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Abstract

We consider the problem of multi-objective (MO) blackbox
optimization using expensive function evaluations, where the
goal is to approximate the true Pareto set of solutions while
minimizing the number of function evaluations. For example,
in hardware design optimization, we need to find the designs
that trade-off performance, energy, and area overhead using
expensive simulations. We propose a novel uncertainty-aware
search framework referred to as USeMO to efficiently select
the sequence of inputs for evaluation to solve this problem.
The selection method of USeMO consists of solving a cheap
MO optimization problem via surrogate models of the true
functions to identify the most promising candidates and pick-
ing the best candidate based on a measure of uncertainty. We
also provide theoretical analysis to characterize the efficacy
of our approach. Our experiments on several synthetic and six
diverse real-world benchmark problems show that USeMO
consistently outperforms the state-of-the-art algorithms.

1 Introduction

Many engineering and scientific applications involve mak-
ing design choices to optimize multiple objectives. Some ex-
amples include tuning the knobs of a compiler to optimize
performance and efficiency of a set of software programs;
and designing new materials to optimize strength, elastic-
ity, and durability. There are two challenges in solving these
kind of optimization problems: 1) The objective functions
are unknown and we need to perform expensive experiments
to evaluate each candidate design. For example, performing
computational simulations and physical lab experiments for
compiler optimization and material design applications re-
spectively. 2) The objectives are conflicting in nature and all
of them cannot be optimized simultaneously. Therefore, we
need to find the Pareto optimal set of solutions. A solution
is called Pareto optimal if it cannot be improved in any of
the objectives without compromising some other objective.
The overall goal is to approximate the true Pareto set while
minimizing the number of function evaluations.

Bayesian Optimization (BO) (Shahriari et al. 2016) is an
effective framework to solve blackbox optimization prob-
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lems with expensive function evaluations. The key idea be-
hind BO is to build a cheap surrogate model (e.g., Gaus-
sian Process (Williams and Rasmussen 2006)) using the
real experimental evaluations; and employ it to intelligently
select the sequence of function evaluations using an ac-
quisition function, e.g., expected improvement (EI). There
is a large body of literature on single-objective BO algo-
rithms (Shahriari et al. 2016) and their applications includ-
ing hyper-parameter tuning of machine learning methods
(Snoek, Larochelle, and Adams 2012; Kotthoff et al. 2017).
However, there is relatively less work on the more challeng-
ing problem of BO for multiple objectives.

Prior work on multi-objective BO is lacking in the follow-
ing ways. Many algorithms reduce the problem to single-
objective optimization by designing appropriate acquisition
functions, e.g., expected improvement in Pareto hypervol-
ume (Knowles 2006; Emmerich and Klinkenberg 2008). Un-
fortunately, this choice is sub-optimal as it is hard to capture
the trade-off between multiple objectives and can potentially
lead to aggressive exploitation behavior. Additionally, algo-
rithms to optimize Pareto Hypervolume (PHV) based ac-
quisition functions scale poorly as the number of objectives
and dimensionality of input space grows. PESMO is a state-
of-the-art information-theoretic approach that relies on the
principle of input space entropy search (Herndndez-Lobato
et al. 2016). However, it is computationally expensive to op-
timize the acquisition function behind PESMO. A series of
approximations are performed to improve the efficiency po-
tentially at the expense of accuracy.

In this paper, we propose a novel Uncertainty-aware
Search framework for optimizing Multiple Objectives
(USeMO) to overcome the drawbacks of prior methods. The
key insight behind USeMO is a two-stage search proce-
dure to improve the accuracy and computational-efficiency
of sequential decision-making under uncertainty for select-
ing candidate inputs for evaluation. USeMO selects the in-
puts for evaluation as follows. First, it solves a cheap MO
optimization problem defined in terms of the acquisition
functions (one for each unknown objective) to identify a list
of promising candidates. Second, it selects the best candi-
date from this list based on a measure of uncertainty. Unlike
prior methods, USeMO has several advantages: a) Does not



reduce to single objective optimization problem; b) Allows
to leverage a variety of acquisition functions designed for
single objective BO; c¢) Computationally-efficient to solve
MO problems with many objectives; and d) Improved uncer-
tainty management via two-stage search procedure to select
the candidate inputs for evaluation.

