
A Mixed-signal Time-Domain Generative Adversarial Network Accelerator with Efficient

Subthreshold Time Multiplier and Mixed-signal On-chip Training for Low Power Edge Devices

Zhengyu Chen1, Sihua Fu2, Qiankai Cao1, Jie Gu1
1Northwestern University, Evanston, IL, USA; 2Google Inc., Mountain View, CA, USA

Abstract - This work presents a low-cost mixed-signal time-

domain accelerator for generative adversarial network (GAN).

A significant reduction in hardware cost was achieved through

delicate architecture optimization for 8-bit GAN training on

edge devices. An area efficient subthreshold time-domain

multiplier was designed to eliminate excessive data conversion

for mixed-signal computing enabling high throughput mixed-

signal online training demonstrated in a 65nm CMOS test chip.

Introduction

GAN is rendered as one of the most interesting and

challenging applications in deep learning space. As shown in

Fig. 1, GAN contains two deep neural networks (DNN), i.e. a

generator and a discriminator, contesting and evolving with

each other [1]. Despite its broad real-time applications in

gaming, authentication, VR, there is a lack of dedicated low

power GAN accelerator due to the tremendous challenges on

resource-limited edge devices. From the algorithm aspect,

GAN is extremely difficult to train due to model collapses from

unbalanced models and high sensitivity to hyper-parameters.

From the hardware aspect, GAN involves two DNNs with

complex training sequences, e.g. 41 different training stages as

in this work. Moreover, the typical floating-point training and

complex calculation, e.g. batch normalization and optimizers,

are very expensive for a resource-limited edge device [1]. This

work, through significant architecture improvement and

hardware adaptation, presents a mixed-signal GAN accelerator

with 8-bit resolution for cost-effective implementation on edge

device. The contributions include: (1) for the first time, a

complete GAN training core was implemented on an 8-bit low-

power ASIC chip consuming only 39mW; (2) An efficient

subthreshold time-domain (TD) multiplier was designed with

significant area saving compared to digital design; (3) On-chip

training was performed in mixed-signal TD for the first time.

The design eliminated 94% overhead from domain conversion,

leading to the state-of-art throughput for a mixed-signal based

accelerator which normally suffers from slow operation speed.

GAN Accelerator Design with Time-domain Circuits

Fig. 1 shows the implemented GAN architecture with model

compression and hardware adaptation techniques used in this

work. For fitting with a small chip budget on edge device, we

targeted a low-budget architecture implementation of DCGAN

[1] using greyscale image with a size of 28 x 28 pixels. The

following techniques were specially developed: (1) model

balancing and adaptive training were utilized to enable 8-bit

training versus conventional floating-point training, leading to

a 5X reduction in hardware cost; (2) The challenging and

memory consuming operations of batch normalization were

simplified by disabling low-impact runtime operations,

rendering a 77% removal of the associated operations; (3) The

expensive ADAM optimizer was replaced by a succinct

momentum stochastic gradient descent optimizer suitable for

integer implementation with an 11X reduction of the

optimizer’s computation; (4) The number of layers and

channels were further minimized to reduce the computation

load by 6X to 9X. Overall, a 6X reduction of training

complexity, a 6.5X hardware cost reduction, and an 11X

reduction of on-chip memory were achieved through the

algorithm simplification with about a 3% loss of accuracy.

Fig. 2 shows the training sequence. Each training iteration

consists of 7 unique phases (e.g. forward prop., loss cal.) with

5 phases for the generator and 4 phases for the discriminator.

Each phase also contains 4 to 6 sub-tasks (e.g. Conv, FC,

pooling, etc.). To avoid model collapsing, an adaptive training

and model strength control scheme was implemented which

ceases the training of discriminator if its strength is too high

and adaptively increases the magnitude of the gradients during

backpropagation. The training sequence is managed by an

ASIC training management unit (TMU) shown in Fig. 2. A

total of 41 training stages were implemented in the TMU as a

finite state machine. Special operations such as pooling,

sigmoid, data transpose etc. were handled by the dedicated

hardware modules inside the TMU. Register files were used to

store temporary weights and feature map outputs, bridging the

throughput mismatch between SRAM and MAC arrays.

