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Many real-world edge applications including object detection, robotics, and smart health are enabled by de-

ploying deep neural networks (DNNs) on energy-constrained mobile platforms. In this article, we propose a

novel approach to trade off energy and accuracy of inference at runtime using a design space called Learning

Energy Accuracy Tradeoff Networks (LEANets). The key idea behind LEANets is to design classifiers of in-

creasing complexity using pretrained DNNs to perform input-specific adaptive inference. The accuracy and

energy consumption of the adaptive inference scheme depends on a set of thresholds, one for each classifier.

To determine the set of threshold vectors to achieve different energy and accuracy tradeoffs, we propose a

novel multiobjective optimization approach. We can select the appropriate threshold vector at runtime based

on the desired tradeoff. We perform experiments on multiple pretrained DNNs including ConvNet, VGG-16,

and MobileNet using diverse image classification datasets. Our results show that we get up to a 50% gain

in energy for negligible loss in accuracy, and optimized LEANets achieve significantly better energy and

accuracy tradeoff when compared to a state-of-the-art method referred to as Slimmable neural networks.
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1 INTRODUCTION

Deep neural networks (DNNs) are increasingly deployed in mobile platforms to enable diverse
edge applications including image classification, activity recognition, robotics, and mobile health.
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The size of real-world DNNs is growing rapidly in order to achieve higher accuracies. For example,
DenseNet has up to 264 layers [19] and ResNet has up to 152 layers [15]. However, such large and
complex DNNs require a significant amount of resources (computational and power) to perform
repeated inferences. Since mobile platforms are constrained by resources (power, computation, and
memory), there is a great need for low-overhead solutions to perform energy-constrained infer-
ence. We performed all our experiments for deploying DNN models on an ODROID-XU4 board [31].
As we discussed in a related work section, prior work in this problem space has considered sev-
eral methods based on hardware, software, and hardware/software codesign. However, there are
limited approaches that leverage pretrained DNNs to automatically trade off energy and accuracy
of inference at runtime on a target mobile device.

In this article, we propose a novel approach based on a formalism referred to as LEANets to trade
off energy and accuracy of inference on mobile platforms. Our approach is complementary to most
of the existing methods in the sense that it can reuse a pretrained DNN toward this goal. There are
two key ideas behind our approach. First, we design the LEANet model as a sequence of classifiers
of increasing complexity by using varying fractions of channels from the pretrained DNN. The
main benefit of this design is the reuse of computation from classifiers at lower levels to perform
incremental computation at higher levels only if needed. Second, some learned parameters (one
threshold for each classifier in the sequence) of the LEANet model allow us to perform adaptive

inference depending on the hardness of input examples. Figure 2 illustrates that easy images can
be classified with simple classifiers to save energy and we only need complex classifiers for hard
images. By varying the threshold values for different classifiers, we can achieve different energy
and accuracy tradeoffs. We develop a novel methodology to optimize the design space of LEANet
models conditioned on the given pretrained DNN. This includes selecting the number of levels,
selecting the complexity of the classifier in each level, and finding the set of threshold vectors that
achieve the best Pareto front for energy and accuracy tradeoff.

Contributions. The main contributions of this article include:

• A novel formalism referred to as LEANets to trade off energy and accuracy of inference
with deep neural networks.

• Development of a principled methodology to design and optimize LEANets using a pre-
trained deep neural network to obtain the Pareto front of energy and accuracy tradeoff for
a target mobile platform.

• Comprehensive experiments on pretrained deep networks including ConvNet, VGG16, and
MobileNet to show the generality and effectiveness of our approach. Results show that we
get up to a 50% gain in energy for a negligible loss in accuracy, and optimized LEANets
achieve significantly better energy and accuracy tradeoff when compared to a state-of-the-
art method referred to as Slimmable neural networks.

2 RELATED WORK

Hardware Approaches. Methods include the design of specialized hardware using data-flow
knowledge [4], placement of memory closer to computation units [12], and on-chip integration
of memory and computation [3]. Apart from the constraint of having an application-specific hard-
ware, most of these solutions also have an overhead of analog-to-digital conversion [38].

Software Approaches. Most important software-level methods are as follows: reduced precision
of weights and activations [28, 43]; binary weights [6] and variations like LightNN [9]; pruning
and compression of large DNNs [14, 17], including “energy-aware” pruning that was shown to be
more energy efficient [41]; and exploiting sparsity of DNN models [4]. Another class of methods
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Fig. 1. Illustration of LEANet model. Given a pretrained network as shown in (b), we can split into multiple

levels with reusable computation from lower levels as shown in (a). The nested boxes for different channel

sets represent the reuse of computation from lower levels at higher levels. (c) Neural architectures of some

popular DNNs including ConvNet, VGG16, and MobileNet.

includes the design of DNN architectures to reduce the computation and model size. The Inception
module [39], Xception [5], and Mobilenets [18] employ depth-wise separable convolutions. The
SqueezeNet [20] introduces a fire module that squeezes the filter dimension followed by expansion
to reduce the number of filter coefficients, which helps in achieving the accuracy of AlexNet with
50× fewer parameters.

There are also approaches that employ a sequence of networks to perform conditional inference
depending on the input example to save computation and energy. A cascaded CNN architecture
for face detection [27] progressively prunes areas of the image that are not likely to contain a
face. However, CNNs used in [27] do not reuse any features. The iterative CNN (ICNN) approach
[30] makes multistage predictions for images, where a two-stage wavelet transform is applied to
produce multiple small-scale images and train separate models to process them progressively to
make predictions. Adaptive NN [37] employs two DNNs—a small one on a mobile and a large
one on a remote server—and performs joint optimization. However, this approach is significantly
suboptimal: it only allows two levels and does not reuse computation from a small DNN.

