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Abstract Tensegrity rovers incorporate design principles that give rise to many
desirable properties, such as adaptability and robustness, while also creating chal-
lenges in terms of locomotion control. A recent milestone in this area combined
reinforcement learning and optimal control to effect fixed-axis rolling of NASA’s
6-bar spherical tensegrity rover prototype, SUPERball, with use of 12 actuators.
The new 24-actuator version of SUPERball presents the potential for greatly in-
creased locomotive abilities, but at a drastic nominal increase in the size of the data-
driven control problem. This paper is focused upon unlocking those abilities while
crucially moderating data requirements by incorporating symmetry reduction into
the controller design pipeline, along with other new considerations. Experiments in
simulation and on the hardware prototype demonstrate the resulting capability for
any-axis rolling on the 24-actuator version of SUPERball, such that it may utilize
diverse ground-contact patterns to smoothly locomote in arbitrary directions.

1 Introduction

Tensegrity rovers are dynamic truss structures that can deform passively, so as to
avoid local stress accumulation, and actively, to locomote [13, 6]. Their passive
properties aid active control through morphological computation [4], highlighting
a close kinship with soft robots. Among other favorable traits, the adaptability and
resilience of tensegrity structures makes them appealing for robotic exploration of
extreme environments. This has recently led to the second hardware iteration of
NASA’s self-landing rover prototype, SUPERball (SBv2) [17], which comprises 6
rigid bars and 24 length-actuated elastic cables, shown in Fig. 1.

The same structural properties that motivate use of mobile tensegrities also
make them challenging to control due to high system dimensionality, nonlinearity
and coupling. Model-based approaches have been applied effectively for structural
shape control [14] and can be adapted for locomotion [8]. Nonetheless, an impracti-
cal degree of state knowledge is typically required, and the neglect of the dynamical
subtleties of a frequently changing contact state may hinder performance. This is in-
creasingly leading to the application of data-driven approaches, such as evolutionary
algorithms and machine learning, for controlling mobile tensegrities [5, 2, 9, 12, 3].
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Fig. 1 Left: SUPERball version 2 at NASA Ames Research Center. Right: at either end of a rigid
bar (in compression), motorized spools actuate the rest-lengths of elastic cables (in tension) [17].

1.1 Background

The context and contributions of this paper are better understood by first considering
the topology of SUPERball, shown in Fig. 2. The edges of its convex hull consist
of the 24 cables (solid black lines) and 6 “virtual” edges (dotted lines). Triangular
faces of the hull are bordered by either three cables (∆ faces, light blue) or two (Λ
faces, not shaded). The dotted gray box in 3D defines a cut that corresponds to the
gray borders in 2D. Thick beige lines are bars, interior to the convex hull.

∆ Λ fixed
axis

Fig. 2 Topology of SUPERball in 3D and 2D. Colored lines represent paths of the center-of-mass
projected downward onto the convex hull of the vehicle during locomotion.

The previous version of SUPERball (SBv1) featured an identical structural
topology to SBv2 but could only actuate half of its cables, shown by the thicker
black lines in Fig. 2. This arrangement constrained locomotion to follow one repeat-
ing pattern of contact states progressing horizontally on the diagram, i.e., periodic
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fixed-axis rolling illustrated by the red trajectory. A control policy for generating this
motion was obtained for SBv1 using Guided Policy Search (GPS) [18], a reinforce-
ment learning method that will be described in Sec. 2.1. Ultimately, computing this
policy required use of GPS individually for each of six sub-sequences of the contact
pattern before finally merging the corresponding neural networks.

The fully-actuated nature of SBv2, along with an increased range of motion of
each cable, permits a much broader degree of shape control [17]. This gives rise
to the new possibility of any-axis locomotion, i.e., the ability move in arbitrary
directions by using other contact patterns and transition geometries as shown by
the green, blue, and orange paths in Fig. 2. Achieving such behaviors under the
approach of [18] would require a drastic increase in the number of policy search
instances and thus experimentation costs, among other potential issues. This work
incorporates additional features into the policy search pipeline to produce a deploy-
able control policy for any-axis locomotion of SBv2 while avoiding any increase in
sample data requirements.

2 Approach

2.1 Prior Tools
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Fig. 3 Closed-loop dynamics; GPS
trains a neural network π to match
local optimal control laws pi.