Contributions. The main contributions of this paper are:

e Developing a principled search-based BO framework re-
ferred as USeMO to solve multi-objective blackbox opti-
mization problems.

e Theoretical analysis of the USeMO framework in terms
of asymptotic regret bounds.

e Comprehensive experiments over synthetic and six di-
verse real-world benchmark problems to show the accu-
racy and efficiency improvements over existing methods.

2 Background and Problem Setup

Bayesian Optimization Framework. Let X C R? be an
input space. We assume an unknown real-valued objective
function F' : X — R, which can evaluate each input z € X
to produce an evaluation y = F'(x). Each evaluation F'(x)
is expensive in terms of the consumed resources. The main
goal is to find an input 2* € X that approximately opti-
mizes F' via a limited number of function evaluations. BO
algorithms learn a cheap surrogate model from training data
obtained from past function evaluations. They intelligently
select the next input for evaluation by trading-off exploration
and exploitation to quickly direct the search towards optimal
inputs. The three key elements of BO framework are:

1) Statistical Model of F'(x). Gaussian Process (GP)
(Williams and Rasmussen 2006) is the most commonly used
model. A GP over a space X is a random process from X to
R. It is characterized by a mean function p : X x X — R
and a covariance or kernel function . If a function F' is
sampled from GP(u, k), then F'(z) is distributed normally
N (u(z), 5(z, z)) for a finite set of inputs from x € X.

2) Acquisition Function (AF) to score the utility of eval-
uating a candidate input x € & based on the statistical
model. Some popular acquisition functions include expected
improvement (EI), upper confidence bound (UCB), lower
confidence bound (LCB), and Thompson sampling (TS). For
the sake of completeness, we formally define the acquisition
functions employed in this work noting that any other acqui-
sition function can be employed within USeMO.

UCB(x) = u(x) + /0 (x) ()
LCB(x) = p(z) — B%0(x) (2)
TS(x) = f(z) with f(.) ~ GP 3)
EI(2) = o(x)(0®(a) + 8(a)), a = T (4

where p(z) and o(x) correspond to the mean and standard
deviation of the prediction from statistical model, and repre-
sent exploitation and exploration scores respectively; [ is a
parameter that balances exploration and exploitation; GP is
the statistical model learned from past observations; 7 is the

best uncovered input; and ® and ¢ are the CDF and PDF of
normal distribution respectively.

3) Optimization Procedure to select the best scoring
candidate input according to AF via statistical model, e.g.,
DIRECT (Jones, Perttunen, and Stuckman 1993).

Multi-Objective Optimization (MOO) Problem. Without
loss of generality, our goal is to minimize k > 2 real-valued
objective functions Fi(z), Fa(x),--- , Fi(z) over continu-
ous space X C R<. Each evaluation of an input z € X
produces a vector of objective values Y = (y1,y2, -, yx)
where y; = Fy(x) for all i € {1,2,- k} We say that
a point x Pareto-dominates another pomt ' if Fi(x) <
F;(2) Vi and there exists some j € {1,2,---, k} such that
Fj(z) < Fj(z'). The optimal solution of MOO problem is
a set of points X* C X such that no point ' € X \ A™*
Pareto-dominates a point z € X*. The solution set X' is
called the Pareto set and the corresponding set of function
values is called the Pareto front. Our goal is to approximate
X* while minimizing the number of function evaluations.

