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ABSTRACT 
 

Estimating central aortic blood pressure is important for cardiovascular health and risk prediction purposes.  

Cardiovascular system is a multi-channel dynamical system that yields multiple blood pressures at various 

body sites in response to central aortic blood pressure.  This paper concerns the development and analysis of 

an observer-based approach to de-convolution of unknown input in a class of coprime multi-channel systems 

applicable to non-invasive estimation of central aortic blood pressure.  A multi-channel system yields multiple 

outputs in response to a common input.  Hence, the relationship between any pair of two outputs constitutes 

a hypothetical input-output system with unknown input embedded as a state.  The central idea underlying 

our approach is to derive the unknown input by designing an observer for the hypothetical input-output 

system.  In this paper, we developed an unknown input observer (UIO) for input de-convolution in coprime 

multi-channel systems.  We provide a universal design algorithm as well as meaningful physical insights and 

inherent performance limitations associated with the algorithm.  The validity and potential of our approach 

was illustrated using a case study of estimating central aortic blood pressure waveform from two non-

invasively acquired peripheral arterial pulse waveforms.  The UIO could reduce the root-mean-squared error 

associated with the central aortic blood pressure by up to 27.5% and 28.8% against conventional inverse 

filtering and peripheral arterial pulse scaling techniques. 
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INTRODUCTION 
 

Cardiovascular (CV) disease is a leading cause of mortality and morbidity in the 

United States and globally [1].  Brachial blood pressure (BP) is widely used in today’s clinical 

practice to probe CV health and disease.  But, central aortic BP measured near the heart 

has been suggested as superior signature of CV health and disease to conventional brachial 

BP [2–5].  However, direct measurement of central aortic BP involves invasive and/or 

inconvenient procedures and trained operators (e.g., cardiac catheterization [2,6–8] and 

carotid artery tonometry [9,10]), hampering its widespread use.  Early efforts to overcome 

this obstacle was to construct a population-based mathematical transformation, called the 

Generalized Transfer Function (GTF) [11], which converts a peripheral (e.g., brachial 

[6,12,13] or radial [14–16]) arterial pulse waveform into central aortic BP waveform.  The 

GTF is not patient-specific by nature, while the characteristics associated with the 

propagation of BP waves in the arteries exhibit a large degree of inter- and intra-individual 

variability [17].  Hence, the efficacy of the GTF technique has been controversial [18]. 

More recently, attempts have been made to develop patient-specific techniques 

for estimating central aortic BP waveform from peripheral BP waveform measurements.  

The vast majority of these techniques are built upon the so-called blind system 

identification methodology [19].  The methodology, when applied to coprime multi-

channel systems with unknown input signal, determines the channel dynamics and then 

de-convolves the input signal by exploiting the correlation relationship between the 

channels.  In particular, the input-deconvolution step of the methodology has employed 

various techniques, such as direct inverse filtering [7,20], least-squares and maximum-
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likelihood-type de-convolution [21,22], and the design of dedicated de-convolution filters 

[23,24].  Direct inverse filtering has been a straightforward choice due to the non-minimum 

phase nature of the channel dynamics associated with the BP wave propagation in the 

arteries [25].  The least-squares and maximum likelihood-type de-convolution techniques 

were developed primarily for finite impulse response (FIR) channel dynamics [26,27].  

Hence, central aortic BP de-convolution based on these techniques involved the FIR filter 

approximation of the BP propagation channel dynamics [21,22].  To relax such restrictions, 

design methodologies for the input de-convolution filters applicable to coprime multi-

channel systems with infinite impulse response (IIR) channel dynamics have been 

developed [23,24,28].  However, all these techniques have a common critical weakness: 

the integrity of input de-convolution hinges upon the accuracy of the channel dynamics 

due to the open-loop nature of these techniques.  Since the channel dynamics themselves 

are either population-based or estimated by the blind system identification methodology, 

the quality of the de-convolved input signal is impacted by the errors associated with the 

channel dynamics.  In the context of estimating central aortic BP from peripheral arterial 

pulses, these errors ultimately boil down to errors in the clinically important characteristics 

in the central aortic BP waveform (e.g., systolic (SP) and pulse (PP) pressures), which can 

subsequently deteriorate its credibility for CV health and risk assessment. 

In our endeavor to develop a novel input de-convolution technique equipped with 

robustness against the channel dynamics inaccuracy, we investigated the application of 

established state estimation techniques (i.e., the observers [29]) to input de-convolution 

in coprime multi-channel systems.  The central idea underlying this technique is to derive 
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the unknown input signal by designing an observer for a hypothetical input-output system 

constructed using a pair of output signals in the multi-channel system.  This “closed-loop” 

input de-convolution idea was inspired by two key observations: (i) that the relationship 

between any pair of two outputs constitutes a hypothetical input-output system with 

unknown input embedded as an estimable state; and (ii) that the observer can compensate 

for the adverse impact of the channel dynamics inaccuracy on the integrity of the de-

convolved input signal by way of its corrective error feedback.  In this paper, we developed 

and analyzed an unknown input observer (UIO) for input de-convolution in coprime multi-

channel systems.  In particular, we provide a universal design algorithm as well as 

meaningful physical insights and inherent performance limitations associated with the 

algorithm.  Then, we illustrated its validity and potential using the clinically significant case 

study of estimating central aortic BP waveform from two non-invasively acquired 

peripheral arterial pulse waveforms. 

