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Abstract

The emergency department (ED) is a safety-critical environ-
ment in which mistakes can be deadly and providers are over-
burdened. Well-designed and contextualized robots could be
an asset in the ED by relieving providers of non-value added
tasks and enabling them to spend more time on patient care.
To support future work in this application domain, in this pa-
per, we characterize ED staff workflow and patient experi-
ence, and identify key considerations for robots in the ED,
including safety, physical and behavioral attributes, usabil-
ity, and training. Then, we discuss the task representation and
data needed to situate the robot in the ED, based on this do-
main knowledge. To the best of our knowledge, this is the first
work on robot design for the ED that explicitly takes task acu-
ity into account. This is an exciting area of research and we
hope our work inspires further exploration into this problem
domain.

Introduction
The emergency department (ED) is a fast-paced, safety-
critical environment where patients frequently have high
levels of acuity [28, 20, 1]. ED clinicians are responsible for
many concurrent tasks such as administrative work, diag-
nosis, and management of complex cases, as well as teach-
ing and liaising with law enforcement, ambulances, and pa-
tients’ relatives [1, 58]. Because they have so many respon-
sibilities, clinicians are constantly interrupted and have to
switch between tasks as a result of unorganized, unplanned,
and unpredictable environmental conditions. These condi-
tions often lead to mistakes and clinician burnout which can
negatively impact patient outcomes, causing patient safety
risks and potentially death [9].

Given the number of critical patient-care decisions that
are made in EDs, there is great interest in developing meth-
ods to assist providers and improve patient outcomes [55].
Some approaches focus on procedural changes, like having
nurses wear vests when performing certain tasks that indi-
cate other people should not interrupt them [63], or physical
changes to the built environment. Other approaches , such
as the ontology proposed by Tao et al. [54], introduce new
ways to represent tasks in the ED.
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Figure 1: This photo shows the safety-critical, chaotic con-
ditions that can occur in the emergency department.

Robots are one technology that can potentially improve
conditions in the ED. Commercially available robots already
work in hospitals to help clinicians deliver and stock ma-
terials, clean and sanitize rooms after procedures, and lift
patients [18, 35, 64, 14, 40]. Robots also serve as reception-
ists, assist with rehabilitation for people with dementia and
autism, support teams in surgery, and support remote care
via telepresent robots [2, 60, 13].

Despite these recent efforts in deploying robots in health-
care settings [48], it will be difficult for robots to execute
the simplest tasks in the ED, which is a more challenging
environment than in-patient units. The ED is more crowded,
chaotic, and has patients with higher levels of acuity. Fur-
thermore, introducing robots into the ED could be disruptive
and exacerbate its chaotic nature. As a result, researchers
need to carefully consider the existing dynamics of the ED
to avoid creating additional layers of complexity.

Despite these challenges, the ED is an exciting area in
which robots could make a significant impact. They can free
up time of skilled workers so they can focus on the tasks
that they are skilled at (complex problem solving, dextrous
manipulation, customer service, etc), as opposed to what
are referred to as “non-value added tasks,” such as mate-
rial delivery and retrieving samples. Patients’ experiences



may also be positively impacted by robots, for example,
as serving as bedside assistants, educators, or companions
[26, 34, 61, 15].

In our work, we are interested in learning how to place
robots in the ED, identifying the tasks they could perform,
and describing the ED-specific considerations for robotic-
assisted ED tasks. We provide insights into the current state
of the ED in terms of care delivery from the perspectives of
both patients and providers. Using this domain knowledge,
we highlight key concerns and contextual considerations for
situating robots in the ED. Then, we provide a case study
to illustrate how we took these factors into account in our
recent work designing a delivery robot for the ED.

To the best of our knowledge, this is the first work to de-
sign robots to work in the ED while taking task priority into
account. Ultimately, we hope the results of our work will
prove useful to robotics researchers working in healthcare
as well as other safety critical domains, including search and
rescue, first response, and defense.

