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Abstract

We consider the problem of optimizing expensive black-box
functions over discrete spaces (e.g., sets, sequences, graphs).
The key challenge is to select a sequence of combinatorial
structures to evaluate, in order to identify high-performing
structures as quickly as possible. Our main contribution is to
introduce and evaluate a new learning-to-search framework for
this problem called L2S-DISCO. The key insight is to employ
search procedures guided by control knowledge at each step to
select the next structure and to improve the control knowledge
as new function evaluations are observed. We provide a con-
crete instantiation of L2S-DISCO for local search procedure
and empirically evaluate it on diverse real-world benchmarks.
Results show the efficacy of L2S-DISCO over state-of-the-art
algorithms in solving complex optimization problems.

1 Introduction
Many scientific and engineering applications involve optimiz-
ing discrete spaces (e.g., sets, sequences, graphs) guided by
expensive black-box function evaluations. For example, in
the application of finding alloys with high creep-resistance,
we need to search over subsets of a given set of candidate
metals guided by physical lab experiments. Similarly, for
designing application-specific integrated circuits, we need to
search over candidate placements of processing elements and
communication links to optimize performance as measured
by expensive computational simulations.

There is very limited work on optimizing discrete spaces
via expensive evaluations as discussed in Section 3. A popular
and effective framework for optimizing expensive functions
is Bayesian optimization (BO) (Shahriari et al. 2016). The key
idea behind BO is to estimate a cheap surrogate model, e.g.,
a Gaussian Process (Rasmussen and Williams 2006), based
on observed outcomes, which can be used as guidance for
intelligently selecting the next evaluation points. Despite the
huge successes of BO (Snoek, Larochelle, and Adams 2012;
Thornton et al. 2013), current approaches focus primarily on
continuous optimization spaces and there is little principled
work on discrete spaces. The first challenge in moving from
continuous spaces to discrete spaces is to define an effective
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surrogate model over combinatorial structures. The second
challenge is, given such a surrogate model, to search through
the combinatorial space to identify the most promising next
structure to evaluate. Prior methods either employ relatively
simple surrogate models that admit tractable optimization
solvers for this search or use complex models with highly-
heuristic search methods. Ideally, we would like an approach
that can work with more complex models while following a
more principled and effective search approach.

In this paper, we introduce a new learning-to-search (L2S)
framework, called L2S-DISCO, for selecting the sequence
of combinatorial structures to evaluate during optimization.
L2S-DISCO employs a combinatorial search procedure (e.g.,
local search with multiple restarts) guided by search control
knowledge (e.g., heuristic function to select good starting
states), and continuously improves the control knowledge
using machine learning. Our approach can be viewed as
online learning for hyper-heuristic search (Burke et al. 2013).
From this perspective, a primary contribution of this paper is
the first application of hyper-heuristic search to BO.

Our search-based perspective allows us to directly tune the
search via learning during the optimization process and has
several potential advantages: 1) High flexibility in defining
search spaces over structures; 2) Easily handles domain con-
straints to search over “valid” structures; 3) Allows the incor-
poration of prior knowledge; and 4) Puts forth a new family
of BO-style approaches with many future instantiations to
explore in future work. We provide a concrete instantiation of
L2S-DISCO for local search based optimization by specify-
ing the form of training data, and a rank learning formulation
to update the search heuristic for selecting promising starting
states. Experimental results on diverse benchmarks show the
efficacy of L2S-DISCO on complex real-world problems.

Contributions. The key contributions of this paper include:

• A novel learning-to-search framework, L2S-DISCO, for
optimizing expensive functions over discrete spaces, which
integrates combinatorial-search with machine learning.

• A concrete instantiation of L2S-DISCO for local-search–
based optimization.

• An evaluation of L2S-DISCO over diverse real-world
benchmarks, showing advantages over the state-of-the-art.