Recent work on the conditional deep learning (CDL) model [21, 32] also falls in this category.
The CDL model [32] is related to our work, but it has a completely different architecture than
LEANets. All these methods are characterized by a specific hand-designed sequence of networks
that is tuned in an ad hoc manner without considering the mobile platform for deployment ([21] is
one exception). In contrast, our proposed LEANets-based approach automatically defines a design
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space of such a sequence of networks using any pretrained DNN model and selects the optimized
LEANet design to trade off accuracy and energy of inference for the target mobile platform.

Hardware and Software Codesign Approaches. Many of these approaches involve design of
hardware guided by software-level optimization techniques. [28] proposes a compiler specific to
FPGA that analyzes CNNs and generates modules to improve the throughput of the system. In [13],
the authors propose the design of the Energy Inference Engine (EIE) that deploys pruned DNN
models. In [24], the knowledge of compressed sparse weights guides the hardware to read weights
and perform MAC computations only for the nonzero activations, thereby reducing the energy
cost by 45%. In [21], a hand-designed sequence of simple to complex networks was configured for a
target mobile platform. Our LEANets-based approach automatically finds the optimized sequence
of classifiers and can be seen as complementary to [21]. Slimmable neural networks (SlimNets)
[42] are a very recent state-of-the-art approach that employs the adaptive computation graph
technique. The approach behind SlimNets involves training a single neural network at different
widths (number of channels). At runtime, we can adaptively execute SlimNet with one of the
predefined widths as needed based on the resource constraints on a mobile platform.

Our proposed LEANet-based approach has several advantages over prior methods: (1) LEANet
is complementary to methods including quantization, model pruning, hand-designed networks,
and knowledge distillation. Specifically, we can consider LEANet as a wrapper approach that
takes the output network from these methods to automatically trade off energy and accuracy.
(2) LEANet employs the channels from the pretrained DNN given as input and only trains a
small number of classifiers. The classifier training overhead is negligible when compared to Slim-
Nets. (3) LEANet can achieve finer energy-accuracy tradeoffs even with a fixed number of lev-
els by changing the confidence threshold vectors employed to perform input-specific adaptive
inference. On the other hand, SlimNets with predefined width values can only achieve a coarse-
grained tradeoff. (4) LEANet does not employ any extra network modules to perform dynamic
inference.

3 OVERVIEW OF LEANET FRAMEWORK

In this section, we provide a high-level overview of the Learning Energy Accuracy Tradeoff Net-
works (LEANet) framework. First, we explain the key insights behind LEANet. Second, we formally
describe the LEANet model and the associated inference procedure.

3.1 Motivation

Deploying large DNN models on mobile platforms requires a lot of resources in terms of computa-
tion and energy. DNN architectures like MobileNet address the challenge of constrained resources
on mobile platforms by compressing the network with some loss in accuracy. Even though these
architectures address the resource requirements for inference, they still involve a huge cost for
training them from scratch for a new real-world (edge) application. Toward the goal of overcoming
their drawbacks and further improving the energy and computational efficiency of state-of-the-art
DNNs like MobileNet, we propose the LEANet model.

LEANet can be interpreted as a wrapper approach that takes a pretrained DNN model as input
and reuses the learned weights to automatically build a multilevel DNN, where the level number
is proportional to the complexity of the corresponding classifier. The key idea is to slice the
pretrained DNN vertically into sets of filter maps/channels and progressively go from simpler to
more complex classifier only if needed, thereby reusing the computation of lower levels at higher
levels to achieve up to a 50% reduction in energy consumption and execution time with little to
no loss in accuracy.
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Fig. 2. Images predicted at lowest and highest levels for LEANet(MobileNet) with CIFAR10.

Figures 2(a) and 2(b) show some sample images from our experiments that are predicted at
level 1 and level 5, respectively, using an instantiation of LEANet with five levels based on Mo-
bileNet. Images classified using level 1 are simpler with a single object and clear background,
while images classified using level 5 have overlapping, skewed, or hidden objects with confusing
backgrounds. These results provide evidence for the key intuition behind our proposed LEANet
approach.

3.2 LEANet Model and Inference

A LEANet modelM with L levels is a sequence of classifiers of growing complexity resulting from
an increased number of channels with growing levels as shown in Figure 1. There are three key
components for each level in a LEANet model.

1) Channel sets: This consists of a fraction of learned filter maps/channels for each layer in the
pretrained DNN. Each successive level employs an increasing number of channels. The parameters
(denoted byCSi ) of channel sets are reused from the given pretrained DNN in the LEANet model.
It takes the features computed in previous level Li−1 and input image (x) as input and produces
more complex features Li .

2) Classifier: This is a classification layer that takes the features computed by a given channel
set and produces a probability distribution over all labels. In the LEANet model, we only learn the
parameters (denoted by Hi ) of this classification layer.

3) Confidence threshold. Given a predicted probability distribution over candidate labels, we
can estimate the confidence of the classifier [40] using the maximum probability, where we take
the probability of the highest scoring label. The confidence threshold Ti is employed to deter-
mine if the classifier is confident enough in its prediction to terminate and return the predicted
label.

Inference in LEANet Model. Given a LEANet modelM with all its parameters (CSi , Hi , Ti for
all levels 1 ≤ i ≤ L) fully specified, inference computation for input example x is performed as
follows. We sequentially go through the LEANet model starting from level 1. At each level i , the
channel setCSi takes the input x and reuses the features computed from the previous levelCSi−1 to
produce the features ofCSi . Then classifier layer Hi makes predictions using the features resulting

from the given channel setCSi . If the estimated confidence parameter T̂i meets the thresholdTi or
we reach the final level L, we terminate and return the predicted output ŷ.
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4 DESIGN SPACE OF LEANET MODELS

In this section, we describe the design space of candidate LEANet models that can be constructed
using a given pretrained DNN (e.g., MobileNet). For the sake of understanding, we first explain the
case of the LEANet model with two levels and then generalize the space for more than two levels.
We employ CNNs for image classification as a running example for illustrative purposes.