Fig. 3 shows the test chip architecture diagram including the

TMU, a 10x10 time-domain (TD) MAC matrix, SRAM

modules and supporting blocks. All the MAC operations of

CNN and Transpose-CNN are performed by a TD MAC matrix

to improve area and energy efficiency. The time pulses

generated from digital-to-time converters (DTC) are processed

by the subsequent multiplication, accumulation and activation

all in time domain and are finally converted back into digital

domain using time-to-digital converters (TDC). A special 16b

time-pulse based time-domain accumulator (TD-ACC) is

designed using four 4-b ring-based time accumulators [6] with

carry propagation to realize accumulation efficiently. With the

special TD-ACC, the TDC is only activated once every 25

MAC operations, removing 94% of the time and power

overhead from the expensive TDC operations. Pushing all

operations in time domain significantly reduces the cross-

domain data conversion, rendering a 160X speed-up in MAC

operation compared with previous counter-based TD designs

[3]. The 8-b TD multiplication is partitioned into four 4-bit

multiplications to improve the computation accuracy and speed.

Fig. 4 shows the detailed circuit design featuring a

subthreshold (sub-vth) TD multiplier (TD-MUL) and a DTC-

based linearization technique. The TD-MUL takes input time

pulses and generates output pulses of the multiplication results.

As in Fig. 4, the current starving PMOS transistor is pre-biased

at subthreshold region and generates a delay equals to the

multiplication results through charge accumulation at the gate

with logarithmic addition, i.e. a multiplication is addition in log

domain. Compared to the digital implementation, the

implemented sub-vth multiplier renders a 4.3X reduction of

area. However, as shown in simulation, significant nonlinearity

is observed in sub-vth multiplication. The nonlinearity is

compensated by a logarithmic encoding of DTC. As shown in

both equation and the simulated waveforms in Fig. 4, the

linearization technique elegantly removes nonlinearity with

negligible overhead. After the multiplication, the resulting

time pulses are sent into TD-ACC for accumulation of 25

cycles avoiding time-consuming digitalization as [3, 4, 5].

Simple TD ReLU function is also implemented at each CNN

layer except the final layer which uses digital sigmoid function.

Measurement

Fig.5 shows the measured linearity from both the TD-MUL

and TD-ACC. For the multiplier, although up to 4% error is

seen in the result, most of the error is just a small scaling factor

shift. Less than 1b error is observed in the TD-ACC design. We

trained the GAN with 3 databases, i.e. a digit-MNIST, a

fashion, and an emoji database [8-9]. The accuracy of the

generated images with conditional GAN from 3 databases

shows less than 1% error compared to the ideal integer 8-bit

training on CPU and 3% compared with ideal floating-point

training (1.6% comes from quantization loss and the rest from

process variation of TD circuit). The chip is verified with

supply voltages down to 0.7V with up to 5% degradation of

accuracy compared with ideal GAN operation. Interestingly, a

“self-healing” feature of GAN is observed, recovering most of

the error loss from on-chip variations compared with no on-

chip training. This intrinsic resiliency presents a merit for

training empowered design using mixed-signal circuits. The

chip consumes 39mW power with TD-MAC at 90MHz. The

total training time of MNIST database takes 4.5 minutes which

is 82X less than a high-performance CPU (2.6GHz Intel i7

Quad-core with a power of 197W). The die photo and

comparison table with prior analog mixed-signal (AMS)

designs are shown in Fig. 6. As most of existing AMS designs

suffer from low throughput, this work achieves the highest

throughput of 18~5400X [2-5, 7] with similar efficiency. In

addition, a low-cost 8-bit on-chip training was realized for

AMS design on the very challenging GAN operation.

Fig. 1 GAN algorithm and hardware adaption in this work.

Fig. 3 Top-level architecture diagram with MAC array and TD-

Accumulator, TD ReLU circuit, and TD MAC unit.

Fig. 2 GAN training sequence and ASIC TMU core design.

Fig. 4 TD sub-vth multiplier and linearization technique.

Fig. 5 Measurement results.

Fig. 6 Die photo and comparison table.

Acknowledgements: This work is supported by NSF (CCF-1846424).

References [1] A. Radford, et al., arXiv, 2015. [2] M. Liu, et. al. CICC’17. [3]

N. Cao, et al., ISSCC’19. [4] A. Sayal, et al., ISSCC’19. [5] E. H. Lee, et al.,

ISSCC’16. [6] Z. Chen, et al., ISSCC’19. [7] K. Yoshioka, et al., VLSI’18. [8]

FASHION database, https://www.kaggle.com/zalando-research/fashionmnist.

[9] EMOJI database, https://getemoji.com/.