3 Related work

There is a family of model-based MO optimization algo-
rithms that reduce the problem to single-objective opti-
mization. ParEGO method (Knowles 2006) employs ran-
dom scalarization for this purpose: scalar weights of k ob-
jective functions are sampled from a uniform distribution
to construct a single-objective function and expected im-
provement is employed as the acquisition function to se-
lect the next input for evaluation. ParEGO is simple and
fast, but more advanced approaches often outperform it. Re-
cently, (Paria, Kandasamy, and Pé6czos 2019) proposed a
scalarization based method focusing on a specialized set-
ting, where preference over objective functions is specified
as input. The preference is expressed in terms of the values
of the scalars. Many methods optimize the Pareto hypervol-
ume (PHV) metric (Emmerich and Klinkenberg 2008) that
captures the quality of a candidate Pareto set. This is done
by extending the standard acquisition functions to PHV ob-
jective, e.g., expected improvement in PHV (Emmerich and
Klinkenberg 2008) and probability of improvement in PHV
(Picheny 2015). Unfortunately, algorithms to optimize PHV
based acquisition functions scale very poorly and are not
feasible for more than two objectives. To improve scalabil-
ity, methods to reduce the search space are also explored
(Ponweiser et al. 2008). A common drawback of this family
of algorithms is that reduction to single-objective optimiza-
tion can be sub-optimal: it is hard to capture the trade-off
between multiple objectives and can potentially lead to more
exploitation behavior.

PAL (Zuluaga et al. 2013) and PESMO (Hernandez-
Lobato et al. 2016) are principled algorithms based on infor-
mation theory. PAL tries to classify the input points based
on the learned models into three categories: Pareto opti-
mal, non-Pareto optimal, and uncertain. In each iteration, it
selects the candidate input for evaluation towards the goal
of minimizing the size of the uncertain set. PAL provides
theoretical guarantees, but it is only applicable for input
space X with finite set of discrete points. PESMO is a



state-of-the-art method based on entropy optimization. It it-
eratively selects the input that maximizes the information
gained about the true Pareto set. Unfortunately, it is com-
putationally expensive to optimize the acquisition function
employed in PESMO. Some approximations are performed
to improve the efficiency of acquisition function optimiza-
tion, but can potentially degrade accuracy and result in loss
of information-theoretical advantage. MESMO (Belakaria,
Deshwal, and Doppa 2019) is a concurrent work based on
output space entropy search that improves over PESMO.

In the domain of analog circuit design optimization, (Lyu
et al. 2018) developed a technique that conducts an opti-
mization over the posterior means of the GPs using LCB
acquisition function. It is an application-specific solution,
whereas we show that USeMO generalizes for six diverse
application domains including hyper-parameter tuning in
neural networks, compiler settings, network-on-chip, and
materials design. Additionally, we show consistently better
performance using multiple acquisition functions.

4 Uncertainty-Aware Search Framework

In this section, we provide the details of USeMO framework
for solving multi-objective optimization problems. First, we
provide an overview of USeMO followed by the details of its
two main components. Subsequently, we provide theoretical
analysis of USeMO in terms of asymptotic regret bounds.

4.1 Overview of USeMO Framework

As shown in Figure 1, USeMO is a iterative algorithm that
involves four key steps. First, We build statistical mod-
els My, Ms,---, My, for each of the k objective func-
tions from the training data in the form of past func-
tion evaluations. Second, we select a set of promising
candidate inputs A} by solving a cheap MO optimiza-
tion problem defined using the statistical models. Specifi-
cally, multiple objectives of the cheap MO problem corre-
spond to AF(My, z), AF(My, x), -, AF(My, x) respec-
tively. Any standard acquisition function AF from single-
objective BO (e.g., EI, TS) can be used for this purpose.
The Pareto set &), corresponds to the inputs with differ-
ent trade-offs in the utility space for £ unknown functions.
Third, we select the best candidate input x, € &), from the
Pareto set that maximizes some form of uncertainty mea-
sure for evaluation. Fourth, the selected input x, is used
for evaluation to get the corresponding function evaluations:
n=F1(zs), y2=Fo(xy), -, ys=Fk(xs). The next iteration
starts after the statistical models M7, Mo, -+ | My, are up-
dated using the new training example: input is z¢ and out-
putis (y1,y2, - -+, yx). Algorithm 1 provides the algorithmic
pseudocode for USeMO.