This paper is organized as follows.  In Section 2 (UNKOWN INPUT OBSERVER DESIGN 

FOR COPRIME MULTI-CHANNEL LINEAR DYNAMICAL SYSTEMS), a UIO for closed-loop input 

de-convolution in coprime multi-channel systems is developed and analyzed.  In Section 3 

(OBSERVER-BASED DE-CONVOLUTION OF CENTRAL AORTIC BP WAVEFORM FROM NON-

INVASIVE PERIPHERAL ARTERIAL PULSE WAVEFORMS), the application of the UIO to the 

estimation of central aortic BP waveform from non-invasive peripheral arterial pulse 

waveforms is described in detail.  In Section 4 (RESULTS AND DISCUSSION), the results are 

presented and discussed.  In Section 5 (CONCLUSIONS), the paper is concluded with future 

work. 
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UNKOWN INPUT OBSERVER DESIGN FOR COPRIME MULTI-CHANNEL LINEAR DYNAMICAL 
SYSTEMS 
 
Problem Formulation 
 

Consider a multi-channel linear dynamical system in which a common yet unknown 

input signal generates multiple output signals (Fig. 1).  It is assumed that the channels are 

coprime, i.e., they do not share common poles and/or zeros.  The goal is to reconstruct the 

unknown input based on the output signals at the multiple channels.  The basic idea of our 

approach is (i) to transform the multi-channel dynamics into an equivalent input-output 

dynamics in which the unknown input is cast into an internal state variable, and then (ii) to 

design an observer that can estimate the unknown input. 

 
Unknown Input Observer Design 
 

Without any loss of generality, the UIO design problem can be solved for a two-

channel system case.  The results can be readily generalized and expanded to systems with 

>2 channels.  Indeed, in systems with >2 channels, any pair of two channels in the system 

can be selected to design an UIO.  Consider the following transfer functions associated with 

a two-channel system: 

y1(z) = G1(z)u(z) = N1(z)
D1(z) u(z),  y2(z) = G2(z)u(z) = N2(z)

D2(z) u(z)   (1) 

where u is the common input, y1  and y2  are outputs, G1(z) and G2(z) are the channel 

transfer functions associated with y1  and y2 , and N1(z) , D1(z) , N2(z) , and D2(z)  are 

polynomials in the discrete-time shift operator z  of degrees m1 , n1 , m2 , and n2 , 

respectively.  It is assumed that D1(z) and D2(z) are monic.  It is further assumed that 
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m1 = n1, i.e., G1(z) is a proper transfer function, and that G2(z) does not have any zeros 

at the origin.  Note that the properness of G1(z) is not a restriction, because any strictly 

proper G1(z)  can be made proper by padding z ’s to its numerator polynomial N1(z): 

N�1(z) = zr1N1(z), where r1 = n1 − m1 is the relative degree of G1(z).  In this way, an 

equivalent input-output relationship y�1(z) = G�1(z)u(z) = N�1(z)
D1(z) u(z)  with the forward-

shifted output y�1(z) = y1(z)zr1  can be constructed.  The zeros at the origin in G2(z) can 

be likewise be removed by forward-shifting y2(z).  Then, the unknown input u(z) may be 

reconstructed from y1(z) and y2(z) as follows: 

Theorem 1: Consider the two-channel system in Eq. (1) with G1(z) and G2(z) given 

by: 

G1(z) = N1(z)
D1(z) =

bn1
(1)zn1+bn1−1

(1) zn1−1+⋯+b0
(1)

zn1+an1−1
(1) zn1−1+⋯+a0

(1) , G2(z) = N2(z)
D2(z) =

bm2
(2) zm2+bm2−1

(2) zm2−1+⋯+b0
(2)

zn2+an2−1
(2) zn2−1+⋯+a0

(2)  

           (2) 

which satisfy the following properties: 

1) The transfer functions G1(z) and G2(z) are coprime 

2) The polynomials D1(z) and D2(z) are monic 

3) The transfer function G1(z) is proper and minimum phase 

4) The transfer function G2(z) does not have any zero at the origin 

Let {A1, B1, C1, D1}  with D1 = bn1
(1)  and {A2, B2, C2, D2}  with D2 = 0  be the controllable 

canonical form realizations of G1(z) and G2(z), respectively.  Then, the unknown input u 

of this coprime multi-channel system can be reconstructed by the following UIO: 
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x�(k + 1) = A�x�(k) + B�y1(k) + L�[y2(k) − C�x�(k)], u�(k) = 1

bn1
(1) �y1(k) − C�x�(k)� (3) 

where x(k) = �x1
(k)

x2(k)�  with x1  and x2  the state vectors of dimension n1  and n2 , A� =

�
A1 − B1C1 bn1

(1)⁄ 0n1×n2

−B2C1 bn1
(1)⁄ A2

�, B� = 1

bn1
(1) �

B1
B2
�, C� = [01×n1 C2], C� = [C1 01×n2], and L�  is a 

UIO gain matrix of dimension (n1 + n2) × 1 with which all the eigenvalues of A� − L�C� are 

placed in the unit circle. 

 Proof and Analysis: The state space realization of the multi-channel system in Eq. 

(1) is given by: 

x(k + 1) = �A1 0
0 A2

� x(k) + �B1B2
�u(k), �y1

(k)
y2(k)� = �C1 0

0 C2
� x(k) + �bn1

(1)

0
� u(k) (4) 

Given that u  is unknown but can be represented as a function of x1  and y1 : u(k) =

1

bn1
(1) [y1(k) − C1x1(k)], Eq. (4) can be rewritten as follows: 

x(k + 1) = �A1 0
0 A2

� x(k) + �B1B2
�u(k) = �A1 0

0 A2
� x(k) +

1

bn1
(1) �

B1
B2
� [y1(k) − C1x1(k)] 

= A�x(k) + B�y1(k)      

y2(k) = C2x2(k) = C�x(k)        (5) 

Hence, the UIO in Eq. (3) can reconstruct u from y1 and y2 if the pair (A�, C�) is observable.  

