, and set P (Xj
i ) according to the prior;

2 repeat
/* Start with an empty scene, containing only support surfaces */

3 for (i := 0; i < n; i← i+ 1) do
4 placed [i] ← false; model [i] ← 0 ;

/* object i has not yet been placed in the simulated scene */

5 for (stage := 1; stage ≤ n; stage← stage+ 1) do
/* Find an object to insert in the simulated scene */

6 max mass ← 0;
7 foreach i ∈ {1, . . . , n} do
8 mass ← 0;
9 if placed [i] = true then

10 continue ;

11 foreach j ∈ {1, . . . ,m} do
/* Check if the scene remains stable after inserting

object i by using model j */

12 Create a scene with joint model X wherein i is
placed using Xj

i , the objects that have been
already placed in the previous stages are kept with
their selected models, and the rest are placed using
their minimum shapes;

13 if ( Constraints(X, {Vt}Tt=0) = false ) then
14 Exploration Prob[i,j] ← 0 ;

15 else
16 Simulate with joint model X under gravity;
17 Calculate dist, the distance by which object i

moved in the simulated scene;
18 Exploration Prob[i,j] ← exp(−αdist) ;
19 mass ← mass + Exploration Prob[i,j] ;

20 if mass ≥ max mass then
21 max mass ← mass; selected obj ← i;

/* Select the object that causes the least disturbance

when added to the scene */

/* Normalize the exploration probabilities */

22 foreach j ∈ {1, . . . ,m} do
23 Exploration Prob[i,j] ← Exploration Prob[i,j] /mass;

24 j ∼ Exploration Prob[selected obj,.];/* sample a model */

25 model [selected obj] ← j;
/* Add the selected object to the scene */

26 placed [selected obj] ← true ;

27 Create a complete initial scene with joint model X wherein every
object i is assigned to its sampled model Xmodel[i]

i ;
28 Simulate scene X under gravity and robot’s actions {µt}Tt=0;

/* Compute likelihood with Equation 2 and update probabilities */

29 foreach i ∈ {1, . . . , n} do
30 P (X

model[i]
i

|{Oi,t}
T
t=0, {µt}

T
t=0) ←

P ({Oi,t}
T
t=0|X

model[i]
i

, {µt}Tt=0)P (X
model[i]
i

)/Explor Prob[i,model[i]]

31 until Timeout;
/* Normalize the probabilities of the models for each object */

32 foreach i ∈ {1, . . . , n} do
33 mass =

∑m
j=1 P (Xj

i |{Oi,t}Tt=0, {µt}Tt=0);; // marginalization

34 foreach j ∈ {1, . . . ,m} do
35 P (Xj

i |{Oi,t}Tt=0, {µt}Tt=0)←
P (Xj

i |{Oi,t}Tt=0, {µt}Tt=0)/mass; ; // normalization
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the entire initial scene is reconstructed. Therefore, there is a set
of n−s+1 objects left to choose from at a given stage s, these
objects are indicated by the binary array placed. The order of
placing the objects is important because objects that are on top
of others cannot be placed before them. Moreover, each object
i has many candidate models Xj

i that all match its observed
facets. At each stage, we sample one model that we use for
placing the selected object. We use an exploration probability
(Exploration Prob [i,j]) to sample a model Xj

i for object i
(Lines 24-26). Lines from 7 to 23 explain how the exploration
probabilities are computed to focus the sampling on good
models. The probability of using a model Xj

i is proportional to
the stability of the scene that results from placing object i with
model Xj

i , while keeping the models of the already placed
objects fixed, and using a minimum shape model for the other
remaining objects. The minimum shapes are made of only the
observed facets. Subsequently, the object that is easiest to place
(the one that can stand still on the support surface or on top of
the already placed objects) is selected at each stage. At the end,
the robot’s actions are simulated on the fully reconstructed
scene, and the probabilities of the sampled models are updated
according to the similarity of the physics simulation to the
actual observed motions of the facets in the real scene, using

simulate 
model 2

simulate 
model 3

…

Empty scene
root state

simulate 
model 1

simulate 
model 2

…object 2  
set to  

model 3

simulate 
model 1

simulate 
model 3

…object 6  
set to  

model 2

object 7  
set to  

model 1

simulate 
model 1

simulate 
model 2

simulate 
model 3

…

Fig. 8: Scene reconstruction in a physics
engine with Monte Carlo Tree Search

Equation 2(Line 30). Note
that we also cancel out the
sampling bias to ensure
unbiased estimates by us-
ing Importance Sampling.
This process is repeated
all over, with different
sampled models, until a
timeout occurs.

V. EXPERIMENTS

We evaluated the proposed algorithm (IPR) in various
scenes of unknown objects using the robotic platform in
Figure 1. The corresponding datasets are described in Sec-
tion V-B. We compared with recent alternative techniques,
described in Section V-C. The results are summarized in
Section V-E.