Advantages. USeMO has many advantages over prior meth-
ods. 1) Provides flexibility to plug-in any acquisition func-
tion for single-objective BO. This allows us to leverage ex-
isting acquisition functions including EI, TS, and LCB. 2)
Unlike methods that reduce to single-objective optimization,
USeMO has a better mechanism to handle uncertainty via a
two-stage procedure to select the next candidate for eval-
uation: pareto set obtained by solving cheap MO problem

contains all promising candidates with varying trade-offs in
the utility space and the candidate with maximum uncer-
tainty from this list is selected. 3) Computationally-efficient
to solve MO problems with many objectives.

Multiple f Learning \ Library of Acquisition Functions
Blackbox Statistical Models EILCB,PL,TS ..
Functions ! Y
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Construct Cheap MO problem
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Figure 1: Overview of the USeMO framework for two ob-
jective functions (k=2). We build statistical models M,
M, for the two objective functions Fi(z) and F(x). In
each iteration, we perform the following steps. First, we
construct a cheap MO problem using the statistical mod-
els M; and M, and an input acquisition function AF:
mingey (AF(My,z), AF(My,z)) and employ a cheap
MO solver to find the promising candidate inputs in the form
of Pareto set. Second, we select the best candidate input x4
from the Pareto set based on a measure of uncertainty. Fi-
nally, we evaluate the functions for z to get Ys=(y1, y2) and
update the statistical models using the new training example.

4.2 Key Algorithmic Components of USeMO

The two main algorithmic components of USeMO frame-
work are: selecting most promising candidate inputs by solv-
ing a cheap MO problem and picking the best candidate via
uncertainty maximization. We describe their details below.

Selection of promising candidate inputs. We employ
the statistical models M;, My, -+, M}, towards the goal
of selecting promising candidate inputs as follows. Given
a acquisition function AF (e.g., EI), we construct a
cheap multi-objective optimization problem with objectives
AF(My,x), AF(Ma, 2), -+, AF(My, x), where M, is the
statistical model for unknown function Fj. Since we present
the framework as minimization for the sake of technical
exposition, all AFs will be minimized. The Pareto set &),
obtained by solving this cheap MO problem represents the
most promising candidate inputs for evaluation.

Xp < Hél)r(l (AF(Ml,JU), cee 7AF(./\/lk, 17)) (5)

Each acquisition function AF(M;, ) is dependent on the
corresponding surrogate model M; of the unknown ob-



Algorithm 1 USeMO Framework
Input: X, input space; Fy(x), Fa(z), -, Fi(x), k black-
box objective functions; AF, acquisition function; and 7}, 4,
maximum no. of iterations
1: Initialize training data of function evaluations D
2: Initialize statistical models My, Ms, -, M}, from D
3: for each iteration t=1 to 1},,,, do
4: /[ Solve cheap MO problem with objectives
AF(My, x), -+, AF(My, x) to get candidate inputs
Xp ¢ mingex (AF(My,z), -, AF(My, x))
/1 Pick the candidate input with maximum uncertainty
Select ;41 « argmazrycx, Up, ()
Evaluate x441: Y41 < (F1(2e41), -, Fe(xi41))
9:  Aggregate data: D < D U {(x¢41, Yiy1)}
10:  Update models My, Ma,--- , My using D
I: t+t+1
12: end for
13: return Pareto set and Pareto front of D