2 Problem Setup and Challenges
Combinatorial space of structures. Let X be a combinato-
rial space of objects to be optimized over, where each ele-
ment x ∈ X is a discrete structure (e.g., set, sequence, graph).
Without loss of generality, let each candidate structure x ∈ X
be represented using d discrete variables v1, v2, · · · , vd,
where each variable vi take candidate values from a setC(vi).
If each discrete variable takes k candidate values, the size of
the combinatorial space is O(kd).

Problem definition. We are given a combinatorial space of
structures X . We assume an unknown real-valued objective
function F : X 7→ <, which can evaluate each candidate
structure x ∈ X . For example, in alloys optimization appli-
cation, x is a set corresponding to material design and F(x)
corresponds to running a physical lab experiment using ad-
ditive manufacturing techniques. Conducting an experiment
produces an evaluation y = F(x) and is expensive in terms
of the consumed resources. The main goal is to find a struc-
ture x ∈ X that approximately optimizes F by conducting a
limited number of evaluations and observing their outcomes.

Bayesian optimization formulation and challenges.
Bayesian optimization (BO) methods (Shahriari et al. 2016)
build a surrogate statistical modelM, e.g., Gaussian Process
(GP), from the training data of past function evaluations and
employ it to sequentially select a sequence of inputs for eval-
uation to solve the problem (see Algorithm 1). The selection
of inputs is performed by optimizing an acquisition function
AF that is parameterized by the current modelM and input
x ∈ X to score the utility of candidate inputs for evalua-
tion. Some example acquisition functions include expected
improvement (EI) (Jones, Schonlau, and Welch 1998) and
upper-confidence bound (UCB) (Srinivas et al. 2010). BO
methods are mostly studied for continuous spaces X ⊂ <d.
There is very limited work on BO methods to optimize dis-
crete spaces (as discussed in the related work section). There
are two key challenges in using BO for discrete spaces.

1. Surrogate statistical modeling. GPs are the popular choice
for building statistical models in BO over continuous
spaces. To handle discrete structures, we need an appropri-
ate kernel that can compute the similarity between any pair
of candidate structures x, x′ ∈ X . One choice is to lever-
age the general recursive convolution framework (Haussler
1999). The key idea is to recursively decompose the struc-
tured object into atomic sub-structures and define valid
local kernels between them. For example, random walk ker-
nels over graphs defined in terms of paths (Vishwanathan
et al. 2010). Random forest (RF) models can be used as an
alternate generic choice to handle discrete spaces. In this
work, we employ RF models as part of our experiments.

2. Acquisition function optimization. In each iteration of BO,
we need to solve the following optimization problem to
select the next candidate structure for evaluation.

xnext = arg maxx∈X AF(M, x) (1)

The key challenge for discrete spaces is that, Equation 1
corresponds to solving a general combinatorial optimiza-
tion problem. The effectiveness of BO critically depends

on the accuracy of solving this optimization problem. In
this paper, our main focus is on addressing this challenge
(line 4 in Algorithm 1 given below) using a novel learning
to search framework.

Algorithm 1 Bayesian Optimization framework
Input: X = Discrete space, F(x) = expensive objective function
Output: x̂best, the best uncovered structure from X

1: Initialize D0 ← small number of input-output pairs; and t← 0
2: repeat
3: Learn the model:Mt ← LEARN(Dt)
4: Compute the next structure to evaluate via acquisition func-

tion optimization: xt+1 ← argmaxx∈X AF(Mt, x)
5: Evaluate objective function F(x) at xt+1 to get yt+1

6: Aggregate the data: Dt+1 ← Dt ∪ {(xt+1, yt+1)}
7: t← t+ 1
8: until convergence or maximum iterations
9: x̂best ← argmaxxt∈D yt