As shown in Figure 1(a), we divide the convolution layers of the given pretrained neural net-
work (CNN) into multiple levels by using an increased number of channel sets with growing levels.
Any general CNN architecture is composed of several convolution layers as shown in Figure 1(b).
Let a convolution layer consist of N channels. For an L level LEANet, our method selects ni chan-

nels of each convolution layer for each level i , where ∀j > i,
∑j

k=1
nk >

∑i
k=1 ni , and

∑n
k=1 nk = N .

Intuitively, each successive level builds a classifier of increasing complexity resulting from the
increased number of channels ni in each layer.

Two-Level LEANet. For illustration, we construct a two-level LEANet. Consider a convolution
layer with a filter of width (C), height (C), and depth (M) convolving over an input layer (I ) of
M channels to produce an output layer (O) of N channels. We describe splitting at two levels
using M1 input channels and N1 output channels for level L1, and M1 +M2 = M input channels
and N1 + N2 = N output channels for level L2. In level L1, the first N1 output channels (On ) are
obtained from the first M1 input channels (Im ) as given by

OL1
n [a,b] =

M1∑

m=1

C/2∑

i=−C/2

−C/2∑

j=−C/2

Im[i + a, j + b] ·wmn[i, j], (1)

∀n ∈ 1, 2 . . .N1

where wn represents filter weights. The above equation can be rewritten as

OL1
n [a,b] =

M1∑

m=1

C∗m[a,b] ∀n ∈ 1, 2 . . .N1

C∗m[a,b] =

C∑

i=1

C∑

j=1

Im[i + a, j + b] ·wn[i, j], (2)

where C∗m represents the convolution operation.
In level L2, we consider all N output channels. The equation for the first N1 output channels is

as follows:

OL2
n [a,b] =

M1+M2∑

m=1

C∗m[a,b] ∀n ∈ 1, 2 . . .N1

OL2
n [a,b] =

M1∑

m=1

C∗m[a,b] +

M2∑

p=M1+1

C∗p[a,b], (3)

where the first part in Equation (3) can be reused from level L1. This reuse of computation is
illustrated in Figure 3. Furthermore, the remaining N2 new output channels used in L2 can be
computed similar to Equation (1).

For a numerical illustration, consider a two-level LEANet setup for a convolution layer with
M = 48 input channels and N = 96 output channels. Let M1 = 32, N1 = 64, M2 = 16, and N2 = 32.
The computation in L2 is proportional to MN of which we are reusing the M1N1 part from L1.
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Fig. 3. Illustration of a two-level LEANet model with one convolution layer. The blue part from level 1 is

reused in level 2.

Therefore, the reuse ratio is

M1 · N1

M · N =
M1 · N1

(M1 +M2) · (N1 + N2)
=

32 · 64

48 · 96
= 0.44.

The illustrative demonstration of the convolutional layer with two levels shows how much we
are reusing the computation from the previous level to the next level. Equation (3) corresponds to
this demonstration without pooling and nonactivation layers. Specifically, we are not reusing the
solutions from the pooling and nonactivation layer operations. Instead, the partial output of the
convolutional layer from previous level i-1 and the new convolutions at level i are jointly passed
through the pooling and nonactivation layers (negligible computational overhead) to compute the
input for the next convolutional layer for level i . We reuse the computation from the previous level
in the next level to generate more features. Importantly, these features are not necessarily equivalent

to the features generated from scratch at each level in the base DNN. The classifier used at the end
of each level can compensate for the difference in the features generated (exact vs. approximate)
by learning appropriate weights to be able to make correct predictions. Hence, learning classi-
fiers tuned for approximate features allow us to trade off energy and accuracy of inference in our
LEANet approach.

Multilevel LEANet. We can easily generalize the idea of LEANet with two levels to multiple levels
(L > 2). As illustrated in Figure 3, while moving across successive levels, LEANet models reuse the
computation from previous levels. To describe the general expression for this computational reuse
factor, consider a multilevel LEANet model with L > 2 levels. Without loss of generality, consider
a convolutional layer that is split into Mi input channels and Ni output channels corresponding to
each level 1 ≤ i ≤ L. Extending Equation (5), the reuse of computation going from level i to i + 1
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is given by
∑i

j=1 Mj ·
∑i

j=1 Nj
∑i+1

j=1 Mj ·
∑i+1

j=1 Nj

. (4)

Though most networks use normal convolution, as shown in Figure 1(c), networks like Mo-
bileNet employ different types of layers. We now extend the LEANet splitting criterion to other
layer types. Pointwise 2D Convolution is similar to aC ×C convolution layer withC = 1. Thus, the
reuse factor remains the same since M and N do not change. Depthwise 2D Convolution is another
special case where the input channelsM = 1. Therefore, we have single-parameter N output layers

in LEANet. This makes the reuse factor
∑i

j=1 Nj∑i+1
j=1 Nj

. Batch Normalization too has M = 1 like Depthwise

2D Convolution. This layer has four different parameters given by gamma weights, beta weights,
moving mean (nontrainable), and moving variance (nontrainable). Thus, based on the above de-
tails, while constructing multiple levels, we carefully map the appropriate input channels to the
appropriate output channels across levels to maximize the computational reuse, thereby minimiz-
ing the energy consumption of the overall LEANet model.

5 DESIGN OPTIMIZATION METHODOLOGY

In this section, we describe the details our optimization methodology to find the best LEANet
model in terms of the Pareto front to trade off energy and accuracy of inference.

Design Space Definition. As explained in Section 4, each candidate LEANet model in our design
space depends on three variables: number of levels (L), fraction of channels in channel set CSi of
each level given by (F1, F2, . . . , FL ), and confidence thresholds (T1,T2, . . . ,TL−1) for each classifier
Hi . Each Fi is equal toNi/N , whereNi is the number of channels in level i andN is the total number
of channels. This is a conditional search space in the sense that the size of the fraction-of-channels
vector and confidence thresholds vector depend on the number of levels L.

