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Abstract

This paper considers a Bayesian approach to graph-based semi-supervised learning. We
show that if the graph parameters are suitably scaled, the graph-posteriors converge to
a continuum limit as the size of the unlabeled data set grows. This consistency result
has profound algorithmic implications: we prove that when consistency holds, carefully
designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent
of the number of unlabeled inputs. Numerical experiments illustrate and complement the
theory.

Keywords: semi-supervised learning, graph-based learning, Markov chain Monte Carlo,
spectral gap

1. Introduction

The aim of this paper is to contribute to the theoretical and methodological understanding of
graph-based semi-supervised learning and its Bayesian formulation. Semi-supervised learn-
ing makes use of labeled and unlabeled data for training. Labeled data consists of pairs of
inputs and outputs, while unlabeled data consists only of inputs. We focus on the inductive
learning task of inferring the hidden map from inputs to outputs. We work under the clas-
sical assumption that the inputs are concentrated on a low dimensional manifold embedded
in a higher dimensional ambient space. Traditional graph-based optimization methods find
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a suitable input/output map by minimizing an objective functional comprising of at least
two terms:

i) A regularization term involving a graph-Laplacian built using only the input data.
Regularization promotes smoothness of the recovered map along the input manifold.

ii) A data-misfit term that promotes that the recovered map is accurate over the labeled
data.

Graph-based optimization methods will be reviewed below. In this paper we study a graph-
based Bayesian approach that, instead of recovering a single input/output map, gives a
posterior probability distribution over maps. The posterior contains information on the
most likely maps to have produced the training data, but also on the uncertainty remaining
in the recovery. As in optimization methods, the Bayesian posterior is found by balancing
a smoothness penalty and a data misfit penalty. These competing forces are encoded in a
prior distribution and a likelihood function.

I) The prior distribution serves as a regularization that promotes maps that satisfy certain
smoothness conditions. The prior covariance will be defined using a graph-Laplacian
built using only the input data.

IT) The likelihood function plays the role of a data-misfit functional and promotes maps
that are accurate on the labeled data.

We investigate the convergence of posterior distributions and the scaling of sampling
algorithms in the limit of training large numbers of unlabeled examples. We consider &-
graphs, which connect any two inputs whose distance is less than €. Our results guarantee
that, provided that the connectivity parameter ¢ is suitably scaled with the number of
inputs, the graph-based posteriors converge, as the size of the unlabeled data set grows, to
a continuum posterior. Moreover we show that, under the existence of a continuum limit,
carefully designed graph-based Markov chain Monte Carlo (MCMC) sampling algorithms
have a uniform spectral gap, independent of the number of unlabeled examples. Roughly
speaking our results imply that the number of Markov chain iterations needed to achieve a
given accuracy is independent of the number of unlabeled data points. However, the cost
per iteration will, in general, depend on the size of the data-set.

The continuum limit theory that we bring forward is of interest in three distinct ways.
First, it establishes the statistical consistency of graph-based semi-supervised learning meth-
ods in machine learning; second, it suggests suitable scalings of graph parameters of prac-
tical interest (e.g. see the conditions in the parameter s in Theorem 3, the scalings for the
graph connectivity € also in Theorem 3, and the truncation point for the spectrum of the
graph-Laplacian in (15) used to construct the prior in Theorem 3); and third, statistical
consistency is shown to go hand in hand with algorithmic scalability: when graph-based
learning problems have a continuum limit, algorithms that exploit this limit structure con-
verge in a number of iterations that is independent of the size of the unlabeled data set. The
theoretical understanding of these questions relies heavily on recently developed bounds for
the asymptotic behavior of the spectra of graph-Laplacians.
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Our presentation brings together various approaches to semi-supervised learning, and
highlights the similarities and differences between optimization and Bayesian formulations.
We include a computational study that suggests directions for further theoretical develop-
ments, and illustrates the non-asymptotic relevance of our asymptotic results.

1.1. Problem Description

We now provide a brief intuitive problem description; a fully rigorous account is given in
section 2. We highlight the generality of our setting, which covers a wide class of methods for
semi-supervised regression and classification, including probit and logistic Bayesian methods.

We assume to be given n inputs lying on an unknown m-dimensional manifold M C
R¢, p of which are labeled. The collection of input data will be denoted by M, =
{X1,...,%X,} C M, and we denote by y € RP the vector of labels. The pairs of in-
puts/outputs (x1,%1),...,(Xp,yp) form the labeled data and the inputs x,1,...,x, are
unlabeled examples. Our goal is to use the observed data to learn a label for each point in
the input space (assumed to be the unknown manifold M).

In the ideal case of known manifold M, a standard Bayesian approach to such learning
task proceeds by putting a Gaussian process prior m = N (0, =A% () over mappings u : M —
R and proposing a statistical model (e.g. additive Gaussian noise, probit, logistic) for the
data which is encoded in a negative log-likelihood ® . The data model may depend on a
forward map F that first transforms the input/output function u, and on the subsequent
application of an observation map O; see section 2.1.2 for concrete choices of forward and
observation maps considered in this paper. In the above, A denotes the Laplace Beltrami
operator on M and the parameter s > 0 determines the regularity of prior draws; more
intuition on the role of the Laplace Beltrami operator and the parameter s will be given
below. Combining the prior and the likelihood via Bayes’ rule, one can define a posterior
distribution g over functions u : M — R by

p(du) o< exp(—®(u; y)) 7(du). (1)

That is, the posterior is the distribution whose density with respect to the prior is propor-
tional to the likelihoood function.

However, as the input space M is assumed to be unknown, the above Bayesian for-
mulation is impractical. We follow instead an intrinsic approach and aim first at finding
suitable labels for the inputs in the given point cloud M,, = {x1,...,%,}, which are then
extrapolated, via a Voronoi extension (or 1-NN extension), to assign a label to every point
on the manifold M or in the ambient space RY. We take a Bayesian approach to learn a
discrete input/output function u, : M, — R by first building a graph Laplacian which
induces a Gaussian prior distribution m, = N(0, A7 ) over discrete functions u,, and then
introducing an approximatoin ®, to the negative log-likelihood function ®. In this way,
geometric properties of the underlying manifold M are extracted from the point cloud M,
and incorporated both in the prior and the likelihood. Notice that if the original data model
is defined in terms of some forward and observation maps, then one should also construct
appropriate graph approximations for them (see section 2.2.3 for the approximation of the
forward and observation maps considered in section 2.1.2). The solution of the graph-based
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Bayesian approach is a posterior distribution over discrete functions

pn (dun) o exp (=B, (un; y)) 7 (duy). (2)

The details on how we construct —without use of the ambient space or M— the graph-based
prior 7, and likelihood ®,, are given in section 2.

Two interpretations of equations (1) and (2) will be useful. The first one is to see (2) as
a graph-based discretization of a Bayesian inverse problem over functions on M whose pos-
terior solution is given by equation (1). The second is to interpret them as classical Bayesian
regression problems. In the latter interpretation, M may represent a low-dimensional mani-
fold sufficient to characterize features living in an extremely high dimensional ambient space
(m < d), perhaps upon some dimensionality reduction of the given inputs; in the former,
M may represent the unknown physical domain of a differential equation. We note again
that our framework covers —by the flexibility in the choice of misfit functional &— a wide
class of classification and regression learning problems that includes Bayesian probit and
logistic models.

Our first goal is to study the large n limit of the posterior distribution pu,, after it has
been pushed-forward by the interpolation map Z; (see definition (4)) that extends functions
defined on M, to functions defined on M. Our second goal is to study the algorithmic
scalability of carefully designed MCMC schemes to sample from p,, (see Algorithm 2).
The theory on statistical consistency and algorithmic scalability that we set forth concerns
regimes with large number n of input training data and moderate number p of labeled ex-
amples. This is precisely the regime of interest in semi-supervised learning applications,
where often labeled data is expensive to collect but unlabeled data abounds. Our consis-
tency results guarantee that graph-based posteriors of the form (2) are close to a ground
truth posterior of the form (1), while the algorithmic scalability that we establish ensures
the convergence, in an n-independent number of iterations, of certain MCMC methods for
graph posterior sampling. The computational cost per iteration may, however, grow with
n. These MCMC methods are in principle applicable in fully supervised learning, but their
performance would typically deteriorate if both n and p are allowed to grow. Finally, we
note that although our exposition is focused on semi-supervised regression, our conclusions
are equally relevant for semi-supervised classification.

1.2. Literature

Here we put into perspective our framework by contrasting it with optimization and ex-
trinsic approaches to semi-supervised learning, and by relating it to other surrogate and
approximate methods for Bayesian inversion. We also give some background on MCMC
algorithms.

1.2.1. GRAPH-BASED SEMI-SUPERVISED LEARNING

We refer to Zhu (2005) for an introductory tutorial on semi-supervised learning with useful
pointers to the literature. The question of when and how unlabeled data matters is addressed
in Liang et al. (2007). Some key papers on graph-based methods are Zhu et al. (2003); Hartog
and van Zanten (2016); Blum and Chawla (2001).
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As already noted, a key motivation for graph-based semi-supervised learning is that high
dimensional inputs can often be represented in a low-dimensional manifold, whose local
geometry may be learned by imposing a graph structure on the inputs. In practice, features
may be close to but not exactly on an underlying manifold (Garcia Trillos et al., 2019).
The question of how to find suitable manifold representations has led to a vast literature
on dimensionality reduction techniques and manifold learning, e.g. Roweis and Saul (2000);
Tenenbaum et al. (2000); Donoho and Grimes (2003); Belkin and Niyogi (2004).

The reconstruction of the hidden input/output maps from few labeled examples can be
carried out by compromising between data fidelity and regularization (along the underlying
manifold). Our work considers regularizations defined in terms of the graph Laplacian ijn,
with the power parameter s > 0 tuning the amount of regularization (the higher s the more
regularity imposed). Although the use of such parameter is standard in the machine learning
literature (Sindhwani et al., 2005) our work provides new understanding on how s should
be chosen in terms of the intrinsic dimension m of the input manifold in order to have
consistent learning in the limit of large numbers of unlabeled examples. Our analysis builds
on recent results from Garcia Trillos et al. (2018) where explicit rates of convergence for the
spectra of graph Laplacians towards the spectrum of a continuum differential operator have
been obtained. These results relate in a quantitative way the geometry of the underlying
manifold M and that of the point cloud M,,. The problem of studying the large sample
limit of graph Laplacians has received much attention in the last decades. Initially, most
results were of pointwise type as in Hein et al. (2007); ?); Giné and Koltchinskii (2006);
Hein (2006); Singer (2006); Ting et al. (2010). More recently, the focus has been given
to variational and spectral convergence Belkin and Niyogi (2007); Singer and Wu (2017);
Garcia Trillos and Slepéev (2016b); Shi (2015); Burago et al. (2014); Garcia Trillos et al.
(2018, 2019).

Alternative graph p-Laplacian regularizations were introduced in Zhou and Schélkopf
(2005). This type of regularization is similar to the one considered in this paper, but it
does not induce a Gaussian prior on the hidden input/output map; because of this, it
is more difficult to implement algorithms to sample from posteriors based on p-Laplacian
regularization. The statistical consistency of semi-supervised learning based on p-Laplacian
regularization has been studied in El Alaoui et al. (2016), Slep¢ev and Thorpe (2017). These
papers have rigorously analyzed how the parameter p —which plays an analogous role to s
in our context— should be chosen in terms of dimension so that “labels are not forgotten"
in the large data limit.