10: return the best uncovered structure x̂best

3 Related Work
There is very limited work on BO over discrete spaces.
SMAC (Hutter, Hoos, and Leyton-Brown 2010; 2011) is
one canonical baseline which employs random forest as sur-
rogate model and a hand-designed local search procedure
for optimizing the acquisition function. BOCS (Baptista and
Poloczek 2018) is a state-of-the-art method that employs a
linear Bayesian model defined over binary variables as the
surrogate model. The model is described as:

fα(x ∈ X ) = α0 +
∑
j

αjvj +
∑
i,j>i

αijvivj (2)

where X = {0, 1}d. The α variables drawn from a sparse
prior, quantify the uncertainty of the model. This linear model
formulation over binary variables along with the usage of
Thompson sampling as the acquisition function allows the
acquisition function optimization in BOCS to be amenable
to a semi-definite programming (SDP) solution. However,
BOCS has several drawbacks. First, the simple model with
second-order interactions may not suffice for optimization
problems with complex interactions. Additionally, the model
is very specific to binary variables. An extension to general
categorical variables via one-hot encoding was provided in
the supplementary section (Baptista and Poloczek 2018), but
this results in significant growth of input dimensions. Second,
the SDP based acquisition function optimization solution is
very specific to the case of binary variables and Thompson
sampling, which severely limits its applicability. Additionally,
one-hot encoding to handle categorical variables leads to poor
scalability and loss of accuracy for BOCS. Third, the SDP
based solver cannot handle complex constraints to select only
valid structures. Indeed, we observe these shortcomings of
BOCS in our experiments. In contrast, our proposed method
can work with any choice of statistical model and acquisition
function, and uses advances in machine learning to tune
search-based acquisition function optimizers on-the-fly to



(a) Contamination domain with UCB acquisition function. (b) Ising domain with EI acquisition function.

Figure 1: Empirical evidence to show how learning can be useful to solve acquisition function optimization. Boxplot shows final
acquisition function values resulting from 100 runs of local search based optimization with three different restart strategies.

improve its accuracy in selecting candidate structures for
evaluation.

There is also work on solving BO over discrete spaces by
reduction to continuous BO (Gómez-Bombarelli et al. 2018).
The key idea is to employ an encoder-decoder architecture to
learn continuous representation from data and perform BO in
this latent space. The main drawback of this method is that it
generates a large fraction of invalid structures. This approach
also requires a large database of “relevant” structures, for
training an auto-encoder, which will not be available in many
applications, where small data is the norm.

The challenge of optimizing acquisition function for con-
tinuous input spaces was tackled in previous work (Wilson,
Hutter, and Deisenroth 2018). Since this approach relies on
gradients for optimizing the acquisition function, it is spe-
cific to continuous spaces and cannot be generalized to the
challenging case of discrete spaces. A tangential line of work
(Volpp et al. 2019; Perrone et al. 2019) exploiting the idea of
learning acquisition function strategies across multiple tasks
has also been explored in the context of transfer learning
for black-box optimization in the BO framework. However,
our problem setting is very different as we focus on learning
within a single task when we have not yet solved the task.

4 Learning to Search Framework
In this section, we first motivate learning-to-search (L2S)
methods for solving acquisition function optimization (AFO)
problems. Subsequently, we describe our proposed learning
to search framework, L2S-DISCO, and provide a concrete
instantiation for local-search based AFO.

4.1 Motivation

Search-based AFO solvers. In a search-based optimizer, the
overall problem-solving can be modeled as a computational
search process defined in terms of an appropriate search
space over candidate solutions, search procedure to uncover
solutions, and search control knowledge to guide the search.
For example, a solver, based on local search with multiple
restarts, may use control knowledge that biases the restart
distribution. Similarly, a solver, based on branch-and-bound

search, may use control knowledge corresponding to policies
for node expansion and pruning based on the current state of
the solver. An important aspect of search-based optimization
is that we can potentially improve the search control knowl-
edge during a search by feeding the information about the
search progress to machine learning techniques.

Relation between AFO problems. We now give the intuition
for why it may be useful to learn control knowledge across
the sequence of AFO problems encountered during BO. Re-
call that the change in acquisition function AF(M, x) from
iteration i to i+ 1 is due to only one new training example
(xi, yi), where xi is the selected structure in iteration i and yi
is its function evaluation. Intuitively, even if the acquisition
function scores of candidate structures in X are changing, the
search control knowledge can still guide the search towards
promising structures and only require small modifications
to account for the slight change in the AFO problem from
previous BO iteration. This motivates using machine learning
to adapt the knowledge in a way that generalizes from prior
iterations of AFO to future AFO iterations.