Optimization Problem. Each candidate LEANet model (configuration of the three variables men-
tioned in the design space definition) corresponds to an accuracy and energy pair over a given eval-
uation set of classification examples. Given a pretrained DNN N , training set TSr, and validation
set Va of classification examples, our goal is to find the LEANet model configuration, which con-
verges to the optimal energy and accuracy tradeoff Pareto front for a given target mobile platform
MP.

Optimization Methodology. As described in Algorithm 1, to obtain the optimal Pareto front, we
iterate over the number of levels L starting from L = 2 until convergence. We determine the fraction
of channels at each level i = 1 to L as follows. The final level L corresponds to the input pretrained
DNNN that will achieve the highest accuracy. The fraction of channels at level 1 (F1) is based on
the minimum energy budget of target mobile platformMP, which we want to use to be able to
perform inference using an appropriate granularity of DNN. The highest level (level L) will employ
all the channels (FL = 1.0×), consuming the maximum energy to provide the highest accuracy. The
fraction of channels at levels (i > 1) is obtained by allocating the remaining channels equally for
all the remaining L-2 levels. For example, if the minimum energy budget of mobile platform allows
us to run at 0.5× of the base DNN, it would correspond to the lowest level. For three levels, the
fraction of channels in channel sets would be [0.5×, 0.75×, 1.0×], and for four levels, the fraction
of channels in channel sets would be [0.5×, 0.675×, 0.875×, 1.0×].

Given the number of levels L and fraction of channels in each level (F1, F2, . . . , FL ), we train
the classifiers H1,H2, . . . ,HL−1 with the training data TSr using stochastic gradient descent and
back-propagation. HL corresponds to the pretrained DNN. Subsequently, we determine a set of
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confidence threshold vectors TL based on the target mobile platformMP (to compute energy con-
sumption) and the validation data Va (to compute accuracy) using a novel multiobjective Bayesian
Optimization (BO) approach referred to as UnPAc. Each threshold vector (T1,T2, . . . ,TL−1) ∈ TL

corresponds to a particular tradeoff between energy and accuracy. We observed diminishing re-
turns as we increase the number of levels and Pareto fronts converge in at most five levels. Our
overall optimization procedure including identifying the number of levels, training the classifiers
at all levels, and finding the set of confidence threshold vectors corresponding to the energy and
accuracy tradeoffs is executed offline. At runtime, we can select the appropriate confidence thresh-
old vector for the required energy and accuracy tradeoff.

ALGORITHM 1: LEANet Design Optimization

Input: N = Pretrained deep model; TSr = Training set; Va = Validation set; andMP = Target mobile plat-

form

1: Initialization: number of levels L = 2

2: while Convergence do

3: Set channel fractions F1, F2, . . . , FL via domain knowledge

4: Train classifiers H1,H2, . . . ,HL−1 using TSr

5: Threshold vectors TL ← UnPAc(N ,MP, Va) // Find the optimal Pareto front of energy and accuracy

6: L ← L + 1 // Increase the number of levels

7: end while

8: return optimized LEANet model with L levels, classifiers at all levels, and confidence threshold vectors

TL to trade off energy and accuracy

5.1 UnPAc Algorithm to Estimate Thresholds

For a given number of levels L and the trained intermediate classifiers of a candidate LEANet
model, our goal is to find a set of threshold vectors TL that correspond to the Pareto front of energy
and accuracy tradeoff. There are two key challenges in solving this problem: (1) The energy and
accuracy objective functions are unknown and we need to perform experiments to evaluate each
candidate threshold vector (T1,T2, . . . ,TL−1) ∈ T . In our specific problem, evaluation of both the
objectives is expensive: evaluation of the energy objective on target mobile platformMP is much
more expensive than the accuracy objective. (2) The objectives are conflicting in nature and they
cannot be optimized simultaneously. Therefore, we need to find the Pareto optimal set of solutions.
A solution is called Pareto optimal if one objective cannot be improved without compromising
other objectives. The overall goal is to approximate the true Pareto set by minimizing the overall
number of energy and accuracy evaluations.

Multiobjective Bayesian Optimization Formulation. We formulate the above problem in the
framework of multiobjective Bayesian Optimization (BO): the input space T of all candidate

threshold vectors is [0, 1]L−1, and energy and accuracy over the validation set Va and target mo-
bile platformMP as the two unknown objective functions. BO algorithms learn cheap surrogate
models (e.g., Gaussian Process) from training data obtained from past evaluations of objective
functions. They judiciously select the next candidate input (T1,T2, . . . ,TL−1) ∈ T for evaluation
by trading off exploration and exploitation to quickly direct the search toward approximating the
true Pareto front. Acquisition functions are defined in terms of the statistical models to score the
candidate inputs and guide this search process. PESMO [16] is the state-of-the-art approach to
solve multiobjective BO problems based on entropy optimization. PESMO reduces the problem
to single-objective optimization. It iteratively selects the input that maximizes the information
gained about the true Pareto set. Unfortunately, this choice is suboptimal as it is hard to capture
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Fig. 4. Overview of the UnPAc algorithm.

the tradeoff between multiple objectives and can potentially lead to aggressive exploitation be-
havior. Indeed, our experiments demonstrate the inefficiency of PESMO. Motivated by the need
for a more sample-efficient optimization approach, we propose a novel algorithm referred to as
Uncertainty Reduction via Portfolio Acquisition optimization (UnPAc).

UnPAc Algorithm. As shown in Figure 4, UnPAc is an iterative algorithm that involves four key
components as described below. The energy and accuracy objective functions are considered as
the two blackbox functions to be optimized.

1) Learning statistical models. We build statistical modelsM1 andM2 for both unknown objec-
tive functions accuracy and energy from the training data in the form of past function evaluations.
In each iteration of UnPAc, the learned statistical modelsM1 andM2 are employed to select the
next candidate threshold vector (T1,T2, . . . ,TL−1) ∈ T for evaluation.