jective function F;. Hence, each acquisition function will
carry the information of its associated objective function.
As iterations progress, using more training data, the mod-
els My, Mg, -, My, will better mimic the true objec-
tive functions Fi, Fs,--- , Fi. Therefore, the Pareto set of
the acquisition function space (solution of Equation 5) be-
comes closer to the Pareto set of the true functions X'*
with increasing iterations. Intuitively, the acquisition func-
tion AF(M;, x) corresponding to unknown objective func-
tion F; tells us the utility of a point x for optimizing F;.
The input minimizing AF(M;, =) has the highest utility for
F;, but may have a lower utility for a different function F;
(j # ©). The utility of inputs for evaluation of F} is captured
by its own acquisition function AF(M , z). Therefore, there
is a trade-off in the utility space for all £ different functions.
The Pareto set X, obtained by simultaneously optimizing
acquisition functions for all £ unknown functions will cap-
ture this utility trade-off. As a result, each input x € X,
is a promising candidate for evaluation towards the goal of
solving MOO problem. USeMO employs the same acquisi-
tion function for all k objectives. The main reason is to give
equivalent evaluation for all functions in the Pareto front
(PF) at each iteration. If we use different AFs for differ-
ent objectives, the sampling procedure would be different.
Additionally, the values of various AFs can have consider-
ably different ranges. Thus, this can result in an unbalanced
trade-off between functions in the cheap PF leading to the
same unbalance in our final PF.

Cheap MO solver. We employ the popular NSGA-II al-
gorithm (Deb et al. 2002) to solve the MO problem with
cheap objective functions noting that any other algorithm
can be used to similar effect. NSGA-II evaluates the cheap
objective functions at several inputs and sorts them into a hi-
erarchy of sub-groups based on the ordering of Pareto dom-
inance. The similarity between members of each sub-group
and their Pareto dominance is used by the algorithm to move
towards more promising parts of the input space.

Picking the best candidate input. We need to select the

best input from the Pareto set &), obtained by solving the
cheap MO problem. All inputs in &), are promising in the
sense that they represent the trade-offs in the utility space
corresponding to different unknown functions. It is critical
to select the input that will guide the overall search towards
the goal of quickly approximating the true Pareto set X'*. We
employ a uncertainty measure defined in terms of the statisti-
cal models M1, Mo, - | M to select the most promising
candidate input for evaluation. In single-objective optimiza-
tion case, the learned model’s uncertainty for an input can be
defined in terms of the variance of the statistical model. For
multi-objective optimization case, we define the uncertainty
measure as the volume of the uncertainty hyper-rectangle.

Up, () =VOL({(LCB(M;,z), UCB(M;,2)}i-;) (6)

where LCB( M, x) and UCB (M, z) represent the lower
confidence bound and upper confidence bound of the statis-
tical model M; for an input = as defined in equations 2
and 3; and [, is the parameter value to trade-off exploitation
and exploration at iteration t. We employ the adaptive rate
recommended by (Srinivas et al. 2009) to set the 3; value
depending on the iteration number ¢. We measure the uncer-
tainty volume measure for all inputs z € X}, and select the
input with maximum uncertainty for function evaluation.

Tpy1 = argmazgex, Ug, (z) )

4.3 Theoretical Analysis

In this section, we provide a theoretical analysis for the be-
havior of USeMO approach. MOO literature has multiple
metrics to assess the quality of Pareto front approximation.
Most commonly employed metrics include Pareto Hypervol-
ume (PHV) indicator (Zitzler 1999), R, indicator, and ep-
silon indicator (Picheny 2015). Both epsilon and Ry metrics
are instances of distance-based regret, a natural generaliza-
tion of the regret measure for single-objective problems. We
consider the case of LCB acquisition function and extend
the cumulative regret measure for single-objective BO pro-
posed in the well-known work by Srinivasan et al., (Srinivas
et al. 2009) to prove convergence results. However, our ex-
perimental results show the generality of USeMO with dif-
ferent acquisition functions including TS and EI. Prior work
(Picheny 2015) has shown that R,, epsilon, and PHV indi-
cator show similar behavior. Indeed, our experiments vali-
date this claim for UseMO. We present the theoretical anal-
ysis of USeMO in terms of asymptotic regret bounds. Since
the point selected in the proof is arbitrary, it holds for all
points. Hence, the regret bound can be easily adapted for
both epsilon and Ry metrics.