A. Metrics

We report the average Intersection over Union (IoU) be-
tween the ground-truth occupied space of each object and its
predicted occupied space. We also report the IoU between
the entire occupied space of each scene and the union of the
predicted 3D models of the objects within it, which is a weaker
metric, but needed for some datasets (Voxlets).

B. Datasets

Experiments are performed on two datasets: on a newly
released Voxlets dataset [29], and a dataset that we created
using the YCB benchmark [6] objects. The Voxlets dataset
contains static scenes of tabletop objects. 250 scenes are
used for training and 30 are used for testing. This dataset
does not contain ground-truth poses of individual objects,
therefore we only evaluate the IoUs of entire scenes (union
of objects). Our dataset with YCB objects includes the scenes

Fig. 9: Examples of our results on physics-based shape inference from a
partial view; (top) input image of unknown objects; (middle and bottom)
front and back views of the highest-probability hallucinated models.

shown in Figure 9 as well as piles of objects inside a tight
box that can be seen in the attached video. This dataset is
more challenging than the Voxlets dataset because the piles
are denser and contain more objects. Objects in this dataset
are severely occluded. We split the dataset into two subsets,
one with only static scenes and another with only dynamic
ones. Static scenes are 12 in total. Dynamic scenes, 13 in
total, include at least one robotic pushing action per scene.
We manually annotated the ground-truth voxel occupancy by
fitting each object CAD model to the scenes.

C. Methods

Zheng et. al. [34] uses geometric and physics reasoning
for recovering solid 3D volumetric primitives based on the
Manhattan assumptions. This method, like ours, is completely
unsupervised and well-suited for our setup. Voxlets [29] is a
learning-based method that predicts local geometry around
observed points by employing a structured Random Forest
classifier, which enables predicting shapes without any se-
mantic understanding. It needs to be trained with a number
of scenes, and it generalizes to new scenes. We trained
Voxlets with three different datasets: a) the original Voxlets
dataset [29], b) a synthetically generated YCB-object dataset
of 10, 000 scenes, each containing 20 objects, and the objects
in the scenes are different from the ones used in testing, and c),
a synthetically generated YCB-object dataset of 10, 000 scenes
that contains exactly the same objects and angle of view that
we used in the real testing scenes.

D. Variants of the Inverse Physics Reasoning (IPR)

We performed an ablation study where we compare several
variants of the IPR algorithm: 1) Collision Checker is IPR
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with a uniform prior on the object models minus the physics
simulations, i.e. we only enforce the geometric constraints
on the generated shapes. 2) IPR+uniform uses a uniform
prior on the models of the objects, but simulates only gravity
and collisions and does not simulate the robot’s actions. 3)
IPR+size is the same as the previous one, but uses a more
informed prior where models with smaller volumes are given
higher prior probabilities compared to large-sized models. 4)
IPR+action+uniform is the same as IPR+uniform but also
replays the robot’s actions in simulation. 5) IPR+action+size
is the same as IPR+size but also includes the robot’s actions.
E. Results

Table I shows the results on the Voxlets dataset [29]. We
followed the same evaluation metric as in [29], where we
calculate the IoU between piles instead of individual objects
because the poses of objects in this dataset are missing. We
did not compare to the variants of IPR with robotic actions
because the scenes in Voxlets are all static. Both IPR+uniform
and IPR+size achieved a higher IoU and recall than the other
methods. Improvement over Collision Checker in particular
shows that physics-based reasoning can help infer better
models. Precision of IPR is comparable to other methods, but
Zheng et. al. 2013 [34] has the highest precision because it
predicts volume only where it is very certain, which makes
the objects too small in general. The Collision Checker has
a performance that is very similar to Zheng et. al. 2013 [34]
because it is based on the same Manhattan assumptions and
objects in the Voxlets dataset [29] are relatively away from
each other.

Method IoU F1 prec. recall
Zheng et. al. 2013 [34] 0.571 0.729 0.839 0.645
Voxlets [29] (w/ Voxlets objects) 0.585 0.719 0.793 0.658
Collision Checker (ours) 0.572 0.728 0.837 0.644
IPR+uniform prior (ours) 0.649 0.792 0.727 0.869
IPR+size prior (ours) 0.663 0.803 0.768 0.841

TABLE I: IoU on the Voxlets dataset [29].
Tables II and III show the results on our collected YCB

dataset. Both tables are split into two parts: the bottom part
is for the IoUs between each object and its predicted model,
and the top part is for the IoU between each entire scene
the union of all predicted models of objects in it. Table II
is for static scenes, while Table III is for dynamic scenes
where we can compare all variants of IPR. Results of per-
object IoUs (bottom parts of the tables) are more relevant
to robotics because it is important for motion planning and
grasping to accurately infer shapes of individual objects. IPR
shows superior IoU in both sub-datasets as well as f-measure
(F1 = 2 · precision·recall

precision+recall ). The physics simulation plays a
major role in predicting the occluded volumes properly, as
demonstrated by the fact that IPR outperforms its variant
Collision Checker that reasons only about geometries without
including evidence from physics simulations of the scenes.