2) Constructing cheap MO problem. We select a set of promising candidate inputs Tp ⊂ T by
solving a cheap multiobjective (MO) optimization problem defined using the statistical models
M1 andM2. Specifically, we employ two acquisition functions for each statistical model: upper
confidence bound (UCB) and expected improvement (EI) as defined below:

UCB (x ) = μ (x ) + β1/2σ (x ) (5)

LCB (x ) = μ (x ) − β1/2σ (x ) (6)

EI (x ) = σ (x ) (αΦ(α ) + ϕ (α )), (7)

where α =
τ−μ (x )

σ (x ) ; μ (x ) and σ (x ) correspond to the mean and standard deviation of the prediction

from statistical model and represent exploitation and exploration scores, respectively; β is a pa-
rameter that balances exploration and exploitation, which is automatically specified based on the
iteration number t based on theoretical analysis of convergence from Srinivas et al. [36]; τ is the
best uncovered input; and Φ and ϕ are the CDF and PDF of normal distribution, respectively.

3) Solving the cheap MO problem. We use the popular NSGA-II algorithm [7] to solve the
cheap MO problem to obtain the Pareto set Tp representing the most promising candidate inputs
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for evaluation:

Tp ← max
T ∈T

(UCB(M1,T ),EI(M1,T ),UCB(M2,T ),EI(M2,T )).

The acquisition functions for each unknown function tell us the utility of evaluating a candidate
threshold vector. For example, a threshold vector might have a high utility for accuracy but may
have a lower utility for optimizing energy consumption. Therefore, the Pareto set found by solv-
ing the cheap MO problem captures the tradeoff between the utility for both unknown objective
functions.

4) Uncertainty maximization. From the promising candidate set Tp obtained by solving the
cheap MO problem, we need to select the best threshold vector such that it will guide the overall
search toward the goal of quickly approximating the true Pareto set. We employ an uncertainty
measure defined in terms of the statistical modelsM1,M2 to select the most promising candidate
input for evaluation. We define the uncertainty measure as the volume of the uncertainty hyper-
rectangle:

Uβt
(T ) = VOL({(LCB (Mi ,T ),UCB (Mi ,T )}2i=1), (8)

where LCB(Mi ,x ) and UCB(Mi ,T ) represent the lower confidence bound and upper confidence
bound, respectively, of the statistical modelMi for threshold vectorT as defined in Equations (6)
and (7). We measure the uncertainty volume measure for all threshold vectors T ∈ Tp and select
the one with maximum uncertainty for evaluation: Ts = argmaxT ∈Tp Uβt

(T ).
Finally, this selected threshold vector Ts is used for evaluation to get the corresponding en-

ergy E (Ts ) and accuracy A(Ts ). The next iteration starts after the statistical modelsM1 andM2

are updated using the new training example: input is Ts and output is (E (Ts ),A(Ts )). Unlike prior
methods including PESMO that reduce to single-objective optimization, UnPAc follows the above
procedure to select better candidates for evaluation in each iteration. Recent work on multiobjec-
tive optimization [1] showed that output space entropy search is more effective than input space
entropy search. It would be interesting future work to see how UnPAC compares to this approach.

6 EXPERIMENTS AND RESULTS

In this section, we first describe the experimental setup and then discuss results of LEANet along
different dimensions.

6.1 Experimental Setup

Hardware Setup. All our experiments were performed by deploying DNN models on an
ODROID-XU4 board [31]. ODROID-XU4 is an Octa-core heterogeneous multiprocessing system with
ARM Big-Little architecture, which is very popular in current mobile devices. The ODROID-XU4
board employs ARM Cortex-A15 Quad 2GHz CPU as the Big Cluster and Cortex-A7 Quad 1.4GHz
CPU as the Little Cluster. The board boots up Ubuntu 16.04LTS with ODROID’s Linux kernel ver-
sion 3.10.y. We execute DNN models with Caffe-HRT [2], which employs the Caffe framework
[22] with ARM Compute Library to speed up deep learning computations. We ran the software
programs for our LEANet approach, full DNN, and SlimNets baseline on the mobile platforms to
measure the energy consumption. Therefore, all the presented results are relative to the common
software execution scheme. Studying optimized execution schemes for LEANet models to mini-
mize memory overhead is part of our immediate future work. We employ SmartPower2 [34] to
measure power. We compute the average power over the total execution time.

Energy Objective. Energy consumption of LEANet models is measured in terms of the normalized
energy delay product (EDP). EDP =

∑
P Δt · T, where Δt is the time interval at which we record the

power P and T is the total execution time. As power is measured at a regular interval, we simply
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calculate EDP as EDP = Pavд · T 2 . This value is normalized with EDP of the pretrained DNN. We
use EDP and energy interchangeably in the discussion of our results. However, all our presented
results are for EDP unless specified otherwise.

Image Classification Task and Training Data. We demonstrate the general applicability of our
LEANet-based approach using three different pretrained DNNs as shown in Figure 1(c): (1) Conv,
a VGG-style neural network with 6 convolution layers; (2) VGG, a more complex network with
10 convolution layers; and (3) MobileNet. We ran extensive experiments using MNIST, CIFAR10,
and SVHN image datasets to study the performance gains with classification tasks of varying
difficulty. We used the standard 4:1:1 split ratio for the training, validation, and testing (10,000)
set, respectively. Accuracy is measured as the fraction of input images whose labels are predicted
correctly. We present all our results in terms of accuracy and normalized EDP for ease of exposition.
To demonstrate the effectiveness of LEANets on large datasets, we ran experiments using the
ImageNet dataset [33]. ImageNet has a training set of roughly 1.2 million images and around 50,000
validation and test images. Each image has 224×224×3 dimensionality and maps to one of the 1,000
candidate class labels. We present the results for ImageNet in terms of top 5 accuracy (commonly
employed metric in the literature) and normalized EDP.

