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Abstract—Modulation recognition (modrec) is an essential
functional component of future wireless networks with critical
applications in dynamic spectrum access. While predominantly
studied in single-input single-output (SISO) systems, practical
modrec for multiple-input multiple-output (MIMQO) communica-
tions requires more research attention. Existing MIMO modrec
impose stringent requirements of fully- or over-determined sens-
ing front-end, i.e. the number of sensor antennas should exceed
that at the transmitter. This poses a prohibitive sensor cost even
for simple 2x2 MIMO systems and will severely hamper progress
in flexible spectrum access with advanced higher-order MIMO.

We design a MIMO modrec framework that enables ef-
ficient and cost-effective modulation classification for under-
determined settings characterized by fewer sensor antennas
than those used for transmission. Our key idea is to exploit
the inherent multi-scale self-similarity of MIMO modulation
IQ constellations, which persists in under-determined settings.
Our framework called SYMMeTRy (Self-similaritY for MIMO
ModulaTion Recognition) designs domain-aware -classification
features with high discriminative potential by summarizing
regularities of symbol co-location in the MIMO constellation.
To this end, we summarize the fractal geometry of observed
samples to extract discriminative features for supervised MIMO
modrec. We evaluate SYMMeTRy in a realistic simulation and in
a small-scale MIMO testbed. We demonstrate that it maintains
high and consistent performance across various noise regimes,
channel fading conditions and with increasing MIMO transmitter
complexity. Our efforts highlight SYMMeTRy’s high potential to
enable efficient and practical MIMO modrec.

I. INTRODUCTION

Dynamic Spectrum Access (DSA) is projected as a key
capability in 5G mobile networks, seeking to address the
shortage of radio resources by opportunistic reuse of frequen-
cies. While DSA promises improved network performance,
it hinges on robust and affordable measurement capabilities
in support of spectrum technology, policy and enforcement.
This has brought the problem of modulation recognition
(modrec) in the spotlight of research [5], [30]. The goal of
a modrec algorithm is to automatically classify a transmitter’s
modulation. While traditionally it has been tackled in the
SISO context [2], [6], [10], [11], [20], [26], [35], [41], the
ubiquity of MIMO technology requires the design of robust
and cost-efficient MIMO modrec with practical applicability
to emerging spectrum sensing platforms [1], [22], [34].

The problem of MIMO modrec is more challenging than the
SISO case since (i) the number of symbols in the IQ constella-
tion grows exponentially with the number of transmit antennas
and (ii) the channel state parameters grow quadratically with
the number of transmit/receive antennas. To overcome these

Cost, ($) Data, (GB)
U F o U F o
SISO 1,216 1,216 2,432 10 10 20
MIMO 2x2 1,216 2,426 6,791 10 20 40
MIMO 4x4 1,216 6,791 11,655 10 40 80

TABLE I: Monetary cost and data footprint of a 10-second MIMO trace
with under- (U), fully- (F) and over-determined (O) sensing using a USRP
B210 at a sampling rate of IMSps and an Octoclock-G.

challenges, MIMO modrec approaches require the sensing
infrastructure to be either fully- or over-determined, that is
the number of antennas on the sensor should be equal or
double that of the target transmitter [4], [16], [24], [44]. These
requirements pose prohibitive cost for an individual sensor
and present a major road-block to affordable and ubiquitous
spectrum sensing. In addition, fully- and over-determined
sensing generates large volumes of spectrum data posing high
bandwidth, storage and computation requirements and further
hampering spectrum analytics at scale.

To put this into perspective, Tbl. I presents a breakdown of
the cost and data footprint of spectrum sensing when using a
USRP B210 sensor at $1, 216 per board, collecting a short 10-
second scan at 1MSps. We note that a USRP B210 can support
up to 2x2 MIMO operation with its embedded capabilities and
assume the use of an Octoclock-G CDA-2990 at $1,927 for
higher order MIMO setups. It is evident that both the monetary
cost and the data footprint scale super-linearly with the MIMO
complexity. For the worst case of over-determined sensing of
a 4x4 MIMO setup the cost for a single sensor is $11,655
generating 80GB of data for 10 seconds. These costs are just
for the radio hardware and would further be amplified if the
host computer is accounted for.

In order to address this prohibitive cost we propose to
utilize under-determined spectrum sensing, whereby a multi-
antenna transmitter is scanned by a sensor with fewer than
the transmitter’s antennas. While this has the potential to keep
the monetary and data cost of MIMO sensing in check, it
raises fundamental challenges for characterization. Existing
MIMO modrec [4], [16], [24], [44] requires fully- or over-
determined sensing as it typically relies on invariant sta-
tistical properties of the sample constellations. Thus, stan-
dard MIMO modrec cannot be readily-applied in the under-
determined scenario. To address this, we propose a MIMO
modrec framework called SYMMeTRy (Self-similaritY for
MIMO ModulaTion Recognition) that enables robust recog-
nition for under-determined sensing. SYMMe TRy explores the
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Flg 1: Mlustration of MIMO self-similarity for 2x2 MIMO transmission with QPSK.