1.2.2. BAYESIAN VS. OPTIMIZATION, AND INTRINSIC VS. EXTRINSIC

In this subsection we focus on the regression interpretation, with labels directly obtained
from noisy observation of the unknown input/output function. The Bayesian formulation
that we consider has the advantage over traditional optimization formulations in that it
allows for uncertainty quantification in the recovery of the unknown function Bertozzi et al.
(2018). Moreover, from a computational viewpoint, we shall show that certain sampling
algorithms have desirable scaling properties —these algorithms, in the form of simulated
annealing, may also find application within optimization formulations (Geyer and Thomp-
son, 1995).
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The Bayesian update (2) is intimately related to the optimization problem

min (Al Un, Un) + Pn(Un; y). (3)

Un

Here A, represents the graph-Laplacian, as defined in equation (13) below, and the mini-
mum is taken over square integrable functions on the point cloud M,,. Precisely, the solution
u’ to (3) is the mode (or MAP for mazimum a posteriori) of the posterior distribution g,
in (2) with a Gaussian prior mp = N (0, A} ).

The Bayesian problem (2) and the variational problem (3) are intrinsic in the sense that
they are constructed without reference to the ambient space (other than through its metric),
working in the point cloud M,,. In order to address the generalization problem of assigning
labels to points x ¢ M,, we use interpolation maps that turn functions defined on the point
cloud into functions defined on the ambient space. We will restrict our attention to the
family of k-NN interpolation maps defined by

T (<) =7 3 wlx), xeR 4)

x; €Nk (x)

where N (x) is the set of k-nearest neighbors in M,, to x; here the distance used to define
nearest neighbors is that of the ambient space. Within our Bayesian setting we consider
Z,s1y,, the push-forward of w,, by Z,, as the fundamental object that allows us to assign
labels to inputs x ¢ M,, and quantify the uncertainty in such inference. The need of
interpolation maps also appears in the context of intrinsic variational approaches to binary
classification (Garcia Trillos and Murray, 2017) and in the context of variational problems
of the form (3): the function w is only defined on M,,, and hence should be extended to
the ambient space via an interpolation map Z,.

Intrinsic approaches contrast with eztrinsic ones, such as manifold regularization (Belkin
and Niyogi, 2005; Belkin et al., 2006). This method solves a variational problem of the form

min (Ady, ulm,, ulm,) + (u;y) + Cllullfy, (5)

where now the minimum is taken over functions in a reproducing kernel Hilbert space H g
defined over the ambient space R¢, and u| pm,, denotes the restriction of u to M,,. The kernel
K is defined in R? and the last term in the objective functional, not present in (3), serves
as a regularizer in the ambient space; the parameter ¢ > 0 controls the weight given to this
new term. Bayesian and extrinsic formulations may be combined in future work.

In short, extrinsic variational approaches solve a problem of the form (5), and intrinsic
ones solve (3) and then generalize by using an appropriate interpolation map. In the spirit of
the latter, the intrinsic Bayesian approach of this paper defines an intrinsic graph-posterior
by (2) and then this posterior is pushed-forward by an interpolation map. What are the
advantages and disadvantages of each approach? Intuitively, the intrinsic approach seems
more natural for label inference of inputs on or close to the underlying manifold M. How-
ever, the extrinsic approach is appealing for problems where no low-dimensional manifold
structure is present in the input space.
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1.2.3. APPROXIMATE AND SURROGATE BAYESIAN LEARNING

Our learning problem can be seen as approximating a ground-truth Bayesian inverse prob-
lem over functions on the underlying manifold M (Dashti and Stuart; Garcia Trillos and
Sanz-Alonso, 2017; Harlim et al., 2019). Traditional problem formulations and sampling
algorithms require repeated evaluation of the likelihood, often making naive implementa-
tions impractical. For this reason, there has been recent interest in reduced order models
(Sacks et al., 1989; Kennedy and O’Hagan, 2001; Arridge et al., 2006; Cui et al., 2015), and
in defining surrogate likelihoods in terms of Gaussian processes (Rasmussen and Williams,
2006; Stein, 2012; Stuart and Teckentrup, 2017), or polynomial chaos expansions (Xiu, 2010;
Marzouk et al., 2007). Pseudo-marginal (?) and approximate Bayesian computation meth-
ods (Beaumont et al., 2002) have become popular in intractable problems where evaluation
of the likelihood is not possible. There are two distinctive aspects of the graph-based models
employed here. First, they approximate both the prior and the likelihood; and second, the
approximate and ground-truth posteriors live in different spaces: the former is a measure
over functions on a point cloud, while the latter is a measure over functions on the con-
tinuum. The paper Garcia Trillos and Sanz-Alonso (2018a) studied the continuum limits
of graph-posteriors to the ground-truth continuum posterior. This was achieved by using a
new topology inspired by the analysis of functionals over functions in point clouds arising
in machine learning (Garcia Trillos and Slep¢ev, 2016a, 2014, 2016b; Slepéev and Thorpe,
2017).

In this paper, we rigorously make a connection between the graph Bayesian model and
the continuum one, by proving that in the large number of unlabeled data limit, the extended
graph posterior converges towards the posterior of the continuum Bayesian model.

1.2.4. MARKOV CHAIN MONTE CARLO

MCMC is a popular class of algorithms for posterior sampling. Here we consider certain
Metropolis—Hastings MCMC methods that construct a Markov chain that has the posterior
as its invariant distribution by sampling from a user-chosen proposal and accepting/rejecting
the samples using a general recipe. Posterior expectations are then approximated by aver-
ages with respect to the chain’s empirical measure. The generality of Metropolis—Hastings
algorithms is a double-edged sword: the choice of proposal may have a dramatic impact on
the convergence of the chain. Even for a given form of proposal, parameter tuning is often
problematic. These issues are exacerbated in learning problems over functions, as traditional
algorithms often break-down.

The preconditioned Crank-Nicolson (pCN) algorithm introduced in Beskos et al. (2008)
allows for scalable sampling of infinite dimensional functions provided that the target is
suitably defined as a change of measure. Indeed, the key idea of the method is to exploit
this change of measure structure, that arises naturally in Bayesian nonparameterics but also
in the sampling of conditioned diffusions and elsewhere. Robustness is understood in the
sense that, when pCN is used to sample functions projected onto a finite D-dimensional
space, the rate of convergence of the chain is independent of D. This was already observed
in Beskos et al. (2008) and Cotter et al. (2013), and was further understood in Hairer
et al. (2014) by showing that projected pCN methods have a uniform spectral gap, while
traditional random walk does not.
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In this paper we substantiate the use of graph-based pCN MCMC algorithms (Bertozzi
et al., 2018) in semi-supervised learning. The main insight is that our continuum limit results
provide the necessary change of measure structure for the robustness of pCN. This allows
us to establish their uniform spectral gap in the regime where the continuum limit holds.
Namely, we show that if the number p of labeled data is fixed, then the rate of convergence
of graph pCN methods for sampling graph posterior distributions is independent of n. We
remark that pCN addresses some of the challenges arising from sampling functions, but fails
to address challenges arising from tall data. Some techniques to address this complementary
difficulty are reviewed in Bardenet et al. (2017).

1.3. Paper Organization and Main Contributions

A thorough description of our setting is given in section 2. Algorithms for posterior sampling
are presented in section 3. Section 4 contains our main theorems on continuum limits of
graph posteriors and uniform spectral gaps. Finally, a computational study is conducted in
section 5. All proofs and technical material are collected in an appendix.

The two main theoretical contributions of this paper are Theorem 3 —establishing sta-
tistical consistency of intrinsic graph methods generalized by means of interpolation maps—
and Theorem 7 —establishing the uniform spectral gap for graph-based pCN methods under
the conditions required for the existence of a continuum limit. Both results require appropri-
ate scalings of the graph connectivity with the number of inputs. An important contribution
of this paper is the analysis of truncated graph-priors that retain only the portion of the
spectra of the graph Laplacian that provably approximates that of the ground-truth con-
tinuum. As it turns out, only a portion of the spectrum of the graph Laplacian contains
relevant information about the underlying manifold M, and thus one can disregard higher
modes. See the discussion in section 5.1.1 and Figure 2 for an illustration of this.

From a numerical viewpoint, our experiments illustrate parameter choices that lead to
successful graph-based inversion, highlight the need for a theoretical understanding of the
spectrum of graph Laplacians and of regularity of functions on graphs, and show that the
asymptotic consistency and scalability analysis set forth in this paper is of practical use
outside the asymptotic regime.

2. Setting

Throughout, M will denote an m-dimensional, compact, smooth manifold embedded in R
We let M,, := {x1,...,X,} be a collection of i.i.d. samples from the uniform distribution
on M. We are interested in learning functions defined on M,, by using the inputs x; and
some output values, obtained by noisy evaluation at p < n inputs of a transformation of the
unknown function. The learning problem in the discrete space M,, is defined by means of
a graph-based discretization of a continuum learning problem defined over functions on M.
We view the continuum problem as a ground-truth case where full geometric information
of the input space is available. We describe the continuum learning setting in subsection
2.1, followed by the discrete learning setting in subsection 2.2. We will denote by L?(v) the
space of functions on the underlying manifold that are square integrable with respect to the
uniform measure . We use extensively that functions in L?(7y) can be written in terms of
the (normalized) eigenfunctions {t;}3°, of the Laplace Beltrami operator A . We denote
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by {\i}$2; the associated eigenvalues of —A 4, assumed to be in non-decreasing order and
repeated according to multiplicity. Analogous notations will be used in the graph-based
setting, with scripts n.

2.1. Continuum Learning Setting

Our ground-truth continuum learning problem consists of the recovery of a function u €
L?(v) from data y € RP. The data y are assumed to be a noisy observation of a vector
v € R? obtained indirectly from the function of interest u as follows:

u € L2(y) = v:= 0o F(u) —y.

Here F : L%(y) — L?(7) is interpreted as a forward map representing, for instance, a map
from inputs to outputs of a differential equation. As a particular case of interest, F may
be the identity map in L?(y). The map O : L?(y) — RP is interpreted as an observation
map, and is assumed to be linear and continuous. The Bayesian approach that we will now
describe proceeds by specifying a prior on the unknown function u, and a noise model for
the generation of data y given the vector v = O o F(u). The solution is a posterior measure
p over functions on M, supported on L?().