Classifier Training. We employ a multilayer Perceptron to learn classifiers at intermediate levels
(Hi ) as shown in Figure 1(b). In this multilayer Perceptron, input corresponds to the output of the
final convolution layer and number of output class labels is the same as that of the classification
task. The hidden layer is given a fixed value as a function of the size of the input feature vector.
In practice, half the size of the input feature vector gives consistent results in all our experiments.
To train the parameters of classifier (Hi ) at different levels, we employ backpropagation using the
RMS prop optimizer with learning rate of 0.0001 and a decay set to 1e−6. We use a batch size of
128 and run training for 200 epochs with sufficient data augmentation including horizontal flips,
width, and height shifts. As shown in Figure 9, our design optimization algorithm converges at
five levels in all cases. Therefore, for each pretrained DNN, we have to train four classifiers: 200
training epochs for only the classifier layer, which has a very negligible overhead (around 2% of
the computational resources needed to train the full network).

Multiobjective BO for LEANet Models. For obtaining the confidence threshold vectors to trade
off energy and accuracy, we employ different multiobjective BO algorithms. We compare our Un-
PAc algorithm with the state-of-the-art PESMO method [16]. We employ the PESMO code from the
BO library Spearmint.1 We use a GP-based statistical model with squared exponential (SE) kernel

in all our experiments. The SE kernel is defined as κ (x ,x ′) = s · exp( −‖x−x ′ ‖2
2σ 2 ), where s and σ cor-

respond to scale and bandwidth parameters. These hyperparameters are estimated after every 10
function evaluations. We initialize the GP models for both objective functions by sampling initial
points at random from a Sobol grid. This initialization procedure is the same as the one in-built in
the Spearmint library. We run for a maximum of 200 iterations.

Pareto Hypervolume (PHV) Metric. PHV is a commonly employed metric to measure the qual-
ity of a given Pareto front [44]. PHV is defined as the volume between a reference point and the
given Pareto front. After each BO iteration t (or number of function evaluations), we report the
difference between the hypervolume of the ideal Pareto front (T ∗) and hypervolume of the es-
timated Pareto front (Tt ) by a given algorithm: PHVdif f = PHV (T ∗) − PHV (Tt ). Since PHVdif f

represents a regret function, when comparing algorithms, the smaller the better (i.e., the estimated
Pareto front is closer to the ideal Pareto front).

1https://github.com/HIPS/Spearmint/tree/PESM.
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Table 1. Number of Levels L and the Fraction of Channels (Width) at

Different Levels When LEANet Optimization Approach Converges

Dataset (DNN) Fraction of Channels (Width)
CIFAR10 (Conv/VGG/MobileNet) 0.55×, 0.625×, 0.75×, 0.875×, 1×
MNIST (Conv/VGG/MobileNet) 0.5×, 0.625×, 0.75×, 0.875×, 1×
SVHN (Conv/VGG/MobileNet) 0.5×, 0.625×, 0.75×, 0.875×, 1×

6.2 Results and Discussion

In this section, we first present the performance of a variant of the state-of-the-art method based on
SlimNets followed by a discussion of improvements achieved by optimized LEANets. Subsequently,
we explain the results of our design optimization methods including its convergence behavior and
comparison of different multiobjective BO algorithms (UnPAc vs. PESMO). Finally, we present
fine-grained analysis of optimized LEANet models.

Energy and Accuracy Tradeoffs with Varying Fraction of Channel. We employ each clas-
sifier at different levels of LEANet as shown in Table 1 to obtain the corresponding energy and
accuracy values by performing static inference over all the testing examples. This gives us one
energy and accuracy values pair for each level. It is easy to see that this setting is conceptually
similar to Slimmable neural networks (SlimNet) with fixed-width values without the corresponding
training to optimize its accuracy averaged for all widths [42]. For example, SlimNet(0.5×) corre-
sponds to a neural network with a fraction of 50% channels. Figure 5 shows the energy and accu-
racy tradeoffs obtained using SlimNets with different widths. In this case, the tradeoff is obtained
at five discrete points as per the widths shown in Table 1 for different datasets. We present the
energy and accuracy tradeoff patterns for different datasets and pretrained DNN models. Slim-

Net(Conv/SVHN): From width 1.0× to 0.875×, we can see that accuracy drops by 2% and energy
reduces by 35%. Similarly, from width 0.875× to 0.75×, accuracy drops by 8% and energy reduces
by 65% w.r.t SlimNet(1.0×). SlimNet(MobileNet/SVHN): We see a 2.5% drop in accuracy and 35%
gain in energy when we move from width 1.0× to 0.875×. SlimNet(MobileNet/CIFAR10): For a
difficult dataset like CIFAR10, from width 1.0× to 0.875×, we can see that accuracy drops by 8.5%
and energy reduces by 38%. Similarly, from width 0.875× to 0.75×, accuracy drops by 22% and
energy reduces by 65% w.r.t SlimNet(1.0×). SlimNet(VGG) and dataset MNIST also show similar
trends. In summary, we see significant gains in energy and relatively smaller losses in accuracy as
we decrease the width in SlimNet irrespective of the difficulty of the dataset.

Optimized LEANet vs. SlimNets. Figure 6 shows the comparison of optimized LEANet and Slim-
Nets as per the five level widths shown in Table 1. We compare them in terms of the Pareto front
for energy and accuracy tradeoffs. We can see that optimized LEANet outperforms SlimNets in
terms of the achievable tradeoffs for all cases. When compared to SlimNets, LEANets achieve a
more fine-grained tradeoff between energy and accuracy by varying the threshold vectors em-
ployed to make classification decisions. We observe that LEANets reach the same accuracy val-
ues as SlimNet(1.0×) with a significant gain in energy. On the SVHN dataset, LEANet(MobileNet)
and LEANet(VGG) achieve around 35% and 45% gains in energy, respectively, for achieving the
maximum possible accuracy, i.e., SlimNet(1.0×). For CIFAR10, the corresponding energy gains are
around 10% and 40%, respectively. We see a similar trend with the LEANet(ConvNet) and MNIST
datasets. We observe that the energy gains we get with MNIST and SVHN are higher than those
with CIFAR10. The significant energy gains using optimized LEANet are explained by the fact
that many easy images are predicted at lower levels and only hard images are classified at higher
levels. Remarkably, our LEANet-based approach is able to get energy savings even on MobileNet,
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Fig. 5. Energy and accuracy of SlimNets with five different widths for each DNN and dataset. For CIFAR10,

we use [0.55× 0.625× 0.75× 0.875× 1×], and for SVHN/MNIST, we use [0.5×, 0.625×, 0.75×, 0.875×, 1×].

which is hand-designed to save energy. In Figure 10, we show the gains in inference time obtained
using optimized LEANets in comparison with the SlimNets baseline and observe a similar trend
as energy.