Empirical evidence for the utility of learning. We now
provide some empirical evidence on real-world problems
to show how machine learning can be potentially useful to
improve the accuracy of solving AFO problems. We con-
sider local search with multiple restarts as the AFO solver. In
this case, the AFO solver takes as input the objective func-
tion AF(M, x) and restarting strategy, and returns the local
optima x̂ ∈ X with associated acquisition function value
AF(M, x̂). The accuracy of local search based AFO solver
critically depends on the restart strategy. We performed local
search based AF optimization using three different restart
strategies on optimization problems with binary discrete vari-
ables: 1. Completely random (random); 2. Assigning the first
four discrete variables as zero and remaining randomly (first-
four-zero); and 3. Assigning the last four discrete variables
as one and remaining randomly (last-four-one). In figure 1,
we show the results of solving a single AFO problem using
these three different restart strategies over 100 runs. We plot
the distribution of AF(M, x̂) for these strategies. We can
see that different restart strategies give varied solutions (em-



Figure 2: High-level overview of L2S-DISCO instantiation
for local search. It repeatedly performs three steps. First, run
local search from a random state guided by current heuristic
H to select a good starting state. Second, run local search
from this selected starting state guided by acquisition func-
tion (AF). Third, use new training data in the form of local
search trajectory T and acquisition function value of the local
optima V (T ) to update the heuristicH via rank learning.

pirically). This observation can be leveraged to learn a search
heuristic to select promising starting states for local search
using the training data from local search trajectories.

4.2 L2S-DISCO and Key Elements
L2S-DISCO integrates machine learning techniques and com-
binatorial search in a principled manner for accurately solv-
ing AFO problems to select combinatorial structures for eval-
uation. This framework allows us to employ surrogate statis-
tical models of arbitrary complexity and can work with any
acquisition function. The key insight behind L2S-DISCO is
to directly tune the search via learning during the optimiza-
tion process to select the next structure for evaluation. The
search-based perspective has several advantages: 1) High flex-
ibility in defining search spaces over structures; 2) Easily han-
dles domain constraints that determine which structures are
“valid”. For example, when designing an optimized network
on the chip to facilitate data transfer between multiple cores,
we need to make sure that there is a viable path between any
pair of cores; 3) Allows to incorporate prior knowledge in the
form of heuristic rules to explore promising regions of the
search space; and 4) Provides additional points for learning
within the search framework to improve the effectiveness of
search in uncovering better structures.

Overview of L2S-DISCO. We build a surrogate modelM
using a small number of experiments and their outcomes to
guide our search process to select the sequence of combi-
natorial structures to perform experiments. L2S-DISCO is
parameterized by a search space S over structures, a learned
function AF(M, x ∈ X ) to score the utility of structures
for evaluation, a search strategy A (e.g., local search), and
a learned search control knowledge H to guide the search
towards high-scoring structures. In each BO iteration, we per-
form the following two steps repeatedly until the maximum
time-bound is exceeded or a termination criteria is met. Step

1: Execute search strategy A guided by the current search
control knowledge to uncover promising structures. Step 2:
Update the parameters of search control knowledgeH using
the online training data generated from the recent search ex-
perience. Fig 2 illustrates the instantiation of L2S-DISCO
for local search. Each structure x ∈ X uncovered during the
entire search is scored according toAF(M, x) and we select
the highest scoring structure xnext for function evaluation.
We perform experiment using the selected structure xnext
and observe the outcome F(xnext). The statistical modelM
is updated using the new training example (xnext,F(xnext)).
We repeat the next iteration of BO via L2S-DISCO initialized
with the current search control knowledge.