Characterizing Emergency Department Care
Delivery

In this section, we characterize care delivery within the ED.
We note that this work is predominantly based on research
from hospital emergency departments in the US, and other
countries and cultures may have different practices.

Patient Experience

Figure 2 shows a typical trajectory for a patient in most EDs
[54]. When patients arrive, they check-in and triage staff (of-
ten a nurse) conducts an assessment. Triage staff will take
the patient’s vital signs, such as heart rate and blood pres-
sure, take their medical history, and record the reason they
are visiting the ED. Based on this information, triage staff
will determine the Emergency Severity Index (ESI) category
of the patient. This is a number from 1 to 5, with 1 being the
most acute and 5 being the least acute. For example, an ESI
of 1 indicates that a patient requires immediate, life-saving
intervention (e.g., a gunshot wound or heart attack), whereas
an ESI of 5 might be a head cold.

After admission to the ED, patients receive a more thor-
ough assessment by a nurse, followed by a physician. From
this examination, the physician determines what diagnostic
tests or treatments are needed. For instance, a patient may
need an X-ray or blood test to assist in diagnosis. Treatment
may involve bedside procedures, medication, and possibly
admittance from the ED to another unit in the hospital that
can provide a more appropriate level of care for the patient’s
condition.

If the patient does not need to be transferred, they will be
discharged after treatment. The physician will prescribe any
necessary outpatient medications and sign to discharge the
patient. A nurse will provide the patient with instructions
concerning any medications or further care required. Then
the patient will sign any necessary paperwork and depart the
ED.

Emergency Department Staff Workflow
Now that we have discussed the ED staff roles and their
tasks, we provide a discussion on ED workflow, particularly
after the patient has been admitted. Before the provider con-
ducts their assessment, the physician reviews the patient’s
record as well as the information recorded in triage. Then,
the physician goes to the patient’s room and conducts a
provider assessment where they interview the patient in an
effort to collect data for a diagnosis.

Next, the physician performs a physical exam followed
by a more in-depth review of the patient’s history as well as
the relevant medical literature for the patient’s hypothesized
condition. Then, the physician orders diagnostic tests based
on this information. After gathering as much patient data as
possible in the time-frame appropriate for the patient’s level
of acuity, the physician makes a diagnosis and decides on a
treatment plan.

The ED is composed of clinical staff, technicians, and ad-
ministrative staff [54]. The clinical staff are responsible for
diagnosing and treating patients, and consists of nurse prac-
titioners, physician assistants, attending physicians, and res-
ident physicians. ED technicians assist clinical staff to pro-
vide patient care such as assessments, transportation, and ba-
sic procedures. The administrative staff collect and record
data about patients, manage billing, and oversee administra-
tive processes in the ED.

Many researchers have conducted ethnographic studies to
understand the ED workflow [1, 16, 24, 37]. These studies
identified many tasks that ED staff perform which include
direct and indirect patient care. Direct patient care tasks are
conducted at the patient’s bedside, and include checking a
patient’s medical history, performing procedures, and com-
municating with the patient and their family. ED staff can
spend from 25-40% of their time on direct patient care [1].

Indirect patient care tasks include charting (documenta-
tion), ordering diagnostic tests and medication, communi-
cating with other ED staff, procedural planning, and teach-
ing. Other activities performed in the ED include administra-
tive tasks such as meetings, writing reports and emails, and
staffing. Other tasks include research activities, and educa-
tional activities such as professional development and read-
ing. ED staff can spend from 45-65% of their time on indi-
rect patient care [1].

Situating Robots in the ED
The ED is a non-deterministic environment where staff have
a high workload, are under time-sensitive constraints, and
must frequently make decisions under uncertainty [20]. No
robots, to the best of our knowledge, work in this space to-
day. As such, we provide a discussion on designing robots
for the ED using the domain knowledge from Sections - to
inform our discussion.