𝝁𝜷 ←
𝟏

𝒎
 𝒙𝒊

𝒎

𝒊=𝟏

𝝈𝜷
𝟐 ←

𝟏

𝒎
 (𝒙𝒊 − 𝝁𝜷)𝟐

𝒎

𝒊=𝟏

𝒙𝒊 ←
𝒙𝒊 − 𝝁𝜷

 𝝈𝜷
𝟐 + 𝝐

𝒚𝒊 ← 𝜸𝒙𝒊 + 𝜷 ≡ 𝑩𝑵𝜸,𝜷(𝒙𝒊)

Monet

GAN Application

Anime Characters
Generation

Input Van Gogh

Input

Image Style
Transfer

GAN Algorithm

contest

real imagesfake images

evolve

Model Compression

Generator Dsicriminator

16b FP vs. 8b Integer

1

6
-b

it
 F

lo
a

ti
n

g

8

-b
it

 I
n

te
g

e
r

97%

A
c
c
u

ra
c
y

 (
%

)

Accuracy

94%100

50

0
FP Int

1

6
-b

it
 F

lo
a

ti
n

g

5x

N
o

rm
a

li
z
e
d

 P
o

w
e
r

Power

FP Int

8
b

 I
n

t

1

Hardware Adaption

Batch Norm Simplification

// mini-batch mean

// mini-batch variance

// normalize

// dynamic scale

Optimizer Simplification
Adam SGD with Momentum

5

5

15

FC

5

5

15

Batch

Norm

Transpose

Conv

13

13

13

13
Batch

Norm

28

28 28

28 24

24

12

12

8

8

4
4

15
32

1

Conv Pool Conv Pool FC FC

15
15 1532

Generator (T-CNN) Discriminator (CNN)

3 Minimize number of channels

2 Reduce number of layers

4

Disable the runtime learning feature

5

77% Comp.

6x

BN
12%

FC
36%

4x

Operation Reduction

Conv
52%

Opt.

Opt.

MAC

MAC

8%

6x
11x
9x

12%
11x

Implemented GAN architecture

Transpose

Conv

𝒗𝒕 = 𝜷𝟏 ∗ 𝒗𝒕−𝟏 − 𝟏 − 𝜷𝟏 ∗ 𝒈𝒕

𝒔𝒕 = 𝜷𝟐 ∗ 𝒔𝒕−𝟏 − 𝟏 − 𝜷𝟐 ∗ 𝒈𝒕
𝟐

∆𝝎𝒕 = -𝜼
𝒗𝒕

 𝒔𝒕 + 𝝐
∗ 𝒈𝒕

𝝎𝒕+1 = 𝝎𝒕 + ∆𝝎𝒕

𝒗𝒕 ← 𝜼 ∗ 𝒗𝒕 − 𝜶 ∗ 𝜵𝝎 𝑳𝒎(𝝎)

𝒎

𝟏

𝝎𝒕 ← 𝒗𝒕 + 𝝎𝒋

 Remove complex operations

 11X saving from SGD

𝒎𝒊𝒏 𝒎𝒂𝒙
𝑮 𝑫

𝑽 𝑫, 𝑮 = 𝔼𝒙~𝒑𝒅𝒂𝒕𝒂(𝒙) 𝒍𝒐𝒈𝑫 𝒙 + 𝔼𝒛~𝒑𝒙 𝒛 [𝐥𝐨𝐠(𝟏 − 𝑫(𝑮(𝒛)))]

XXXXXXXX

B[7:0]
×

a7a6a5a4 a3a2a1a0

b7b6b5b4 b3b2b1b0

A1 A0

B1 B0

×

a7a6a5a4

b7b6b5b4

A1

B1

×
b3b2b1b0

A0

B0

×

a3a2a1a0

a7a6a5a4

b3b2b1b0

A1

B0

×
b7b6b5b4

A0

B1

×

a3a2a1a0

A[7:0]

10x10 TD MAC Matrix
MEM BANK0

MEM BANK1

S
c
a

n
 C

h
a

in

VCO

clk

clk

Top-level Architecture Diagram

DTC

TDC

ReLU

TDC

ReLU

TDC

ReLU

MAC

Activate

Encode

Decode

TIme-domain MAC Array

A9
B9

A0
B0

dout9 dout1 dout0

DTC DTC DTC DTC DTC

out[15:12] out[11:8] out[7:4] out[3:0]

carrycarry

X X X X

TD-ACC

A1×B1 A1×B0 A0×B1 A0×B0

MAC MAC MAC

TD-MUL

3xTs

 3
2xTs

 2 T(Bi)

T(Ai)

6xTs

 6 T(Ai×Bi)

2xTs

 2 T(Bi+1)

T(Ai+1)

4xTs

 4 T(Ai+1×Bi+1)

2xTs

 2

T(Ai×Bi+
Ai+1×Bi+1)