Key Elements. There are two key elements in L2S-DISCO
that need to be specified to instantiate it for a given search
procedure. 1) The form of training data to learn search control
knowledgeH; and 2) The learning formulation and associate
learning algorithm to update the parameters of search control
knowledgeH using online training data. These elements vary
for different search procedures and forms of search control
knowledge. We provide a high-level example to illustrate
these elements for branch-and-bound search.

Branch-and-bound search is a widely used search proce-
dure to solve combinatorial optimization problems. It em-
ploys a search space over partial structures, where each state
corresponds to partial assignment of variables. The states
with complete assignment for all variables are referred as
terminals. Variable selection strategy for successive assign-
ment is one of the main components of branch-and-bound
search. Therefore, H corresponds to the policy that selects
the variable on which to branch on for the next assignment.
In this case, the training data is generated by the trajectories
obtained by a strong branching (SB) strategy (Khalil et al.
2016) which exhaustively tests each variable for assignment.
A learning-to-rank formulation is natural for inducing the
variable selection policy, since the reference strategy (SB)
effectively ranks variables at a node by a score, and picks the
highest-scoring variable, i.e., the score itself is not important.

Below we provide a concrete instantiation of L2S-DISCO
for local search based acquistion function optimization that
will be employed for our empirical evaluation.

4.3 Instantiation of L2S-DISCO for Local Search
Recall that local search based AFO solver performs multi-
ple runs of local search guided by the acquisition function
AF(M, x) from different random starting states. The search
space is defined over complete structures, where each state
corresponds to a complete structure x ∈ X . The successors
of a state with structure x referred as N (x), is the set of all
structures x′ ∈ X such that the hamming distance between
x and x′ is one. The effectiveness of local search depends
critically on the quality of starting states. Therefore, we in-
stantiate L2S-DISCO for local search and learn a search
heuristic H(θ, x) to select good starting states that will al-
low local search to uncover high-scoring structures from X
according to AF(M, x).

To instantiate L2S-DISCO for local search, we need to
specify the two key elements: 1) The training data for learning



the heuristic H(θ, x)?; and 2) The learning formulation to
induceH(θ, x) from online training data.

1) Training data. The set of search trajectories T obtained
by performing local search from different starting states and
acquisition function scores for local optima correspond to the
training data. Each search trajectory T ∈ T consists of the
sequence of states from the starting state xstart to the local
optima xend. Suppose V (T )=AF(M, xend) represents the
acquisition function score of the local optima for local search
trajectory T .

2) Rank learning formulation. The role of the heuristic
H(θ, x) is to rank candidate starting states according to their
utility in uncovering high-scoring structures from X via local
search. Recall that if we perform local search guided by
AF(M, x) from any state x on a search trajectory T ∈ T ,
we will reach the same local optima with acquisition function
score V (T ). In other words, every state on the trajectory T ∈
T has the same utility. Therefore, we formulate the problem
of learning the search heuristic as an instance of bipartite
ranking (Agarwal and Roth 2005). Specifically, for every
pair of search trajectories T1, T2 ∈ T , if V (T1) > V (T2),
then we want to rank every state on the trajectory T1 better
than every state on the trajectory T2. We will generate one
ranking example for every pair of states (x1, x2), where x1 is
a state on the trajectory T1 and x2 is a state on the trajectory
T2. The aggregate set of ranking examples are given to an
off-the-shelf rank learner to induceH(θ, x), where θ are the
parameters of the ranking function. In our experiments, we
employed RankNet (Burges et al. 2005) as the base rank
learner. We leveraged existing code1 for our purpose.

