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Abstract - This work presents a low-cost mixed-signal time-

domain accelerator for generative adversarial network (GAN). 

A significant reduction in hardware cost was achieved through 

delicate architecture optimization for 8-bit GAN training on 

edge devices. An area efficient subthreshold time-domain 

multiplier was designed to eliminate excessive data conversion 

for mixed-signal computing enabling high throughput mixed-

signal online training demonstrated in a 65nm CMOS test chip. 

Introduction 

GAN is rendered as one of the most interesting and 

challenging applications in deep learning space.  As shown in 

Fig. 1, GAN contains two deep neural networks (DNN), i.e. a 

generator and a discriminator, contesting and evolving with 

each other [1]. Despite its broad real-time applications in 

gaming, authentication, VR, there is a lack of dedicated low 

power GAN accelerator due to the tremendous challenges on 

resource-limited edge devices. From the algorithm aspect, 

GAN is extremely difficult to train due to model collapses from 

unbalanced models and high sensitivity to hyper-parameters. 

From the hardware aspect, GAN involves two DNNs with 

complex training sequences, e.g. 41 different training stages as 

in this work.  Moreover, the typical floating-point training and 

complex calculation, e.g. batch normalization and optimizers, 

are very expensive for a resource-limited edge device [1]. This 

work, through significant architecture improvement and 

hardware adaptation, presents a mixed-signal GAN accelerator 

with 8-bit resolution for cost-effective implementation on edge 

device.  The contributions include: (1) for the first time, a 

complete GAN training core was implemented on an 8-bit low-

power ASIC chip consuming only 39mW; (2) An efficient 

subthreshold time-domain (TD) multiplier was designed with 

significant area saving compared to digital design; (3) On-chip 

training was performed in mixed-signal TD for the first time.  

The design eliminated 94% overhead from domain conversion, 

leading to the state-of-art throughput for a mixed-signal based 

accelerator which normally suffers from slow operation speed.     

GAN Accelerator Design with Time-domain Circuits 

Fig. 1 shows the implemented GAN architecture with model 

compression and hardware adaptation techniques used in this 

work. For fitting with a small chip budget on edge device, we 

targeted a low-budget architecture implementation of DCGAN 

[1] using greyscale image with a size of 28 x 28 pixels.  The 

following techniques were specially developed: (1) model 

balancing and adaptive training were utilized to enable 8-bit 

training versus conventional floating-point training, leading to 

a 5X reduction in hardware cost; (2) The challenging and 

memory consuming operations of batch normalization were 

simplified by disabling low-impact runtime operations, 

rendering a 77% removal of the associated operations; (3) The 

expensive ADAM optimizer was replaced by a succinct 

momentum stochastic gradient descent optimizer suitable for 

integer implementation with an 11X reduction of the 

optimizer’s computation; (4) The number of layers and 

channels were further minimized to reduce the computation 

load by 6X to 9X. Overall, a 6X reduction of training 

complexity, a 6.5X hardware cost reduction, and an 11X 

reduction of on-chip memory were achieved through the 

algorithm simplification with about a 3% loss of accuracy.  

Fig. 2 shows the training sequence. Each training iteration 

consists of 7 unique phases (e.g. forward prop., loss cal.) with 

5 phases for the generator and 4 phases for the discriminator.  

Each phase also contains 4 to 6 sub-tasks (e.g. Conv, FC, 

pooling, etc.).  To avoid model collapsing, an adaptive training 

and model strength control scheme was implemented which 

ceases the training of discriminator if its strength is too high 

and adaptively increases the magnitude of the gradients during 

backpropagation. The training sequence is managed by an 

ASIC training management unit (TMU) shown in Fig. 2.  A 

total of 41 training stages were implemented in the TMU as a 

finite state machine.  Special operations such as pooling, 

sigmoid, data transpose etc. were handled by the dedicated 

hardware modules inside the TMU.  Register files were used to 

store temporary weights and feature map outputs, bridging the 

throughput mismatch between SRAM and MAC arrays.    