Let z* be a point in the optimal Pareto set X'*. Let x; be a
point in the Pareto set &} estimated by USeMO approach by
solving cheap MO problem at the t** iteration. Let R(x*) =
IRy, , Ry|l, where R; = S/ (Fy(x;) — Fy(«*)) and
|I.|| is the norm of the k-vector and T, is the maximum
number of iterations. We discuss asymptotic bounds for this
measure using GP-LCB as an acquisition function over the
input set X'. We provide proof details in Appendix 1.

Lemma 1 Given § € (0,1) and 3; = 2log(|X |7%t2/66), the



following holds with probability 1 — §:
() — pri1(2)] < B 021 () ®)
foralll <i<k,x € X,andt > 1 )

Theorem 1 If X; be the Pareto set obtained by solving the
cheap multi-objective optimization problem at ¢-th iteration,
then the following holds with probability 1 — 6,

k
R(@*) < 4| CTomawBrymn Vi, . (10)

i=1

where C'is a constant and ~, is the maximum infor-
mation gain about function F; after 7,,, iterations. Essen-
tially, this theorem suggests that since each term R; in R(z™*)
grows sub-linearly in the asymptotic sense, R(z*) which is
defined as the norm also grows sub-linearly. To the best of
our knowledge, this is the first work to prove a sub-linear
regret for multi-objective BO setting. We proved this re-
sult using the same AF for all objectives. This is a strong
theoretical-proof that USeMO is already the best in this set-
ting. This is one of the strong reasons that justifies the use of
single AF within USeMO framework.

S Experiments and Results

In this section, we describe our experimental setup and
present results of USeMO on diverse benchmarks.

5.1 Experimental Setup

Multi-objective BO algorithms. We compare USeMO
with existing methods including ParEGO (Knowles 2006),
PESMO (Hernandez-Lobato et al. 2016), SMSego (Pon-
weiser et al. 2008), EHI (Emmerich and Klinkenberg 2008),
and SUR (Picheny 2015). We employ the code for these
methods from the BO library Spearmint!. We present the
results of USeMO with EI and TS acquisition functions —
USeMO-TS and USeMO-EI — noting that results show sim-
ilar trend with other acquisition functions. We did not in-
clude PAL (Zuluaga et al. 2013) as it is known to have simi-
lar performance as SMSego (Herndndez-Lobato et al. 2016)
and works only for finite discrete input space.

Statistical models. We use a GP based statistical model with
squared exponential (SE) kernel in all our experiments. The
hyper-parameters are estimated after every 10 function eval-
uations. We initialize the GP models for all functions by
sampling initial points at random from a Sobol grid using
the in-built procedure in the Spearmint library. GPs are fit-
ted using normalized objective function values to guarantee
that all objectives are within the same range.

Cheap MO solver. We employ the popular NSGA-II al-
gorithm to solve the cheap MO problem noting that other
solvers can be used to similar effect. For NSGA-II, the most
important parameter is the number of function calls. We ex-
perimented with values varying from 1,000 to 20,000. We
noticed that increasing this number does not result in any
performance improvement for USeMO. Therefore, we fixed
it to 1500 for all our experiments.

"https://github.com/HIPS/Spearmint/tree/PESM

Name Benchmark functions k d
BC-2,2 Branin-Currin 2 2
ZDT1 Zitzler,Deb, Thiele 2 4
AS-2,5 Ackley-Sphere 2 5
AR-2,5 Ackley-Rosenbrock 2 5
RS-2,5 Rosenbrock-Sphere 2 5
ARS-3,5 Ackley-Rosenbrock-Sphere 3 5
DTLZ1 Deb,Thiele,Laumanns,Zitzler 4 3
PRDZPS-6,6 Powell-Rastrigin-Dixon 6 6

Zakharov-Perm-SumSquares

Table 1: Details of synthetic benchmarks: Name, benchmark
functions, no. of objectives &, and input dimension d.