1https://github.com/shiba24/learning2rank

Algorithm 2 L2S-DISCO for local search
Input: X= space of combinatorial structures, AF(M, x)= acquisi-
tion function,H(θ, x)= search heuristic from previous BO iteration,
RANKLEARN= rank learner
Output: x̂next, the selected structure for function evaluation

1: Initialization: T ← ∅ (training data of local search trajectories)
and Sstart ← ∅ (set of starting states)

2: repeat
3: Perform local search from a random state x ∈ X guided by

heuristicH(θ, x) to reach a local optima xrestart
4: if xrestart ∈ Sstart then
5: xstart ← random structure from X
6: else
7: xstart ← xrestart
8: end if
9: Perform local search from xstart guided by AF(M, x)

10: Add the new search trajectory and AF(M, xend) to T
11: Update heuristicH(θ, x) via rank learner using T
12: Sstart ← Sstart ∪ xstart
13: until convergence or maximum iterations
14: x̂next ← best scoring structure as perAF(M, x) found during

the entire search process
15: return the selected structure for evaluation x̂next

L2S-DISCO for local search based optimization. Figure 2
illustrates L2S-DISCO instantiation for local search based
acquisition function optimization. At a high-level, each itera-
tion of L2S-DISCO consists of two alternating local search
runs. First, local search guided by heuristic H to select the
starting state. Second, local search guided by AF from the
selected starting state. After each local search run, we get a
new local search trajectory, and the heuristic function H is
updated to be consistent with this new search trajectory.

Algorithm 2 shows the pseduo-code for learning based lo-
cal search to solve AFO problems arising in BO iterations. It
reuses the learned search heuristic from the previous BO itera-
tion and updates it in an online manner using the new training
data generated during AF optimization. In each iteration, we
perform the following sequence of steps. First, we perform
local search from a random state guided by the search heuris-
ticH(θ, x) until reaching the local optima xrestart to select
the next starting state. Second, if xrestart was not explored
as a starting state in previous local search iterations, we select
xrestart as the starting state to perform local search guided by
AF(M, x) and add the local search trajectory to our training
data. Third, we update the search heuristicH(θ, x) using the
newly added training example via rank learner. We repeat the
above three steps until convergence or maximum iterations.
This instantiation of L2S-DISCO is similar in spirit to the
STAGE algorithm (Boyan and Moore 2000). At the end, we
return the best scoring structure uncovered during the search
x̂next for function evaluation.

5 Experiments and Results
In this section, we first describe our experimental setup and
then discuss the results of L2S-DISCO and baseline methods.

5.1 Experimental Setup
Benchmark Domains. We employ five diverse benchmark
domains for our empirical evaluation.

1. Contamination. The problem considers a food supply
with d stages, where a binary {0,1} decision must be made
at each stage to prevent the food from being contaminated
with pathogenic micro-organisms (Hu et al. 2010; Baptista
and Poloczek 2018). Each prevention effort at stage i can
be made to decrease the contamination by a given random
rate Γi and incurring a cost ci. The contamination spreads
with a random rate Λi if no prevention effort is taken. The
overall goal is to ensure that the fraction of contaminated
food at each stage i does not exceed an upper limit Ui with
probability at least 1−ε while minimizing the total cost of all
prevention efforts. Following (Baptista and Poloczek 2018),
the lagrangian relaxation based problem formulation is:

arg min
x

d∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{Zk>Ui}

]
+ λ‖x‖1

where λ is a regularization coefficient, Zi is the fraction of
contaminated food at stage i, violation penalty coefficient
ρ=1, and T=100.

2. Sparsification of zero-field Ising models. The distri-
bution of a zero field Ising model p(z) for z ∈ {−1, 1}n is



(a) Contamination domain with no. of stages d = 25 and λ =
10−4 over 250 iterations.

(b) Ising domain with number of nodes d = 24 and λ = 10−2

over 150 iterations.

Figure 3: Results for contamination and ising domain (minimization).

characterized by a symmetric interaction matrix Jp whose
support is represented by a graph Gp = ([n], Ep) that sat-
isfies (i, j) ∈ Ep if and only if Jp

ij �= 0 holds (Baptista
and Poloczek 2018). The overall goal is to find a close ap-
proximate distribution q(z) while minimizing the number of
edges in Eq . Therefore, the objective function in this case is
a regularized KL-divergence between p and q as given below:

DKL(p||qx) =
∑

(i,j)∈Ep

(Jp
ij − Jq

ij)Ep[zizj ] + log(Zq/Zp)

where Zq and Zp are partition functions corresponding to p

and q respectively, and x ∈ {0, 1}Eq

is the decision variable
representing whether each edge is present in Eq or not.