Noting that both {A1, B1, C1, D1}  and {A2, B2, C2, D2}  are associated with controllable 

canonical form, we have: 

A1 = �
0 1
⋮ ⋱

−a0
(1) ⋯ −an1−1

(1)
�, B1 = �

0
⋮
1
�, C1 = �b0

(1) − bn1
(1)a0

(1) ⋯ bn1−1
(1) − bn1

(1)an1−1
(1) � 

           (6a) 
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A2 = �
0 1
⋮ ⋱

−a0
(2) ⋯ −an2−1

(2)
�, B2 = �

0
⋮
1
�, C2 = �b0

(2) ⋯ bm2
(2) 01×(n2−m2)�  

           (6b) 

Then, it can be easily shown that {A3, B3, C3, D3} = �A1 −

B1C1 bn1
(1)⁄ , B1 bn1

(1)⁄ ,−C1 bn1
(1)⁄ , 1 D1⁄ �  is the controllable canonical form realization of 

G1−1(z).  Indeed, using Eq. (6a): 

A1 − B1C1 bn1
(1)⁄ =

⎣
⎢
⎢
⎡ 0 1

⋮ ⋱

− b0
(1)

bn1
(1) ⋯ −

bn1−1
(1)

bn1
(1) ⎦
⎥
⎥
⎤
≜ A3     (7a) 

−C1 bn1
(1)⁄ = �− b0

(1)

bn1
(1) + a0

(1) ⋯ −
bn1−1

(1)

bn1
(1) + an1−1

(1) � ≜ C3    (7b) 

Eq. (7) yields C3(zI − A3)−1B3 + D3 =
zn1+an1−1

(1) zn1−1+⋯+a0
(1)

bn1
(1)zn1+bn1−1

(1) zn1−1+⋯+b0
(1) = G1−1(z).  Thus, A� can 

be rewritten as A� = �
A3 0n1×n2

B2C3 A2
�.  Computing the observability matrix of the pair 

(A�, C�) yields: 

O� = [O1 O2] =

⎣
⎢
⎢
⎡

0r2×n1 C2
⋮

∑ C2A2
k−1−iB2C3A3

ik−r2−1
i=0

⋮

C2A2
⋮

C2A2
n1+n2−1⎦

⎥
⎥
⎤
    (8) 

where r2 = n2 − m2 is the relative degree of G2(z) and r2 + 1 ≤ k ≤ n1 + n2.  Since the 
pair (A2, C2)  is observable, O2  has full column rank, i.e., rank(O2) = n2 .  Further, O1 
reduces to the following after Gaussian elimination: 

O1 =

⎣
⎢
⎢
⎢
⎡

0r2×n1
C3

C3A3
⋮

C3A3
n1+n2−r2−1⎦

⎥
⎥
⎥
⎤

        (9) 

which, since the pair (A3, C3) is observable and n1 + n2 − r2 − 1 ≥ n1, guarantees that 

O1 has full column rank, i.e., rank(O1) = n1.  Thus, O� is a full rank matrix, meaning that 

the pair (A�, C�) is observable and the existence of the UIO in Eq. (3) is guaranteed. 
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 Note that the rationale for the minimum phase requirement imposed on G1(z) is 

now obvious: according to Schur’s determinant identity, the eigenvalues of A� are given by 

those of A2 and A3: 

det(pI − A�) = det(pI − A2) det(pI − A3)      (10) 

In addition, the eigenvalues of A3  correspond to the poles of G1−1(z), i.e., the zeros of 

G1(z). 

 
Intuitive Interpretation and Limiting Behavior 
 

Intuitively, the UIO in Eq. (3) is equivalent to a Luenberger observer designed for 

the system with y1  and y2  as input and output and u as an internal state, i.e., y2(z) =

G2(z)G1−1(z)y1(z)  (Fig. 2).  Indeed, since G1(z)  and G2(z)  are coprime, a state space 

realization of the system is given by: 

x3(k + 1) = A3x3(k) + B3y1(k), u(k) = C3x3(k) + D3y1(k)   (11a) 

x2(k + 1) = A2x2(k) + B2u(k), y2(k) = C2x2(k)     (11b) 

where {A2, B2, C2, D2} and {A3, B3, C3, D3} are the controllable canonical form realization 

of G2(z) and G1−1(z) as defined in Eq. (6) and Eq. (7).  Serially concatenating Eq. (11a) and 

Eq. (11b) yields: 

�x3
(k + 1)

x2(k + 1)� = �
A3 0n1×n2

B2C3 A2
� �x3

(k)
x2(k)� + �

B3

B2 bn1
(1)⁄ � y1(k)    (12a) 

y2(k) = [01×n1 C2] �x3
(k)

x2(k)�        (12b) 

which is identical to Eq. (5).  Thus, the UIO in Eq. (3) for the plant in Eq. (5) is identical to 

the Luenberger observer for the plant in Eq. (12). 
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 The above intuitive insight streamlines the analysis of the limiting behavior of the 

UIO with respect to the magnitude of its gain L�.  On the one hand, if L� ≈ 0, Eq. (3) dictates 

that u�(z) = G1−1(z)y1(z); indeed, when L� ≈ 0: 

x�1(k + 1) = A3x�1(k) + B3y1(k), u�(k) = 1

bn1
(1) [y1(k) − C1x�1(k)] = C3x�1(k) + D3y1(k) 