2.1.1. CONTINUUM PRIOR

We assume a Gaussian prior distribution 7 on the unknown initial condition u € L?(v):
m=N(0,C),  Cu=(al—Ap)", (6)

where aw > 0, s > m and Ay denotes the Laplace Beltrami operator. Equation (6) corre-
sponds to the covariance operator description of the Gaussian measure 7. The covariance
function representation may be advantageous in the derivation of regression formulae —see
the appendix. As described for instance in Gao et al. (2019), the Laplace Beltrami operator
is a natural object to define Gaussian processes on manifolds, because its eigenfunctions
contain rich geometric information. To provide further intuition, note that draws u ~ 7 can
be obtained via the Karhunen-Loéve expansion

o ..

u(@) =Y (at+2)"ei@),  &RN(0,1), (7)

i=1
showing that the prior 7 favors functions that have larger components in the first eigen-
functions of A . The condition s > m guarantees that the expected L?(y) norm of u ~ 7,
which agrees with 3°°°, (a + A\;)™%/2, is finite. This in turn implies that u ~ 7 belongs to
L?(v) almost surely. More generally, the parameter s characterizes the almost sure Holder
and Sobolev regularity of draws from 7 (Dashti and Stuart); larger values of s correspond
to smoother prior draws. The parameter a gives an effective prior length-scale: frequencies
corresponding to A\; < « have substantial contribution in the sum in equation (7).

2.1.2. CONTINUUM FORWARD AND OBSERVATION MAPS

In what follows we take, for concreteness and motivated by applications in image deblurring,
the forward map F = F! to be the solution of the heat equation on M up to a given time
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t > 0. That is, we set
Fu = Flu = ePMmy. (8)

Note that M plays two roles in definition of F!: it determines both the physical domain of
the heat equation and the Laplace Beltrami operator Aag. Our choice of forward map F*
includes the identity map (corresponding to regression) as a particular case (for ¢ = 0) and
gives us the opportunity to study slightly more general data models. We note that F* has
a natural graph counterpart (see (16)).

We now describe our choice and interpretation of observation maps. Let x1,...,x, € M,
and let 6 > 0 be small. For w € L?(y) we define the j-th coordinate of the vector Ow by

1

Ol = B M)

/ w(zyy(de), 1<j<p, (9)
Bs (x;)NM

where Bjs(x;) denotes the Euclidean ball of radius 6 centered at x;. At an intuitive level,
and in our numerical investigations, we see O as the point-wise evaluation map at the inputs
in

Ow = [w(x1),...,w(x,)] € RP.

Henceforth we denote G := O o F.

Remark 1 It would be perhaps more intuitive to work with an observation map defined by
pointwise evaluations rather than local averages at a certain length-scale §. Indeed, typically
one assumes that the observations y correspond to noisy versions of “true” labels associated to
given feature vectors. However, for technical reasons when going from discrete to continuum
in the next sections, in the very low number of observed labels regime that we work on (i.e.
p does not grow to infinity with n) definition 9 allows us to perform rigorous analysis in
an L? sense, while pointwise evaluation does not. It is still an open problem to establish
uniform type convergence results for eigenvectors of graph Laplacians towards continuum
counterparts in the random geometric graph setting; such technical results would allow us to
work with the more standard setting for the observation map.

Having said this, when the continuum prior 7 is supported on a space of reqular functions
(as is the case when s in (6) is large enough), the posterior (as defined in 11) converges in
the limit 6 — 0 to a posterior obtained from a likelihood where the observation map was
based on pointwise evaluations. Thus, for strong priors we do not expect much difference
between working with one observation model or the other.

2.1.3. DATA AND NOISE MODELS

Having specified the forward and observation maps F and O, we assume that the label
vector y € RP arises from noisy measurement of O o F(u) € RP. A noise-model will be
specified via a function ¢¥ : RP — RR. We postpone the precise statement of assumptions on
@Y to section 4. Two guiding examples, covered by the theory, are given by

p
oY (w) = T}ﬂ\y—wr?, or ¢¥(w) := — Y log W (yiwis o) ), (10)
=1

10
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where ¥ denotes the CDF of a centered univariate Gaussian with variance o2. The former
noise model corresponds to Gaussian i.i.d. noise in the observation of each of the p co-
ordinates of Gu. The latter corresponds to probit classification, and a noise model of the
form y; = S(vi + m) with 7; i.i.d. N(0,02), and S the sign function. For label inference
in Bayesian classification, the posterior obtained below needs to be pushed-forward via the
sign function (Bertozzi et al., 2018).

2.1.4. CONTINUUM POSTERIOR

The Bayesian solution to the ground-truth continuum learning problem is a continuum
posterior measure

p(du) o exp(—¢¥(Gu))w(du)

=: exp(—@(u; y))Tr(du), (11)

that represents the conditional distribution of u given the data y. Equation (11) defines the
negative log-likelihood function ®, that characterizes the conditional distribution of labels
y given u. The posterior g contains all the information on the unknown input u available in
the prior and the data.

2.2. Discrete Learning Setting

We consider the learning of functions defined on a point cloud M,, := {x1,...,x,} C M.
The underlying manifold M is assumed to be unknown. We suppose to have access to
the same label data y as in the continuous setting, and that the inputs x1,...,x, in the
definition of O correspond to the first p points in M,,. Thus, in a physical analogy the data
may be interpreted as noisy measurements of the true temperature at the first p points in
the cloud at time ¢ > 0. The aim is to construct —without knowledge of M— a posterior
measure p,, over functions in M,, representing the initial temperatures at each point in the
cloud.

Similar to the continuous setting, we will denote by L?(7,) the space of functions on
the cloud that are square integrable with respect to the uniform measure 7, on M,,. It will
be convenient to view, formally, functions u, € L?(v,) as vectors in R™. We then write
Up = [un(1),...,un(n)]’, and think of u, (i) as evaluation of the function w, at x;.

The graph-posteriors are built by introducing a graph-based prior, and graph-based
forward and observation maps F, : L*(y,) — L?*(v,) and Oy, : L?(,) — RP. The same
noise-model and data as in the continuum case will be used. We start by introducing a
graph structure in the point cloud. Graph-based priors and forward maps are defined via
a graph-Laplacian that summarizes the geometric information available in the point cloud

M,,.

2.2.1. GEOMETRIC GRAPH AND GRAPH-LAPLACIAN

We endow the point cloud with a graph structure. We focus on e-neighborhood graphs: an
input is connected to every input within a distance of . A popular alternative are k-nearest
neighbor graphs, where an input is connected to its k nearest neighbors. The influence of
the choice of graphs in unsupervised learning is studied in Maier et al. (2009).

11
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Figure 1: Geometric graphs with n = 500, and & = n~1/4,2n~1/4 and 3n~1/* from left to
right.

First, consider the kernel function K : [0,00) — [0, 00) defined by

K(r) = {1 ifr <1, (12)

0 otherwise.

For € > 0 we let K, : [0,00) — [0,00) be the rescaled version of K given by

m—+2 T
KE(T') = 7n2am€m+2K (g) 5
where «,, denotes the volume of the m-dimensional unit ball. We then define the weight
Wi (xi,%x;) between x;,x; € M,, by

Wn<xi7xj> = K€n(‘x’i - Xj’)’

for a given choice of parameter € = ¢,, where we have made the dependence of the connec-
tivity rate € on n explicit. In order for the graph-based learning problems to be consistent
in the large n limit, € should be scaled appropriately with n —see subsection 4.1. Figure 1
shows three geometric graphs (M, W, ) with fixed n and different choices of connectivity
E.

We now define the graph Laplacian of the geometric graph (M,,, W,,) by

Apm,, = Dy — Wy, (13)

where D is the degree matrix of the weighted graph, i.e., the diagonal matrix with diago-
nal entries D;; = Z?:l Wi (xi,%x;). Several definitions of graph Laplacian co-exist in the
literature; the one above is some times referred to as the unnormalized graph Laplacian
Von Luxburg (2007). As will be made precise, the performance of the learning methods
considered here is largely determined by the behavior of the spectrum of the graph Lapla-
cian. Throughout we denote its eigenpairs by {A?, "} ;, and assume that the eigenvalues
are in non-decreasing order.

12
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2.2.2. GRAPH PRIOR

A straight-forward discrete analogue to (6) suggests endowing the unknown function u,, with
a prior

Tn=N(0,Cu,),  Cu, = (aln+ Apg,) 2, (14)
where @ > 0 and s > m are chosen as in (6). Like the continuum prior, the graph-
based one favors functions u, with large components in the first eigenfunctions of Ay, ,
thus infusing geometric information on the probabilistic Bayesian reconstruction (Bertozzi
et al., 2018). The graph Laplacian, in contrast to the regular Laplacian, is positive semi-
definite, and hence the change in sign with respect to (6). This choice of graph prior was
considered in Garcia Trillos and Sanz-Alonso (2018a), and also in Bertozzi et al. (2018) in
the case a = 0,s = 2. In this paper we introduce and study priors 7, defined in terms of
truncation of the priors 7, retaining only the portion of the spectra of Ay, that provably
approximates that of —A .

Precisely, we define the graph priors 7, as the law of u, given by

kn
_ iid
un =3 (o + A ey, &N, 1), (15)
i=1
where k,, < n may be chosen freely with the restrictions that k, — oo and lim,_,.c kel = 0.
Such choice is possible as long as the connectivity e, decays with n.

2.2.3. GRAPH FORWARD AND OBSERVATION MAPS

We define a forward map F, : L2(v,) — L%(7n) by
Folly = Fiaty, = e My, (16)

where ¢t > 0 is given as in the continuum setting. Likewise, for § > 0 as in (9) we define an
observation map O,, : L?(vy,) — R? by

1
(Onu)() = —— e
NYn (B§(X])) k: XkEBJZ(Xj)ﬁMn

As in the continuum setting, O, should be thought of as point-wise evaluation at the inputs
{x;}!_; and we denote G, := O,, o F,.

2.2.4. DATA AND LIKELIHOOD

For the construction of graph posteriors we use the same labeled data y and noise model
@Y : R? — R as in the continuum case —see subsection 2.1.3.

2.2.5. GRAPH POSTERIOR

We define the graph-posterior measure p,, by

Hop (du) o< exp(_ﬁby(gnun))ﬂ'n(dun)
= exp(_q)n(un;y))ﬂ-n(dun))

13
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where 7, is the (truncated) graph prior defined as the law of (15), and the above expression
defines the function ®,,, interpreted as a graph-based approximation to the negative log-
likelihood.

In subsection 4.1 we will contrast the above “truncated" graph-posteriors to the “untrun-
cated" graph-posteriors

I]'\:L(du) X €xp (_¢y(gnun)) ﬁ(dun)

= eXP(—q)n(un;y))ﬂ(dU% (18)

obtained by using the prior 7, in equation (14).

3. Posterior Sampling: pCN and Graph-pCN

The continuum limit theory developed in Garcia Trillos and Sanz-Alonso (2018a) and re-
called in subsection 4.1 suggests viewing graph posteriors p,, as discretizations of a posterior
measure over functions on the underlying manifold. Again, these discretizations are robust
for fixed p and growing number of total inputs n. This observation substantiates the idea
introduced in Bertozzi et al. (2018) of using a version of the pCN MCMC method (Beskos
et al., 2008) for robust sampling of graph posteriors. We review the continuum pCN method
in subsection 3.1, and the graph pCN counterpart in subsection 3.2.

3.1. Continuum pCN

In practice, sampling of functions on the continuum always requires a discretization of
the infinite dimensional function, usually defined in terms of a mesh and possibly a series
truncation. A fundamental idea is that algorithmic robustness with respect to discretization
refinement can be guaranteed by ensuring that the algorithm is well defined in function
space, before discretization (Dashti and Stuart). This insight led to the formulation of the
pCN method for sampling of conditioned diffusions (Beskos et al., 2008), and of measures
arising in Bayesian nonparametrics in Cotter et al. (2009). The pCN method for sampling
the continuum posterior measure (11) is given in Algorithm 1.

