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ABSTRACT. The complex Green operator G on CR manifolds is the inverse of the Kohn-Laplacian [J;, on
the orthogonal complement of its kernel. In this note, we prove Schatten and Sobolev estimates for G on
the unit sphere S2*~1 C C™. We obtain these estimates by using the spectrum of [J, and the asymptotics
of the eigenvalues of the usual Laplace-Beltrami operator.

1. INTRODUCTION

1.1. Background. The unit sphere S?*~! in C" is a CR manifold of hypersurface type with the CR structure
induced from the ambient space. The tangential Cauchy-Riemann complex with the operators 9, and 8; is
defined on the spaces of square integrable (0, ¢)-forms L%O 9 (S27~1). The Kohn Laplacian, given by

Oy = gbgz + 5:51,
is a self-adjoint, linear, densely defined, closed operator on L%()’q)(SQ"_l). Much like the Laplace-Beltrami
operator on a Riemannian manifold, many geometric properties of CR manifolds can be studied by analyzing
the properties of this differential operator. The inverse of [J, (defined on the orthogonal complement of the
kernel of O, in L%O,q) (S*n=1)) is called the complex Green operator, and denoted by G. We refer the reader
to [CS01] and [Bog91] for detailed definitions for these operators.
In this note, we obtain Sobolev and Schatten estimates by using the eigenvalues of [, on the sphere. The

spectrum for any form level on the sphere was originally computed in [Fol72] by using unitary representations.
A more direct computation by using spherical harmonics at the functions level can be seen in [ABBT19].

1.2. Spherical Harmonics. We begin with a quick overview of spherical harmonics. A complex polynomial
on C" can be written as

f(z,2) = Z Cop2°ZP
a,p

where z € C”, each co3 € C, and o, € N” are multiindices. By multiindices, we mean that a =
(a1,...,qq), 2% = H?Zl zjo-‘j, and |a| = 2;21 a;. A polynomial f(z,%) is called homogeneous of bidegree

(p,q) if f(A12,222) = A[A2f(2,Z) for all 2 # 0 and \; > 0. A twice-differentiable function f is harmonic if
Af =0, where the Laplacian A on C" is defined by

Af:4zn: 1
j=1

8,2]‘ (%j '

The space of harmonic homogeneous polynomials of bidegree p, g on C" is denoted #H,, 4(C™). A spherical
harmonic is the restriction of a harmonic complex polynomial on C" to S?*~!. It is well-known that any
polynomial on C™ agrees with a harmonic polynomial on the sphere.

The space H, 4(S*"~1) is the space of restrictions to S?*"~! of functions in H, ,(C™"). Since distinct har-
monic polynomials on the ball cannot have the same boundary values, H,, ,(C") = H,, ,(S*"~!). Decomposing
a function on S?"~! into homogeneous spherical harmonics is analogous to writing the Fourier series decom-
position of a function on the circle. The collection of spaces H, ,(S*"~!) gives a decomposition of L?(S*"~1)

into mutually orthogonal subspaces.
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Theorem 1.1. The spaces H, 4(S*"~1) are pairwise orthogonal, and

L2(82n71) — @ er,q(S2nfl).

p,q=0

We refer to [ABRO1] for more on spherical harmonics and the proof of the last theorem.
A direct computation shows that H, ,(S**~!) is an eigenspace for [J,. We refer to [Fol72] and [ABBT19]
for the proof of the next theorem.

Theorem 1.2. The space H, 4(S*~1) is an eigenspace for O, with associated eigenvalue 2q(p +n — 1).

In order to describe the spectrum of [, it is also necessary to determine the multiplicity of each eigenvalue.
In other words, we have to determine the dimension of the eigenspace H, ,(S*"~1). An inclusion-exclusion
principle argument gives the following result. See [ABRO1] and [Kli04] for detailed proofs.

Lemma 1.3. Forp,q>1,

(3, (1) — (n—1)(n+p+q—1) <n +p— 2) <n+q - 2>.

Pq p—1 q—1

Furthermore,

mmomg®%Hw)=(”+Z_l)

1.3. Complex Green Operator. Given a complete description of the spectrum of [y, it is simple to write
down an explicit representation of [, in terms of its spectrum. Let {e;} be an orthonormal basis for (ker )+
which consists of eigenfunctions of Oy, (e, = Agey for each £. Then Oy f = > ,(f, er) Aee, whenever the right
side converges in L?(S?"~1).