MIMO constellation at a 1-antenna sensor.

self-similar geometric patterns in the MIMO constellation to
extract domain-informed features for classification. The key
insight behind SYMMe TRy is that the MIMO constellation ex-
hibits self-similarity at different scales which is well-preserved
in under-determined settings and can be employed for modrec.
Fig. 1 illustrates this concept of self-similarity via an example
2x2 QPSK modulated signal.A SISO QPSK constellation (top
left corner of Fig. 1) contains a group of four clusters, one
for each of the QPSK symbols. In the 2x2 MIMO QPSK
case (bottom left), four new QPSK symbol groups “hatch”
around each of the existing SISO positions. Therefore, for
2x2 QPSK MIMO there are at most 42 constellation symbols.
Such templated replication behavior leads to a fractal-like self-
similar organization of the MIMO constellation corresponding
to a given modulation. The 2x2 QPSK MIMO constellation
can, thus, be thought of as a 2-tier hierarchical representation
(Fig. 1(right)), whereby at the first level, we observe the actual
constellation composed of four SISO QPSK groups, while
at the second level, we observe a meta-constellation that is
determined by the centroids of each group at layer 1 and
resembles a scaled version of a SISO QPSK constellation.
This self-similar multi-scale organization can be observed
for higher order modulations, whereby, the number of meta-
constellation levels increases to log(M) — 1 for increasing
modulation order up to M. Furthermore, this self-similarity
persists even when a scan is under-determined and is at the
center of our design of modulation classification features.
To capture the relative co-location of symbols within the
constellation we extend tools from fractal geometry [9], [19].
We combine features based on the above patterns with higher
order cumulants [12], [35] in our overall feature design.

Our paper makes the following key contributions:
e We conceptualize under-determined MIMO spectrum sens-
ing and modulation classification.
e We are the first to formalize and utilize the self-similarity
of MIMO constellations into an adaptive framework called
SYMMeTRy, for robust feature design in support of under-
determined MIMO modrec.
e We investigate the effects of the MIMO channel on the
constellation self-similarity and recognition accuracy.
e Using simulation and a testbed, we show that SYMMeTRy
maintains high and consistent performance across various
channel conditions and with increasing MIMO complexity.

II. BACKGROUND

In this section we introduce the general MIMO signal model
and under-determined MIMO sensing. We detail the geometric
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Fig. 2: System model for under-determined sensing.

self-similarity of MIMO constellations to provide intuition
behind our methodology. We also analyze the relationship
between MIMO channel properties such as (i) signal to noise
ratio (SNR), (ii) coherence and (iii) pairwise antenna gain, and
the geometric properties of the observed constellation.

A. MIMO signal and system models

The MIMO system is composed of IV, transmitting antennas
and N, receiving antennas. Fig. 2 (right) illustrates an example
of a 2x2 MIMO link (i.e. N, = 2 and N; = 2) using QPSK
modulation. At any given instant, the signals r(n) € C* on
the receiving side can be represented as a linear combination
of the transmitted baseband signals s(n) € C™t and instanta-
neous additive Gaussian noise w(n) € CNr:

r(n) = H s(n) + w(n), (D

where H = [h;;] € CVr*Nt ig the channel matrix specifying
the pairwise channel response h;; for each transmit-receive
antenna pair (%, ). The channel noise is modeled as sampled
from a 0-mean normal distribution w(n) € N (0,021, ) with
0 co-variance terms, i.e., Efw(n)w(n)?] = o%Iy,, where
I, is the identity matrix of size N,. and w(n) denotes the
conjugate transpose of the row vector w(n).

Depending on how application data is divided over the
individual transmitter streams NN; and how each stream is
modulated, there are several different ways to realize a MIMO
transmitter [31]. In terms of application data assignment to
transmit streams we differentiate between (i) MIMO with
spatial diversity and (ii) MIMO with spatial multiplexing. The
former passes redundant application data on each transmitter
antenna allowing the receiver to decode the minimal-error
stream. This redundancy leads to lower throughput in compar-
ison with spatial multiplexing, but enables high probability of
successful data decoding at the receiver. In spatial multiplexing
MIMO each transmitter stream handles a unique portion of the
application data resulting in increased throughput at the cost
of higher sensitivity to poor channel conditions.

We also differentiate between direct-mapped and precoded
MIMO links, based on the power and modulation assignment
approach across transmitter streams. The former allocates the
same power level and modulation across transmitter streams
without considering the channel conditions, while the latter
performs channel estimation and adaptively assigns power and
modulation to each stream to maximize throughput. Thus, the
choice between direct-mapping and precoding offers a trade-
off between throughput and implementation complexity.



In this paper, we focus on MIMO with spatial multiplexing,
which has a greater potential for improved wireless network
throughput compared to spatial diversity. We begin our explo-
ration on a system with direct-mapping and leave modrec of
MIMO with precoding for future work.

B. Limitations of existing MIMO modrec approaches

Modulation recognition can be viewed as a classification
task: given a set of N IQ samples (an “instance”) the goal
is to determine the modulation from which the observations
are sampled. Classifiers used in such tasks are trained in a
supervised manner, i.e. they require annotated instances in
order to learn to recognize modulations (called classes). Most
existing MIMO modrec algorithms require prior knowledge of
the channel conditions [4], [14], [16], [24], [27]. In the context
of the MIMO signal model (Eq. (1)), this means that existing
approaches require prior knowledge of the channel response
matrix H. Once this information is available, the paths are con-
sidered individually and common features (e.g. cumulants) are
employed for classification. There are two critical limitations
that hamper the applicability of these approaches in under-
determined MIMO modrec: (i) cumulants dispersion, which
deteriorates their discriminative power and (ii) inability for
channel estimation, as H is under-determined.