Key Considerations for Robots in the ED
When considering developing robots for the ED, it is impor-
tant to consider five factors: the robot’s safety, its physical
and behavioral attributes, its acceptability, and the training
required to situate it within the ED.



Figure 2: A timeline of a typical patient visit to the ED [54]. The blue text shows the patient’s trajectory, and the black text
shows the tasks ED staff perform.

Safety. If robots are introduced to the ED, they must be
built to be safe around people. For instance, the robot must
be able to avoid colliding with people. This could be difficult
given that ED hallways are often crowded, and people often
move quickly from place to place due to the demands of their
work. Additionally, the robot’s joints should be compliant,
so that even if someone collides with it or the robot makes
an error, the person is less likely to get hurt.

In addition to these constraints, which apply generally
when people work in close proximity with robots [38, 57],
there are also safety concerns specific to the ED. For in-
stance, the robot should be easy to clean and disinfect, so
that it does not spread infection. Furthermore, patients are
often attached to machines via wires and tubes, such as IV
drips, blood oxygen saturation monitors, and dialysis ma-
chines. It is critical that robots do not run over these tubes
or dislodge them from patients. If the robot dislodged an
oxygen monitor, this might merely be an inconvenience, but
interfering in a process like dialysis could be deadly. Fur-
thermore, many procedures in the ED are critical to a pa-
tient’s survival, and robots must be aware enough of their
environment to not interrupt these procedures.

Physical Attributes. A robot designed for the ED may
have a variety of physical attributes. The robot could be mo-
bile or stationary, and could have no manipulators or several.
These attributes will inform the capabilities of the robot.
For instance, a stationary robot would not be able to deliver
supplies, while it might be unnecessary for a patient bed-
side robot to be mobile. Additionally, the robot could have a
humanoid, zoomorphic, or mechanistic morphology, which
will affect people’s perception of it and their expectations
around it [47, 48]. This can contribute to the acceptability of
the robot within the ED, which in turn will affect its func-
tionality and usefulness.

Behavioral Attributes. In addition to physical attributes,
behavioral attributes will also affect a robot’s performance
and acceptance. For instance, should the robot’s behavior be

goal and performance-driven, or should it try to behave so-
cially? This likely will depend on the role of the robot. For
example, a bedside robot would likely need to engage in so-
cial interaction, while it might be better for a delivery robot
to be performance-driven, such as ensuring that it takes the
quickest path while delivering supplies. However, it may still
be beneficial for a performance-driven robot to take some so-
cial context into account. A mobile robot, for instance, might
cause less disturbance and better avoid people if it conforms
to social norms as it moves [39, 50, 59, 41].

Furthermore, it is important to consider how the robot will
exchange information with people. For instance, providers
must be able to instruct the robot to do tasks, and the robot
must be able to inform people it is unavailable to carry out
their request because if it is already occupied with another
task. The robot should support multiple modes of communi-
cation both to support people with disabilities as well as to
be adaptive to a range of different hospital contexts, which
can vary widely [21]. For example, it could have a touch
screen that people use to assign it tasks and that displays its
state visually, or it could communicate verbally. The robot
could also use gestures and implicit communication modali-
ties to more clearly inform people of its state [52] and better
understand people giving it instructions.

Acceptability. Because mistakes in EDs can cause grave
harm or death, it is important that the introduction of the
robot does not cause excessive disturbance or hinder clin-
icians. To ensure that the robot fills a need for clinicians
and does not disrupt the ED, researchers should closely col-
laborate with ED staff. Researchers can interview providers
and perform careful contextual analysis on the transcripts to
identify themes across different people. They can also di-
rectly involve providers in the design of the robot.

Subsequently, the robot must be thoroughly tested and
possible outcomes fully considered before it is placed in the
ED. This should include not only testing the technical as-
pects of the robot, but also consulting with providers in the



ED to determine how the robot can best fill providers’ needs.
Furthermore, research teams should conduct longitudinal

assessments after a robot has been deployed in the ED to
ensure it remains useful and does not impede clinicians in
their work. Researchers should analyze how the robot af-
fects workflow in the ED, care delivery, and patient expe-
rience. This should also include an assessment of ED staff
members’ perceptions of the robot.