Algorithm 1 Continuum pCN

Set j = 0 and pick any u(®) e L?(y).
Propose @) = (1 — 52)1/2u0) 4+ 5¢0),  where ¢U) ~ N(0,C,).
Set uU*tD) = 4U) with probability

a(u(j), ﬂ(j)) = min{l,exp(@(u(j);y) — @(ﬂ(j);y)) }

Set uUtD) = 4() otherwise.
J—j7+1
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Posterior expectations of suitable test functions f can then be approximated by empirical
averages

p(f) = 3 3 1) =57, (19)

The user-chosen parameter 8 € [0,1] in Algorithm 1 monitors the step-size of the chain
jumps: larger S leads to larger jumps, and hence to more state space exploration, more
rejections, and slower probing of high probability regions. Several robust discretization
properties of Algorithm 1 —that contrast with the deterioration of traditional random walk
approaches— have been proved in Hairer et al. (2014). Note that the acceptance probability
is determined by the potential ® (here interpreted as the negative log-likelihood) that defines
the density of the posterior with respect to the prior. In the extreme case where @ is constant,
moves are always accepted. However, if the continuum posterior is far from the continuum
prior, the density will be far from constant. This situation may arise, for instance, in cases
where p is large or the size o of the observation noise is small. A way to make posterior
informed proposals that may lead to improved performance in these scenarios has been
proposed in Rudolf and Sprungk (2015).

2. Graph pCN

The graph pCN method is described in Algorithm 2, and is defined in complete analogy to
the continuum pCN, Algorithm 1. When considering a sequence of problems with fixed p
and increasing n, the continuum theory intuitively supports the robustness of the method.
Moreover, as indicated in Bertozzi et al. (2018) the parameter 8 may be chosen independently
of the value of n. Our experiments in section 5 confirm this robustness, and also investigate
the deterioration of the acceptance rate when both n and p are large.

Algorithm 2 Graph pCN

Set 7 = 0 and pick any u7(10) € LQ(%L)

Propose @) = (1 — 6%V 0 4 6( where Q(ij) ~ N(0,Cy,,).
Set w0t = )

with probability

Set u(jﬂ) ug) otherwise.

j—j+1L

Again, graph-posterior expectations of suitable test functions f,, can then be approxi-
mated by empirical averages

J
P (fn) ~ Z = S7(fn). (20)
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In informal but intuitive terms, the uniform spectral gap that we establish below shows that
the large J asymptotic variance of S7(f,) is independent of n.

4. Main Results

4.1. Continuum Limits

The paper Garcia Trillos and Sanz-Alonso (2018a) established large n asymptotic conver-
gence of the untruncated graph-posteriors pu,, in (18) to the continuum posterior g in (11).
The convergence was established in a topology that combines Wasserstein distance and an
L?-type term in order to compare measures over functions in the continuum with measures
over functions in graphs.

Proposition 2 (Theorem 4.4 in Garcia Trillos and Sanz-Alonso (2018a)) Suppose that
s > 2m and that
(log(n))Pm

1
1/m Lep L —5= as n — 0o, (21)

nl/s’
where py, = 3/4 form = 2 and py, = 1/m for m > 3. Then, the untruncated graph-posteriors
i, converge towards the posterior p in the P(TL?) sense.

We refer to Appendix B for the construction of the metric space T'L? that was originally
introduced in Garcia Trillos and Slepéev (2016a). Notice that in the space TL? we can
compare functions defined on M,, with functions defined on M. The space P(TL?) was
introduced in Garcia Trillos and Sanz-Alonso (2018a) and stands for the set of Borel proba-
bility measures on T'L? endowed with the topology of weak convergence. This space allows
us to formalize the convergence of a sequence of probability distributions over functions on
M, to a probability distribution over functions on M. In particular, in the previous theo-
rem, convergence is interpreted as: p,, converges weakly to p as n — oo, all measures seen
as elements of P(TL?). It is important to note that in the theorem, convergence refers to
the limit of fized labeled data set of size p, and growing size of unlabeled data. In order for
the continuum limit to hold, the connectivity of the graph e, needs to be carefully scaled
with n as in (21).

At an intuitive level, the lower bound on ¢, guarantees that there is enough averaging
in the limit to recover a meaningful deterministic quantity. The upper bound ensures that
the graph priors converge appropriately towards the continuum prior. At a deeper level,
the lower bound is an order one asymptotic estimate for the co-optimal transport distance
between the uniform and uniform empirical measure on the manifold (Garcia Trillos and
Slepcev, 2014), that hinges on the points X, ..., X, lying on the manifold M: if the inputs
were sampled from a distribution whose support is close to M, but whose intrinsic dimension
is d and not m, then the lower bound would be written in terms of d instead of m. The
upper bound, on the other hand, relies on the approximation bounds (24) of the continuum
spectrum of the Laplace-Beltrami by the graph Laplacian.

We now present a new result on the stability of intrinsically constructed posteriors,
generalized to M by interpolation via the map Z,, := Z} —see (4); this is the most basic
interpolation map that can be constructed exclusively from the point cloud M, and the
metric on the ambient space. Other than extending the theory to cover the important
question of generalization, there is another layer of novelty in Theorem 3: graph-posteriors
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are constructed with truncated priors, and the upper-bound in the connectivity e, in (21)
is removed. As discussed in subsection 5.1.1, only a portion of the spectrum of the graph
Laplacian contains relevant information of the underlying manifold M, and thus nothing is
lost by throwing away higher modes. See Figure 2 for an illustration.

Theorem 3 Suppose that s > 2m and that

(log(n))P™

/m Lep, <1, asn— oo, (22)

where py, is as in Proposition 2. Then, with probability one,
Togtn, —pP(L2(y)) By @S T — OO

The proof is presented in Appendix C. Similar results hold for more general interpolation
maps as long as they are uniformly controlled and consistent when evaluated at the eigen-
functions of graph Laplacians (see Remark 13).

Remark 4 Our results concern the regime where n — oo and p is constant. This corre-
sponds to the semi-supervised setting of many more unlabeled data points than labels. Our
analysis would also allow us to take the double limit n — oo followed by p — oo. This
corresponds to a semi-supervised learning regime where both the number of unlabeled data
points and the number of labeled data points grow, but p grows at the slowest rate possible. In
that regime the limiting posterior concentrates around a single function on M which would
correspond to the true “regression function”. It may be possible to establish similar posterior
concentration results in the regime where both n — oo and p = p, — 00 go simultaneously to
infinity as well as to establish posterior contraction rates. We leave such analysis for future
work.

4.2. Uniform Spectral Gaps for Graph-pCN Algorithms

The aim of this subsection is to establish how, in a precise and rigorous sense, the graph-pCN
method in Algorithm 2 is insensitive to the increase of the number n of input data provided
that the number p of labeled data is fixed and that a continuum limit exists. This behavior
contrasts dramatically with other sampling methodologies such as the random walk sampler.
One could characterize the robustness of MCMC algorithms in terms of uniform spectral
gaps.

We start by defining the spectral gap for a single Markov chain with state space an
arbitrary separable Hilbert space H. We consider two notions of spectral gap, one using
Wasserstein distance with respect to some distance like function d, and the other one in
terms of L2. For the purposes of this paper the Wasserstein spectral gap can be thought
as an intermediate step which is “easier" to prove directly following the ideas introduced in
Hairer et al. (2014), while the L? gap is a consequence whose implications are meaningful
for our problem. We start with the two definitions.

Definition 5 (Wasserstein spectral gaps)~ Let P be the transition kernel for a discrete
time Markov chain with state space H. Let d : H x H — [0,1] be a distance like function
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(i.e. a symmetric, lower-semicontinuous function satisfying d(u,v) = 0 if and only if u = v).
Without the loss of generality we also denote by d the Wasserstein distance (1-OT distance)
on P(H) induced by d (see (34)). We say that P has spectral gap if there exist positive
constants C, A such that

d(Pp, PIv) < Cexp(—Xj)d(p,v), Vp,v € P(H), VjeN.
In the above P(H) stands for the set of Borel probability measures on H.

Definition 6 (L?-spectral gaps) Let P be the transition kernel for a discrete time Markov
chain with state space H and suppose that u is invariant under P. P is said to have Li—
spectral gap 1 — exp(—\) (for X > 0) if for every f € L*(H; 1) we have

\Pf— “(f)||2L2(H;u)
Hf - :U’(f)H%Q(fH“u)

In the above, u(f) := [, f(u)du(u) and Pf(u) := [, f(v)P(u,dv).

<exp(—A).

Having defined the notion of spectral gap for a single Markov chain, the notion of uniform
spectral gap for a family of Markov chains is defined in an obvious way. Namely, if { P, } nen
is a family of Markov chains, with perhaps different state spaces {Hy, }nen, we say that the
family of Markov chains has uniform Wasserstein spectral gap with respect to a family of
distance like functions {Jn} if the Markov chains have spectral gaps with constants C, A
which can be uniformly bounded, respectively, from above and away from zero. Likewise
the chains are said to have uniform L?-gaps (with respect to respective invariant measures)
if the constant A can be uniformly bounded away from zero. We remark that Wasserstein
spectral gaps imply uniqueness of invariant measures of Markov chains (this follows directly
from the definition of Wasserstein gap).

Having introduced the above notions of “mixing" for Markov chains in a general setting,
we return to the problem of understanding the mixing of the family of pCN algorithms
for our semi-supervised learning problem. We will make the following assumption on the
negative log-likelihood function ¢Y.

Assumption 1 Let 8 € (0,1]. For a certain fized y € RP we assume the following condi-
tions on ¢Y : R? — R.

i) For every K > 0 there exists ¢ € R such that if v,w € RP satisfy
lw—+1-p%20 <K

then,
¢! (v) — ¢¥(w) = c.

ii) (Linear growth of local Lipschitz constant) There exists a constant L such that

|9Y(v) — ¢ (w)| < Lmax{|v], |w], 1}|v —w|, Vv,w € R".
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In Appendix E we show that the Gaussian model and the probit model satisfy these as-
sumptions.

In what follows it is convenient to use H as a placeholder for one of the spaces L?(7,),
n € IN, or the space L?(7y). Likewise P is a placeholder for the transition kernel associated
to the pCN scheme from section 3 defined on H for each choice of H. We are ready to state
our second main theorem:

Theorem 7 (Uniform Wasserstein spectral gap) Let 0 > 0, n > 0. For each choice of
Hletd:HxH—[0,1],

d(u,v)

d(u,v) := min{l, 2

}, u,v € H

be a rescaled and truncated version of the distance

T
dwv) = nf /0 exp(n[]))dt,

TWweA(T,uv

A(T,u,0) = {¢p € CY([0, T;H) : $(0) =u, »(T)=v, [¢]=1}
Finally, let d be the distance-like function

d(z,y) = Vd(x,y) (1 +V(2) + V(y)), uveH

where
V() = |jull®, ueH.