Cumulants dispersion. Fig. 3 illustrates the effects of under-
determined sensing on state-of-the-art MIMO modrec that
uses cumulants [25]. We consider 200 instances of QPSK
and 200 of 16-QAM, and for each instance we calculate a
feature vector comprised of the seven cumulants typically used
in prior work: [040, 041, 042, 0607 0613 062, 063]- We then
adopt principle component analysis (PCA) [15] to reduce the
dimensionality of instances to two dimensions and plot them
in Fig. 3 for increasing determination of the sensing system.
The figure presents scatter plots of these projections for QPSK
(blue) and 16-QAM (red) and the respective density “iso”-
lines for each of the classes. From right to left we have over-,
fully- and under-determined signal. The increasing overlap of
the classes demonstrates qualitatively that the discriminative
power of cumulants deteriorates in under-determined settings.
We further quantify the effect of under-determined sensing on
modrec accuracy in the experimental section (Sec. IV).
Inability for channel estimation. If the channel information
is not apriori known, which often occurs in a non-cooperative
cognitive radio sensing, existing modrec algorithms adopt an
additional step to estimate H via Independent Component
Analysis (ICA) [4] or Expectation Maximization (EM) [44].
Such approaches, however, require over-determined sensing,
and thus, impose prohibitive cost on the number of receiv-
ing antennas. Furthermore, these methods are not directly
applicable with under-determined MIMO modrec, as they
would trigger channel estimation with fewer receiving than
transmitting antennas, which is unfeasible.

C. Under-determined MIMO sensing

To alleviate the problem of high cost, we consider under-
determined MIMO sensing, whereby the number of receiver
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Flg 3: Discriminative power of cumulants extracted from under- (2x1), fully- (2x2)
and over-determined (2x4) sensing. Red presents 16-QAM, while blue, QPSK. The
discriminative power of cumulants deteriorates with under-determined sensing.

Fig. 4: 2x1 QPSK constellations at SNR 20dB (left), 10 (middle) and 5dB (right).
As SNR decreases the geometry of the constellation is less-pronounced.

antennas is lower than that of the transmitter. Fig. 2 (left)
depicts schematically the system model for under-determined
MIMO sensing, where the example 2x2 MIMO link is sensed
with a single-antenna sensor. We call this 2x1 sensing. Intu-
itively, a 2x1 sensing of a 2x2 MIMO system will gain a single
observation of the MIMO constellation.

Our signal model for under-determined sensing follows the
same definition as in Eq. (1), where H = [h;;] € CN-*Ne s
the channel matrix with ¢ € [1, N,], j € [1, N;] and N, < Ny.
For example, as illustrated in Fig. 2 (left) for the 2x1 sensing
case, the H matrix is a 2x1 vector of the form H = [hq1h12],
where each h;; is a complex number: h;; = a;; + ib;5,

A MIMO constellation is comprised of 2 >Nt individual
symbols, where M is the modulation order (e.g. M=2 for
QPSK, M=3 for 8-PSK, etc.) and N; is the number of
transmitter antennas. Since we will use the geometry of the
constellation as a predictive “fingerprint” of the modulation,
the spread and overlap of symbols and the tightness of a
symbol’s cluster will play an important role. The spread
and overlap of constellation symbols depend on the channel
gain and fading, whereas the tightness of individual clusters
depends on the SNR. In what follows, we explore each of
these in the context of our signal model and illustrate their
effects on the constellation geometry and self-similarity.

1) Impact of noise on the constellation geometry: The SNR
of a MIMO channel affects how tightly-clustered are the IQ
samples around each constellation symbol. The lower the
SNR, the more dispersed the samples and the harder it is to
recognize the modulation or demodulate the signal. This effect
is illustrated in Fig. 4 which depicts the constellation shape
of 2x1 sensing of a QPSK signal at an SNR of 20dB (left),
10dB (middle) and 5dB (right).

2) Impact of channel gain on constellation geometry: The
gain |h;;| of a MIMO path (i, j) is defined as:

|hij| = \/azzj + b3,

where a;; and b;; are the channel coefficients. We introduce
the channel gain sum (Gg) and the channel gain ratio (GRr)

2
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Flg 5: Effects of G% on the MIMO constellation geometry.

which jointly control the MIMO constellation shape, where
Gs =Y |hijl, 3)
j

controls the spread of the MIMO constellation symbols. High
G allows easier MIMO decoding and modrec. The channel
gain ratio G, defined as:

Gp _ ,C(p) _ |h’§)j_1‘
B Lp+1) |1

L0<Gh <1, @)

controls the overlap of constellation symbols. Here the individ-
ual paths |h;;| are considered in decreasing order £ = [|h};[],
where p € [1, P —1] and P = N; x N, is the total number of
individual paths (3, j).

To put the notion of G% into context, let us consider our
running example of 2x1 sensing from Fig. 2. Fig. 5 demon-
strates the effects of G’ on the geometry of the constellation.
In the left of the figure, we see an example of 2x1 QPSK
sensing with G% = 0.1. This means that the channel gain
|hi2] of the second link is much smaller than that of the
first link. As a result the centroids of each sub-constellation
are far apart (due to the high gain on the first link |hq1]),
whereas the symbols in each sub-constellation are very close
(due to the low gain on the second link |hi2|). Thus, the
geometry of the overall constellation following 2x1 sensing
of a MIMO channel with G}, = 0.1 resembles a QPSK
SISO constellation. Next, we consider the constellation of 2x1
sensing with G, = 0.5, which is illustrated in the middle pane
of Fig. 5. G%, = 0.5 means that the gain of the stronger channel
is twice that of the weaker (i.e. |h11| = 2 X |h12]|). For this
setting, we get a “fully-unfolded” MIMO constellation with
the maximum of 2™ >Nt non-overlapping symbols, which in
the case of 2x1 sensing is 22*? = 16. Finally, for G} = 1,
|h11] = |h12|, the distance between sub-constellation symbols
is the same as that between the sub-constellation centroids.
As a result, some of the symbols in the sub-constellations
overlap, as illustrated in the right pane of Fig. 5. This results
in a partially-unfolded MIMO constellation with a total of nine
non-overlapping symbols. Based on this qualitative analysis,
we expect that the channel sum and ratio will affect the
informativeness of geometric features for modrec; a hypothesis
we confirm experimentally in §IV.

