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Abstract—Fluent coordination is important in order for teams
to work well together. In proximate teaming scenarios, fluent
teams tend to perform more successfully. Recent work suggests
robots can support fluency in human-robot teams a number of
ways, including using nonverbal cues and anticipating human
intention. However, this area of research is still in its early stages.
We identify some of the key challenges in this research space,
specifically individual variations during teaming, knowledge and
task transfer, co-training prior to task execution, and long-term
interactions. We then discuss possible paths forward, including
leveraging human adaptability, to promote more fluent teaming.

I. INTRODUCTION

As robots venture into more advanced tasks in human-
centered environments, it becomes increasingly imperative for
them to proximately team with people to complete tasks.
Hoffman [19] defines fluency as “a well-synchronized meshing
of [agents’] actions,” characterized by agents who coordinate
with each others’ actions with “precise and efficient” timing.
For example, a fluent interaction might involve two people
coordinating to move boxes or hang a banner (c.f. Fig. 1).

Entin and Serfaty [13] showed that well-coordinated team-
work is linked to significantly improved performance in
human-human teams. Additionally, fluent, well-coordinated
teaming enables human-robot teams to complete tasks more
successfully, and may make people more willing to work with
robots [15, 23, 25]. Thus, in order for human-robot teams to
be effective, it is crucial that robot teammates behave in a way
the preserves and promotes fluency.

Many of the environments in which robots could be es-
pecially useful are dynamic and unstructured. For instance,
robots could be extremely helpful in healthcare, both in
hospitals and home settings [43]. However, for robots to enter
these environments, and for them to interact with people
for long periods of time, their control systems and teaming
strategies must be robust. Different people will do the same
task differently, and even an individual will often change
how they perform a task over time. Thus, when teaming
with people, robots must be able to adapt to these variations
and support fluent teaming regardless of people’s individual
characteristics.

In spite of the importance of fluency in teaming, research on
this topic is still in its early stages within the proximate human-
robot teaming (HRT) community. In fact, there are currently
no widely agreed upon standard measures for fluency [19].
Although some measures are commonly used in the teaming
literature, these were only systematically evaluated this year
[19]. Additionally, while such measures work well for certain
teaming tasks (e.g., shared workspace tasks), they are not all

Fig. 1. Examples of robots engaging in proximate HRT from our prior work
(clockwise from top left): collaboratively hanging a banner [51], engaging
in rehabilitation exercises [52], implicitly learning from a human [18], and
stacking boxes [32]. These platforms act in shared spaces with people, and
need to be able to team fluently with their human partners for successful
interactions.

as well-suited for others, such as co-manipulation or tasks with
more than two agents. Standard fluency measures that can be
used across a variety of tasks will aid the HRT community in
addressing challenges in teaming.

In this paper, we present some of the current major chal-
lenges to achieving robust, fluent HRT. Specifically, we ex-
plore human variance in teaming scenarios, knowledge and
task transfer, co-training prior to execution, and long-term
interactions. We discuss the factors that make these aspects
of teaming difficult, and also consider some of the work
that investigates solutions to these problems. We then suggest
next steps for addressing some of these challenges, such as
capitalizing on people’s ability to adapt to robotic partners
and expanding current methods to account for unstructured
behavior.

II. CHALLENGES IN FLUENT TEAMING

A. Human Variance
Fluent coordination in proximate HRT faces a prominent

challenge: the large amount of variance within the human
population, which makes developing a general model for
human behavior impossible. This is an especially relevant
issue in fluent coordination, as the robot’s movements must
be closely coordinated with the human’s. Thus, in the absence



of a comprehensive prior, robots must be able to quickly
and reliably learn a viable model of an individual partner’s
behavior. In particular, robust strategies to detect and respond
to human intention, role changes, and levels of expertise would
enhance robots’ abilities to understand and coordinate with
humans. However, enabling robots to adapt to these variations
is challenging, as it requires detailed sensing and accurate
interpretation of people’s behaviors, which are open problems
in robotics.

Human activity recognition could address one facet of fluent
coordination. A wide range of algorithms and sensors are used
to classify people’s activities [9]. Such classifications can be
particularly useful for robots that collaborate with people on
tasks that have a clear structure, such as on manufacturing
assembly lines or cooking using a recipe. For instance, if
a robot detects what step a person on an assembly line is
currently performing, it could fetch the component that will
subsequently be needed in advance. However, this is still an
active area of research, and the classification of fine-grained
motions in particular can be difficult [30].