The complex Green operator G is a compact linear operator on L?(S?>"~1!) (actually on any strictly
pseudoconvex smooth CR manifold [CS01]). If f € (ker(J,)t, then GO,f = 0,Gf = f, where the left
side of this identity is understood only formally. Since the span of {e,} is assumed to be orthogonal to the
kernel of [y, the eigenvalue A is nonzero for each ¢. Thus the complex Green operator, the linear operator
G : L2(S?"~1) — L2(S?"~1) defined by

Gf =0if f € kerOy,

Gf=>y_ <f;\6€>€g if fe (kerTy)t ={fecL*S*™ ) : (f,g) =0 forall g €ker[d},
4
l
is well-defined.

1.4. Main Results. The first result of this paper is a characterization of when the Schatten r-norm of G
is finite. We prove that, on S?*"~1 ||G||, < oo if and only if r > n. Similar Schatten estimates for the 0-
Neumann operator and Hankel operators recently appeared in [GS18]. We present a proof of this statement
in the second section.

In section 3, we turn attention to the modified Poisson equation [yu = f. The complex Green operator
is the solution operator for this equation; given f € (ker[y)*, u = Gf + g is a weak solution to Cyu = f,
where g € ker[,, and u = Gf is the canonical solution in the sense that it minimizes the L? norm over all
solutions. It is natural to ask how many weak derivatives Gf has in L?(S?*"~!) when f is assumed to be in
L?(S?"~1). Kohn proved that the complex Green operator on a class of pseudoconvex CR manifolds satisfies
the estimate

1Gflls41 < Ol flls

for some C' depending only on the underlying manifold M, where | -||s denotes the norm in the Sobolev space
H#*(M) [Koh65]. We offer an elementary proof of this result for the complex Green operator for functions
on S?"~1 by utilizing the explicit spectral representation. Using this method, we are also able to compute
the best constants C' on the right hand side of the inequality.
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2. SCHATTEN 7-NORMS OF G

As mentioned before, G is a compact linear operator on L?(S?"~1). As above, let {e;} be an orthonormal
basis for (ker [(J,)* consisting of eigenfunctions of [J, with associated eigenvalues A\, Then, for f € L2(S?"~1),

67 =y e,
J4

A

Note that G has the same eigenfunctions as [J, and that the eigenvalues of G are the reciprocals of those
of Oy. Thus, H, 4(S*"~!) is an eigenspace for G with the associated eigenvalue A, , = m. In this
section we study the Schatten r-norms of G.

Let T be a compact and positive semi-definite operator from a separable Hilbert space H to itself. Then,
for any r € [1,00), define the Schatten r-norm of T by

1Tl = (Z )\k(T)T>
k=0

where A\ (T) > Xo(T) > -+- > M\p(T) > - -+ > 0 are the eigenvalues of T. An operator T has finite Schatten
r-norm for some r < oo only if T is compact, so the Schatten norm quantifies the compactness of an
operator. We refer to the references within [GS18] for more general studies on the Schatten estimates on
various operators.

The following theorem characterizes the values of r such that ||G||, < oo on §?"~1.

T

Theorem 2.1. On $*"~! ||G||, < oo if and only if r > n.

Proof. By definition,

T

191l = (Z )\k(g)r>
k=1
where A1(G) > -+- > Ai(G) > .... Combining eigenvalues which are the same, this can be rewritten as
IG5 = ka)\k(g)r
k=1

where A\ (G) > -+ > A\g(G) > --- > 0, and my, is the multiplicity of A\x. The eigenvalues of G are A, 4(G) =
Apg = m with multiplicity

(nl)(n+p+q1)(p+n2>(q+n2)

Mp,q = v b1 o
:W(p+n—z)...(p+1)(q+n_2),_,(q+1)

(the latter formula holds even when p = 0). Indexing the sum with p and ¢, we have

1G5 = ZZ m-

q=1p=0
Clearly
(n+p+q—1) 2 s
AP TR _ 9\ _ 9\
and
1
A =
pg < 2

when p > 0. Therefore

R (g+n—1)"! ~(n+p+q—1)(p+n—2)""%(qg+n—2)"2
191 < > (( —1)! 2 (2pg)"(n — 1)!(n — 2)! ) .

g=1



By the elementary integral test (all the sequences of terms are positive and decreasing if 7 is assumed to be
greater than n — 1), the convergence of this sum is equivalent to the convergence of the integral

/°° /°° (n+p+q—1)(p+n—2)""2(q+n—2)""?
(2pq)"(n — 1)!(n — 2)!