Fig. 3 shows the test chip architecture diagram including the 

TMU, a 10x10 time-domain (TD) MAC matrix, SRAM 

modules and supporting blocks. All the MAC operations of 

CNN and Transpose-CNN are performed by a TD MAC matrix 

to improve area and energy efficiency. The time pulses 

generated from digital-to-time converters (DTC) are processed 

by the subsequent multiplication, accumulation and activation 

all in time domain and are finally converted back into digital 

domain using time-to-digital converters (TDC).  A special 16b 

time-pulse based time-domain accumulator (TD-ACC) is 

designed using four 4-b ring-based time accumulators [6] with 

carry propagation to realize accumulation efficiently. With the 

special TD-ACC, the TDC is only activated once every 25 

MAC operations, removing 94% of the time and power 

overhead from the expensive TDC operations.   Pushing all 

operations in time domain significantly reduces the cross-

domain data conversion, rendering a 160X speed-up in MAC 

operation compared with previous counter-based TD designs 

[3]. The 8-b TD multiplication is partitioned into four 4-bit 

multiplications to improve the computation accuracy and speed.    

Fig. 4 shows the detailed circuit design featuring a 

subthreshold (sub-vth) TD multiplier (TD-MUL) and a DTC- 

based linearization technique.  The TD-MUL takes input time 

pulses and generates output pulses of the multiplication results.  

As in Fig. 4, the current starving PMOS transistor is pre-biased 

at subthreshold region and generates a delay equals to the 

multiplication results through charge accumulation at the gate 

with logarithmic addition, i.e. a multiplication is addition in log 

domain. Compared to the digital implementation, the 

implemented sub-vth multiplier renders a 4.3X reduction of 

area. However, as shown in simulation, significant nonlinearity 

is observed in sub-vth multiplication. The nonlinearity is 

compensated by a logarithmic encoding of DTC. As shown in 

both equation and the simulated waveforms in Fig. 4, the 

linearization technique elegantly removes nonlinearity with 

negligible overhead.  After the multiplication, the resulting 

time pulses are sent into TD-ACC for accumulation of 25 

cycles avoiding time-consuming digitalization as [3, 4, 5].   



Simple TD ReLU function is also implemented at each CNN 

layer except the final layer which uses digital sigmoid function.   

Measurement  

Fig.5 shows the measured linearity from both the TD-MUL 

and TD-ACC.  For the multiplier, although up to 4% error is 

seen in the result, most of the error is just a small scaling factor 

shift. Less than 1b error is observed in the TD-ACC design. We 

trained the GAN with 3 databases, i.e. a digit-MNIST, a 

fashion, and an emoji database [8-9]. The accuracy of the 

generated images with conditional GAN from 3 databases 

shows less than 1% error compared to the ideal integer 8-bit 

training on CPU and 3% compared with ideal floating-point 

training (1.6% comes from quantization loss and the rest from 

process variation of TD circuit). The chip is verified with 

supply voltages down to 0.7V with up to 5% degradation of 

accuracy compared with ideal GAN operation.  Interestingly, a 

“self-healing” feature of GAN is observed, recovering most of 

the error loss from on-chip variations compared with no on-

chip training. This intrinsic resiliency presents a merit for 

training empowered design using mixed-signal circuits. The 

chip consumes 39mW power with TD-MAC at 90MHz.  The 

total training time of MNIST database takes 4.5 minutes which 

is 82X less than a high-performance CPU (2.6GHz Intel i7 

Quad-core with a power of 197W).  The die photo and 

comparison table with prior analog mixed-signal (AMS) 

designs are shown in Fig. 6.  As most of existing AMS designs 

suffer from low throughput, this work achieves the highest 

throughput of 18~5400X [2-5, 7] with similar efficiency.  In 

addition, a low-cost 8-bit on-chip training was realized for 

AMS design on the very challenging GAN operation.  

 
Fig. 1 GAN algorithm and hardware adaption in this work. 

 
Fig. 3 Top-level architecture diagram with MAC array and TD-

Accumulator, TD ReLU circuit, and TD MAC unit. 

 
Fig. 2 GAN training sequence and ASIC TMU core design. 

 
Fig. 4 TD sub-vth multiplier and linearization technique. 

 
Fig. 5 Measurement results. 

 
Fig. 6 Die photo and comparison table. 
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