In addition to detection of human activity, many teaming
scenarios will require robots to sense and interpret subtle,
visual communication cues. This is a challenging area, par-
ticularly given that there is not always a simple mapping
between nonverbal signals and meaning, and it can be difficult
to even distinguish when a gesture begins and ends [27].
However, if robots can glean some meaning from these cues,
they will likely be able to predict human intentions more
accurately and subsequently generate plans that better support
fluent teaming. For instance, Duarte et al. [12] showed that
people can predict where someone will place an object with
over 80% accuracy based only on saccadic eye movement and
head rotation. Huang and Mutlu [22] used gaze cues to predict
human intent and demonstrated that a robot anticipating these
cues collaborated more efficiently with people than a reactive
robot did. Additionally, several studies indicate that robots can
also display nonverbal cues to influence human behavior and
make interaction more fluent [44, 11, 6, 8, 35, 12, 36, 1].

Another important area challenged by human variation is
understanding agents’ roles throughout an interaction. There
are several types of roles that can arise during an interaction,
including supervisor, worker, and peer [46]. Much of the work
on fluent teaming to date either does not explicitly consider
roles or assumes static roles, with Peternel et al. [40] and
Rezvani et al. [41] being notable exceptions. However, in real-
world scenarios, people’s roles often shift over the course
of an interaction. For instance, when carrying a table, the
person facing forward may start off in a leader role, but if that
person ends up facing backwards after turning a corner, they
might switch to a follower role. Furthermore, in group tasks,
individuals may join and leave the group at random intervals,
and at such points people’s roles will necessarily change [48].

Consequently, robots will need to be able to shift their own
role in response to new situations. Peternel et al. [40] explored
this by developing an algorithm for a robot to actively change
roles by having the robot sense when a person became fatigued

and adjust its role to reduce the force output required from
the human. Rezvani et al. [41] also proposed autonomous
driving situations in which a robot’s role might change and
investigated how the robot can best initiate this shift with a
person. However, in both of these studies, the role changes
occurred in very specific, well-defined cases, which do not
reflect the varied scenarios robots will encounter in the real
world. Therefore, more work needs to be done to ensure that
robots can appropriately initiate and respond to role changes
in dynamic environments.

Robots must also be able to recognize a teammate’s level
of comfort or expertise with a task in order to assume
an appropriate role. As they integrate more into human-
centered environments, robots will encounter people with
varying amounts of knowledge about a given task, which
will affect their ability to perform the task. For instance,
in a handover task, novice users were less likely to give
physical feedback than experienced users [33]. This sometimes
caused the robot to keep hold of the object after the person
expected a release, leading to failed handovers. Therefore,
robots must be able to distinguish between differing levels
of expertise and adjust their behavior accordingly. This is
important both when performing the same task with different
people and when performing different tasks with the same
person. If their partner is a novice, the robot may have to
provide more assistance or guidance, potentially teaching the
person about the task. On the other hand, if the person is
very experienced, the robot should leverage their knowledge
by asking the person for assistance or allowing them to lead.
By taking their partner’s abilities into account, robots will be
able to achieve greater fluency during the interaction.

B. Knowledge and Task Transfer
As robots enter human-centered environments, they will

need to work with multiple people and perform a variety of
tasks. In order to perform reliably, they will need to be able
to generalize information from teaming experiences to better
understand how to navigate new tasks and new partners.

Even for distinct tasks, there are likely some underlying
characteristics or patterns that can be used to transfer knowl-
edge from one task to another. For instance, Iqbal and Riek
[23, 24] demonstrated that the same group synchrony metric
can be used across a variety of scenarios, including playing
a cooperative game, marching, and dancing. Additionally,
Thomaz and Chao [49] suggested that while turn-taking be-
haviors are context-dependent, there are still some generic
components. They proposed a framework constructed from a
domain-specific finite state machine with a generic Markov
decision process that models turn-taking. Recent studies also
showed that robot grasps can generalize to similar objects
[2], and teaching techniques can generalize across topics [4].
Furthermore, Gutierrez et al. [16] investigated how robots
can efficiently perform new tasks by learning modifications
to similar tasks they can already achieve.

Similarly, robots can leverage characteristics of humans that
are largely constant over the population to more quickly adapt



to new partners. Past research shows that certain movement
dynamics are somewhat invariant across different people (e.g.,
the minimum jerk model [21], the 2/3 power law [31], etc.) and
that people will often act similarly given the same affordances
in their environment [26]. Robots can capitalize on these
tendencies to support accurately predicting human behavior
more quickly, which will promote fluent teaming with users
they have not encountered before.