           (13) 

which is identical to Eq. (11a).  Hence, u�  is essentially given by inverse filtering of y1(k) 

with G1(z) .  On the other hand, if L� ≈ ∞ , Eq. (3) dictates that u�(z) = G2
−1(z)y2(z) ; 

indeed, when L� is very large: 

x�2(k + 1) = B2C3x�1(k) + A2x�2(k) + B2
bn1

(1) y1(k) + L2[y2(k) − C2x�2(k)]  

 = B2C3x�1(k) + A2x�2(k) + B2
bn1

(1) [C1x�1(k) + D1u�(k)] + L2[y2(k) − C2x�2(k)] 

 = B2C3x�1(k) + A2x�2(k) + B2[u�(k) − C3x�1(k)] + L2[y2(k) − C2x�2(k)] 

 = A2x�2(k) + B2u�(k) + L2[y2(k) − C2x�2(k)]     (14) 

In addition, very large L�  enforces y�2(k) = C2x�2(k) = y2(k), which, in conjunction with 

Eq. (14), yields: 

x�2(k + 1) ≅ A2x�2(k) + B2u�(k), y�2(k) = C2x�2(k)     (15) 

which reduces to y�2(z) ≅ G2(z)u�(z), i.e., u�  is essentially given by inverse filtering of y2(k) 

with G2(z). 

 The above limiting behavior of the UIO provides an important insight into the 

fundamental limitation in its performance when applied to coprime multi-channel systems: 

the UIO does not provide any improvement in the accuracy of the estimated unknown 

input beyond open-loop inverse filtering when L� ≈ 0 and L� ≈ ∞.  Indeed, the accuracy of 
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the estimated unknown input approaches to that associated with the open-loop inverse 

filtering of y1 with G1(z) if the gain is chosen to be too small (see Eq. (13)), whereas it 

approaches to that associated with the open-loop inverse filtering of y2 with G2(z) if the 

gain is chosen to be too large (see Eq. (15)).  This unique limiting behavior can be attributed 

to the coprimeness of the channel dynamics.  The plant in Eq. (5) (or equivalently, Eq. (12); 

also see Fig. 2) computes u from y1 (u(z) = G1−1(z)y1(z)), and then computes y2 from u 

thus computed (y2(z) = G2(z)u(z) ).  Since the UIO reduces to the open-loop plant 

dynamics (i.e., Eq. (5)) when L� = 0 , and u  can be estimated solely from y1 , u�(z) =

G1−1(z)y1(z).  On the other hand, when L� = ∞, the corrective error feedback acts to 

achieve y�2 ≜ y2 − y�2 = 0.  In other words, u computed by the plant dynamics as u(z) =

G1−1(z)y1(z) is corrected to yield  u�  to achieve y2(z) = G2(z) u�(z).  Thus, in this case u 

can be estimated solely from y2, u�(z) = G2
−1(z)y2(z).  Given that the notion of how small 

or large L� is depends on the channel dynamics, the appropriate range of L� (i.e., the range 

of L� that is not too small and not too large) also depends on the problem at hand. 

An important practical implication of the above limiting behavior associated with 

the UIO is that iterative trial and error process may be required to design a UIO whose 

performance is superior to simple open-loop inverse filtering: in contrast to conventional 

observer design problems (in which corrective error feedback action can be strengthened 

by simply increasing the observer gain to achieve a larger improvement in closed-loop 

estimation relative to its open-loop counterpart), the gain of the UIO designed for coprime 

multi-channel systems must be carefully chosen (i.e., it must not be too small or too large) 

to maximize the benefit of the corrective error feedback action. 
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OBSERVER-BASED DE-CONVOLUTION OF CENTRAL AORTIC BP WAVEFORM FROM NON-
INVASIVE PERIPHERAL ARTERIAL PULSE WAVEFORMS 

 

The validity, strengths, and limitations of the input de-convolution technique based 

on the UIO developed in this work was examined in a clinically significant real-world 

problem of estimating central aortic BP waveform from two non-invasively acquired 

peripheral arterial pulse waveform measurements (Fig. 3).  Central aortic BP and pulse 

waveform recordings (PVR) at arm and leg sites were measured simultaneously using BP 

cuffs loaded at a sub-diastolic pressure level.  The multi-channel artery dynamics 

associated with the central aortic BP-brachial PVR channel and the central aortic BP-leg 

PVR channel were estimated using the PVR signals [20].  Then, central aortic BP was 

estimated using the UIO designed based on the channel dynamics.  Details follow. 

 
Experimental Data 
 

The experimental central aortic BP and peripheral PVR signals were simultaneously 

recorded from 10 cardiac catheterization patients at the University of Maryland Medical 

Center under its IRB approval and written informed consent [20].  In each patient, the 

central aortic BP waveform was invasively measured with a catheter inserted through a 

femoral artery per routine standard of care, while the PVR waveforms were non-invasively 

measured at an upper arm and an upper leg, with occlusive BP cuffs loaded at a sub-

diastolic pressure level.  All the signals were stored in a laptop computer through a data 

acquisition system at a sampling frequency of 1 kHz for approximately 1 min.  The sensors 

and the data acquisition system were calibrated before collecting data from each patient 
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to ensure the accuracy of the measurements.  The two PVR signals were used to estimate 

the plant dynamics as well as to design the UIO, while the central aortic BP was used to 

evaluate the performance of the UIO.  Table 1 shows the range of central aortic SP, PP, and 

mean pressures associated with the 10 patients considered in this work.  Fig. 5 presents 

representative measurements of (a) pulse volume recording (PVR) signals at an arm and a 

leg and (b) central aortic BP signal. 