Guided Policy Search (GPS) is a reinforcement
learning method that leverages optimal control
principles to reduce the amount of sampled exper-
imental data required to compute a control pol-
icy [7]. This technique fits linear time-varying dy-
namics xt+1 = fi (t,xt ,ut) in numerous local re-
gions i and computes optimal linear feedback poli-
cies ut = pi (t,xt). Then, a single neural network
policy ut = π (yt (xt)) is trained to match the set of
local policies given sensor data yt . Subject to con-
siderations of observability, this allows the compre-
hensive state knowledge available within a simula-
tor to be leveraged when optimizing a policy that can be deployed under limited
sensing. The process, sketched in Fig. 3, is iterated using new samples generated by
the neural network in order to converge upon a high-performing global policy.

Model-Based Control faces some limitations when applied tensegrity motion,
due to the influence of evolving contact states and the complications of gradient-
based operations on a high-dimensional state. Nonetheless, certain simplifications
can be used to generate useful controls with reasonable compute effort. Under full
knowledge of the vehicle’s current shape and assumptions about its contact state, it
is possible to solve for cable length changes that displace the center-of-mass enough
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to cause locomotion via instability [8]. An apriori policy such as this can be used to
reduce the required number of GPS iterations relative to an initial null policy.

Exploitation of Vehicle Symmetry furthermore reduces the amount of data nec-
essary per iteration of GPS. Due to the highly regular topology of SBv2, there exist
24 operations H j that permute the labels of individual structural elements and trans-
form the spatial reference frame without altering the intrinsic dynamics of the sys-
tem. The policy may then take the form u = H−1

j π(H jy). With proper selection of a
ruleset j = j (y), the required coverage of the observation space Y is condensed by
a factor of 24 to the subset YR, as shown in Fig. 4 [15].

Fig. 4 Trajectories in raw (left) and symmetry-reduced (right) observation spaces. Center: the
data-driven feedback policy controls the true state using only symmetry-reduced knowledge.

2.2 Policy Search Pipeline

Overview: The basic procedure for reinforcement learning is to obtain sample data
by executing a control policy under various conditions, update the control policy
based on how well each sample performed, and repeat. As in prior work [18],
NASA’s Tensegrity Robotics Toolkit [1] is used as a simulation testbed for gen-
erating samples. To bootstrap the learning process, the simple model-based con-
troller [8] is used as the initial policy π0. Fig. 5 gives the pipeline for improving the
policy over one iteration of GPS. Use of sample segmentation and of dynamics fit-
ting within a feature space, rather than the full state space, are primary new aspects.

Sampled Trajectories

Segmentation,
Classification

Fit Local
Dynamics
of Features

Improved Actions

Supervised
Learning

LQR: Local
Optimization

πi πi+1

Fig. 5 The flow from sample data to policy improvement over a single iteration of GPS.

Segmentation and Classification of sample data is necessary for coping with
the broad variety of motion under any-axis rolling, where nearby trajectories can
rapidly diverge. Trajectories are thus segmented whenever the ground-projection
of the center-of-mass crosses an edge of the convex hull (i.e., when a black line
is crossed in Fig. 2). Segment categories are then assigned by the type of bottom
triangle, ∆ or Λ , as well as the relationship between the edge crossed onto it and the
edge crossed off of it.
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This process interplays with symmetry reduction in order to enable gradient-
based optimization despite the use of a non-differentiable black-box dynamics
testbed. For example, left-turning segments on ∆ faces exhibit relatively similar
dynamics and therefore can contribute to a common local model to be used for
computing improvements to the corresponding actions. The prior fixed-axis rolling
controller had relied upon short, similar motion samples of a single category to en-
sure this apriori [11].

Dynamical Feature Space: Even when sample data are well-organized, high
dimensionality impedes the fitting of local dynamics models. Lower-dimensional
features are instead selected based the intuition about the system dynamics: the pri-
mary external influences are normal and friction forces on contact nodes and gravity
acting upon the center-of-mass. The center-of-mass-relative positions of the bottom
triangle nodes, (ρA,ρB,ρC) are thus chosen as elements of the feature state χ .

Cost Function: The objective is simply to match the center-of-mass velocity v̄
to a reference v̄∗, giving linear quadratic cost J = (v̄− v̄∗)T W (v̄− v̄∗). The weight
matrix W penalizes ground-plane components equally and de-weights the vertical.
Thus, fitting dynamics of χ = (ρA,ρB,ρC, v̄) provides enough information to im-
prove the control time series while ignoring less well-behaved state variables.