Then, under the assumptions of Theorem 3 and Assumption 1, 6 > 0 and n > 0 can be
chosen independently of the specific choice of H in such a way that

d(Pivi, Pivy) < Cexp(—=\j)d(vi,v2), Yvi,vo € P(H), VjeN,
for constants C, X that are independent of the choice of H.
A few remarks help clarify our results.

Remark 8 Notice that d is a Riemannian distance whose metric tensor changes in space
and takes larger values for points that are far away from the origin (notice that the choice
1 = 0 returns the canonical distance on H ). In particular, points that are far away from the
origin have to be very close in the canonical distance in order to be close in the d distance.
This distance was considered in Hairer et al. (2014). We would also like to point out that the
exponential form of the metric tensor can be changed to one with polynomial growth given
the choice of V.

Remark 9 Theorem 7 is closely related to Theorem 2.14 in Hairer et al. (2014). There,
uniform spectral gaps are obtained for the family of pCN kernels indexed by the truncation
levels of the Karhunen Loéve expansion of the continuum prior. For that type of discretiza-
tion, all distributions are part of the same space; this contrasts with our set-up where the
discretizations of the continuum prior are the graph priors.
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Due to the reversibility of the kernels associated to the pCN algorithms (they are par-
ticular instances of Metropolis-Hastings), Theorem 7 implies uniform L2-spectral gaps as
introduced earlier. Notice that the Wasserstein gaps imply uniqueness of invariant measures
(which are precisely the graph and continuum posteriors for each setting) and hence there
is no ambiguity when talking about L2-spectral gaps.

Corollary 10 Under the assumptions of Theorem 8 and Assumption 1 the kernel associated
to the pCN algorithm has an L*-spectral gap independent of the choice of H.

The proof of Theorem 7 and its corollary are presented in Appendix D.
Recall that graph-posterior expectations of suitable test functions f, can be approxi-
mated by empirical averages

J
) = 5 3 fa(ul?) = 87(). (23)
j=1

Roughly speaking, this uniform spectral gap shows that the large J asymptotic variance of
S7(f,) is independent of n. Uniform spectral gaps may be used to find uniform bounds on
the asymptotic variance of empirical averages (Kipnis and Varadhan, 1986).

Remark 11 It is important to highlight that the uniform gaps for the pCN algorithm (when
n grows) depend nonetheless on the number of observations p, and that the gaps may collapse
with growing p. This should be intuitively reasonable as this corresponds to considering a
more complex likelihood function, which in turn pushes the posterior further from the prior.

5. Numerical Study

In the numerical experiments that follow we take M = S to be the two-dimensional sphere in
R3. Our main motivation for this choice of manifold is that it allows us to expediently make
use of well-known closed formulae (Olver, 2013) for the spectrum of the spherical Laplacian
A = Ag in the continuum setting that serves as our ground truth model. We recall that
—Ag admits eigenvalues [(I + 1), [ > 0, with corresponding eigenspaces of dimension 2/ + 1.
These eigenspaces are spanned by spherical harmonics (Olver, 2013). In subsections 5.1, 5.2,
and 5.3 we study, respectively, the spectrum of graph Laplacians, continuum limits, and the
scalability of pCN methods.

5.1. Spectrum of Graph Laplacians

The asymptotic behavior of the spectra of graph-Laplacians is crucial in the theoretical
study of consistency of graph-based methods. In subsection 5.1.1 we review approximation
bounds that motivate our truncation of graph-priors, and in subsection 5.1.2 we comment
on the theory of regularity of functions on graphs.

5.1.1. APPROXIMATION BOUNDS

Quantitative error bounds for the difference of the spectrum of the graph Laplacian and
the spectrum of the Laplace-Beltrami operator are given in Burago et al. (2014) and Gar-
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cia Trillos et al. (2018). Those results imply that, with very high probability,

‘1—§ gc(g:Jren\/E), Vi, (24)

where 0,, denotes the oo-optimal transport distance (Garcia Trillos and Slepcev, 2014) be-
tween the uniform and the uniform empirical measure on the underlying manifold. The
important observation here is that the above estimates are only relevant for the first portion
of the spectra (in particular for those indices i for which e,1/A; is small). The truncation
point at which the estimates stop being meaningful can then be estimated combining (24)
and Weyl’s formula for the growth of eigenvalues of the Laplace Beltrami operator on a
compact Riemannian manifold of dimension m (Garcia Trillos and Sanz-Alonso, 2018a).
Namely, from \; ~ i2/™ we see that e,/ < 1 aslong asi=1,...,k, and

1
1<k, K Enm'
This motivates our truncation point for graph priors in equation (15).

Figure 2 illustrates the approximation bounds (24). The figure shows the eigenvalues
of the graph Laplacian for three different choices of connectivity length scale € and three
different choices of number n of inputs in the graph; superimposed is the spectra of the
spherical Laplacian. We notice the flattening of the spectra of the graph Laplacian and,
in particular, how the eigenvalues of the graph Laplacian start deviating substantially from
those of the Laplace-Beltrami operator after some point in the z-axis. As discussed in Gar-
cia Trillos et al. (2018), the estimates (24) are not necessarily sharp, and may be conservative
in suggesting where the deviations start.

5.1.2. REGULARITY OF DISCRETE FUNCTIONS

We numerically investigate the role of the parameter s in the discrete regularity of functions
un € L?(7y,) sampled from 7r,,. We focus on studying the oscillations of a function within
balls of radius &,. More precisely, we consider

i) = — , t=1,...,n
osce, (wa)l() i= | max - fun(@) —un(2)], i n

For given s = 2,3,...,8 we take 100 samples u,, ~ 7, and we normalize so that
<A2un, un>L2(%) =1.

We then compute the maximum value of [osce, (un)](x;) over all ¢ = 1,...,n and over
all samples u, and plot the outcome against s. The results are shown in Figure 3. This
experiment illustrates the regularity of functions with bounded H;, semi-norm

kn

lutn 325 o= > ) (s )3, -

i=1

As expected, higher values of s enforce more regularity on the functions. Notice that here
we only consider functions u, in the support of 7, and hence we remove the effect of high
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Figure 2: Spectra of spherical and graph Laplacians in red and blue, respectively. Charts are
arranged such that e varies as [1, 2, 3] x n~ /% horizontally and n varies as [1000, 500, 100)’
vertically.
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Figure 3: The figure shows the maximum (and its logarithm) amplitude of oscillations for
different values of the regularity parameter s.
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eigenfunctions of A,, (which may be irregular). In particular, the regularity of the functions
uy must come from the regularity of the first eigenvectors of A,, together with the growth of
(A)®. To the best of our knowledge nothing is known about regularity of eigenfunctions of
graph Laplacians. Studying such regularity properties is an important direction to explore
in the future as we believe it would allow us to go beyond the L? set-up that we consider
for the theoretical results in this paper. In that respect we would like to emphasize that the
observation maps considered for the theory of this work are defined in terms of averages and
not in terms of pointwise evaluations, but that for our numerical experiments we have used
the latter.

A closely related setting in which discrete regularity has been mathematically studied is
in the context of graph p-Laplacian semi-norm (here p denotes an arbitrary number greater
than one, and is not to be confused with the number p of labeled data points). Lemma 4.1
in Slep¢ev and Thorpe (2017) states that, under the assumptions on &, from Theorem 3,
for all large enough n and for every discrete function u,, satisfying

£ ) = g 20 () o)~

n2eb En
A

it holds
[osce, (un)](x;) < CYPntPe, Vi=1,...,n.

This estimate allows to establish uniform convergence (and not simply convergence in T'L?)
of discrete functions towards functions defined at the continuum level. More precisely,
suppose that p > m and that ¢, < n11/p~ Let {un}nen be a sequence with u, € L%(v,)
converging to a function u € L?(v) in the T'L? sense and for which

sup EP) (u,,) < oc.
nelN

Then, u must be continuous (in fact Holder continuous with Holder constant obtained from
the Sobolev embedding theorem) and moreover

Imax |un (x;) — u(x;)| = 0, asmn — oo.
i=1,...,n

This is the content of Lemma 4.5 in Slep¢ev and Thorpe (2017). This type of result rigorously
justifies pointwise evaluation of discrete functions with bounded graph p-Laplacian seminorm
and the stability of this operation as n — oo.

5.2. Continuum Limits
5.2.1. SET-UP

For the remainder of section 5 we work under the assumption of Gaussian observation noise,
so that

1 1
¢Ww%:§§w—QWW% ®AwwH:ZQW—QAwm? (25)

The synthetic data y in our numerical experiments is generated by drawing a sample 7 ~
N(0,0%I,xp), and setting
y=G(u') +n,
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(’) e

Figure 4: From left to right: Initial condition u! used as ground truth to generate our
synthetic data; heat at t = 0.5 with initial condition u'; and draw from the continuous
prior.

where u! is the function in the left panel of Figure 4. We consider several choices of ¢t > 0,
number p of labeled data points, and size of observation noise ¢ > 0. The parameters s and
« in the prior measures are fixed to s = 5, a = 1 throughout.

The use of Gaussian observation noise, combined with the linearity of our forward and
observation maps, allows us to derive closed formulae for the graph and continuum posteriors.
We do so in the the appendix.

5.2.2. NUMERICAL RESULTS

Here we complement the theory by studying the effect that various model parameters have in
the accurate approximation of continuum posteriors by graph posteriors. We emphasize that
the continuum posteriors serve as a gold standard for our learning problem: graph posteriors
built with appropriate choices of connectivity e result in good approximations to continuum
posteriors; however, reconstruction of the unknown function u' is not accurate if the data is
not informative enough. In such case, MAPs constructed with graph or continuum posteriors
may be far from uf.

All graph-posterior means in the figures are represented using a k-NN interpolation map,
as defined in equation (4), with & = 4. The posterior means, discrete and continuum, have
been obtained using the appropriate pCN algorithm. The pCN algorithm was run for 10°
iterations, and the last 10* samples were used to compute quantities of interest (e.g means
and variances). Figure 5 shows a graph-prior draw represented in the point cloud (left), and
the associated 4-NN interpolant (right).

Figure 6 shows graph and continuum posteriors with ¢ = 0, ¢ = 0.1, and ¢t = 0.3.
For these plots, a suitable choice of graph connectivity € was taken. In all three cases
we see remarkable similarity between the graph and continuum posterior means. However,
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Figure 5: Draw from the discrete graph prior on the left, and the corresponding repre-
sentation visualized using a 4-nearest-neighbors interpolation on the right. Parameters are
e =2n"Y4 n=1000.

recovery of the initial condition with ¢ = 0.3 is unsuccessful: the data does not contain
enough information to accurately reconstruct uf. Figure 7 shows graph-posterior means
computed in the regime of the first row of Figure 6 using the three graphs in Figure 1.
Note that the spectra of the associated graph-Laplacians is represented in Figure 2. It is
clear that inappropriate choice of € leads to poor approximation of the continuum posterior,
and here also to poor recovery of the initial condition wf. This is unsurprising in view of
the dramatic effect of the choice of € in the approximation properties of the spectrum of
the spherical Laplacian, as shown in Figure 2. Note that while the numerical results are
outside the asymptotic regime (n = 1000 throughout), they illustrate the role of €. Theorem
3 establishes appropriate scalings for successful graph-learning in the large n asymptotic
setting.