Longitudinal studies are also important because people
will habituate to the robot. People might use the robot ini-
tially because it is novel but then stop using it if does not
make their tasks easier. On the other hand, people may ini-
tially be wary of using the robot but could come to use it fre-
quently if it significantly eases their workload. For the robot
to be useful long term, it will need to be designed well, so it
is intuitive and functional to facilitate clinicians’ work.

Training. In some situations, it may be essential to re-
quire all staff members to undergo extensive training to use
the robot. This will reduce mistakes and enable providers to
perform more complex tasks with the robot. Additionally,
people working around the robot may also need training to
be safe, even if they do not directly interact with the robot.
Therefore, the type of training each person receives should
be tailored to their role with the robot.

Additionally, for certain tasks, it might be preferable to
require little to no training to work with the robot. For in-
stance, a provider should not need to train a patient to use a
bedside robot, as this would add to the workload of ED staff
members. However, the robot itself could train patients by
walking them through a tutorial. Thus, the type of user and
task context affect the amount of required training to use the
robot.

Framing Robots for the Emergency Department
Task Representation. For the past three years, we have been
engaged in close collaboration with ED staff at our institu-
tion’s academic medical center to consider how robots may
be beneficial to their work practices and to the ED patient
experience. Our colleagues identified several problems, in-
cluding: long wait times, slow triage check-in, collecting and
sending samples to the lab, interruptions in patient care, and
delivering supplies in time-sensitive situations. We found
these problems intriguing, and have been exploring how in-
telligent robotic systems might be potentially useful.

In order to develop robots for a new problem domain such
as the ED, we need to understand what tasks ED staff per-
form and how to represent them. We identified several tasks
that ED staff perform in Section . In order to develop a task
representation which might be suitable for robots to solve,
we need a clear understanding of the problems or bottle-
necks that occur when ED staff perform these tasks. For
example, when clinicians work at a patient’s bedside, they
are often interrupted, which leads to inaccurate/incomplete
documentation, and degraded patient care. A robot working
in the ED should understand this and be wary of interrupt-
ing a clinician working at a patient’s bedside. However, if
there is an emergency, it might need to interrupt the clini-
cian. Therefore, it needs a well-defined representation of the
relative priorities of the tasks involved. With concrete under-

standing of an ED task, we can represent its complexity and
begin to examine its nuances, and explore how a robot may
be able (or may not be able to) support care delivery.

Another aspect of task representation to consider are the
responsibilities or goals of the robot when it works alongside
clinical teams. In recent work, we worked with nurses to co-
design robots to support and empower them [55]. Through
our collaborations with several medical centers, we found
that nurses are often penalized for speaking up when iden-
tifying mistakes made by others in clinical teams. As the
primary patient advocate, nurses are uniquely positioned to
stop behaviors that lead to safety risks. Thus, we discovered
the need to support and empower nurses.

A similar approach can be used to design robots for the
ED. Researchers can collaborate with hospital EDs to de-
sign robots that better address the needs of providers. How-
ever, as our recent work suggests, collaboration with people
in different roles in the ED can result in different priorities
being reflected in the robot design. For example, the goals of
nurses are different from the goals of physicians, so nurses
will likely design robots to fulfill their unique goals. There-
fore, identifying the user group for robots is an important
part of this work.

Task temporality is critical in the ED due to the time-
sensitive nature of acute patients. One way to represent task
temporally is using time-motion analysis [29]. This is a com-
monly used technique in ethnographic research conducted in
healthcare [65, 22], which can provide a roadmap for tech-
nology researchers interested in working within a healthcare
context . Though time-motion analysis, clinical breakdowns
can be broken down by the hour, day, or even months in or-
der to identify its long-term causes and effects.