Observation Space: the supervised learning phase trains on tuples (y′,u′′),
where y′ are sensor-derived inputs and u′′ are improved associated actions. The
observation vector contains the 24 cable rest lengths, the 6 bars’ angular velocity
vectors, the ID of the bottom triangle, and the commanded direction of motion.

3 Simulated Results

3.1 Single-Shape Controller

Preliminary efforts to train a neural network policy with a model-based supervisor
yielded a noteworthy result: an undertrained network produced a constant output,
i.e., the policy πC(H j(y)y) = u∗. This represents single shape that is a broad average
of all shapes experienced by the locomoting model-based controller. Embodying
this shape causes a transition between support faces, triggering a change in the raw
control u=H−1

j u∗ via the symmetry-based relabeling alone. The resulting sustained
motion, seen in Fig. 6, resembles a simple “step-wise” paradigm [16] directable
along any ground contact edge-normal, or the periodic fixed-axis motion of [18]
and the red trajectory of Fig. 2. This Single-Shape controller thus serves as a useful
point of comparison for the desired any-axis control.

Fig. 6 A sequence of states as the Single-Shape control policy locomotes SBv2 to the right.
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3.2 Any-Axis Performance

After basic tuning of the neural network training phase, the application of the pol-
icy search update step described by Fig. 5 was repeatedly applied. This iteratively
reduces the average sample cost J, corresponding to steady and effective directed
locomotion with minimal side-to-side motion. Fig. 7 illustrates this improvement
with top-down views of typical center-of-mass trajectories for three controllers at-
tempting to visit a sequence of waypoints. A diagram of the robot marks its starting
position and size; its center-of-mass must reach the interior of each gray waypoint
before proceeding to the next.

Fig. 7 Iterative performance improvement under policy search. Left: Top-down view of center-of-
mass trajectories visiting a waypoint sequence. Right: histograms of forward and lateral velocities.

The Single-Shape controller shows zig-zag type motion characteristic of step-
wise controllers that move the center-of-mass perpendicular to the forward edge. In
some circumstances, such as the bottom-left of the figure, chatter results from its in-
ability to transition over virtual edges. The Any-Axis controller generated by round
2 of policy search locomotes successfully, though it exhibits some irregularity that
indicates halting progress. By the round 5 of policy search the controller exhibits
relatively smooth paths with few irregularities.

Also shown are velocity distributions aggregated across many trials of each con-
troller in the waypoint scenario. The velocity component toward the next waypoint
should ideally be a narrow peak at the target velocity of 0.8 m/s. The Any-Axis-
5 controller most closely resembles this distribution, while the Single-Shape con-
troller has a much broader distribution and Any-Axis-2 has a high peak at zero
caused by stuck states. Lateral velocity shows similar findings, with the exception
that zero is the desired value and so target and stuck states are coincident.
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3.3 Any-Axis Characteristics

Further illustration of the nature of the Any-Axis controller can help to reveal the
capabilities of this policy search pipeline and the possibilities for future results.
Fig. 8 shows a ground-track path of the Any-Axis controller with locations of the
three nodes of the bottom face. Modest movement of these nodes is visible as they
either slide along the ground or drift in the air during a ground-edge pivot. Some
crossings of edge centers resemble prior ∆→Λ→∆ motions; other crossings occur
very close to nodes, while a crossing of a dotted edge indicates a Λ →Λ transition.

Fig. 8 Center-of-mass and bottom face geometries as the controller locomotes to the right. Light
blue lines stem from the center-of-mass location and point in the velocity direction.

Figure 9 more broadly demonstrates this point using two simple geometric mea-
sures of the center-of-mass crossing an edge. The crossing position describes the
center-of-mass location along the edge as a percentage of its total length, while
the crossing angle relates the center-of-mass velocity direction to the edge direc-
tion. Scatter plots of these two values reveal a far wider distribution of behavior for
the Any-Axis controller than for the step-wise Single-Shape controller. It is noted,
however, that the high-frequency execution of the Single-Shape feedback law in
scenarios involving turns does produce some notable variation due to dynamics.

position

an
gl
e

0

100%

Fig. 9 Left: definition of two quantities describing the geometry of the center-of-mass path over
an edge. Center and right: distributions for crossings onto ∆ faces and onto Λ faces. Black points:
Single-Shape controller; red points: Any-Axis controller.
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4 Hardware Experiments

Due to the complex interplay of friction, elasticity, and high dimensionality, the
“reality gap” between simulated and hardware behavior of mobile tensegrities is
often substantial. Resolving this gap is a deep and profound challenge [10], with
limited first steps lying within the scope of this investigation.