3) Impact of channel fading on under-determined modrec:
Channel fading is a random process that models the change
of the channel gain over time. In the context of modrec, of
specific interest are the channel model and the coherence
time, i.e. to what extent and how often does the channel
change. While channel fading does not directly affect the

shape of a MIMO constellation, the time-variance it introduces
in the sensed data may affect the accuracy of supervised
classification, such as the one performed by SYMMeTRy.

Several well-established models capture the fading of wire-
less channels [31], including the Rayleigh model, typical for
multi-path environments; and the Rician model, for channels
with strong Line-Of-Sight path. |h;;| = a?j —i—b?j is said
to be a Rayleigh random variable, if a;; € N(pq,;,0m)
and b;; € N(up,;,0m), such that jua,, = py,; = pij [31].
Similarly, hij| is said to be a Ricean random variable if
aij € N(pa,;,0m) and bjj € N (i, ,00), such that ji,,, #
Hp,;; [31]. Our evaluation (§IV) adopts these realistic models,
whereby we control the channel gain by setting p,,; and uy,;,
the severity of the fading by controlling o and the rate of
the fading by controlling the number of consecutive samples
K, for which the channel remains unchanged.

III. METHODOLOGY

The geometry of MIMO constellations exhibit nested self-
similarity and this pattern is the key intuition behind our
methodology. We summarize this self-similar structure into
a discriminative fingerprint which can then be employed
for supervised feature-based modulation recognition. To this
end, we design our novel features based on the notion of
Minkowski-Bouligang fractal dimension [17]. We combine
these features with the more traditional higher order cumu-
lants [35] and evaluate their individual and joint accuracy for
under-determined MIMO modrec. We demonstrate experimen-
tally that the combined features are robust to various signal
conditions and enable improvements over cumulants alone.

A. Preliminaries

We first present a short introduction to higher order cumu-

lants [35] and fractal dimensions [17]. While cumulants have
been previously employed in modrec, fractal analysis, which
helps summarize self-similarity in IQ sample constellations,
has not been considered for modrec before.
Higher Order Cumulants are a successful family of features
used in the modrec literature [12], [35]. Cumulants summa-
rize the statistical properties of IQ samples, arising from a
complex-valued stationary random process x(n) [35]. The k-
th order cumulant is a polynomial function of moments:

Okv = Z [(_1)9‘(*1((1 - 1)' H M}}{;v] 5

(UpiTp)=1I p=1

where My, = E[z(n)k¥~vx*(n)"] are the empirical estimates
of the moments associated with the stationary process from
which the IQ samples are drawn, and z*(n) denotes the
complex conjugation of z(n). The summation extends over all
partitions {I1,..I,}, ¢ € {1, ..k}. Each partition consists of ¢
sets and k and © are the number of complex and conjugation
terms in set p of partition J,,. Some commonly used cumulants
in the literature [35] are defined as follows in terms of
moments: Ca; = Mo and Cyo = My — (Mag)? — 2(May)2.
In practice, fourth- and sixth-order cumulants have received



Fig. 6: Converting TQ samples to a binary matrix for box-counting.

most attention, and to remove the effect of the signal scale
on cumulants, they are typically normalized by Cs; [35]. In
addition, since some cumulants are complex numbers, their
Ly norm is adopted as a real-valued feature in classification.
Fractal Dimensions. The intrinsic (or fractal) dimension of a
finite set of points is a widely adopted descriptor to quantify
fractals’ self-similarity [17]. Fractal dimensions have been
employed in dimensionality reduction and feature selection
in machine learning [37], to optimize the utility of spatial
index structures [7] and to analyze biological images [21].
While there are different kinds of dimensions that characterize
fractals [33], we focus on the Minkowski-Bouligand (AKA box-
counting) dimension which has been successfully employed in
data analysis applications due to efficient implementations and
relatively low-computational complexity [9], [19].

For a set of points in Euclidean space X = {z;},z; € R?
and a space partitioning in a grid of resolution e (i.e. € is
the size of a hyper-cube voxel in the grid), let the box count
N(X,€) denote the number of voxels required to cover the
points in X. The box counting dimension is defined as the
logarithmic rate of increase of the box count N(X,¢) as a
function of the log of the resolution 1/€ in the limit:
log N(X,€)

log(1/€)

This quantity is typically estimated numerically by varying
e starting from a fixed maximal resolution and estimating a
linear fit for the log-log plot of N(X¢) as a function of 1/e.
In this work we are not interested in the actual dimension
size, but instead in the discriminative power of the cover set
growth functions as features characterizing the constellations
of observed IQ samples.

Dpox(X) := lim (6)

e—0

B. Extracting Fractal Features

Our goal is to employ fractal dimensions to extract signa-
tures of modulation-specific IQ samples. Thus, we summarize
the self-similar hierarchical structure of MIMO constellations
using the box-counting dimension approximation. Informally,
our key idea is that samples from the same modulation will
exhibit discriminative box counting growth patterns which
differ from those corresponding to other modulations.