 
Plant Dynamics: Blood Pressure Wave Propagation in Multi-Channel Arteries 
 

The plant dynamics considered in this work involves two channels: one associated 

with the relationship between central aortic BP and arm PVR (C1; Fig. 3), and the other 

associated with the relationship between central aortic BP and leg PVR (C2; Fig. 3).  These 

channels are likely coprime given that they are associated primarily with arm arteries and 

leg arteries, respectively, whose mechanical and wave propagation properties are largely 

distinct [30].  Each channel dynamics is represented based on (i) a tube-load model to 

represent the BP wave propagation in the artery, (ii) a viscoelastic model to represent the 

characteristics of the arterial wall and the tissues, and (iii) a physics-based model of the BP 

cuff [20] (Fig. 4).  In an array of our prior work, we have shown that such a linear time-

invariant representation of BP wave propagation in arteries and arterial pressure-volume 

relationship is valid and effective at least within a short time window (i.e., in the order of 

minutes) [17,20,23,31–33].   In particular, the tube-load model associated with each 

channel dynamics was expressed by the following discrete-time rational transfer function: 

𝒵𝒵[Pi(t)] = Gi(z)𝒵𝒵[P0(t)] = z+θ1,i+θ2,i
zni+1+θ1,izni+θ2,iz−ni

𝒵𝒵[P0(t)]    (16) 
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where P0(t) and Pi(t) are the central aortic BP and the arterial BP at the peripheral site i 

(i = 1,2), 𝒵𝒵[∙] is the Z transform, and ni, θ1,i, and θ2,i are the patient-specific tube-load 

model parameters.  In each patient, these model parameters were determined from the 

experimental data collected from the patient using a blind system identification procedure 

developed in our prior work [20].  Then, we confirmed that the rational transfer functions 

associated with central aortic-arm channel and central aortic-leg channel were coprime by 

examining the poles and zeros therein.  Table 2 presents the range of the parameter values 

thus determined. 

 In the channel dynamics, the viscoelastic artery wall-tissue model and the physics-

based BP cuff model are interconnected.  In addition, the physics-based BP cuff model 

involves nonlinearity, which is not suited to the UIO design developed in this work.  

However, these models can be inverted, i.e., the models allow for the computation of the 

peripheral BP waveforms from the corresponding PVR signals (Fig. 4).  Therefore, the UIO 

design was applied to the tube-load model component of the channel dynamics by 

considering the arm and leg BP waveforms estimated from the corresponding PVR signals 

as the outputs of the channel dynamics expressed by Eq. (16).  Note that Eq. (16) meets, 

or can be manipulated to meet (as described in UNKOWN INPUT OBSERVER DESIGN FOR 

COPRIME MULTI-CHANNEL LINEAR DYNAMICAL SYSTEMS), all the properties listed in 

Theorem 1. 

 
Unknown Input Observer Design 
 

For each patient, the UIO was designed using the patient-specific plant dynamics 

derived above and guided by Theorem 1.  First, the transfer function Gi(z) shown in Eq. 
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(16) associated with the channel Ci (Fig. 3) was made proper by padding 2ni forward shift 

operators z in its numerator polynomial (both i = 1 and i = 2 were considered).  Second, 

the controllable canonical form realizations associated with the patient-specific channel 

dynamics G1(z) ({A1, B1, C1, D1}) and G2(z) ({A2, B2, C2, D2}) were obtained.  Third, the 

matrices A�, B�, C�, and C�  in Eq. (3) required for the UIO design were computed using the 

patient-specific controllable canonical form realizations thus obtained.  Finally, the UIO in 

Eq. (3) was constructed by designing the gain L�. 

Considering that the primary interest of this work was to investigate the validity 

and potential of the UIO-based input de-convolution technique, and that the performance 

of the UIO approaches to open-loop inverse filtering if L� = 0 and L� = ∞, the UIO gain L� 

was designed by trial and error to investigate if any choice of L� can lead to the UIO whose 

input de-convolution performance is superior to open-loop inverse filtering (in terms of 

the discrepancy between the true versus UIO-estimated central aortic BP).  Two alternative 

approaches were specifically employed: pole placement and linear matrix inequality (LMI). 

In the pole placement approach, the Butterworth pole layout [34] was considered 

as the desired pole locations for the closed-loop error dynamics in the continuous-time 

domain.  For each patient, the continuous-time Butterworth poles with unspecified cut-off 

frequency were calculated according to the system order (i.e., the order of Eq. (3)).  Then, 

a large number of candidate UIO pole locations were created by varying the cut-off 

frequency within its maximal value dictated by the sampling frequency Fs  (i.e., π
Fs

).  

Subsequently, these candidate pole locations were transformed into the discrete-time 

domain.  For each candidate pole location, a candidate UIO was designed with the pole 
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placement technique [29].  The performance of the UIO was measured in terms of the 

root-mean-squared error (RMSE) between the true versus estimated central aortic BP 

waveforms.  The UIO associated with the patient (called the UIO-PP) was then determined 

as the one exhibiting the smallest RMSE among all the candidate UIOs. 