Calibration of control inputs (in the form of cable rest lengths) was found to
be the most direct route to correcting errors, as the vehicle’s shape has a sensitive
“tipping-point” relationship with the resulting motion. This was implemented with
a choice of two parameters relating hardware and software lengths: the reference
length û, and a scale factor c, such that u∗HW = c

(
u∗SW − û

)
+ û. Small-scale testing

with the Single-Shape controller determined values of û = 0.97m and c = 1.2 to best
approximate intended behavior on hardware (see Fig. 10).

Fig. 10 Execution of the Single-Shape policy on the hardware prototype SBv2.

Hardware execution of the Any-Axis neural network policy introduced sensor-
related considerations. Locomotion in an arbitrary direction requires knowledge of
the vehicle’s world frame orientation, or heading, defined via the bottom face. As
localization data is not presently available, a simple scheme was introduced to ap-
proximate changes in heading based on the sequence of bottom face transitions.

In simulation, this bottom face is computed from node positions, while on hard-
ware it is determined by a classifier that was trained on raw sensor data. As a result,
the moment of transition can differ between these two testbeds. Combined with the
discontinuous nature of the symmetry-reduced observations, this frequently caused
forward/backward chatter of the hardware platform at transition points. Adding a
time-delay on the transition detection minimized the occurrence of this issue.

Figure 11 provides the ground contact pattern of a successful hardware trial.
Although center-of-mass data could not be obtained, the contact sequence nonethe-
less reveals directed any-axis locomotion similar to that of the simulated result of
Fig. 8. While numerous hardware trials were similarly successful, occasional issues
remained. Some transitions resulted in a significantly different heading change than
was approximated, causing unintended turns in the trajectory. Some configurations
also resulted in “stuck” states on the verge of an intended forward transition.

Footage of the hardware trial is available in the accompanying video. As it re-
veals, the speed of motion was also found to be significantly less than in simulation.
The bar angular rates, important for moderating speed in simulation, could thus be
omitted on hardware since the vehicle was not capable of exceeding the desired
speed. Friction behavior also differed, with less smooth sliding of bottom nodes.
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Fig. 11 Bottom face path of Any-Axis locomotion by the hardware prototype SBv2.

5 Discussion
Main Progress: The synthesis of technniques within this paper has produced the
first feedback controller to smoothly locomote a 6-bar tensegrity rover in arbitrary
directions, independent of orientation. This Any-Axis controller essentially guides
state evolution in a variable direction along a 2D+ manifold of the state-space, rather
than tracking a periodic trajectory or discrete points.

Symmetry-reduced optimization and training required a total of 125,000 time
steps sampled at 10Hz. Previously, without symmetry reduction, 120,000 were
needed for training fixed-axis motion with half as many actuators [18]. The broader
control manifold is thus learned without significant increase in sample complexity.

Future Directions: Beyond potentially aiding obstacle avoidance, the modified
policy search approach may have profound implications for locomotion on unstruc-
tured landscapes, a primary motivation for tensegrity use. Traversing rugged fea-
tures could require both nuanced direction control as well as adaptiveness to non-flat
contact geometry, which implies further broadening of the state-space volume nav-
igated by the controller. This would require a corresponding increase in the sample
complexity of dynamics fitting and supervised learning, making the applied sym-
metry reduction and segment classification all the more essential.

Reality Gap: As was seen, many significant differences between the simulation
and hardware testbeds resulted in an imperfect transfer of control policies. Control
calibrations proved sufficient to enable an initial demonstration of any-axis motion
on hardware; however, some occurrences of stuck states and less smooth motion in-
dicate room for more in-depth model identification. Faster and smoother motion, if
feasible on hardware actuators, would require more accurate parameter values such
as cable elasticity and coefficients of friction. These values might ideally be deter-
mined within the simulator testbed via Bayesian optimization, using a loss function
of trajectory error relative to physical experiments under identical commands [19].
Finally, additional robustness in the bottom face detection might be obtainable by
careful introduction of simulated noise into the symmetry-reduced training pipeline.
ACKNOWLEDGMENT: Supported by NASA ECF grant NNX15AU47G and
NSF awards 1734492 and 1723868.
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