We represent the complex IQ samples within an instance as
2-dimensional real points X based on their real and imaginary
parts. Since we will consider the box counts N (¢) starting from
a fixed €,,;, resolution, we first pre-compute the number of
points in each box at the highest resolution. This aggregation
helps us (i) keep the complexity of subsequent steps fixed
regardless of the number of IQ samples and (ii) allows us to
filter noise in low-occupancy bins.

200 200
—+2PSK
< —+4PSK
= 100 100 8PSK
+16QAM

0
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Fig. T A comparison of the fractal feature vectors for four modulations using
exponential (left) and linear (right) resolution schedules 7. X-axis is the box size e.

5 10
Flg. 8: The fractal dimensions of changing phase rotations (left and middle) could
appear different (right). In the right figure, x-axis indicates the index of all grid size
enumerations (using exponential growth) and the y-axis indicates the extracted slopes.

This process is demonstrated in Fig. 6. We first normalize
the IQ samples. We then impose a square grid at resolution
€min Over the IQ constellation and compute a histogram of
point counts in each box (Fig. 6 middle). Finally, we binarize
the histogram into full/empty (i.e. 1/0) boxes to obtain a set
of coordinates containing samples (Fig. 6 right). The simplest
approach to this binarization is to declare any cell with at least
one point as full. In order to minimize the effect of noise,
we consider a more general frequency thresholding which
effectively declares “near-empty” cells as empty. We adopt
Otsu’s method commonly used to binarize histograms [29].
The result of the above pre-processing is a binary matrix
Yk*F g, € {0,1} used as an input to the box-counting.

Representing an observed IQ constellation by its estimated
fractal dimension Dy,, may result in loss of discriminative
power. Instead we compute the empirical decrease of N (Y ¢)
as we increase € from €,,;, to a value €,,,, Which covers
the complete Y matrix with a single box. Let " € R™ be
a schedule of increasing box sizes and N(Y,T;) denote the
number of boxes at resolution 7; needed to cover all non-
empty cells of our binarized matrix representation of the IQ
samples Y. Our fractal features are comprised of the m-
dimensional vector frra = [N(Y,T1),...,N(Y,T,,)].
Resolution schedule T. In methods approximating the fractal
dimension via box-counting, consecutive € values are typically
increased exponentially as the goal is to estimate the slope
of an exponential fit of N(X,¢). Assuming a fixed €n
corresponding to a size-k quantization in Y, the consecutive
sizes of boxes in an exponential schedule have the following
form T = (c') for an integer ¢ > 1. In order to extract a
more detailed, and potentially more discriminative, shape of
the N(Y,¢), we also consider linear schedules of the form
T = (ci) for integer values of ¢ > 1. A comparison of the
average extracted shapes using exponential 7' = (2¢) (left) and
linear 7' = (%) (right) schedules is presented in Fig. 7. This
illustrates (i) the discriminative power of the box-counting
curves and (ii) the increased detail due to linear box counting.
Handling phase variation. While the fractal features are
invariant to variations in the amplitude within the same mod-
ulation (we re-scale IQ samples to have a fixed maximal



norm), variations in the phase, which effectively “rotate”
the constellation, may result in significantly different frpra
from the same modulation. We demonstrate this sensitivity
to rotation in Fig. 8. The left and middle pane show the
same constellation with a phase offset of 7 /4, while the right
pane shows the corresponding N (¢) profiles. The reason for
the differences is that covering boxes are axis-aligned, while
clusters in the constellation may have irregular shapes which
under rotation may require different number of boxes to be
covered at the same resolution. To overcome this challenge,
we rotate an observed sample at different phase offset and
summarize offset-specific feature variants: fyp 4.

It is important to note that noise-free (theoretical) MIMO
constellations have a rotational symmetry of order 4 [38], and
hence, considering phase offsets outside of [0, 7/4] would not
yield additional discriminative power. Hence, it is reasonable
to consider rotations in this interval, where more rotations
will potentially add discriminative power at the cost of more
features. Our evaluation revealed that simply adding a /4
rotation provides an accuracy boost while further rotations
add negligible improvements. Thus, our fractal features in
all experiments are the concatenation of these two angles

frra = (fona, Frma)-

C. Sparsity Regularized Classification

Our feature vector is constructed by concatenating cumulant
and fractal features f = [fcunr, frral- The features obtained
may have redundant information over multiple dimensions due
to multi-perspective projection during the geometric feature
extraction. Therefore we utilize an 1-norm linear SVM for
classification [43]. It replaces the standard ridge penalty with
a lasso penalty, which enforces sparsity of coordinates for the
the separation hyperplane, and thus, performs feature selection
along with classification. Note that this simple classifier is not
a necessary component of our framework and can be replaced
by standard feature selectors followed by any classification
approach, including deep learning models.

IV. EXPERIMENTS AND RESULTS

We evaluate SYMMeTRy in both realistic simulation and a
small-scale MIMO testbed realized with USRPs. Our results
show that CUM and FRA features exhibit complimentary
performance. Their combination, however, maintains high and
consistent performance across all noise regimes, fading condi-
tions and with increasing MIMO transmitter complexity. These
trends are retained both in simulation and with over-the-air
experiments and demonstrate the high potential of SYMMe TRy
to enable low-cost under-determined MIMO modrec.

A. Experimental setup

Implementation. Our box counting pipeline is implemented
in MATLAB and executed on Ubuntu 14 PC. We employ
liblinear’s [8] implementation of SVMs and one-vs-rest [3]
training and evaluation for multi-class classification.

Data. We use data from a realistic simulation and from an
over-the-air experiment in a 2x1 MIMO USRP testbed. Our

synthetic datasets are generated with the MATLAB Communi-
cations System Toolbox and include four modulations: BPSK,
QPSK, 8PSK and 16QAM, which are typically considered
in prior modrec literature [36], [44]. Training and testing
instances contain 512 IQ samples each.