+

accumulation

10xTs

 10

MUL

MUL

Waveform of TIme-domain MAC

RE

WE0
WE1

rstb

DFF

rstb

D Q

carry

carry

OU

T
EN

carry

TS

EN

EN

TS TS TS

Pulse
Gen

WE0

WE1

RE
OUT

RE

Tin

Tref

Tout

Time-domain MAC Unit

D
a
ta

T

ra
n

s

S
ta

te
 C

o
n

tr
o

l

TMU

TD-ACC TD-ACC TD-ACC
carry

D
a
ta

fl
o

w

C
o

n
tr

o
l

R
e
g

 F
il
e

TD ReLU Unit4b TD-ACC Multiplication Partition

Generator generates
fake images

Discriminator scores the
fake and real images

Loss calculation for
generator

Weight update for
generator

Generator
Training

Generator generates
fake images

Discriminator scores the
fake and real images

Loss calculation for
discriminator

Weight update for
discriminator

Discriminator
Training

GAN Training Process, Adaptive Training and Model Balancing

Loss_G > Loss_D×2 Loss_D > Loss_G×2

Y Y

N N

Model Balanceing

Reg

File

Addr

Cal.
Padding

Adaptive Training

000
100
111

-111
-100

Enlarge

gradient

G
ra

d
ie

n
t

E
n

la
rg

e

 Increase gradient magnitude

if current gradient is <2

Training Cycle

Update

Backward

T-CNN

Update

Backward

T-CNN

Forward

CNN

Forward

T-CNN

Loss Cal

CNN

Backward

Loss Cal

CNNCNN

T-Conv

L3

Batch

Norm

L4

Batch

Norm

L2

FC

L1

T-Conv

L5

ForwardBackward

Conv

L3

Pooling

L4

Pooling

L2

Conv

L1

FC

L5

FC

L5

S0 Model
Balancing

Data/Address Bus

Control Bus

S1 S2

S6

...

...

......

Pooling Sigmoid

Adaptive

Training

Ctrl

State Control

MAC
Control

Data

Loss back-prop. of
discriminator

1

2

3

4

5

1

2

6

7

1 2 3 4 5

6 7

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Sub-tasks

Data

Transpose

Dataflow
Control

Training Management Unit (TMU)

𝑻𝒐𝒖𝒕 ∝
𝑪𝑽𝒅𝒅

𝑰𝒅𝒔
=

𝑪𝑽𝒅𝒅

𝑰𝒅𝒔𝟎
× 𝒆

 𝑽𝒕𝒉−𝑽𝑮𝑺
𝒏𝒌𝑻/𝒒 × 𝒆

∆𝑽𝑨
𝒏𝒌𝑻/𝒒 × 𝒆

∆𝑽𝑩
𝒏𝒌𝑻/𝒒 ∝ 𝒆∆𝑽𝑨 × 𝒆∆𝑽𝐵

TB

TA

 VA
 VB

charge_en

td_A

td_B

Tin

Tout

Vq

Simulation Waveform of TD-MUL

TD Mutiplication

Linearity of TD-MUL

Pre-charge Circuit

Vpre

TA

TB

Sign

Tin
Tout

Vpre

En

Time-domain Multiplier (TD-MUL)

Sign Buffer

Linearity of Compen. DTC

w/o DTC
Linearization

w/ DTC
Linearization Specially sized with Tout = ln(Din)

Din

Ids

 VA+ VB

Normalized TA Normalized TA

N
o

rm
a

li
z
e

d
 T

o
u

t

N
o

rm
a

li
z
e

d
 T

o
u

t

B=15

B=12

B=9

B=6

B=3

B=15

B=12

B=9

B=6

B=3

Vq

1 157 1 157
1

225

112

1

225

112

Pre-bias
Phase

Operands
Read Phase

Multiplication
Phase

DTC Linearization Compensation

After linearization

Non-linear

Linearity

Compensation𝑰𝒅𝒔 = 𝑰𝒅𝒔𝟎 × 𝒆
(𝑽𝑮𝑺−𝑽𝒕𝒉−∆𝑽𝑨−∆𝑽𝑩)

𝒏𝒌𝑻/𝒒 = 𝑰𝒅𝒔𝟎 × 𝒆
(𝑽𝒕𝒉−𝑽𝑮𝑺)

𝒏𝒌𝑻/𝒒 × 𝒆
−(∆𝑽𝑨+∆𝑽𝑩)

𝒏𝒌𝑻/𝒒
∆𝑽𝑨 ∝ 𝑻𝑨 = 𝒍𝒏(𝑫𝒊𝒏𝑨)