Conversely, robots must also respect people’s differences
and adapt their policies accordingly. There is no “one size
fits all” model for people, and individual differences play a
key role in how we understand teaming [17, 18, 44]. General
trends and transferring learned knowledge are a good prior
when a robot first interacts with someone, but it needs to then
adapt to the idiosyncrasies specific to that person. For instance,
even if a robot uses common behaviors associated with given
affordances as a starting point for interaction, the affordances
of an environment vary for different people (e.g., a large step
affords stepping for an adult but not a small child) [26].

Robots must also adapt as people change over time. For
example, if people have a neurodegenerative condition, such
as dementia, their ability to perform certain tasks may change
across a range of time scales, throughout the day or across
many years [43, 34]. These changes may occur at different
rates that are specific to each person. Thus, robots must be
able to personalize their behavior to people as they interact
with them [52].

C. Co-Training Prior to Task Execution
Many current teaming algorithms require the human and

robot to practice together for several iterations before the
human-robot team can perform effectively enough for real-
world deployment [37, 20]. There are many contexts in
which extensive repetition is necessary for safe or effective
performance. For instance, in manufacturing settings, where
high precision may be necessary when working on a del-
icate product, or in hospitals, where mistakes can be life-
threatening, it is appropriate that the human and robot train
together extensively to ensure safe and reliable outcomes.
Multiple training iterations enable both the human and robot
to more fully understand each other, and ultimately allow the
human-robot team to optimize their performance.

However, such training is neither appropriate nor feasible
in all settings. For example, in many environments a robot
will not have a consistent team, but rather be expected to
spontaneously work with new teams or individuals. In these
cases, having an extended training period would disrupt the
interaction and potentially make the robot a burden to work
with rather than an aid. Furthermore, it is impossible to
predict all scenarios a human-robot team will encounter in
unstructured environments, making the ability to learn on-the-
fly a necessity.

For the robot to act appropriately despite a short or nonex-
istent training period means that it must be able to either
quickly learn about or have generalizable knowledge of human
preferences and tendencies and have a prior for the task. Such

skills will enable robots to promote fluent coordination in
teams it has not worked with before. As discussed above, being
able to transfer knowledge across tasks and users will likely
be helpful in reducing training times.

Koppula et al. [29] approached this problem by training a
policy offline before interacting with a person. However, their
model did not adapt to the person while interacting with them,
though they note that it could be changed to learn online.

Limiting training time is not only detrimental to the robot’s
efficacy, but the person’s as well. When a person trains with
a robot, they learn about the robot’s limitations and develop a
better mental model of the robot. Without this prior experience,
people may have unrealistic expectations when they begin
working with the robot [45, 39, 7]. Therefore, the robot must
be transparent and clearly convey its capabilities to the person
in order for them to perform successfully.

D. Long-Term Interaction
Another difficult challenge HRT researchers face is main-

taining reliable teaming over long periods of time [42, 10, 28,
14]. For instance, as robots integrate into a wider variety of
environments, they will be expected to run for long periods
without major faults and maintain long-term interactions with
a variety of people. They will also likely encounter situations
during teaming that they are unable to cope with on their own
[47]. For example, a human may expect a robot to retrieve an
item that is out of the robot’s reach. In this case, the robot
will need to identify that the task is outside of its limitations
and react appropriately to mitigate the disruption to the task.
This is an inherently challenging problem.

However, if robots have robust control strategies for teaming
and are able to sense humans, learn from them, and transfer
knowledge across tasks, long-term interaction becomes signif-
icantly easier. With these skills, robots could alert people to
situations where failure is likely. This would result in fewer
disruptions during teaming and avoids situations the robot
cannot recover from. By transferring what they have learned
across tasks, robots also would be able to effectively collab-
orate with humans on a wider variety of tasks, a necessary
feature for long-term deployment in dynamic environments.

Additionally, if the robot encountered a task it was uncertain
about, it could rely on its human partner’s knowledge to help it
complete the task. Cakmak et al. [5] demonstrated that actively
learning robots (i.e., those that ask questions) learn more
quickly than passively learning robots. Furthermore, people
preferred to interact with robots that actively participated in
learning. Thus, by actively curating knowledge, robots could
become both better at their task and more engaging partners.

III. RECOMMENDED PATHS FORWARD

A. Bi-Directional Adaptation
The challenges presented above are by no means straight-

forward to solve. However, one approach to address some
of the issues is to leverage human adaptability. Humans are
extraordinarily adept at adapting to a wide variety of situations,
including new partners or new tasks in teaming scenarios.



If robots can explicitly model and take advantage of the
way humans adjust to them, they may, in turn, be able to
coordinate their adaptations with the person to promote fluent,
coordinated teaming. For instance, if a robot and human are
carrying a table together and the robot detects that the person
has adapted to to the speed of its trajectory, the robot might
keep its speed the same for the rest of the interaction so as not
to confuse the person. However, it could still adapt the shape
of its trajectory to better mesh with the person.