Evaluation strategy. Our goal is to evaluate SYMMeTRy
across varying constellation shapes and channel conditions.
To control the constellation shapes, we vary the channel gain
sum Gg (Eq. (3)) and the channel gain ratio Gr (Eq. (4)).
To control the rate and severity of fading, we set the number
of consecutive samples K that experience constant channel
and the variance oy of each individual path gain |h,;| €
N (pij,om). We also consider varying SNR levels. Unless
otherwise noted, we use 2x1 MIMO sensing. In §IV-E we
also perform evaluation in more complex settings.

In experiments with fixed (Gg, Gr) combinations, we ob-
tain individual channel coefficients a;; and b;; (see Eq. (II-C))
and (2)) by solving a linear system of equations (3) and (4),
which for a 2x1 sensing setup with |h11| > |hi2| gives us

|hi1| = Gs * Gr/(1+ GR) and |hi2| = Gs/(1+ G,) (7)

Since this system is under-determined w.r.t. a;; and b;;,
we further assume equall real and imaginary components:
a;j = b;j. Thus, as per Eq. (2), a;; = |h”\/\/§ Finally, to
evaluate SYMMe TRy with time-variant channels while control-
ling G and Gg, we draw the path gains |h;;| from a normal
distribution N (h;j, o). For a 2x1 setup, we set hq1 and hig
according to Eq.(7) and vary op.

In all experiments we compare the accuracy of SYMMeTRy,
defined as the fraction of correctly-predicted instances over
all instances. We compare the classification accuracy across
three different feature configurations: cumulants (CUM) which
are employed in all classification-based prior modrec work,
fractals (FRA) and their combination (CUM+FRA).

B. SYMMeTRy on a time-invariant channel

We first evaluate the performance of SYMMeTRy in time-
invariant channels, i.e. H is fixed in all instances. Our results
indicate that CUM and FRA alone have complementary advan-
tages in different gain/noise regimes. The combination of the
two features maintains consistently advantageous performance
across all experimental regimes.

1) Effects of channel gain ratio Gg: We first evaluate
the effects of symbol overlap controlled by Gr. As detailed
in §II, with a small G the MIMO constellation is folded,
converging to its SISO equivalent. Mid-range Gr produces
a fully-unfolded MIMO constellation, while G close to 1
produces a partially-unfolded constellation, whereby some
constellation symbols overlap. These effects of G on the
constellation geometry directly affect the discriminative power
of our features. To quantify this, we fix the channel noise
w(n) (Eq. (1)) and scale Gg from O to 1 in increments of
0.1 in a 2x1 sensing setup. Figs. 9a, 9b present our results
comparing the accuracy in mid-noise (10dB) and high noise
(5dB) settings. The performance of cumulants deteriorates as
Gr increases. This is expected, as cumulants are robust with
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Flg 9: (a), (b): Accuracy over varying channel gain ratio G r. Cumulants are robust in SISO-like cases, whereas fractals perform better in MIMO-like cases. Thus, the combination

of the two features leads to robust performance classification across constellation shapes;

(c), (d): Accuracy over varying channel gain sum G's. FRA and CUM+FRA features

outperform CUM across all G's. Performance is consistent across SNR regimes.; (e), (f): Accuracy over varying SNR for two channels. FRA and FRA+CUM outperform CUM
across all SNR regimes. High-gain channels (H 1), further emphasize the advantage of FRA and CUM+FRA over CUM; (g), (h): Accuracy across increasing fading variations as
controlled by o zr. FRA+CUM consistently outperforms CUM/FRA alone across o g and SNR. (i), (j): Accuracy across channel coherence time. Performance is consistent across

K and SNR, indicating that SYMMe TRy is robust in both fast- and slow-fading channels.

SISO modrec (i.e. when G is low) and quickly deteriorate
as the MIMO constellations unfold with increasing Gr. The
fractal features retain stable and high performance across all
G settings for SNR=10dB, which demonstrate the robustness
of the fractal features to channel variations. With lower SNR
of 5dB, cumulants outperform fractals for low values of Gg
and switch at high Gr. The CUM+FRA combination retains a
stable and high performance across ratios even when the SNR
is 5dB. These results indicate the robustness of the combined
feature CUM+FRA to noise and constellation shape changes.

2) Effects of channel gain sum Gg: The sum of individual
path gains affects the spread of the MIMO constellation: the
higher the gain, the more spread the symbols are, the easier
will be to classify a signal’s modulation. Thus, we set out to
evaluate the effects of Gg on SYMMeTRy’s performance. We
vary Gg from 0.2 to 2 in increments of 0.2 for 2x1 sensing.
Figs. 9c, 9d present our results for mid-noise (10dB) and
high noise (5dB) regimes. Across all regimes, FRA and the
combined CUM+FRA features outperform cumulants alone.
For low gain regimes all counterparts suffer deteriorated per-
formance, which rebounds as the sum gain increases beyond
1. These trends are consistent across SNR regimes.

3) Effects of SNR: In this experiment we seek to evaluate
the effects of channel noise on the MIMO modrec perfor-
mance. Specifically, we vary the SNR from 0 to 20dB in
increments of 5dB for two channels H1 and H2 (Gg L
GH?). The channels were generated with the MATLAB
comm.MIMOchannel block and their respective channel
responses were 1 [1.17 — 0.32¢,1.03 + 0.367] and
H2 =1[0.74 4+ 0.174,0.75 — 0.13¢]. Our results are presented
in Figs. 9¢ 9f. FRA and FRA+CUM outperform CUM across
all SNR regimes for both channel conditions. With high-gain
channels, (i.e. H1 in Fig. 9e), the performance of FRA and
CUM+FRA over CUM is further emphasized.