* _lgfn—1!
*[ @a(n— D)1 W

The second term is a single integral, so it is easy to see that it converges if and only if » > n. Thus we may
restrict our attention to the double integral. The convergence will be decided by the terms of highest total

degree in the numerator. These terms are p"~1¢"~2 and p"2¢"~!. Since n is fixed, and all other terms in

the numerator have lower degree in p and ¢, it suffices to determlne the convergence of the integral

e o] n 1 n 2 n—2, n—1
+
/ / P9 gpdg.
prq"
The integral can be rewritten as

n 1 n 2 n—2 —1 o] oo, n—1 n—2
+p" " 1 P+ qp
/ / T dp dg = / r-n+2 / r dp dg.
1 9 1 p

If r > n, then the integral with respect to p converges and

dp dq

<1 1
/ a1 T rf(%n+2 dp = + 1
1D p r—n r—n+1l

Now, the integral with respect to g converges if and only if r > n. This shows that if r > n, ||G]], < cc.
It remains to show that if » < n, then ||G||, = co. We will show this by estimating ||G||, from below. We
have

. (p+ap"*¢"
PI="(n—-1)(n-2)"
and
1
Ina p<n
Amz{ﬂq .
4pq p=mn.
Therefore
. p+q n— 2qn—2
161 _ZZ (4pq)r(n — 1)(n — 2)

g=1p=n

The convergence of this sum is equivalent to the convergence of the integral

n1n2 n—2 n—1
+p q"
/ / dp dgq,
prq”

which is the same integral as before except for the limits, so this shows that ||G||, = oo if r < n. O

The argument above gives a rough estimate of the size of |G||,. A reasonable approximation is given by
the integration estimates above. Indeed,

- 1 "+ gp e
'M“‘m—wm—wﬂ‘pé (ngy P

[ee] n—2 n—2
n / (p+q)p"*q i) dg +
n (4pq)”

ST —n)r—nt U =D —Dln—2)  @n—2)

It can be checked that this approximation at least captures the behavior of |G|, as r — nt and as r — .
4
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3. SOBOLEV ESTIMATES FOR G ON SPHERES.

In this section we consider Sobolev estimates for the complex Green operator on the sphere S>*~!. The
main question at hand is, given f € L?(S*"~!), how many weak derivatives does Gf have in L?(S*"~1)?
This is a natural question when considering G as the solution operator for the partial differential equation
Dbu = f

Sobolev estimates for the complex Green operator were first established by Kohn, who proved that when
M satisfies certain pseudoconvexity conditions, the complex Green operator acting on the space of square-
integrable (p, ¢)-forms on M gains one weak derivative, see [Koh65, CS01].

The main result of this section is to offer a new proof of this estimate in the case of functions on the
sphere and to extract some additional information by taking advantage of an explicit representation of the
Sobolev norms in this setting.

Let Agen—1 be the usual Laplace-Beltrami operator on S?”~!. To avoid confusion, we consider Agzn—1 as
a positive operator. The Laplace-Beltrami operator is a self-adjoint operator defined on a dense subspace
of L2(S?"~1). Just as with J,, we can easily write down a formula for Ag:»—1 given a description of
its eigenvalues and eigenfunctions. The eigenspaces of Ag2n—1 are the spaces of homogeneous spherical
harmonics.

Theorem 3.1. The space Hp(S*"71) = D, o= Hp.q(S*"71) is an eigenspace for Agzn—1 with associated
eigenvalue k(k + 2n — 2).

We refer to [Ste93] for the proof of this statement and details on the Laplace-Beltrami operator on spheres.
In particular, this theorem implies that every eigenfunction of [J, is also an eigenfunction of Agzn-1. Given
this description of the spectrum of Agzn—1, one can define the operator (I + Agzn—1)! for any real t. Let {es}
be an orthonormal basis for L?(S*"~1) consisting of eigenfunctions of Agen—1 with Agen-1€; = ppeq. Then

(T+ Dgonn)' f = (frea)(1+ pe) e
‘

whenever the right side converges in L?(S?"~1).