In the LMI approach, the UIO design problem was cast into an LMI problem so that 

the poles associated with the closed-loop error dynamics are clustered in the region 

specified by |z| < σ.  In this way, the error convergence rate may be specified explicitly in 

the UIO design (i.e., the settling time associated with the UIO error convergence has a 

settling time smaller than 4
Fs lnσ

).  Based on the UIO in Eq. (3), the error dynamics given by: 

x�(k + 1) = (A� − L�C�)x�(k)        (17) 

According to a prior work [35], the poles of the matrix A� − L�C� associated with the error 

dynamics in Eq. (17) can be clustered in a region if and only if there exists a symmetric 

positive definite matrix P > 0 such that: 

Ω1⨂P + Ω2⨂[(A� − L�C�)P] + Ω2T⨂[(A� − L�C�)P]T < 0    (18) 

where ⨂ is the Kronecker product of matrices, while Ω1 and Ω2 are square matrices that 

specify the region in terms of an LMI: 

Ω1 + zΩ2 + z∗Ω2T < 0         (19) 

The region specified by |z| < σ can be expressed as the following LMI: 

z∗z < σ2  →  −σ + z∗(σ−1)z < 0 → �−σ z
z∗ −σ� = �−σ 0

0 −σ� + �0 1
0 0� z + �0 0

1 0� z∗ <

0           (20) 
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which implies that Ω1 = �−σ 0
0 −σ� and Ω2 = �0 1

0 0�.  Hence, Eq. (18) reduces to the 

following: 

 Ω1⨂P + Ω2⨂[(A� − L�C�)P] + Ω2T⨂[(A� − L�C�)P]T 

= �−σ 0
0 −σ�⨂P + �0 1

0 0�⨂
[(A� − L�C�)P] + �0 0

1 0�⨂
[(A� − L�C�)P]T 

= � −σP (A� − L�C�)P
P(A� − L�C�)T −σP

� < 0      (21) 

Since the eigenvalues are invariant against matrix transpose, Eq. (21) can be rewritten as 

follows: 

� −σP (A�T − C�TL�T)P
P(A� − L�C�) −σP

� < 0       (22) 

Using the change of variable K = L�TP, Eq. (22) becomes the following LMI: 

� −σP A�TP − C�TK
PA� − KTC� −σP

� < 0       (23) 

Once the matrix K  and P  satisfying Eq. (23) are found, the UIO gain L�  can be 

determined by L� = P−1KT. 

For each patient, the UIO was designed by solving the LMI feasibility problem in Eq. 

(23) while varying σ  values ( 0 < σ < 1 ) to yield a large number of candidate UIOs.  

Similarly to the pole placement technique above, the performance of the UIO was 

measured in terms of the root-mean-squared error (RMSE) between the true versus 

estimated central aortic BP waveforms.  The UIO associated with the patient (called the 

UIO-LMI) was then determined as the one exhibiting the smallest RMSE among all the 

candidate UIOs. 

 
Unknown Input Observer Performance Analysis 
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The performance of UIO-PP and UIO-LMI was measured in terms of the waveform 

RMSE as well as the absolute errors associated with SP (SPE) and PP (=SP-DP; PPE) between 

the true versus estimated central aortic BP waveforms.  These errors were computed for 

each patient.  Then, the mean and SD were computed. 

To assess the performance of the UIO in estimating central aortic BP waveform 

relative to the conventional as well as primitive techniques, the same error metrics (RMSE, 

SPE, and PPE) were likewise computed for the conventional open-loop inverse filtering 

technique as well as the arm and leg PVR signals scaled to central aortic diastolic and mean 

pressures.  For each patient, open-loop inverse filtering technique was performed by 

filtering (i) the arm PVR signal by the inverse of G1(z) as well as (ii) the leg PVR signal by 

the inverse of G2(z) to yield the estimated central aortic BP waveforms.  For each patient, 

PVR scaling was performed by linearly calibrating the arm and leg PVR signals so that the 

diastolic and mean pressure levels associated with the PVR signals become identical to the 

central aortic diastolic and mean pressures measured from the patient as follows: 

u�(t) = u�−u�
w� i−w� i

wi(t) + 1
w� i−w� i

(u�w�i − u�w�i)     (24) 

where u� and u�  are central aortic mean and diastolic pressures, while w�i and w�i are mean 

and diastolic values of the PVR signal wi(t) (i = 1,2).  Then, the aforementioned error 

metrics between the true central aortic BP waveform versus these waveforms were 

computed for each patient, whose mean and SD were subsequently computed. 

Statistical significance in the difference between the error metrics associated with 

UIO, open-loop inverse filtering, and scaled PVR signals was determined with the Wilcoxon 
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signed-rank test, where the Bonferroni correction factor of 2 was used to account for the 

multiple comparisons (i.e., UIO-PP versus inverse filtering and scaled PVR signals, as well 

as UIO-LMI versus inverse filtering and scaled PVR signals). 

 
RESULTS AND DISCUSSION 

 

Table 3 summarizes RMSE, SPE, and PPE associated with central aortic BP 

waveforms derived from UIO-PP, UIO-LMI, open-loop inverse filtering, and scaled PVR 

signals, while Fig. 6 illustrates a few representative examples of true versus estimated 

central BP waveforms: (a) an example where UIO shows performance marginally superior 

to inverse filtering and (b) an example where UIO shows performance largely superior to 

inverse filtering. 

The input de-convolution based on the UIO was in general superior to open-loop 

inverse filtering (which represents the limiting performance of the UIO at L� = 0 and L� =

∞) in the sense that central aortic BP waveform derived by the UIO was closer in shape to 

the true central aortic BP waveform than the one derived by inverse filtering.  This suggests 

that the corrective error feedback action provided by the UIO is practically meaningful.  On 

the average, the RMSE associated with the UIO-PP was 27.5% smaller than the open-loop 

inverse filtering and 28.8% smaller than the scaled arm and leg PVR signals (Table 3).  