Another important aspect of task representation is patient
acuity. For high acuity patients, it is essential that the robot
act quickly and accurately. High acuity patients have time-
sensitive conditions and therefore have a high priority when
they enter the ED. At any moment in time, the ED can ad-
mit a high acuity patient that requires immediate attention
from a physician working with low acuity patients. Yet EDs
typically have intra-day fluctuations in patient census, and it
can be challenging to prioritize treatment of newly admitted,
high-acuity patients during high census periods. This must
be taken into account by ED staff and robots alike.

With an adequate understanding of the problem space,
another important aspect of designing robots for the ED is
to understand what data a robot requires to accomplish its
goals.

Information Gathering. In the ED, there is the potential
to collect data from sensors mounted on the robot, sensors
worn by a patient on ED staff members, external sensors in
the environment, and the patient’s electronic medical record.
In our work we focus on the first two topics, though see [7,
25, 3] for surveys on the others.

Robots typically use visual sensors such as RGB, RGB-
D (color and depth), and LiDAR. These sensors provide data
that can be used in vision and learning algorithms that enable
robots to understand the current state of the environment.
For example, a large body of work addresses activity recog-
nition using RGB data [49, 66], which can use useful for



Figure 3: These figures show the hallways of emergency
departments. Patients are often treated in hallways when
the ED bedrooms are full. Placing patients in hallways is
a way to handle an overflow of patients. The hallways are
often cluttered, over crowded, and clinicians treating time-
sensitive safety-critical patients.

developing robots to perceive the actions of clinical work-
ers. Activity recognition has been approached using machine
learning such as supervised learning algorithms based on hu-
man joint positions [43, 51]. More recently, researchers have
employ deep learning techniques such as recurrent neural
networks to address this problem [5].

For sensors that go on robots, another consideration is
where to place the sensor(s). For the purposes of this pa-
per, we consider sensors placed onboard the robot, which is
known as an ego-centric (or first-person) perspective. Typ-
ically, LiDAR is placed at the robot’s base to be used for
Simultaneous Localization and Mapping (SLAM), a com-
monly used technique for navigation [6]. Visual sensors, like
RGB-D, are typically placed at human height on robots that
interact with people [56, 42]. This positioning provides an
adequate field-of-view for robots to observation its team-
mates.

An alternative to visual sensors are non-visual sensors that
can be placed on the human body, in our case, ED staff
or patients. Common non-visual, non-intrusive sensors in-
clude internal measurement units (IMUs), which measure
accelerations and velocities; sensors that measure physio-
logical information about the body, such as electromyog-
raphy (EMG), which detect the electrical activity of mus-
cles; and Radio Frequency Identification (RFID) tags that
provide positional information (such as where a staff mem-
ber, patient, or piece of equipment is located) These systems
avoid many of the data privacy concerns that occur with
video data, which is a common concern in healthcare set-
tings [32, 33]. Non-intrusive sensors are also used to avoid
occlusions and poor image quality, issues relevant to visual
sensors.

However, these sensors often communicate with each
other and the robot via WiFi or bluetooth. Reliable, fast WiFi
may be limited in the ED, and thick walls can block both
WiFi and bluetooth signals. Additionally, non-visual, wear-
able sensors are limited to the person or piece of equipment
they are on, whereas visual sensors can observe many differ-
ent entities at once.

Case Study: Delivery Robots
Based on our aforementioned work with ED staff, we have
been collaboratively designing a robot to deliver materials.
One major topic of concern was the need to fetch equip-
ment quickly. When clinicians need equipment for a patient
with high acuity, a member of the team needs to find and
fetch equipment, leaving the clinical team short one person.
If a robot could deliver equipment and materials, the afore-
mentioned delivery person could instead remain focused on
direct patient care tasks .