Energy and Accuracy Tradeoff with Optimized LEANets. Optimized LEANets can achieve
significant energy gains for a small loss in accuracy. Figure 7 shows the configurations that achieve
0.5%, 1.0%, 2.0%, and 5.0% accuracy loss for VGG and MobileNet to determine their energy gains for
the SVHN and CIFAR10 datasets. For SVHN, a simple dataset, we see energy gains of 56% and 50%
with an accuracy loss of 1% for LEANet(VGG) and LEANet(MobileNet), respectively. For CIFAR10,
a more complex dataset, the corresponding energy gains are 40% and 22%, respectively. Similarly,
for a 2% loss of accuracy, we see around 31% to 61% gains in accuracy for LEANets across different
DNN and dataset combinations. The energy gains range from 39% to 70% for a 5% loss in accuracy.
In summary, our approach using LEANet significantly reduces the energy consumption with a
small loss in accuracy when compared to pretrained DNNs, i.e., SlimNets(1.0×).

Optimized LEANet Performance on ImageNet Dataset. To demonstrate the performance of
LEANets on large datasets, we compare the MobileNet performance on ImageNets. In Figure 11(a),
we present the energy and accuracy value pairs for each level for the fractions [0.5×, 0.625×,
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Fig. 6. Energy and accuracy tradeoff results comparing optimized LEANet and SlimNets of different widths.

0.75×, 0.875×, 1×]. Similar to small datasets, from width 1.0× to 0.875×, the accuracy drops by 2%,
resulting in an energy gain of 35%. From width 0.875× to 0.75×, the accuracy drops by another 2.5%
for an energy gain of 30%, thus producing a significant gain in energy for a relatively small loss in
accuracy. In Figure 11(c), we show the comparison of optimized LEANet and SlimNets as per the
five level widths shown in Table 1 in terms of Pareto front of the energy and accuracy tradeoffs.
Similar to other datasets, optimized LEANets not only offer a fine-grained tradeoff between energy
and accuracy but also reach the same accuracy values as SlimNet(1.0×) with a significant gain in
energy. In Figure 11(d), we show the gains in inference time obtained using optimized LEANets and
observe a similar trend as energy. Finally, in Figure 11(b), we present the results for a significant
energy gain for a small loss in accuracy.

Estimating Classifier Thresholds. We first compare the efficiency of multiobjective BO algo-
rithms with a scalarization-based single-objective BO approach. We combine the energy and accu-
racy into a single objective using a scalarization parameter (α ∈ [0, 1]) and run the single-objective
BO algorithm with 10 different values of α in increments of 0.1 until convergence. To achieve the
same Pareto front, our multiobjective BO algorithm (UnPAc) takes only 2% to 7% of the total eval-
uations of candidate threshold vectors taken by single-objective BO as shown in Table 2.
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Fig. 7. Energy gain with different amounts of accuracy loss (0.5%, 1%, 2%, 5%) for optimized LEANet

models.

We now compare UnPAc with PESMO, the state-of-the-art multiobjective BO method. Figure 8
shows the PHV difference as a function of the number of threshold vectors evaluated by the al-
gorithms. We make the following observations: (1) UnPAc converges within 25 evaluations for all
DNN and dataset combinations, except for MobileNet and MNIST, where it converges in 125 eval-
uations, and (2) UnPAc converges to a smaller regret value when compared to PESMO, resulting
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Fig. 8. Results comparing multiobjective BO algorithms UnPAc and PESMO to find the Pareto set of thresh-

old vectors.

in a better Pareto front for energy and accuracy tradeoff. Since UnPAc is consistently shown to be
better than PESMO, we will show all our results using the UnPAc algorithm.

Memory Requirement for Optimized LEANets. Since inference in LEANets occurs incremen-
tally across levels until the confidence threshold to make the classification decision, we need to
store intermediate computations to be reused across levels. In Table 3, we present the total memory
required by the two optimized LEANets, namely, VGG19 and MobileNet, to perform inference for
the ImageNet dataset on Odroid board. An Odroid board has a 2GB DDR memory. The presented
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Fig. 9. Results of optimized LEANet with two levels [0.5×, 1.0×], three levels [0.5×, 0.75×, 1×], four levels

[0.5×, 0.625×, 0.875×, 1×], and five levels [0.5×, 0.625×, 0.75×, 0.875×, 1×] for different DNN and dataset

combinations.

Table 2. Results of UnPAc Algorithm in Terms of the Percentage

of Candidate Threshold Vectors (w.r.t Total Evaluations by

Scalarization-Based BO) Evaluated to Reach Convergence

DNN/Dataset Percentage of Evaluations
VGG (SVHN/MNIST/CIFAR10) 1.25%
MobileNet (SVHN/CIFAR10) 1.25%
MobileNet (MNIST) 6.25%

memory results correspond to the setting when the prediction for a given input example is made
at the last level of the optimized LEANet (worst case). From the results, we can see that the mem-
ory requirement is proportional to the number of layers in the network. A 19-layer VGG network
consumes 21MB of memory and the 28-layer MobileNet consumes 41MB of memory, respectively.
Recall that optimized LEANets make adaptive predictions depending on the hardness of the input
examples: easy examples will be classified at lower levels (large fraction) and only a small number
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Fig. 10. Time and accuracy tradeoff results comparing optimized LEANet and SlimNets of different widths.