There has been some work to date looking into human
adaptability during HRT. For instance, Amirshirzad et al.
[3] investigated the effects of robotic behavior on human
behavior in a ball-balancing task. They compared people’s
performance when using a purely teleoperated robot to that
when collaborating with a shared-control robot that attempted
to infer its partner’s intention throughout execution. Although
the teleoperated robot employed a simpler controller (e.g.,
it precisely followed the person’s input), people naturally
adapted to the shared-control robot, and quickly outperformed
the teleoperation group. While the robot’s control strategy was
static in this experiment, these results suggest that human
adaptability can be leveraged to improve team performance.

Thomaz et al. [50] also found that people adapt to robots
over the course of an interaction. In a reinforcement learning
scenario, in which people assigned rewards to the robot to
help it learn, people adjusted the number of rewards they gave
throughout the task. They also changed the type of reward they
gave to better accommodate the robot’s learning. These results
again indicate that humans will adapt to robots to produce
more effective teaming outcomes.

This issue was also partly addressed by Nikolaidis and
Shah [37] with a cross-training algorithm, in which humans
and robots repeatedly switched roles to learn how to better
complete a task. This enabled both the human and the robot
to adapt to their partner throughout training, and the authors
showed that the “mental models” of both agents converged
during training. However, this process requires a significant
amount of training, and the robot did not explicitly consider
how the human changed throughout the process. Nor did the
robot subsequently adapt after the training stage if the human
changed their policy during execution.

In contrast, Nikolaidis et al. [38] proposed the Bounded-
Memory Adaptation Model (BAM), which explicitly models
human adaptability and adjusts robot behavior based on that
adaptability throughout the interaction. The model includes a
latent variable that models the person’s level of adaptability.
If the person is not very adaptable, they are more likely to
continue with their policy, regardless of the robot’s behavior,
so the robot must switch to the human’s policy or “mode” to
make progress on the task. On the other hand, if the human
is more adaptable, they are likely to switch to the robot’s
mode. However, as the authors note, this model assumes a
fully observable world-state, an assumption that often does
not hold in real-world scenarios.

The above studies represent a good starting point for inves-
tigating how robots can take advantage of human adaptability.

However, HRI researchers are only beginning to understand
the ways in which people adapt to robots. Additionally,
the current models that incorporate human adaptability are
somewhat limited in their applicability due to either their
training requirements or world-state assumptions. Thus, more
work needs to be done to investigate the dynamics of bi-
directional adaptation, as well as how robots can best use
people’s adaptability to support fluent teaming.

B. Unstructured Behavior

While we try to make robots able to generalize knowledge to
new tasks, we should also consider how we can generalize to
tasks with even less structure. Many current techniques focus
on periodic [24] or structured tasks, like constructing an object
[20]. However, tasks that people regularly perform often do not
have such a well-defined structure. As robots enter human-
centered environments, they will be expected to collaborate
on such tasks with people.

If robots can interpret human motion and transfer knowledge
across tasks, it is possible that the switch from structured to
unstructured tasks will not be such a difficult one. Most tasks
will likely have some underlying structure, even if it is not
as obvious as the structure of the tasks currently focused on.
Therefore, it is possible that robots could still use some of
the same information and techniques from structured tasks to
promote fluent teaming in unstructured tasks. For instance,
if a robot is collaboratively moving furniture with people
from a moving truck to a house, it may not have complete
information about the task. It might not know what piece of
furniture they will pick up next or where they want to move
it. However, it could still realize that there is a pattern to the
movement, namely that the person repeatedly goes from the
truck to the house and back, and it could use this information
to coordinate with the person, perhaps building on the work
of Iqbal and Riek [24] to better synchronize with the people
involved. Furthermore, even if there is little structure in the
task, there may still be parallels in the human dynamics. Thus,
if the robot could robustly sense the person’s motion, it may
be able to predict approximately what the person will do next.

IV. DISCUSSION

In this paper, we discussed several of the major challenges
in HRT, namely human variance in teaming, knowledge and
task transfer, co-training prior to task execution, and long-
term interactions. While these are all difficult challenges,
work to date provides a good foundation to address them.
Current methods could also potentially be adapted to support
fluent teaming in unstructured environments. Furthermore, by
utilizing human skills, such as adaptability, robots will be able
to more readily engage in fluent coordination with human
partners. With the realization of better models to support fluent
coordination in teaming, robots will become more effective
teammates for people, enabling them to augment people’s
capabilities in a variety of situations.
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