However, this is a challenging problem for robots. For one
thing, hallways in EDs can be very chaotic. Because there
are a limited number of rooms, patients are often treated in
the hallways. If a robot interrupts providers performing a
life-saving treatment on a patient, it could result in the pa-
tient dying. On the other hand, it may be acceptable for the
robot to interrupt teams performing lower priority tasks. For
instance, the robot might move through a group of convers-
ing clinicians if doing so allows it to more quickly complete
its delivery.

Thus, when delivering supplies, the robot must account
for the priority of the task clinicians are performing. In our
work, we formulate this research as a socially-aware path
planning problem, which we describe below in a case study.
We present a simple algorithm and task representation, de-
rived from our co-design activities with ED staff and on our
insights derived from the literature.

Task Representation
Reinforcement learning (RL) is a popular technique in
robotics and is commonly used for path planning [30, 31, 10,
11, 17, 45, 53, 27, 8, 36, 44]. It provides a framework where
an agent explores or exploits an environment through explo-
ration. Recently, researchers have combined deep learning
methods with RL [27, 8]. However, prior RL approaches do
not address our problem as we need to account to various
levels of patient acuity, whether a hallway is too cluttered
or chaotic for a robot to navigate through, and how to han-
dle situations when all hallways in the ED are cluttered and
the robot still needs to deliver materials to a patient with a
life-threatening condition.

Nevertheless, RL is particularly well-suited for this prob-
lem because the environment can be represented as a
Markov Decision Process (MDP), where we can easily rep-
resent our scenario in terms of the environment, actions
of the robot, and its goals. MDPs are particularly useful
for learning decision making policies in uncertain environ-
ments. The robot learns to plan paths through exploration
of the environment in an unsupervised manner through a
penalty-reward system.

Figure 4 shows a simplified example of the scenario we
envision. In this scenario, a provider (green) needs sup-
plies and asks the robot to deliver them. The robot (blue)
must plan a path from its current location to the provider.
Two potential paths are approximately equal in length. How-
ever, along one of these paths, clinicians are treating a high-
priority patient (orange). Along the other, clinicians are en-
gaged in a lower priority task, such as conversing (brown).



There are no clinicians along a third path, but it is much
longer than the other two.

In this scenario, the robot should not choose the path with
the high-priority team. However, it might be acceptable for
it to choose the path with the low-priority team, even though
it will interrupt clinicians.

The goal of our robot is to plan a path from a starting po-
sition to a goal position while avoiding hallways where high
acuity patients are being treated (to the best of its ability).
The robot’s behavior is generated by a policyπwhich maps
states to actions that maximizes its overall reward R t where
γ is the discounted factor and r t is the reward at time t (See
Equ. 1).

R t =
∞X

t=0

γt r t (1)

The agent’s behavior is formalized by a policyπthat maps
states S to a set of actions A where,
• States S = {s 1, s2, . . . , N }are locations on the map.
• Actions A = {a 1, a2, . . . , M }are a move from one node

of the graph node to another node.
• Rewards R encodes the level of priority of a clinical team.

We use an action-value functionQ∗ (s, a) to determine the
value of a given state. By maximizing that action-value func-
tion, we maximize the expected rewards over all a series of
actions following a policyπ.

Q∗ (st , at ) = max
π

E[R t |st , at , π] (2)

L i (θi ) ← E[(r + γ
0

max
a

Q(s0, a0; θ−i ) − Q(s, a; θi ))2] (3)

To maximize the rewards over all actions, the optimal
action-value function obeys the Bellman Equation shown
below. As done commonly in the literature [44, 23, 12, 4],
we use Q-Learning [62], a model-free algorithm to teach that
robot a policy of what actions to take under certain penalties
and rewards.

Q∗ (st , at ) = E s t ∼S [r t + γ max
a t

Q∗(st , at )|s, a] (4)

The inputs to our RL algorithm are a map of the environ-
ment and the location of the robot, clinical teams and their
priority, and the user (See Fig. 4). To represent the environ-
ment of the ED, we use a topological graph overlaid on our
map of the environment. The graph nodes represent way-
points throughout the ED such as the location of the robot
(blue), groups of clinicians talking in the hallway (yellow),
groups of clinicians working on life-critical patients (or-
ange), and the user that made a request for delivery (green),
as well as intersections in the hallways (black). The robot’s
position (blue) is the starting position and the user’s position
(green) is the goal location.