The Sobolev space H®(S?"~!) consisting of functions in L?(S?"~1) with weak derivatives of order s in
L?(S*™~1) can be characterized as the space of functions f for which (I + Agen-1)2 f € L2(S?>"~1) [Ste93].
The norm on H*(S?"~!) is defined by

2

1£1ls = 11 + Agen-1)% f| 2 = <Z [(f.eq)P(1 +w)5)
J4

This formula makes sense for real s.

For the remainder of the paper, we assume that {e;} is an orthonormal basis for (ker [J;)* which consists
of eigenfunctions of [J, with associated eigenvalues \y,. Thus ey is also an eigenfunction of Agzn-1 with
eigenvalue p,. Then, for f € L3(S?"1),

2
1651 = 52 g oy
4

The problem is to determine for which s there exists a constant C, not depending on f, such that

1Gflls < Cllfllze
for all f € L?(S*"~1), or more generally, for which s,t there exists C' such that

1G5+ < Cllfle
for all f € HY(S*1).

Lemma 3.2. There exists a constant C such that ||Gf||2 < C||f||3. if and only if {W} is bounded.

Proof. Suppose {%} is bounded. Then there exists C' > 0 such that % < +/C for all £. Therefore
IGFI2 = o 1(f ea) P < C 53 (f e P = CIf13
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Conversely, if {%} is unbounded, then for any C' > 0, there exists ¢ such that (1&# > (. Let
4

f = s Then [Gf]2 = S5 > € = |73 -

The same argument shows that for any ¢, there exists C such that ||Gf||set < C| f]|¢ if and only if

{%} is bounded. Thus it suffices to determine when this sequence of coefficients is bounded.

Proposition 3.3. The sequence {%} 1s bounded if and only if s < 1.

Proof. Recall that H(S?"~1) is an eigenspace for Agzn—1 with eigenvalue p(k) = k(k + 2n — 2), and that
Hyp.o(S™1) C Hpig(S™~1) is an eigenspace for [, with eigenvalue A(p, q) = 2q(p +n — 1). Let

Amin () = p+q1=nk1,nq>0{/\(p’ 9}

To determine boundedness of %, it suffices to determine the boundedness of % We check that

Amin (k) = 2(k + n — 2). Therefore
(14 p(k))®  (k(k+2n—2)+1)°

Amin (k)2 Ak+n—-22 7
which is bounded if and only if s < 1. O

This spectral approach to proving Sobolev estimates has the advantage of revealing the smallest possible
constant C,, such that ||Gf|ls11 < Cyu||flls for all f € H*(S>*~1). The minimal value of this constant arises

1
(Atpe)2

as the supremum of the sequence v

Theorem 3.4. On S?"~1,
1Gfls41 < Cull s,
where Cy = 1 and
n(n — 2)
2n —1
if n > 3. When n = 2, the above inequality is an equality if and only if f € Ho1(S?), and for n > 3 equality
holds if and only if f € Hpz_3,.1(S* ).

Proof. Clearly

Cy =

2 —sup1+w — sup 1+ u(k) — sup k(k+2n—2)+1
" Y, k>1 Amin(K)2 g>1 4(k+n—2)2
E(kt2n=2)41 115 a critical point at k = n? —3n + 1. We first

4(k+n—2)2
consider n = 2. In this case the critical point occurs at k = —1, so it is irrelevant. The sequence % is

decreasing, so when n = 2 the supremum is 1 and is achieved at k = 1.
We then consider n > 3. The critical point at &k = n? — 3n + 1 is the point at which the supremum is
achieved, and the value of the supremum is

1+ pu(n?—3n+1) n(n —2)

Amin(M2 —3n+1)2  4(n2 —2n—1)
This establishes the values of C,,.

To determine the cases of equality, it suffices to recall for which p, ¢ functions in the eigenspace H,, ,(S*"~1)

of O, acquire the coefficient C,, when computing ||G f||1. The value of A(p, ¢) is minimized by setting ¢ = 1.
The above calculations show that the maximum coefficient C), is achieved in the case n = 2 when p+q¢ =k =1
and in the case n > 3 when p+q = k = n? — 3n + 1. Therefore equality is achieved for functions in Hg 1 (S?)
and for functions in ’an,‘gn’l(SQ"_l) for n > 3. For all other pairs of p,q, the coeflicient arising in the
computation of the H(S?"*~1) norm will be smaller than C,,, which proves the converse. O

Differentiating with respect to k, we see that

Remark 1. We note that the best constants and cases of equality established by the previous theorem may
depend on the specific definition of the Sobolev norms.
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