Table 3. Memory Requirement of Optimized

LEANet Inference on Odroid Board for

ImageNet Dataset

LEANets Memory (MB) Num Layers
VGG19 22 19
MobileNet 42 28

of hard examples will classified at higher levels (small fraction). Therefore, the memory overhead
will be significantly smaller than the presented results for a large fraction of input examples. Over-
all, the memory overhead of LEANets to improve energy efficiency and inference time is negligible.

Convergence of LEANets Optimization. As explained in Section 5, our iterative optimization
approach considers LEANet with increasing levels and stops at convergence. We employ the Pareto
hypervolume indicator (PHI) metric to define the convergence criterion: the difference between
PHI of Pareto fronts of two consecutive levels l and l + 1 is very small. Table 1 shows the number
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Fig. 11. Optimized LEANets performance for large DNN MobileNet using ImageNet dataset.

of levels L and the fraction of channels at different levels when the LEANet optimization approach
converges for each pretrained DNN and dataset pair. Figure 9 shows the convergence phenomenon
of LEANets for all combinations of DNN and dataset pairs. The LEANet approach is parameter-
ized by the number of levels. For a fixed number of levels (say L), a candidate threshold vector
for each of the L-1 classifiers gives a concrete prediction engine. By executing this prediction en-
gine on a set of input images, we can get the corresponding accuracy and energy consumed: a
point on the normalized EDP vs. accuracy plot. For a fixed number of levels (say L), by varying
the threshold vectors, we get different accuracy and energy values. The Pareto curve corresponds
to the dominant solutions in the energy and accuracy tradeoff space obtained by the UnPAC algo-
rithm. Therefore, we get one Pareto curve for a fixed number of levels L. We make the following
observations: (1) going from two to three levels of LEANet, we see a significant improvement in
the achievable energy and accuracy tradeoff, and (2) as we move beyond level 3, the improvements
are reduced and converge in at most five levels. This is a practically beneficial result that shows
that we can apply our design optimization approach to large-scale DNNs.

LEANet with Varying Accuracy. We perform fine-grained analysis to understand how LEANet
achieved the above shown energy gains. We present this analysis for LEANet(MobileNet/
CIFAR10), noting that analysis for other cases shows similar trends.
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Fig. 12. Results for LEANet(MobileNet/CIFAR10) with varying accuracy loss.

The energy gains can be explained by understanding how many images from the testing set
are classified at different levels. We make the following observations from Figure 12(a). With an
accuracy loss of 50%, almost all the images are predicted at level 1 as the simplest classifier con-
sumes the least energy. As the accuracy loss decreases, the number of images predicted by levels
2, 3, 4, and 5 slowly increase to achieve better accuracy. The key observation is that with accu-
racy loss of 1%, unlike SlimNet(1.0×), where all the images get predicted at level 5, we see that the
10,000 images are distributed as 5,512, 2,768, 1,453, 193, and 74 images across levels 5, 4, 3, 2, and
1, respectively. Since roughly 45% of images are predicted using a lower level, optimized LEANet
models are able to achieve significant energy gains.

From Figure 12(b), we observe that the average prediction time gradually increases with a de-
crease in accuracy loss, which is explained by more and more images getting predicted at higher
levels. With an accuracy loss of 35%, the prediction time of inference is 55% lesser when compared
to the pretrained DNN, and with an accuracy loss of 5%, we save around 25% in prediction time.
Therefore, in scenarios where we require real-time predictions, we can trade off the accuracy of
LEANet for the target time-bound constraints.

Table 4 shows a sample Pareto front of LEANet(MobileNet) with five levels on the CIFAR10
dataset. It shows the candidate threshold vectors for variablesT1,T2,T3,T4 obtained by the UnPAC
algorithm.

7 CONCLUSIONS AND FUTURE WORK

We introduced a novel approach based on the LEANets formalism to trade off energy and accuracy
of inference on mobile platforms at runtime. We also propose a principled algorithm to find opti-
mized LEANet configurations by reusing pretrained neural networks. Our LEANet-based approach
can be used as a complementary wrapper for other existing techniques to deploy deep neural net-
works on mobile devices. Results with optimized LEANets constructed from pretrained networks
including VGG and MobileNet on image classification datasets including ImageNet show signifi-
cant energy gains with minimal loss in accuracy. Future work includes applying dynamic resource
management techniques [25, 29] and task mapping optimization based on machine learning [8, 23,
35] to further improve the power and thermal tradeoffs in heterogeneous mobile SoCs, and gen-
eralizing the LEANets formalism from simple classification tasks to structured output prediction
tasks [10, 11, 26] including semantic segmentation and scene understanding that commonly arise
in robotics and autonomous driving applications.
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Table 4. Results of Pareto Front Obtained Using

LEANet(MobileNet) with Five Levels on CIFAR10 Dataset

Accuracy Norm. EDP T4 T3 T2 T1
0.864 0.998 1.0 1.0 1.0 1.0
0.859 0.851 0.985 0.880 1.0 1.0
0.849 0.742 0.734 1.0 0.836 0.999
0.836 0.706 0.787 0.981 0.690 0.578
0.801 0.607 0.416 0.922 0.971 0.868
0.758 0.556 0.058 0.952 0.947 0.500
0.725 0.442 0.067 0.457 0.967 0.967
0.595 0.366 0.016 0.958 0.817 0.256
0.477 0.212 0.862 0.849 0.206 0.749
0.442 0.177 0.017 0.958 0.014 0.736
0.334 0.133 0.991 0.856 0.985 0.065

We show the candidate threshold vectors for variables T1, T2, T3, and

T4 obtained by UnPAC to achieve different energy and accuracy trade-

offs.
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