3. Low auto-correlation binary sequences (LABS).
The problem is to find a binary {+1,-1} sequence S =
(s1, s2, · · · , sn) of given length n that maximizes merit fac-
tor defined over a binary sequence as given below:

Merit Factor(S) =
n2

E(S)

where E(S) =
n−1∑
k=1

(
n−k∑
i=1

sisi+k

)2

The LABS problem has multiple applications in diverse sci-
entific disciplines (Packebusch and Mertens 2015).

4. Network optimization in multicore chips. With
Moore’s law aging quickly, multicore architectures are con-
sidered very promising for parallel computing (Ceze, Hill,
and Wenisch 2016). A key challenge in multicore research
is to reduce the performance bottleneck due to data move-
ment. One promising solution is to optimize the placement of
communication links between cores to facilitate efficient data
transfer. This optimization is typically guided by expensive
simulators that mimics the real hardware. The network opti-
mization problem is part of the rodinia benchmark (Che et al.
2009) and uses the gem5-GPU simulator (Power et al. 2014).
There are 12 cores whose placements are fixed and the goal is
to place 17 links between them to optimize performance: 66

binary variables. There is one constraint to determine valid
structures: existence of a viable path between any pair of
cores. We report the performance improvement with respect
to the provided baseline network.

5. Core placement optimization in multicore chips.
This is another multicore architecture optimization problem
from rodinia benchmark (Che et al. 2009). In this problem,
we are given 64 cores of three types (8 CPUs, 40 GPUs, and
16 memory units) and they are connected by a mesh network
(every core is connected to its four neighboring cores) to
facilitate data transfer. The goal is to place the three types
of cores to optimize performance: 64 categorical variables
with each taking three candidate values. We need to make
sure that the cardinality constraints in terms of the number
of cores of each type are satisfied. We report the performance
improvement w.r.t the provided baseline placement.

Baseline Methods. We compare the local search instantia-
tion of L2S-DISCO with two state-of-the-art methods: SMAC
(Hutter, Hoos, and Leyton-Brown 2011) and BOCS (Baptista
and Poloczek 2018). We employed open-source python im-
plementations of both BOCS 2 and SMAC 3. Since SMAC
implementation does not support handling domain constraints
to search over valid structures4, we could not run SMAC for
network optimization and core placement optimization bench-
marks. Similarly, SDP based solver for BOCS cannot handle
constraints, so we employed simulated annealing based solver
available in the BOCS code for those two benchmarks. We
initialize the surrogate of all the methods by evaluating 20
random structures. For L2S-DISCO. we employed random
forest model with 20 trees (tried two standard settings of
scikit-learn library, namely, 10 and 20 trees, and got simi-
lar results) and two different acquisition functions (EI and
UCB). For UCB, we use the adaptive rate recommended by
(Srinivas et al. 2010) to set the exploration and exploitation
trade-off parameter βi value depending on the iteration num-

2https://github.com/baptistar/BOCS
3https://github.com/automl/SMAC3
4https://github.com/automl/SMAC3/issues/403



ber i. We ran L2S-DISCO (Algorithm 2) for a maximum of
60 iterations.

Evaluation Metric. We use the best function value achieved
after a given number of iterations as a metric to evaluate
all methods: SMAC, BOCS, and L2S-DISCO. The method
that uncovers high-performing structures with less number
of function evaluations is considered better. LABS is a maxi-
mization problem, but the remaining four benchmarks require
the objective to be minimized. We use the total number of
iterations similar to BOCS (Baptista and Poloczek 2018).

5.2 Results and Discussion
We discuss the results of L2S-DISCO and baseline methods
on the five benchmarks below. All the reported results are
averaged over 10 random runs (except for BOCS in cores
placement optimization due to its poor scalability).