5.3. Algorithmic Scalability

It is important to stress that the large n robust performance of pCN methods established
in this paper hinges on the existence of a continuum limit for the measures p,,. Indeed, the
fact that the limit posterior g over infinite dimensional functions can be written as a change
of measure from the limit prior 7t has been rigorously shown to be equivalent to the limit
learning problem having finite intrinsic dimension (Agapiou et al., 2017). In such a case, a
key principle for the robust large n sampling of the measures p,, is to exploit the existence of
a limit density, and use some variant of the dominating measure to obtain proposal samples.
It has been established —and we do so here in the context of graph-based methods— that
careful implementation of this principle leads to robust MCMC and importance sampling
methodologies (Hairer et al., 2014; Agapiou et al., 2017).
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e | —
Figure 6: Means of the discrete and continuum posterior distributions are compared; the
plots P; ; are arranged such that P; 1 are graph-posterior means, P; 2 are continuum posterior

means, and P; 3 are the differences row-wise. Py ;, P ;, Ps; differ in the choice of the time
parameter. They are, from the top, ¢t = [0, 0.1, 0.3].
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Figure 7: Graph-posterior means computed with the graph-pCN algorithm. All parameters
of the learning problem are fixed to ¢t =0, 0 = 0.1, n = 1000, and p = 200. The three plots
show three choices of graph connectivities € = [1, 2, 3] x n~/* as in Figure 1.

7l —— sigma = 0.1

—— sigma = 0.001

—— Initial Condition

True Graph Posterior Mean

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 8: Effect of the parameter ¢ on graph-pCN algorithm. When ¢ is prohibitively small,
here ¢ = 0.001, the chain fails to mix rapidly. With more noise, here ¢ = 0.1, the chain
mixes rapidly.
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—t=0.1

——t=10

Initial Condition

True Graph Posterior Mean t = 0.1
= True Graph Posterior Mean t = 10

14

)
R — o L T

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k

Figure 9: Shown here is the graph-pCN’s chain mixing and converging for different values
of the parameter t. Other parameter values for both chains are the same; note that the
variation from ¢t = 0.1 to ¢ = 10 does not significantly affect the characteristics of the chain.

—p=50

—— p =800

— Initial Condition

—— True Graph Posterior Mean p = 50
—— True Graph Posterior Mean p = 800

0 20k 40k 60k 80k 100k 120k 140k 160k 180k

200k

Figure 10: The above chart shows how increasing the value of the parameter p reduces the
variance of the chain. Again, the chains above are both from the graph-pCN algorithm, and
all other parameters are chosen so that the algorithm performs optimally.
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Figure 11: Graph pCN’s robustness with respect to a changing value of n. In all plots F; ;
above, p = 200, t = 0.1, ¢ = 0.1, and ¢ = 2n~ /4. The plots are arranged such that
n = [300,600,900] for P;; and n = [1200, 1500,2000] for P» ;. The average acceptance
probability remains constant with fixed 3, as shown in Table 1.

A further point to note is that —even though from a theoretical and applied viewpoint
it is clearly desirable that the data is informative— computational challenges in Bayesian
settings often arise when the data is highly informative. This is also the case in the context
of importance sampling and particle filters (Agapiou et al., 2017; Sanz-Alonso, 2018), where
certain notion of distance between prior and proposal characterizes the algorithmic com-
plexity. In the context of the pCN MCMC algorithms, if ® is constant, the algorithm has
acceptance probability 1. On the other hand, large Lipschitz constant of ® (which translates
to a posterior that is far from the prior) leads to small spectral gap. Indeed, tracking the
spectral gap of pCN in terms of model parameters via the understanding of Lipschitz con-
stants is in principle possible, and will be the subject of further work. In particular, small
observation noise o leads to deterioration of the pCN performance, see Figure 8. This issue
may be alleviated by the use of the generalized version of pCN introduced in Rudolf and
Sprungk (2015). Figures 9 and 10 investigate the role of the parameters ¢ and p. All these
figures show the posterior mean at one of the inputs, and the true graph posterior means
have been computed with the formulae in the appendix.

Table 1 shows the large n robustness of pCN methods, while table 2 exhibits its deteriora-
tion in the fully supervised case n = p. The tables show the average acceptance probability
with model parameters 3 = 0.01, p = 200, e, = 2n~ Y4 for the semi-supervised setting,
and same parameters but with p = n for the fully supervised case. The corresponding
graph-posterior means are shown in Figure 11.
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Table 1: Average acceptance probability for the graph pCN in the semi-supervised setting
with constant data-set of size p = 200 and increasing number of unlabeled data.

n 300 600 900 1200 | 1500 | 2000
Acceptance Probability | 0.230 | 0.245 | 0.237 | 0.249 | 0.236 | 0.239

Table 2: Deterioration of the average acceptance probability in a fully-supervised setting
with n = p. The parameter 3 was held constant at 3 = 0.01. Additionally, ¢ = 2n~ /4 and
t=0.

n=p 300 600 900 1200 1500 2000
Acceptance Probability | 0.4536 | 0.3144 | 0.2360 | 0.1924 | 0.1644 | 0.1100
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Appendix A. Benchmark Formulae

Here we exploit the linearity of the forward and observation maps to compute, under the
Gaussian observation noise model, the mean and covariance of the Gaussian graph and
continuum posteriors. These formulae could be useful in understanding the approxima-
tion of continuum posteriors by graph posteriors, and to provide benchmarks for posteriors
computed with MCMC methods. For the derivations we use the covariance function repre-
sentation of Gaussian measures and the theory of Gaussian process regression in Rasmussen
and Williams (2006). Throughout we assume that s is large enough so that the formulae
below are well-defined.

We start with the continuum case. Set v := Fu. The prior (6) on u induces a prior on
v~ GP(O, ey, 56)), where

o
ol @) = 3 e M a4 A) 24 (@) (B). (26)
i=1
Then, we have a regression problem for v given data y = [y1,. .., yp)

yi = v(xq) +ni, mi ~ N(0,7%)
in the form of Rasmussen and Williams (2006). The posterior distribution of v|y is thus
given by a Gaussian process GP(mvw(:U), Coly (7, :i)), with
-1
mv\y(x) :Cv(l',X)/(CU(X,X)+’72I) Y,

Copy (2, 8) = ey, E) — cy(x, X)' (co(X, X) + 721)_1

C'U(ij)a
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where we use the following notations:

co(z, X) = [ep(z,%1), - -, o, %p)] € RY,
(X, X) := (C”(Xi’xj))lgi,jgp € RP*P.

Now the posterior of interest g on u given y can be recovered by running the heat equation
backwards. Namely, we have that g = GP(my,(2), ¢y, (x, Z)) with

Mgy () = cul(@, X)' (co( X, X) +~21) "y,

- - 1 (27)

Culy (T, &) = cu(2,7) — co(2, X) (co(X, X) + 1) cu(Z, X),
where ¢, (2, X) is a vector made of evaluations of the covariance function of w := F/?y at
the test and training points. Precisely, its j-th entry is given by

cu(@, X)j =Y e (a+ X) " Phi(@)vi(x;)- (28)
=1

There are several points to note about equation (27). First, the predictive mean is a
linear function of the data y, hence a linear predictor. It is indeed the best linear predictor in
a mean-squared error sense (Stein, 2012). Second, since ¢, (X, X) + 721 is positive definite,
Culy(z,%) < ey, 7); thus, conditioning reduces the uncertainty. Moreover, in the limit of
noiseless observations (y = 0) and ¢t = 0 we recover that c,,(x;,%;) = 0 in the training
points. However, even with noiseless observations this is not true if ¢ > 0. Finally, note the
well-known fact that the the posterior covariance ¢, does not depend on the observed data

Y.

uly

Formulae in the discrete setting can be obtained in a similar way, and we omit the details.
Plugging in the data y from the continuum setting, we deduce that

Kn = N(mun\y(xk)7cun|y(xkvxl))7

with

Mgy (Xk) = €, (2, X)) (e0, (X, X) +7°1) 1y,

-1 (29)
cun|y(xk,xl) = ¢y, (Xk, X]) — Cu,, (xk,X)’(cvn(X,X) + 72[) Cw, (%7, X).

In the above equations, all objects indexed by n constitute straightforward analogues of
objects in the continuum, constructed using the graph spectrum rather than the continuum
one.

Appendix B. The T'L? and P(TL?) Spaces

Let us recall the definition of the TL? space. First, we define the set
TL* :=={(0,f) : 0 € P(M), f € LP(M,0)]}.
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Then, for arbitrary elements (61, f1) and (02, f2) in TL? we define, following Garcia Trillos
and Slepcev (2016a),

1/2
drr2((01, f1), (02, f2)) = weri(%i%) (//MxM (dM(m,y)Q + [ fi(x) — f2(y)\2>dw(9073/)) ;
(30)

where T'(61, 02) is the set of Borel probability measures on M x M with marginal 6; on the
first factor and 2 on the second one. It was shown in Garcia Trillos and Slepéev (2016a)
that dp2 defines a distance in T'L?.

The T'L? space allows us to make sense of a sequence u, € L?(7,) converging towards
an element u € L?(y). Indeed, with a slight abuse of notation, we say that a sequence
un € L?(7y,) converges in TL? towards u € L?(7y), written

TL?
Up — U,

if dpre ((un, ), (u, 'y)) — 0. A characterization of convergence in T'L? in terms of compo-
sition with transport maps can be found in Proposition 3.12 in Garcia Trillos and Slepéev
(2016a).

As noted in Garcia Trillos and Slepéev (2016a), (T'L? dpp2) is not a complete metric
space. Its completion however, denoted T'L?, can be identified with the space Po(M x R)
of Borel probability measures on the product space M x R with finite second moments,
endowed with the Wasserstein distance. The space T'L? is a Polish space.

Having introduced the metric space TL? we can now define P(T'L?) to be the space
of Borel probability measures on T'L? endowed with the weak convergence of probability
measures. If § € P(M) and v € P(L?(f)), it is possible to think of v as an element in
P(TL?). Indeed, the canonical inclusion

To: f € L?0)— (0, f) € TL?
induces the canonical inclusion
Toy : P(L*(0)) — P(TL?),

where Zgy is the push-forward via Zy. Notice that Zy is a continuous map. In the sequel we
may drop the explicit mention to Z whenever no confusion arises from doing so.
The above observation motivates the following definition.

Definition 12 For vy, € P(L*(v,)), n € N, and v € P(L*(v)) we say that {vn}nen
converges to v, written
P(TL?)
v, — v,
if {Z,,4Vn tnen converges weakly to Tyv in P(TL?).