C. SYMMeTRy on a time-varying channel

In reality, channels vary with time depending on changes in
a link’s environment. Hence, we next evaluate the effects of
time-varying channels on SYMMeTRy’s performance. In our
model (§II-C3), we control fading by setting the variance oy
of the path gain, and the speed at which the channel varies, by
setting the number of consecutive samples K for which the
channel is time-invariant. We begin by evaluating the effects
of o and K on SYMMeTRy’s performance. We then evaluate
performance with changing constellation geometry (i.e. Gr
and G g). Finally, we examine the effects of SNR. Our findings
indicate that the performance of both FRA and CUM alone
deteriorate in the face of time-varying channel, however, the
combined feature maintains high performance across varying
constellation shapes, fading rates and noise level.

1) Effects of channel fading: In this experiment, we set
Ggr to 0.8, Gg to 3 and K to 1 and evaluate accuracy
while increasing the path gain variance og from 0.1 to 1 in
increments of 0.1. Figs. 9g, 9h shows our results for SNR
10dB(left) and 5dB(right). FRA outperforms CUM at lower
channel variance, whereas the contrary holds high variance.
The combined feature consistently outperforms either of the
features alone across both SNR regimes.

2) Effects of channel coherence time: The channel coher-
ence time captures the duration for which the channel response
remains unchanged. In our simulation, we control this by
setting K, which determines the number of consecutive in-
stances during which the channel remains constant. We define
an instance as a vector of 512 IQ samples. Figs. 9i, 9j present
SYMMeTRy’s accuracy at SNR 10 and 5dB as K increases
from 1 to 11 in increments of 1. Here Gy is 0.8, G5 is 1.5 and
op is 0.1. The combined feature FRA+CUM outperforms the
other two features consistently and across both SNR regimes.
The performance does not change significantly, as K increases,
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indicating that SYMMe TRy will perform robustly in both fast-
and slow-fading channels.

3) Effects of the constellation geometry: We now evaluate
the effects of the constellation shape. As before, we control
the overlap of constellation symbols with G and the spread
of the constellation with G'g. Figs. 10a, 10b present our results
for varying Gr with Gg = 3, K = 1 and oy = 0.1. FRA
outperforms CUM at SNR=10dB, while CUM outperform
FRA for Ggr lower than 0.5 at SNR=5dB. The combined
feature leads to high and consistent performance across both
SNR regimes and all Gr settings. In addition, Figs. 10c, 10d
evaluate the effects of constellation spread (as controlled by
Gs) on performance. We vary Gg from 0.2 to 2 in steps of 0.2.
Gris 0.8, K is 1 and o is 0.1. The combined CUM+FRA
feature marginally outperforms the other two. The accuracy is
affected by both the channel gain sum and the SNR, however,
for a gain higher than 1 across both SNR regimes SYMMe TRy
achieves high classification performance.

D. SYMMeTRy under realistic unconstrained channel models

In this section, we remove any constraints on the constella-
tion geometry and fading (i.e. all of Gr, Ggs, oy and K are
uncontrolled) and evaluate the performance of SYMMeTRy.
We adopt two common channel models: Rician and Rayleigh,
and evaluate the performance as a function of the channel
SNR. We use the MATLAB comm.MIMOchannel function
for our implementation with the default parameter setting
of the function. In brief, we assume a flat fading channel
and also do not consider the Doppler effect (i.e. the sensor
and transmitter were considered stationary). We assume the
path delay is zero and the averaged power of the path gains
is normalized to 0 dB across realizations. We generate one
dataset using Rayleigh fading distribution model and another
one using Rician model. The channel for each instance is
independently generated using the aforementioned MATLAB
function. Figs. 10e, 10f show the results of this analysis. CUM
and FRA alone have distinct regimes of high performance

SNR
(h) Rician 3x1

SNR
(§) Rician 4x1

SNR
(i) Rayleigh 4x1
Flg 10: (a), (b): Accuracy as a function of the constellation symbol overlap; and (c), (d): as a function of the constellation symbol spread; (e), (f): Accuracy with increasing
SNR over a Rayleigh and Rician channel; (g)-(j): Accuracy across SNR and channel models with increasingly-complex MIMO transmitter. The combined CUM+FRA feature is
able to retain high performance even when a 4-antenna transmitter is sensed with a single-antenna sensor.

TABLE II: Evaluation on 2x1 MIMO USRP testbed

Rx Gain | CUM FRA CUM+FRA
20 in. | 40 dB 0.5128 | 0.5523 | 0.6240

50 dB 0.6240 | 0.7385 0.7973
60 in. | 40 dB 0.5128 | 0.6717 | 0.7342

50 dB 0.4800 | 0.7103 | 0.7738

across both channel models. The combination of the two leads
to high and consistent performance across both channel models
and all SNR regimes.

E. SYMMeTRy with increasing transmitter antennas

We now set out to examine SYMMeTRy’s performance with
increasing transmitter complexity. For this experiment, we use
the same data generation setup as discussed in the previous
section (§IV-D). We increase the number of transmitter an-
tennas N; to 3 and 4, while maintaining a single antenna on
the sensor. Figs. 10g-10j demonstrate our results. Across all
SNR levels and both channel models, the combined feature
CUM+FRA maintains the best performance. The performance
improves in high SNR regimes. Finally, even though the
complexity of the transmitter affects the modrec accuracy,
SYMMeTRy with CUM+FRA feature is able to achieve an
accuracy of over 0.8 at SNR 10dB and 0.9 at SNR 20dB
for the most challenging case of 4x1 MIMO sensing. This
demonstrates SYMMeTRy’s performance to support modrec
of complex MIMO systems even when the sensor is only
equipped with a single antenna.