Synthetic benchmarks. We construct several synthetic
multi-objective (MO) benchmark problems using a com-
bination of commonly employed benchmark function for
single-objective optimization? and two of the known gen-
eral MO benchmarks. We provide the complete details of
these MO benchmarks in Table 1. Due to space constraints
we present some of the results in the appendix

Real-world benchmarks. We employed six diverse real-
world benchmarks for our experiments.

1) Hyper-parameter tuning of neural networks. Our
goal is to find a neural network with high accuracy and low
prediction time. We optimize a dense neural network over
the MNIST dataset (LeCun et al. 1998). Hyper-parameters
include the number of h

idden layers, the number of neurons per layer, the dropout
probability, the learning rate, and the regularization weight
penalties /; and l. We employ 10K instances for validation
and 50K instances for training. We train the network for 100
epochs for evaluating each candidate hyper-parameter val-
ues on validation set. We apply a logarithm function to error
rates due to their small values.

2) SW-LLVM compiler settings optimization. SW-
LLVM is a data set with 1024 compiler settings (Siegmund
et al. 2012) determined by d=10 binary inputs. The goal of
this experiment is to find a setting of the LLVM compiler
that optimizes the memory footprint and performance on a
given set of software programs. Evaluating these objectives
is very costly and testing all the settings takes over 20 days.

3) SNW sorting network optimization. The data set
SNW was first introduced by (Zuluaga, Milder, and Piischel
2012). The goal is to optimize the area and throughput for
the synthesis of a field-programmable gate array (FPGA)
platform. The input space consists of 206 different hardware
design implementations of a sorting network. Each design is
defined by d = 4 input variables.

4) Network-on-chip (NOC) optimization. The design
space of NoC dataset (Almer, Topham, and Franke 2011)
consists of 259 implementations of a tree-based network-
on-chip. Each configuration is defined by d = 4 variables:
width, complexity, FIFO, and multiplier. We optimize en-

*https://www.sfu.ca/ ssurjano/optimization.html
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Figure 2: Results of different multi-objective BO algorithms including USeMO on synthetic benchmarks. The log of the hyper-
volume difference and log of Ry Indicator are shown with different number of function evaluations (iterations). The mean and
variance of 10 different runs are plotted. The tile of each figure refers to the benchmark name defined in Table 1.

ergy and runtime of application-specific integrated circuits rations of shape memory alloys (Gopakumar et al. 2018).
(ASICs) on the Coremark benchmark workload. The goal is to optimize thermal hysteresis and transition
temperature of alloys. Each design is defined by d = 6 input

5) Shape memory alloys (SMA) optimization. The ma- variables (e.g., atomic size of the alloying elements includ-

terials dataset SMA consists of 77 different design configu-
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Figure 3: Results of different multi-objective BO algorithms including USeMO on real-world benchmarks. The log of the
hypervolume difference and Log R5 Indicator are shown with different number of function evaluations (iterations). The mean
and variance of 10 different runs are plotted. The tile of each figure refers to the name of real-world benchmarks.

ing metallic radius and valence electron number).

6) Piezo-electric materials (PEM) optimization. PEM
is a materials dataset consisting of 704 configurations of
Piezoelectric materials (Gopakumar et al. 2018). The goal
is to optimize piezoelectric modulus and bandgap of these
material designs. Each design configuration is defined by d
=7 input variables (e.g., ionic radii, volume, and density).

Evaluation metrics. We employ two common metrics. The
Pareto hypervolume (PHV) metric is commonly employed
to measure the quality of a given Pareto front (Zitzler 1999).
PHYV is defined as the volume between a reference point and
the given Pareto front (set of non-dominated points). After
each iteration ¢ , we report the difference between the hy-
pervolume of the ideal Pareto front ()*) and hypervolume
of the estimated Pareto front ();) by a given algorithm. The
Ry Indicator is the average distance between the ideal Pareto

front (J*) and the estimated Pareto front ();) by a given al-
gorithm (Picheny 2015). The Ry metric degenerates to the
regret metric presented in our theoretical analysis.