This is the notion of convergence of discrete to continuum posteriors that we use in this
paper. The space P(T'L?) was introduced in Garcia Trillos and Sanz-Alonso (2018a).
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Appendix C. Proof of Theorem 3

We want to show that
Tosbn, —p(r2(y)) B> @S T — 0O (31)
Step 0: The proof of Theorem 4.1 in Garcia Trillos and Sanz-Alonso (2018a) shows that

uyy _>'P(TL2) 7T, as n — oo,

under the assumptions of Theorem 3 (in particular removing the upper bound assumption on
ey, from Theorems 4.1 and 4.4 in Garcia Trillos and Sanz-Alonso (2018a)). Likewise the proof
of Theorem 4.4 in Garcia Trillos and Sanz-Alonso (2018a) establishes the I'-convergence of
the energies

Jn(’/n) = DKL(VTEHTFR) + /LQ( )¢n(un§y>d’/’n(un)ﬂ My € P<L2(7n>)7
Tn
towards the energy
J) =Dl + [ otwpdvt), v ePIG)
ol

in the P(TL?)-sense, under the assumptions of Theorem 3. In particular,

Ky —p(TL2) By N — 00,

because p,, is the minimizer of .J,, and p is the minimizer of J (see the variational charac-
terization of posterior distributions in Garcia Trillos and Sanz-Alonso (2018b)).

Step 1: We claim that {Z,,;pt,, }new is pre-compact with respect to the weak convergence
of probability measures on L?(7). By Lemma 5.1 in Garcia Trillos and Sanz-Alonso (2018a)
it is enough to show that

(1) suppen Dxr(Zngtin || Znsmn) < +oo; and
(ii) Intiﬂn _>73(L2(fy)) TT.
Let us start with (i). Step 0 implies that

lim min J,(vy,) = min J(v) < +00.
n—00 Un v

Given that p,, is the minimizer of J,, and p is the minimizer of J, it follows that

lim J,(p,) = J(pn) < +o0.

n—o0

Combining the previous fact with the chain of inequalities

Dyxw (Zngtn | Zng7n) < Dicw(pn[7n) < Jn(pty,)

gives (i).
We now show (ii). Consider an orthonormal basis of eigenvectors {7, ..., 9"} of Ay,
and an orthonormal basis {¢1,...,%y,,...} of eigenfunctions of Ays. By the results in
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Garcia Trillos and Slep¢ev (2016b) we can assume without the loss of generality that, for all
JeN,
’(A;L —>TL2 ’(/J], as n — OQ0.

Let (Q,F,P ~) be a probability space supporting i.i.d. random variables {;}ieny with & ~
an

N(0,1) and consider
kn o)
Xn =Y (@+ M)yl X = (a+ M),
i=1 =1

where, recall, k,, is the truncation level of the prior m,. Notice that X,, ~ wy,, X ~ 7 and
T,(Xy) is distributed according to Z,47y,. For any fixed i = 1,...,k, it follows from the
first part of the proof of Theorem 1.10 in Garcia Trillos et al. (2018) that

1Zn (il 2(y) < N Tn(@7) = Wil L2(y) + [1Will L2(y) < C, (32)

where C' is a constant independent of ¢ = 1,...,k, and n. It then follows that for every
leN,

l

l
> (o + A TG () = D (o + X)) T A
=1

=1

1 Z0(Xn) = Xll12¢) <

L2 ()

kn 0o
+ > (@A) GINTa ) 2 + D@+ X) &l 2
1=l 1=l

l l

D (a+ AT HEGTL () = > (a+ )

i=1 =1

+ O (ot N) g,
L2() i=l

<

where C' is a constant that does not depend on n; we have used the bounds (32) on
1Zn (i) £2(y) and the bounds (24) for A} in terms of A; for i = 1,...,k,. We can then
take expectations and lim sups in both sides of the above inequality and use Theorem 1.10
in Garcia Trillos et al. (2018) to conclude that

limsupE (||Z(Xn) — X[ 2(5)) < C3 (a+A;) /"

n—00 -
i=l

Since the above is true for every [ and the series is convergent, (ii) follows.

An application of Lemma 5.1 in Garcia Trillos and Sanz-Alonso (2018a) allows us to
deduce that {Z,4pty, bnenw € P(L?(7)) is pre-compact and, moreover, that each of its cluster
points is a measure that is absolutely continuous with respect to w. We can then assume
without the loss of generality that, for some 1 € P(L?(v)),

Inti“’n —P(L2(7)) o, as n — oQ.

Step 2: To show (31) it is then enough to prove that the finite dimensional projections
of fi coincide with those of . More precisely, we identify v € L?(v) with the infinite vector
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(u1,ug,...) denoting the coefficients of u in the basis {t1,v2,...} and define Proj;(u) :=
>7_, u;h;; we need to show that for arbitrary j € N we have

Proj;y p = Proj;; p.

From Step 0 and Skorohod’s theorem, we know there exists a probability space (Q, F,]@’)
supporting random variablest%}nE]N and XY with X)) ~ u,, and XY ~ p and for which
X =2 XY for P-a.e. @ € Q. We can then write

oo
a; ) XY = ai¢ia
=1

for some random variables a} and a;. Notice that the continuity of inner products with
respect to T'L?-convergence (see Proposition 2.6 in Garcia Trillos and Slepéev (2016b))
implies that

lim a} =a;, P-a.e.
n—oo

Now, for every fixed | > j we can write

Proj;(Z Za Proj;(Z, Z a;’ Proj;(Z,(¢}"))- (33)

i=l+1

The left hand side of the above expression is seen to converge weakly towards Proj;, pt
because Zn(X7H) ~ Lngln, Lnghn —p(12(y)) B, and because Proj; is continuous. On

the other hand, the first term on the right hand side is seen to converge P-a.e. towards
> iy @i Proj;(¥;) = >71_, aiy); because

Lo (7) L2y ’QZJ“ as n — 0o,

which follows from Theorem 1.10 in Garcia Trillos et al. (2018) (it is at this stage that we
need the extra technical condition on €,); in particular this term converges weakly towards
Proj 4 p. To show Proj;y i = Proj;, p it is then enough, by Slutsky’s theorem, to prove that

||Zf£l 4107 Proj;(Zn(¥]"))[| L2(y) converges in probability towards zero.
To see this, first notice that

kn
<C Y al

L2(v) i=l+1

Z CL PI‘OJ] '¢7, ))

i=l+1

Fix t > 0. Observe that the expression

>

L2(v)

lim sup P

n—0o0

Z a PrOJ] % ))

i=l+1
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is independent of [. Then,

k’"/
¢;(t) := limsup P Z a;' Proj;(Zn(¢]")) >t
oo i=l+1 L2(v)
kn
< limsup P ( Z lal| > )

On the other hand, identifying the elements in the support of m, with R** (i.e. writing
Uy, € supp(my,) in the basis {7, ..., ¢ }) and letting A, ;; be the set

kn
t

i=l+1
we see that
& t 1 1
P Y laf|> = | = o (Anis) = / exp(—Py (;))drmn(x) < ——7n (Ansi),
=141 C Zn Ja,,, Zn
and hence

lim sup P ( Z lal| > C’> < %ﬂ' ({u € L (y Z lui| > t/C})

N0 i=l+1 i=l+1

In the above Z and Z,, are the normalization constants from (1) and (2) respectively.
Therefore,

g;(t) < %77 <{u € L(y Z lu;| > t/C’})
i=l+1

Taking now the limit as [ — oo of the right hand side of the above expressmn we deduce that
¢;(t) = 0. Since this is true for arbitrary ¢t > 0, we deduce that indeed HZ@ 141 @3 Proj i (Zn (V) 22y
converges in probability towards zero and the proof is now complete.

Remark 13 In the above proof we have used results from Garcia Trillos et al. (2018) on
Voronoi extensions, but it is clear that analogue results can be deduced for more general
interpolation maps {Z,}nen as long as one can show the following:

i) (Uniform L*-boundedness) There is a constant C > 0 such that 1Zni | £2(y) < C for
every it =1,...,ky, and for every n.

ii) (Consistency) For every i € N we have Z,,(1}') = 12(y) %i-
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Appendix D. Proof of Theorem 7

The proof of Theorem 7 is based on the paper Hairer et al. (2014) which in turn makes
use of the following weak form of Harris theorem from Hairer et al. (2011). We let H be
a separable Hilbert space and for a distance like function d : H x H — [0,00) define the
associated Wasserstein distance (1-OT distance) on P(H)

d(p,v) == inf / d(u, w)dO(u,w), p,ve P(H), (34)
OGF(,U,,V) HXH

where I'(u, ) denotes the set of couplings between p and v.

Theorem 14 (Weak Harris Theorem; Theorem 4.7 in Hairer et al. (2011)) LetH
be a separable Hilbert space and let P be a transition kernel for a discrete time Markov chain
with state space H for which the following conditions are satisfied:

i) (Lyapunov functional) There exists a lower semi-continuous function V : H — [0, 00)
such that

PV (u) := / V(w)P(u,dw) <1V (u) + K, YueH, (35)
H
where K > 0 and 0 <[ <1 are some constants.

ii) (d-contraction) There exist a distance like function d : H x H — [0,1] and a constant
0 € (0,1) such that, for all u,w € H with d(u,w) < 1,

d(u, w) < o.

iii) (d-smallness of level sets of V') For the distance like function d above, the functional
V' and the constant K in (35), there exists ¥ € (0,1) such that, for all u,w with
Vu),V(w) <4K,

d(u,w) < 9.

Then, the Markov chain P has a d- Wasserstein spectral gap where d is the distance like
function

d(u, w) = \/d(u,w)(1 + V(u) + V(w)), u,weH.

More precisely, there exist A > 0 and C > 0 such that

d(Pp, PIv) < Cexp(—=Xj)d(p,v), Vp,v € P(H), VjeN.

Remark 15 As remarked in Hairer et al. (2011), we highlight that the second hypothesis is
an assumption that holds for points w,w with d(u,w) < 1 and that nothing is being stated
about points for which d(u,w) = 1. The observation here is that even if one cannot deduce a
Wasserstein spectral gap for the distance like function d, one can still obtain a Wasserstein
spectral gap for the distance like function d.
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It is possible to quantify the constants A and C in the conclusion of Theorem 14 in
terms of the parameters [, K, 9,79. Here, however, we are simply interested in pointing out
how changing the parameters in the assumptions affects the constants in the conclusions.
In particular, it can be seen from the analysis in Hairer et al. (2011) that growth of any of
the parameters [, K, o, ¢ causes an increase in the constant C' and a decrease in the constant
A. In other words, enlarging any of the parameters [, K, g, ¥ results in a worse spectral gap.
This observation is relevant in order to obtain uniform spectral gaps for a sequence of Markov
chains. Namely, suppose that we have Markov kernels { P, },,ev (with perhaps different state
spaces) for which we can find distance like functions {d,},en and Lyupanov functionals
{Vi}new satisfying the conditions in theorem 14 with constants [, K, §,9 (independent of
n). We can then deduce that the constants A > 0 and C' > 0 in the conclusion of the weak
Harris theorem can be chosen independently of n. It is precisely this observation that is
exploited in Hairer et al. (2014)

It is then important to highlight the main differences between our set-up and the one in
Hairer et al. (2014). First, the Markov kernels that we consider in this paper are not defined
on the same state space and in particular the log-likelihoods ®,,, ®, although related, are
different. Secondly, our discretization of the continuum prior 7r is the prior 7, supported
on L?(7y,) and not the discretization constructed by truncating the Karhunen Loéve expan-
sion of the continuum prior. These differences in the set-ups, however, do not prevent us
from using the proof of Theorem 4.7 in Hairer et al. (2014) thanks to the following three
observations.

i) (Uniform control on local Lipschitz constants of log-likelihoods)

Lemma 16 There ezists a constant L > 0 such that for every r >0 and n € N

sup ’(I)n(umy) — (I)n(vn;y)‘ < Lr, sup ‘(I)(’U,, y) - C]}(fu;y)’
Un,0n EBP [|tn — vnl u,vEB, [Ju — |

< Lr,

where in the above BY (B,) denotes the ball in L*(v,) (L?(7)) centered at the origin
and with radius r.