In Table III, we can clearly see that replaying the
robot’s actions in simulation (IPR+action+uniform and
IPR+action+size) significantly improves the IoU of objects.
Unlike with the static scenes in Table II, the size prior does
not help a lot when the robot’s actions are already taken into
account in computing the likelihood of hypothesized models.

Predicted scene space
Method IoU F1 prec. recall
Zheng et. al. 2013 [34] 0.485 0.654 0.887 0.518
Voxlets [29] (w/ Voxlets objects) 0.456 0.643 0.750 0.563
Voxlets [29] (w/ diff. YCB objects) 0.416 0.604 0.618 0.590
Voxlets [29] (w/ same YCB objects) 0.536 0.701 0.763 0.649
Collision Checker 0.485 0.654 0.887 0.518
IPR+uniform prior 0.672 0.807 0.731 0.900
IPR+size prior 0.730 0.845 0.825 0.867

Predicted object space
Method IoU F1 prec. recall
Zheng et. al. 2013 [34] 0.470 0.653 0.834 0.536
Voxlets [29] (w/ Voxlets objects) 0.411 0.604 0.469 0.849
Voxlets [29] (w/ diff. YCB objects) 0.476 0.675 0.569 0.829
Voxlets [29] (w/ same YCB objects) 0.546 0.725 0.635 0.846
Collision Checker 0.471 0.653 0.834 0.537
IPR+uniform prior 0.572 0.753 0.730 0.777
IPR+size prior 0.625 0.780 0.790 0.771

TABLE II: Average IoU in static scenes using YCB objects
Predicted scene space

Method IoU F1 prec. recall
Zheng et. al. 2013 [34] 0.501 0.667 0.897 0.538
Voxlets [29] (w/ Voxlets objects) 0.413 0.597 0.531 0.682
Voxlets [29] (w/ diff. YCB objects) 0.388 0.559 0.473 0.683
Voxlets [29] (w/ same YCB objects) 0.423 0.594 0.518 0.695
Collision Checker 0.499 0.667 0.882 0.536
IPR+uniform prior 0.694 0.822 0.792 0.854
IPR+action+uniform prior 0.702 0.828 0.819 0.837
IPR+action+size prior 0.700 0.826 0.839 0.813

Predicted object space
Method IoU F1 prec. recall
Zheng et. al. 2013 [34] 0.474 0.650 0.837 0.531
Voxlets [29] (w/ Voxlets objects) 0.370 0.551 0.412 0.831
Voxlets [29] (w/ diff. YCB objects) 0.489 0.677 0.580 0.813
Voxlets [29] (w/ same YCB objects) 0.516 0.692 0.589 0.839
Collision Checker 0.478 0.655 0.844 0.535
IPR+uniform prior 0.618 0.777 0.773 0.782
IPR+action+uniform prior 0.640 0.793 0.795 0.792
IPR+action+size prior 0.638 0.789 0.814 0.766

TABLE III: Average IoU in dynamic scenes using YCB objects

We measured the average computation time per object in the
dynamic scenes: Zheng et. al. 2013 [34] took 0.34 seconds,
Voxlets [29] took 21.71 seconds, Collision Checker took 0.32
seconds, and the full IPR (IPR + action + prior) method took
21.75 seconds. IPR takes a comparable computation time as
Voxlets [29] while it achieves a significantly higher accuracy.
The computation time of IPR with exhaustive search (instead
of Monte Carlo) is 115.09 seconds. The hypothesis generation
step takes 7.75 seconds per object. Full IPR has only 13.04%
of the exhaustive search’s computational burden, if we exclude
the hypothesis generation preprocessing step which is common
to both methods.

F. Physics Simulation with Unknown Mechanical Properties

The uncertainty regarding mechanical properties (friction
and volumetric mass density) of objects can cause different
simulation results even when the same object shape is used.
To verify the real impact of these properties on our results, we
sampled 1, 000 different values of mass densities and friction
coefficients in the ranges between the maximum and minimum
of mass density and friction values of the entire YCB objects
dataset. The friction ranges were obtained from [41]. We
simulated the motions of the sampled mechanical models of
objects under gravity and the robot’s pushing actions and we
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found that the standard deviation of the objects’ positions
is 0.658cm, which is negligible considering that we down-
sampled the input point clouds into 3D voxels of 0.5cm and
the noise in the point cloud is within the same order. This
result holds only when the range of the mechanical properties
of the objects is not too large. The general problem of inferring
simultaneously 3D and mechanical models will be the subject
of a future work.
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