Likewise, the RMSE associated with the UIO-LMI was 15.7% smaller than the open-loop 

inverse filtering and 17.3% smaller than the scaled arm and leg PVR signals (Table 3).  In 

case of UIO-PP, the UIO designed with P1 and P2 designated as its input and output (i.e., 

y1 = P1 and y2 = P2 in Eq. (3); UIO-PP1 in Table 3) was superior to the open-loop inverse 
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filtering based on both P1 (i.e., L� = 0; IF1 in Table 3) and P2 (i.e., L� = ∞; IF2 in Table 3) in 

all 10 patients, while the UIO designed with P2 and P1 designated as its input and output 

(i.e., y1 = P2 and y2 = P1 in Eq. (3); UIO-PP2 in Table 3) was superior to the same open-

loop inverse filtering (i.e., IF1 and IF2) in most (i.e., 8) patients.  In case of UIO-LMI, the UIO 

designed with (i) P1 and P2 designated as its input and output (UIO-LIM1 in Table 3) and (ii) 

P2 and P1 designated as its input and output (UIO-LMI2 in Table 3) was superior to both IF1 

and IF2 in 6 and 5 patients, respectively.  In the remaining patients whose UIO did not excel 

both IF1 and IF2, the UIO exhibited a RMSE value between the RMSE values associated with 

IF1 and IF2, as predicted by the mathematical analysis presented in Intuitive Interpretation 

and Limiting Behavior.  Both UIO-PP and UIO-LMI exhibited RMSE values smaller than those 

associated with the scaled arm and leg PVR signals in 7 and all 10 patients, respectively. 

The input de-convolution based on UIO-PP also estimated central aortic SP and PP  

more accurately than open-loop inverse filtering and scaled PVR signals.  The SPE and PPE 

associated with the UIO-PP were smaller than those associated with both inverse filtering 

and scaled PVR signals.  On the average, the SPE and PPE associated with the UIO-PP were 

38.1% and 45.5% smaller than open-loop inverse filtering, and 56.3% and 63.4% smaller 

than the scaled arm and leg PVR signals (Table 3).  The SPE and PPE associated with the 

UIO-LMI were likewise 21.4% and 12.7% smaller than inverse filtering, and 56.0% and 

41.5% smaller than the scaled arm and leg PVR signals (Table 3).  This is notable in that SPE 

and PPE were not explicitly optimized during the UIO design process (although they may 

improve as the waveform accuracy is optimized).  However, in contrast to UIO-PP (which 

yielded average SPE and PPE values smaller than the same values associated with both IF1 
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and IF2), UIO-LMI yielded average SPE and PPE values between the same values associated 

with IF1 and IF2. 

Comparing UIO-PP and UIO-LMI, the UIO-PP yielded superior accuracy to the UIO-

LMI.  However, its design process was more ad-hoc and resource-intensive.  In fact, the 

UIO-PP was obtained by rigorously optimizing the RMSE metric associated with the central 

aortic BP waveform, whereas the UIO-LMI was obtained simply by solving a LMI feasibility 

problem with a rudimentary constraint.  It is plausible that the efficacy of the UIO-LMI may 

further be improved by augmenting the currently used LMI problem formulation with 

more stringent constraints that specify the transient and steady-state behaviors of the 

error convergence dynamics.  Similarly, the efficacy of the UIO-PP may likewise be 

improved by considering a wide range of desired closed-loop pole locations.  But in any 

case, given that the performance of the UIO-based input de-convolution technique is 

bounded by the open-loop inverse filtering, both design procedures may require careful 

selection and tuning of the observer gain. 

 
CONCLUSIONS 

 

In our attempt to enable more accurate patient-specific estimation of central aortic 

BP waveform from non-invasively acquired peripheral arterial pulse waveforms, we 

developed and validated an observer-based closed-loop approach to input de-convolution 

in coprime multi-channel linear dynamical systems.  A universal UIO design algorithm and 

insightful mathematical analysis were presented to elucidate key properties and inherent 

performance limitations of the UIO.  The results obtained from the experimental data 
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showed promise and consistency with the mathematical analysis.  The UIO presented in 

our work has applicability to a broad spectrum of coprime multi-channel linear systems 

beyond central aortic BP estimation problem.  Future work includes the extension of the 

proposed input de-convolution algorithm to incorporate more advanced state estimation 

techniques with rigorous robustness guarantee against errors and uncertainties pertaining 

to the channel dynamics and measurement noise, as well as intensive evaluation of the 

algorithm in a larger datasets as well as other real-world applications. 
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Figure Captions List 
 

Fig. 1 A coprime multi-channel linear dynamical system in which a common yet 

unknown input signal u(z) generates multiple output signals y1(z) and y2(z). 

Fig. 2 A hypothetical input-output system derived from a coprime multi-channel 

system by designating its one output signal as input to the hypothetical 

input-output system and its another output signal as output of the same 

system. 

Fig. 3 Observer-based de-convolution of central aortic blood pressure (BP) 

waveform from non-invasive peripheral arterial pulse waveform 

measurements.  The pulse volume waveform recordings (called PVR) are 

made at the upper arm and leg sites using the BP cuffs loaded at a sub-

diastolic pressure level.  These diametric PVR signals are applied to a system 

identification procedure[20] to derive the channel dynamics associated 

with (i) the propagation of the BP wave from the aorta to the peripheral 

arteries and (ii) the propagation and distortion of the peripheral BP waves 

into the PVR signals at the respective peripheral measurement sites.  The 

unknown input observer (UIO) designed using the estimated channel 

dynamics estimates central aortic BP from peripheral PVR signals. 

Fig. 4 Multi-channel wave propagation dynamics in the arteries represented by 

(i) a tube-load model to represent the BP wave propagation in the artery, 
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(ii) a viscoelastic model to represent the characteristics of the arterial wall 

and the tissues, and (iii) a physics-based model of the BP cuff. 

Fig. 5 Representative measurements of (a) pulse volume recording (PVR) signals 

at an arm and a leg and (b) central aortic blood pressure (BP) signal. 