Proof Recall that
(I)n(um y) = Qby(gn(un))v Up € L2(7n)7
and so, thanks to Assumptions 1 on ¢¥, we get

[P (un; y) — Pr(vn; y)| < 0¥ (Gnlun)) — ¢Y(Gn(vn))|
< Cymax{|Gn(un)l, |Gn(vn)l, 1}Gn(un) — Gn(vn)|.

Now, recall that the vector G, (u,) — Gn(v,) € RP has coordinates

[Gn(un) — Gn(vn)]i = ! ) <]lB(5(xi)7]:n(un) - fn(vn»L?(%)» t=1,...,p.

Y (Bs (%
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From the Cauchy-Schwartz inequality it follows that
1
(Yn(Bs(xi)))/2

< (yn(B(;(lxi)))l/Q lun = vnllz2 ()
where in the last line we have used the fact that F,, is a linear map as well as the fact
that it is a contraction. Since

[Gn(un) = Gnl(vn)li] < | Fnun) — Fn(vn)HLQ('yn)

(Bs(xi)) = v(Bs(xi)), asn— oo, (36)
it follows that
|Gn(un) — Gn(vn)| < Coflun — UTLHLQ('y)a
where Cy is independent of u,,v, € L%(y,) or n € IN. Therefore, there exists a
constant C3 (independent of u,,v, € L?(7,) or n € IN) such that
@n(t03) — a0 )] < Cmac a2 [0l 2 Tl = vallzoga, -

Naturally the same analysis holds for ® and this finishes the proof. |

Remark 17 The conclusions in the previous lemma hold for non-linear forward maps
Fn, F that are (uniformly in n) Lipschitz and have (uniformly in n) linear growth.

(Dominating limiting measure) We make use of a “limiting measure” that dominates the
measures 7, in the sense described below. Notice that we cannot use the continuum
prior 7r, but a slight modification of it will suffice.

Lemma 18 There exists a large enough p > 0, such that the Gaussian measure
7= N(0,(1+ p)*(a = Ap)~*),
satisfies

gunzndﬂ'ung/ g(|lull 20 dme? (u),
[ omllizimatun) < [ ollulgintto)

for every n € IN and every increasing function g : [0,00) — R. In particular, for every
r >0 and every n € N,

T (L2 (1) \ BY) < 7 (L*(7) \ B) -

Proof Thanks to inequality (7), we can find p > 0 such that, for every n € N,
1 < 1+p

(a+ A1) = (a4 N)®

Using the Karhunen Loéve expansion to represent random variables with laws 7r,, and

7” we can easily deduce the inequality for the measures of complements of balls (last

inequality). The inequality for a general increasing function g follows from a standard
approximation with increasing step functions. |

Vi=1,... kn.
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iii) (Uniform lower bound for acceptance probability) The next lemma provides uniform
control on the acceptance probability of the pCN algorithm when a proposal lies within
a fixed distance of a contracted version of the current state of the chain. More precisely:

Lemma 19 Let a(u,v) be the acceptance probability in Algorithm 1 for continuum
pCN and a,(un,vy) the acceptance probability in Algorithm 2 for graph pCN. Fiz an
arbitrary r > 0. Then, there exists ¢ € R such that

inf an (U, wy) > exp(c) > 0, inf a(v,w) > exp(c) >0

wp€B7(\/1-5%vn) weBy(y/1—52v)

for arbitrary v, € L*(v,), v € L?(y) and n € IN.

Proof First of all notice that
1Gnll < |Oul[IFnll < [|Onll,

where in the last inequality we have used that F,, is a contraction. Thanks to (36) it
follows that
[On]l = O], as n — oo,

and in particular we can find a constant K (independent of n) such that

1G]l < K.

Let vy, wy, € L?(v,) be such that w,, € B?(1/1 — 32v,). Then,

|Gn(wn) — Mgn(vn” = |Gn(wn — V1 — B2,
<|Gnllllwn = V1= B0l L2y,

< Kr=: K.
From Assumptions 1 we deduce that
(I)n(vn;y) - q)n(wna y) = ¢y(gn(vn)) - gby(gn(wn)) > ¢
for a ¢ that is independent of n. Hence,

inf a(vp, wy) > exp(c) > 0.

wr €87 (\/1—B2v,)

Naturally the same analysis holds for ® and this finishes the proof. |

Remark 20 The same conclusions in the previous lemma hold for non-linear forward
maps Fp, F that are (uniformly in n) Lipschitz, have (uniformly in n) linear growth,
and are positively homogeneous of degree one.
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Proof [Proof of Theorem 7| Lemmas 16, 18 and 19 allow us to follow the analysis in Hairer
et al. (2014) (where in our case we use 7 from Lemma 18) and check that the conditions
of the weak Harris theorem (with distance like functional d and Lyapunov functional V' as
in the statement of our theorem) are satisfied with constants [, K, o, ¥ that are independent
of the discretization.

|

Proof [Proof of Corollary 10] By Proposition 2.8 and Lemma 2.9 in Hairer et al. (2014),
and the reversibility of the Markov kernel of the pCN algorithm, it is enough to check that
the space
Lip(d) N L (H; p),

is dense in L?(H; u). Here d denotes the distance-like function from Theorem 7 and p stands
for the invariant measure of the Markov chain (in this case the posterior distribution). In
the finite dimensional case (i.e. H = L?(v,)) this is a simple consequence of a standard
mollification argument. More precisely, it follows from the following observations:

n

i) For every R > 0, ||-||-Lispchitz functions on B are also d-Lipschitz on B.
ii) ||-||-Lispchitz functions on B}, are dense in L*(B%; 1) (by mollification).

iii) f € L?(H;u) can be approximated with {f }rew, where

fre(u) == ng(Jul]) min{max{f(u), -k}, k}, ueH,

where 7y, : [0, 00) — [0, 1] is a smooth cut-off function which satisfies n(r) = 1if r < k
and ng(r) =0 if r > 2k.

For the infinite dimensional case it is enough to reduce the problem to the finite dimen-
sional case. This reduction is achieved as follows. Without the loss of generality an arbitrary
element v € H can be written as u = (u1,uz,...) and for every k € IN we may consider the
projection:

Lou€H e (Ut Ukt2,---),

and the measure pj := IIf, . For an arbitrary f € L?(H; 1), we can then define the sequence
{fitrew C L3(H; u) defined by

fk(u) ::/f(ulﬂ“'7uk’7vk+1ﬂvk3+27"‘)dlu’i(vk-i-l?,uk‘-‘rQ?'")7 ueH

Notice that for each k the function fi depends only on the first k coordinates of u and so
we can apply the result for the finite dimensional case to approximate f; with functions in
Lip(d) N L°(H; 1). From the straightforward fact that f, — r2(#;p) f» the approximation
of functions in L?(H; p) with functions in Lip(d) N L (H; 1) now follows.

|
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Appendix E. Verification of Hypotheses for Gaussian and Probit Noise
Models

E.1. Gaussian

Let us show that the Gaussian model satisfies Assumption 1.

i) Let K > 0 and let 7 > 0 be such that (1 —7) > (1 + 7)(1 — 82). For such 7 choose
R = R; > 0 large enough so that if v € R? satisfies |u| > R then

= Dul* < fu—y* < L +7)|ul”.
Let v, w € R? be such that |w — /1 — 20| < K. If |w| < R+ K, then
o —yl* = [w—y[* >0 2]y - 2(R + K)*.
On the other hand, if |w| < R+ K, we see that
R+ K < |w| <V/1- 82|+ K,
and it follows that

o=y —Jw—y? > 1 = 7)o = (1+7)w?

>((1—=7)— (1 +7)(1 =) -2(1+7)v/1-B2Kjv| - 147K
> (1,

for some real number C.
From the above analysis we deduce that for every v, w with |w — /1 — 8%2v| < K,

¢Y(v) — ¢¥(w) > ¢
for some ¢ € R.

ii) The second assumption is easily seen to be satisfied by the Gaussian model.

E.2. Probit
Let us show that the probit model satisfies Assumption 1.

i) Let K > 0 and consider v,w € RP such that |w — /1 — $%v| < K. Then,

lyiw; — /1 = B2yv;| = |wi — /1 — B0 < Jlv—+/1—-p2w| <K, i=1,...,p, (37)

where the first equality follows from the fact that y; € {—1,1}. In particular,

Notice that the function t € R — —log(W¥(t)) is decreasing. Hence, if y;w; > —(1/(1—

Vv 1—32)+ 1)K we see that
—log (U (y;v;)) — (—log(¥(yivi))) > 0+ log(¥(—(1/(1 — /1 - B82) + 1)K)).
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On the other hand, if yw; < —(1/(1 — /1 —2) + 1)K we deduce from (37) that
yiv; < —K/(1 —+/1—(?) <0 and from (38) we deduce

yivi < V1 — By — K < yw;,
from where it follows that
—log(¥(ysvi)) — (= log(¥(yivi))) = 0.
From the above analysis we deduce that, for every v, w with |w — WM <K,
¢?(v) — ¢¥(w) > ¢ == plog(¥(—(1/(1 = /1= %) + 1)K)).

Let us now check that the probit model satisfies the second assumption on ¢¥. Since
the function
g:teR— —log(¥(t))

is decreasing, convex, and converges to zero as t — 0o, the first assumption on ¢¥ will
hold if we can show that

/
t
lim sup l9°(®) < 00
t——o0 ‘ ‘
This however follows from the fact that
_67t2/2

and the well known fact that

for all negative enough t.

47



	Introduction
	Problem Description
	Literature
	Graph-Based Semi-supervised Learning
	Bayesian vs. Optimization, and Intrinsic vs. Extrinsic
	Approximate and Surrogate Bayesian Learning
	Markov Chain Monte Carlo

	Paper Organization and Main Contributions

	Setting
	Continuum Learning Setting
	Continuum Prior
	Continuum Forward and Observation Maps
	Data and Noise Models
	Continuum Posterior

	Discrete Learning Setting
	Geometric Graph and Graph-Laplacian
	Graph Prior
	Graph Forward and Observation Maps
	Data and Likelihood
	Graph Posterior


	Posterior Sampling: pCN and Graph-pCN
	Continuum pCN
	Graph pCN

	Main Results
	Continuum Limits
	Uniform Spectral Gaps for Graph-pCN Algorithms

	Numerical Study
	Spectrum of Graph Laplacians
	Approximation Bounds
	Regularity of Discrete Functions

	Continuum Limits
	Set-up
	Numerical Results

	Algorithmic Scalability

	Acknowledgements
	Benchmark Formulae
	The TL2 and P(TL2) Spaces
	Proof of Theorem 3
	Proof of Theorem 7
	Verification of Hypotheses for Gaussian and Probit Noise Models
	Gaussian
	Probit