Figure 4: This is a simple example of an ED environment.
We model the environment with a graph. The robot (blue)
needs to deliver supplies to waypoints in the graph (black
nodes). It must navigate around both low priority groups
(brown) and high priority groups (orange). The ED staff
member who made the original request appears in green.
The goal of the delivery robot is to generate a path from
its current position to the ED staff requester without inter-
rupting the safety-critical team (Figure inspired by [19]).

Scenarios in the Emergency Department
We present three scenarios in the ED for our agent to learn
how to plan paths (See Figure 5). The level of difficulty of
the scenarios range from easy, medium, and hard in terms of
the number of clinical teams that the agent needs to consider
for its paths.

We trained a Q-Learning algorithm [62] over 700
episodes. Our agent takes an action using a -greedy strat-
egy as commonly done in the literature [46]. This strategy
explores a policy by choosing a random action with proba-
bility ∈ [0,1] We incorporate the patient priority in our re-
ward function as shown below. We use the following param-
eters to train a Q-Learning algorithm: r h = −1 , r h = −5 ,
r h = 100 and d is the length of the path represented between
two states being considering. A negative reward means to
avoid a hallway in the ED and a positive reward repre-
sents the location of the goal. We use a discount coefficient
γ = 0.8

r =






d + rh , if high priority group
d + r l , if low priority group
r g , if found goal

The resulting paths for our scenarios are shown in Fig-
ure 5. Our agent generated easy and medium as expected. In
the hard scenario, the agent generates behavior that depicts
the key challenge in our current work – that is, how can an
agent generate paths when the ED is when all paths have pa-
tients with various levels of acuity? When all paths contain
groups, both low priority and high priority, the agent never
finds a solution because the desired behavior must be cap-
tured by a more complex policy. This forms the basis of our
existing work as we design delivery robots for the ED under
conditions where all hallways can be cluttered and occupied
by clinical teams that perform procedures on highly acute
patients.



Figure 5: These are the scenarios for our case study which range from easy (one high priority group), medium (one high and low
priority group), and hard (two high and one low priority group) in terms of planning difficulty (from left to right) . The dotted
blue line with an arrow indicates the planned path of the robot. The algorithm finds a path in the easy and medium scenarios,
but fails to find a path in the difficult scenario as it tries not to interrupt any groups.

Discussion
In this paper, we provided domain knowledge about the ED
to help researchers design robots for emergence medicine.
Using the insights we provided in this paper, we discussed
how important it is for AI researchers to consider the sever-
ity of a patient’s condition. We presented a case study of a
robot that delivers materials in the ED, which uses reinforce-
ment learning to plan paths while taking patient priority into
account.

In this new, exciting domain of research, there are many
opportunities to build robots to improve patient outcomes in
the ED. In the future, we plan to continue our research on
designing robots for the ED by developing new techniques
to plan within this complex environment. For instance, we
provide a simple example of a possible approach in this pa-
per, but EDs are much larger and complex, have hundreds
of patients, ED staff, and family members, and are dynamic.
Recent approaches, like deep RL, might be well-suited to
handle such high-dimensional state spaces, and we look for-
ward to exploring them further.

Moving forward, we plan to conduct realistic experiments
in a medical simulation and training center, which will en-
able us to physically simulate actual ED complexity while
providing a rich testbed for our robots. For instance, we
could simulate a patient in cardiac arrest, and the robot could
deliver the necessary supplies to the clinicians while they be-
gin CPR.

We hope that our work inspires robotics researchers to get
involved in this domain as there is a great need to address
problems in emergency medicine and explore novel tech-
nologies that can potentially save lives.
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