Contamination and Ising. Figure 3 shows the comparison
of L2S-DISCO with SMAC and BOCS baselines. We make
the following observations. 1) Both L2S-DISCO variants that
use EI and UCB acquisition functions perform better than
SMAC. 2) L2S-DISCO with UCB performs better than the
variant with EI. We observed a similar trend for the remaining
three benchmarks also. Therefore, to avoid clutter, we only
show the results of L2S-DISCO with UCB for the remaining
benchmarks. 3) Results of L2S-DISCO are comparable to
BOCS on the contamination problem. However, BOCS has
a better anytime profile for ising domain. L2S-DISCO even-
tually matches the performance of BOCS after 90 iterations.
The main reason BOCS performs slightly better in these two
domains is that they exactly match the modeling assumptions
of BOCS, which allows the use of SDP based solver to select
structures for evaluation. Below we will show how the perfor-
mance of BOCS degrades when the assumptions are not met,
whereas L2S-DISCO peforms robustly across optimization
problems of varying complexity.

Figure 4: Results for LABS domain (maximization) with
input sequence length n=30 over 250 iterations.

LABS. Figure 4 shows the comparison of L2S-DISCO with
SMAC and BOCS baselines. We can see that L2S-DISCO
clearly outperforms both BOCS and SMAC on this domain.

BOCS has the advantage of SDP based solver, but its sta-
tistical model that accounts for only pair-wise interactions
is limiting to account for the complexity in this problem.
SMAC and L2S-DISCO both employ random forest model,
but L2S-DISCO does better in terms of acquisition function
optimization by integrating learning with search.

Figure 5: Results for network optimization in multicore chips
(minimization) over 300 iterations.

Network optimization in multicore chips. As mentioned
earlier, we could not run SMAC for this problem as SMAC
library does not allow to incorporate complex domain con-
straints. The SDP solver of BOCS is also not applicable
due to complex constraints. Hence, we employ simulated
annealing based solver for acquisition function optimization.
Figure 5 shows the comparison of L2S-DISCO with BOCS
baseline. We can see that L2S-DISCO performs significantly
better than BOCS in this domain. BOCS seems to get stuck
for long periods, whereas L2S-DISCO shows consistent im-
provement in uncovering high-performing structures. This
behavior of BOCS can be partly attributed to the limitations
of both surrogate model and acquisition function optimizer.

Core placement optimization in multicore chips. Fig-
ure 5 shows the comparison of L2S-DISCO with BOCS.
L2S-DISCO significantly outperforms BOCS on this bench-
mark also. Additionally, BOCS scales poorly on this domain,
where the discrete variables are non-binary. Recall that BOCS
model was developed for binary variables and authors sug-
gested the use of one-hot encoding to handle categorical
variables. However, this transformation excessively increases
the no. of dimensions. For example, we have 64 dimensions
for L2S-DISCO, but it grows to 192 for BOCS due to one-
hot encoding and makes its execution extremely slow. BOCS
took one hour per single BO iteration on a machine with Intel
Xeon(R) 2.5Ghz CPU and 96 GB memory. This is the main
reason we could only perform one run of BOCS.

6 Summary and Future Work
We introduced the L2S-DISCO framework that integrates
machine learning with search-based optimization for opti-
mizing expensive black-box functions over discrete spaces.



Figure 6: Results for core placement optimization in multi-
core chips (minimization) over 300 iterations.

We showed that instantiation of L2S-DISCO for local search
based optimization yields significantly better performance
than state-of-the-art methods on complex optimization prob-
lems. Future work includes studying instantiations of L2S-
DISCO for other search procedures to further improve the
performance, and applying L2-DISCO on important real-
world applications by leveraging domain knowledge.
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Özcan, E.; and Qu, R. 2013. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64(12):1695–
1724.

Ceze, L.; Hill, M. D.; and Wenisch, T. F. 2016. Arch2030: A vision
of computer architecture research over the next 15 years. CoRR
abs/1612.03182.

Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J. W.; Lee, S.;
and Skadron, K. 2009. Rodinia: A benchmark suite for heteroge-
neous computing. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), 44–54.
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