∆𝑽𝐵 ∝ 𝑻𝑩 = 𝒍𝒏(𝑫𝒊𝒏𝑩)

Subthreshold Multiplication Equations

Tout

Perf. of TD-MUL

1
9
 u

m

20 um 12 um

7
 u

m

4b Digital-MUL 4b TD-MUL

4.3X
Reduction

𝑻𝒐𝒖𝒕 ∝ 𝒆∆𝑽𝑨 × 𝒆∆𝑽𝐵 = 𝑫𝒊𝒏𝑨 × 𝑫𝒊𝒏𝑩

C
o

m
p

.
T

im
e

(n
s

)

0
This Work

300

[3]

0.5

240

150

4b MUL Speed Comparison

∝ 𝒆𝑻𝑨 × 𝒆𝑻𝑩

*Some scaling constants are

omitted in the equations

50

70

90

0

20

40

60

80

100

1 0.9 0.8 0.7
A

c
c
u

ra
c
y
 (

%
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Voltage(V)

Frequency accuracy

0%

25%

50%

75%

100%

MNIST Fashion Emoji

A
c
c
u

ra
c
y
 (
%

)

FP on PC 8b on PC 8b on Chip

0

50

100

150

200

250

0 50 100 150 200 250N
o

rm
a
li
z
e
d

 T
o

u
t

Normalized Tin

0

75

150

225

0 3 6 9 12 15N
o

rm
a
li

z
e
d

 T
o

u
t

Normalized TinA

Linearity of TD-MUL

Digit-MNIST Database GAN Training Flow

Classification Error (Conditional GAN) Linearity of TD-ACC

0.5K epochs

accuracy loss

less than 1.0%

1K epochs

5K epochs20K epochsDC GAN[1] Ideal IntegerThis Work

Other Database

Ideal Integer This Work

E
m

o
ji

 [
9

]
F

a
s

h
io

n
 [

8
]

4058

25 125

15 3015

4019

4039

1987

Voltage Scaling

13585023

5087

Ideal

accuracy

* Accumulation and multiplication are counted as 2 operations.

 [5]
ISSCC
2016

[7]
VLSI
2018

[2]
CICC
2017

[3]
ISSCC
2019

[4]
ISSCC
2019

This work

Architecture Switch
Capacitor

TD
ASIC

TD
ASIC

TD
ASIC

TD
ASIC

TD
ASIC

Application Gradient
Descent

DNN
Inference

Image
Recog.

Reinforcement
Learning

CNN
Inference

GAN

Process (nm) 40 28 65 65 40 65

Area (mm2) 1.44 0.02 0.24 2.0 0.12 3.94

Input/Weight
Resolution (bit)

6/3 8/8 1/3 8/8 8/1 8/8

Learning Offline Offline Offline Online Offline Online

Freq. (MHz) 2500 780 99 1.5 25 90

Power (mW)
0.65 0.15 77 0.003 0.03 8 (MAC)

31 (ASIC)

Throughput
(GOPS)

1 0.8 0.75 0.0033 0.365 18*

MAC Efficiency
(TOPS/W*Bit)

16 112 0.004

1.1 12 18*

On-die SRAM - - 0.1 KB 16 KB No 52 KB

Training Time

370

R
u

n
 T

im
e

 (
m

in
)

4.5

82x

PC

400

200

0

100

300

Self-healing GAN

Id

e
a

l

In

fe
re

n
c

e

97.1%

A
c

c
u

ra
c

y
 (

%
)

91.7%

T

ra
in

in
g

94.8%
100

75

50

25

0

Self-healing

This work

10x10

MAC Array
ASIC

SRAM0

SRAM2 SCAN

2
1
8

0
 u

m

1800 um

SRAM3

SRAM1

DeCapsVCO

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.kaggle.com_zalando-2Dresearch_fashionmnist&d=DwMFaQ&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=QPeY0ifqKEdDvc-dkVhRVr56QAtZYeqGy3aR1nIP0ac&m=Q21PP-WjwRBDnjCkxE2PEB0aDBtJMXDju0uwtnuykNI&s=B0ciud62V2pBZaDj--pOA5zPyuVb_ptBx_Fn7XaI4ZU&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__getemoji.com_&d=DwMFaQ&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=QPeY0ifqKEdDvc-dkVhRVr56QAtZYeqGy3aR1nIP0ac&m=Q21PP-WjwRBDnjCkxE2PEB0aDBtJMXDju0uwtnuykNI&s=Ts6PVzpjjEGm2Wi69BpSXzBBHKFFwahAucY8ox-yU9g&e=