F. SYMMeTRy on real-world traces

We evaluate the performance of our method in real over-
the-air transmissions from a USRP-based testbed. We use a
transmitter comprised of a USRP B210 attached to an Intel i7-
5600U CPU host, and a receiver comprised of a USRP B210
with an Intel 17-6700 CPU host. Both hosts are running on
low-latency Linux kernel. We establish a 2x1 sensing setup
by transmitting on both Tx channels and receiving on only
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Flg 11: Impact of M on performance. Flg 12: Impact of ® on performance.
on Rx channel. Using GNURadio, the transmitter generates
a MIMO signal modulated with BPSK, QPSK, 8PSK and
16QAM. We record 3000 samples for each modulation. We
use one third of the samples as the testing set and the rest
for classifier training. The two USRP devices are located in a
line of sight. We evaluate two difference scenarios: one where
the transmitter/sensor are 20in apart and another where they
are 60in apart. For each distance, we collect two traces while
setting the sensor’s Rx gain to 40 and 50dB.

Table II shows the results. For all settings, FRA outper-
form CUM by a margin of 0.04 (at 20in/40dB) to 0.23 (at
60in/50dB). The combined features maintain the maximum
performance across all measurement scenarios with the highest
of 0.797 at 20in and 50dB gain.

G. Effects of parameter selection

In this section, we evaluate the impact of input parameters
on performance. Two parameters are worth noting: the number
of grid steps at each edge M and the the phase projections
® (§III-A). Figure 11 and 12 present accuracy results for
SYMMeTRy using the FRA feature across changing M and &,
respectively. We use three settings for M (M = {32, 64, 128})
and three settings for ® (®; = {0}, ®, = {0, 5} and ®3 =
{0, %, %, E1). As the figures show, SYMMeTRy’s performance
is not influenced by the selection of M and &.

V. RELATED WORK

Modrec without channel estimation. Most previous MIMO
modrec work requires channel estimation [4], [14], [16], [24],
[27], and hence the constraint of high number of receivers to
ensure that the linear system at the core of channel estimation
techniques is not under-determined. [12] stand out from the
above, as they evaluated the utility of high order statistics as
features without channel estimation and established that these
features are not robust to noise and the channel mixing effect.
Tian et Al. [36] employed a shape-constrained clustering
approach within a likelihood based framework. This work,
however, incurs a very high computational cost which further
grows with the constellation order. In addition, different from
us, all above methods require over-determined sensing, and
thus, high overhead on the sensing hardware.

Fractal Geometry. Fractal dimension analysis, which is at the
core of our novel features, has been successfully applied to the
field of digital image processing and applications of medical
image analysis. [13] derives fractal dimension as features from
pathological images and finds it exhibits advantageous perfor-
mance in classifying cancer images. In [18], an automatic scar
quantification approach based on segmentation-based fractal
texture analysis has been presented that provides accurate and

consistent results for MRI scan sequences. Different from the
above, our fractal features framework goes beyond the fractal
dimension (Dy,;) and employs the detailed rate of decrease
of the box counts N (e).

Sparsity and classification. Our fractal features are in a sense
exhaustive and in order to focus on the most discriminate ones
we employ sparsity-promoting classifiers. The merits of spar-
sity on features selection have been studied extensively [39].
We adopt an Ll-norm regularized linear SVM [42]. Other
modrec approaches have also recently employed feature se-
lection for exhaustive features such as order statistics [40].
The recent success of deep learning techniques across ap-
plication domains have also inspired approaches for modrec
in the communications domain [23], [28], [32]. Our work is
complementary with advanced classification approaches as it
introduces geometry-aware discriminative features which can
be employed in any classification scheme, including deep
learning approaches.

VI. DISCUSSION AND OPEN PROBLEMS

Our analysis focuses on under-determined sensing of a
direct-mapped MIMO link, i.e., a link in which each stream
is transmitted with the same modulation. We expect that our
methodology will have advantage in both over-determined
settings and heterogeneous-modulation MIMO links: direc-
tions we plan to explore as future research. In addition, to
handle phase variation we concatenate the FRA features from
two specific angles. An important open question is how the
accuracy depends on the number of considered angles.

VII. CONCLUSION

In this paper we were the first to consider the challenging
problem of supervised MIMO modulation recognition for
under-determined sensing infrastructures. Our key idea is to
exploit the inherent multi-scale self-similarity of MIMO mod-
ulation IQ constellations, which persists in under-determined
settings. We set out with a careful characterization of the vari-
ous effects of the channel on the the constellation organization
which informed our feature-extraction framework exploiting
self-similarity patterns in MIMO constellations. Our frame-
work is rooted in the rich methodology of fractal geometry.
We performed an extensive evaluation of our framework in a
realistic simulation and in a USRP testbed and demonstrated
high and persistent performance across various SNR regimes,
channel fading conditions and with increasing complexity of
the MIMO transmitter. These results were also confirmed
through under-determined MIMO sensing in a small-scale
USRP testbed. Our exploration and analysis paints a clear and
feasible path to practical and cost-efficient sensing with few
receiver antennas—an essential component of future Dynamic
Spectrum Access technology, policy and enforcement.
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