Fig. 6 Representative examples of true versus estimated central BP waveforms: 

(a) an example where UIO-PP shows performance marginally superior to 

inverse filtering and (b) an example where UIO-PP shows performance 

largely superior to inverse filtering. 
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Table Caption List 
 

Table 1 The range of central aortic systolic (SP), pulse (PP), and mean (MP) 

pressures associated with 10 cardiac catheterization patients. 

Table 2 The range of tube-load model parameters associated with 10 cardiac 

catheterization patients. 

Table 3 The root-mean-squared errors (RMSEs), systolic pressure errors (SPEs), and 

pulse pressure errors (PPEs) associated with central aortic blood pressure 

waveforms derived from UIO-PP, UIO-LMI, open-loop inverse filtering (IF), 

and scaled PVR signals (N=10).  UIO-PP: UIO designed with pole placement.  

UIO-LMI: UIO designed with LMI. 
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Fig. 1: A coprime multi-channel linear dynamical system in which a common yet unknown 
input signal u(z) generates multiple output signals y1(z) and y2(z). 
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Fig. 2: A hypothetical input-output system derived from a coprime multi-channel system 
by designating its one output signal as input to the hypothetical input-output system and 
its another output signal as output of the same system. 
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Fig. 3: Observer-based de-convolution of central aortic blood pressure (BP) waveform from 
non-invasive peripheral arterial pulse waveform measurements.  The pulse volume 
waveform recordings (called PVR) are made at the upper arm and leg sites using the BP 
cuffs loaded at a sub-diastolic pressure level.  These diametric PVR signals are applied to a 
system identification procedure[20] to derive the channel dynamics associated with (i) the 
propagation of the BP wave from the aorta to the peripheral arteries and (ii) the 
propagation and distortion of the peripheral BP waves into the PVR signals at the 
respective peripheral measurement sites.  The unknown input observer (UIO) designed 
using the estimated channel dynamics estimates central aortic BP from peripheral PVR 
signals. 
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Fig. 4: Multi-channel wave propagation dynamics in the arteries represented by (i) a tube-
load model to represent the BP wave propagation in the artery, (ii) a viscoelastic model to 
represent the characteristics of the arterial wall and the tissues, and (iii) a physics-based 
model of the BP cuff. 
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Fig. 5: Representative measurements of (a) pulse volume recording (PVR) signals at an arm 
and a leg and (b) central aortic blood pressure (BP) signal. 
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Fig. 6: Representative examples of true versus estimated central BP waveforms: (a) an 
example where UIO-PP shows performance marginally superior to inverse filtering and (b) 
an example where UIO-PP shows performance largely superior to inverse filtering. 
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Table 1: The range of central aortic systolic (SP), pulse (PP), and mean (MP) pressures 
associated with 10 cardiac catheterization patients (mean+/-SD). 

SP [mmHg] PP [mmHg] MP [mmHg] 
126+/-26 54+/-20 95+/-20 
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Table 2: The range of tube-load model parameters associated with 10 cardiac 
catheterization patients. 

Channel 1 (Upper Arm) Channel 2 (Upper Leg) 
n1 θ1,1 θ2,1 n2 θ1,2 θ2,2 

2-18 56.1-294.0 0.01-18.6 7 - 24 3.4-500.2 0.01-249.1 
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Table 3: The root-mean-squared errors (RMSEs), systolic pressure errors (SPEs), and pulse 
pressure errors (PPEs) associated with central aortic blood pressure waveforms derived 
from UIO-PP, UIO-LMI, open-loop inverse filtering (IF), and scaled PVR signals (N=10).  UIO-
PP: UIO designed with pole placement.  UIO-LMI: UIO designed with LMI.   
 
(a) UIO-PP 

 UIO-PP1 (y1 = P1) UIO-PP2 (y1 = P2) Average 
RMSE [mmHg] 3.7+/-1.7 3.6+/-1.0 3.7+/-1.4*† 
SPE [mmHg] 2.7+/-2.0 2.4+/-1.6 2.6+/-1.7† 
PPE [mmHg] 3.2+/-3.4 2.9+/-1.9 3.0+/-2.7*† 

*: p<0.025 with respect to inverse filtering (Wilcoxon signed-rank test). 
†: p<0.025 with respect to scaled PVR signals (Wilcoxon signed-rank test). 
 
(b) UIO-LMI 

 UIO-LMI1 (y1 = P1) UIO-LMI2 (y1 = P2) Average 
RMSE [mmHg] 4.2+/-2.0 4.4+/-1.7 4.3+/-1.8* 
SPE [mmHg] 3.4+/-3.1 3.3+/-2.0 3.3+/-2.6† 
PPE [mmHg] 4.8+/-4.1 4.9+/-3.4 4.8+/-3.7 

*: p<0.025 with respect to inverse filtering (Wilcoxon signed-rank test). 
†: p<0.025 with respect to scaled PVR signals (Wilcoxon signed-rank test). 
 
(c) Inverse Filtering 

 IF1 (y1 = P1) IF2 (y1 = P2) Average 
RMSE [mmHg] 5.3+/-2.4 4.9+/-1.9 5.1+/-2.1 
SPE [mmHg] 5.5+/-4.7 2.8+/-2.2 4.2+/-3.9 
PPE [mmHg] 7.2+/-5.1 3.9+/-4.3 5.5+/-4.9 

 
(d) Scaled PVR Signals 

 Arm PVR Leg PVR Average 
RMSE [mmHg] 4.6+/-1.8 5.8+/-2.6 5.2+/-2.3 
SPE [mmHg] 8.8+/-6.2 6.2+/-5.8 7.5+/-6.0 
PPE [mmHg] 7.7+/-6.3 8.8+/-9.2 8.2+/-7.7 

 
 