5.2 Results and Discussion

USeMO vs. State-of-the-art. We evaluate the performance
of USeMO with different acquisition functions including
TS, EI, and LCB. Due to space constraints, we show the
results for USeMO with TS and EI, two very different ac-
quisition functions, to show the generality and robustness
of our approach. We also provide more results with LCB
acquisition function in Appendix. Figure 2 and Figure 3
show the results of all multi-objective BO algorithms in-
cluding USeMO for synthetic and real-world benchmarks
respectively. We make the following empirical observations:
1) USeMO consistently performs better than all baselines



and also converges much faster. For blackbox optimization
problems with expensive function evaluations, faster con-
vergence has practical benefits as it allows the end-user
or decision-maker to stop early. 2) Rate of convergence of
USeMO varies with different acquisition functions (i.e., TS
and EI), but both cases perform better than baseline meth-
ods. 3) The convergence rate of PESMO becomes slower as
the dimensionality of input space grows for a fixed number
of objectives, whereas USeMO maintains a consistent con-
vergence behavior. 4) Performance of ParEGO is very in-
consistent. In some cases, it is comparable to USeMO, but
performs poorly on many other cases. This is expected due
to random scalarization.

Uncertainty maximization vs. random selection. Recall
that USeMO needs to select one input for evaluation from
the promising candidates obtained by solving a cheap MO
problem. We compare uncertainty maximization and ran-
dom policy for selection in figure 4 . We observe that un-
certainty maximization performs better than random pol-
icy. However, in some cases, random policy is competitive,
which shows that all candidates from the solution of cheap
MO problem are promising and improve the efficiency.

Comparison of acquisition function optimization time.
We compare the runtime of acquisition function optimiza-
tion for different multi-objective BO algorithms including
USeMO. We do not account for the time to fit GP models
since it is same for all the algorithms. We measure the av-
erage acquisition function optimization time across all itera-
tions. we run all experiments on a machine with the follow-
ing configuration: Intel i17-7700K CPU @ 4.20GHz with 8
cores and 32 GB memory. Table 2 shows the time in seconds
for synthetic benchmarks. We can see that USeMO scales
significantly better than state-of-the-art method PESMO.
USeMO is comparable to ParEGO, which relies on scalar-
ization to reduce to acquisition optimization in single-
objective BO. The time for PESMO and SMSego increases
significantly as the number of objectives grow beyond two.

MO Algorithms
USeMO PESMO ParEGO SMSego
Benchmarks

BC-2,2 | 41£0.7 13.6432 42+ 1.6 80.5+ 2.1
ZDT1 ‘ 5+0.3 14.1£2.1 48+12 84+ 6.7
RS-2,5 | 5.3+1.4 16.9+1.9 57+ 1.1 90.24+8.2
ARS-3,5 | 7.0£15 34.8+£126 67+1.4 135.0 +12.4
DTLZ1 | 9£2.4 63.6+10.1  8.2+0.9 215 £16.2
PRDZPS-6,6 | 139+ 1.1 1104+17.8 1234+23 30043 +£35.7

Table 2: Acquisition function optimization time in secs.

6 Summary and Future Work

We introduced a novel framework referred as USeMO to
solve multi-objective Bayesian optimization problems. The
key idea is a two-stage search procedure to improve the ac-
curacy and efficiency of sequential decision-making under
uncertainty for selecting inputs for evaluation. Our experi-
mental results on diverse benchmarks showed that USeMO
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Figure 4: Comparison of USeMO with uncertainty maxi-
mization and random policy for selecting the best input from
Pareto set obtained by solving cheap MO problem. We plot
the log of the hypervolume difference for several synthetic
benchmark problems as a function of the number of evalua-
tions. The mean and variance of 10 different runs are plotted.
The figure title refers to the benchmark name defined in ta-
ble 1. (Better seen in color).

yields consistently better results than state-of-the-art meth-
ods and scales gracefully to large-scale MO problems. Fu-
ture work includes using USeMO to solve novel engineering
and scientific applications (Belakaria et al. 2020).
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