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1  | INTRODUC TION

Calculating biologically meaningful geographic distances is essential 
for research in a wide variety of disciplines in ecology and evolution, 
ranging from landscape genetics to population biology to movement 
ecology. Straight‐line Euclidean distances are reasonable approxima‐
tions of geographic separation in very few cases, and the increasing 
availability of GIS data has led organismal biologists to utilize geo‐
spatial methods for distance estimation (Calabrese & Fagan, 2004; 

Fischer & Lindenmayer, 2007; Ray, Lehmann, & Joly, 2002). For ex‐
ample, resistance‐based distances, like those obtained through least 
cost path (LCP) analysis (Wang, Savage, & Bradley Shaffer, 2009) or 
circuit theory analysis (McRae, 2006), account for differential resis‐
tance to movement across heterogeneous landscapes and predict 
population isolation better than Euclidean distances in a wide range 
of systems (Landguth, Cushman, Murphy, & Luikart, 2010; McRae 
& Beier, 2007; Wang, Glor, & Losos, 2013). Resistance surfaces 
can be hard to parameterize, however, especially for systems with 
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Abstract
1.	 Estimating biologically meaningful geographic distances is essential for re‐

search in disciplines ranging from landscape genetics to community ecology. 
Topographically correcting distances to account for the total overland distance 
between locations imposed by topographic relief provides one method for calcu‐
lating geographic distances that account for landscape structure.

2.	 Here, I present topoDistance, an r package for calculating shortest topographic 
distances, weighted topographic paths and topographic least cost paths (LCPs). 
Topographic distances are calculated by weighting the edges of a graph by the 
hypotenuse of the horizontal and vertical distances between raster cells and then 
finding the shortest total path between cells of interest. The package also includes 
tools for mapping topographic paths and plotting elevation profiles.

3.	 Examples from a species with moderate dispersal abilities, the western fence liz‐
ard, inhabiting a topographically complex landscape, Yosemite National Park (USA), 
demonstrate that topographic distances can vary significantly from straight‐line 
distances, and topographic LCPs can trace very different routes from LCPs and 
shortest topographic paths.

4.	 Topographic paths and distances are broadly useful for modelling geographic iso‐
lation resulting from dispersal limitation for organisms that interact with the topo‐
graphic structure of a landscape during movement and dispersal.
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limited data and few a priori expectations (Peterman, 2018; Spear, 
Balkenhol, Fortin, Mcrae, & Scribner, 2010). Another metric, which 
does not require any parameterization and can provide useful ap‐
proximations of geographic isolation and functional connectivity 
(the effective movement of individuals between points; Tischendorf 
& Fahrig, 2000), is topographic distance (Goldberg & Waits, 2010; 
Murphy, Dezzani, Pilliod, & Storfer, 2010; Spear, Peterson, Matocq, 
& Storfer, 2005; Wang, 2013).

Topographic distances account for the additional distance, be‐
yond horizontal distance, imposed by topographic relief and, there‐
fore, capture the full overland distance an organism must move 
between geographic locations. Topographic distances have been 
shown to correlate strongly with genetic distances (e.g. Goldberg 
& Waits, 2010; Murphy, Evans, & Storfer, 2010; Spear et al., 2005; 
Steele, Baumsteiger, & Storfer, 2009; Wang, 2009) and with dif‐
ferences in community composition (e.g. Cañedo‐Argüelles et al., 
2015; Dong et al., 2016; Glassman, Wang, & Bruns, 2017; Razeng et 
al., 2016) in a variety of systems. In both cases, topographic paths 
provide realistic approximations of dispersal‐driven geographic 
connectivity mediating turnover in genetic or community com‐
position. Several studies have determined topographic distances 
to be important for identifying dispersal and migration corridors 
(e.g. Dickson, Jenness, Enterprises, & Beier, 2005; Goljani, Kaboli, 
Karami, Ghodsizadeh, & Nourani, 2012), and other work has found 
that they reflect field‐based measurements of dispersal (Wang & 
Shaffer, 2017).

Here, I introduce topoDistance v1.0.1, an r package for calculating 
topographic distances and identifying topographic paths. Without a 
convenient tool in r, researchers have primarily relied on separate 
GIS software (e.g. ArcGIS) to calculate topographic distances, which 
may require licensed software or custom coded solutions. Moreover, 
the calculation of shortest topographic paths can be cumbersome, 
leading many to estimate topographic distances as straight‐line dis‐
tances corrected for topographic relief, which does not accurately 
reflect biological movement between geographic locations on topo‐
graphically complex landscapes (Goldberg & Waits, 2010; Goljani 
et al., 2012; Spear et al., 2005; Tonkin et al., 2017). In addition to 
calculating shortest topographic paths, topoDistance also estimates 
topographic LCPs (Wang & Summers, 2010), providing a valuable ad‐
dition to the resistance‐based distance approach.

2  | FUNC TIONALIT Y

The topoDistance package provides functions for generating topo‐
graphic movement surfaces and calculating shortest topographic 
distances, topographic least cost distances and weighted topo‐
graphic distances between geographic locations using digital eleva‐
tion model (DEM) raster layers. After identification of topographic 
paths, topoDistance can also plot the paths on shaded relief maps and 
plot topographic cross‐section profiles.

Topographically corrected distances between neighbouring 
raster cells are calculated as the hypotenuse of the vertical and 

horizontal distances between them. The topoSurface function con‐
structs a graph, represented as a sparse matrix, in which the graph 
edges connecting cells are weighted by these distances, according to 
the Pythagorean theorem:

where wij is the weight of the edge between cells i and j, h is their hor‐
izontal (xy) distance and z is their vertical distance (elevation differ‐
ence). Edges can represent movement in either four or eight directions, 
and the function corrects for the curvature of the earth by calculat‐
ing horizontal distances as great‐circle distances on the surface of a 
sphere (van Etten, 2015). The topoDist function then finds the shortest 
path between two cells using Dijkstra's algorithm (Dijkstra, 1959), as 
implemented in the gdistance package (van Etten, 2015), an optimal 
search algorithm that will return the single shortest path for any graph 
(Cormen, Leiserson, Rivest, & Stein, 2001). The function returns the 
pairwise distances between any number of geographic locations and 
the set of paths connecting them.

This approach can be extended to account for heterogeneous 
resistance to movement across a landscape by supplying a resistance 
surface to the topoLCP (topographic LCP) function. The topoLCP 
function multiplies the distance along each edge by the weight of 
the resistance between cells, according to the equation:

where wij is the weight of the edge between cells i and j, h is their hor‐
izontal (xy) distance, z is their vertical (elevation) distance and R is the 
resistance (cost) for a given cell (Etherington, 2016). This effectively 
corrects LCP distances for movement over topographic surfaces 
(Etherington, 2016; Wang et al., 2013).

For scenarios in which the cost of movement may be direction 
dependent, the topoWeightedDist function can be used to calculate 
anisotropic, weighted topographic distances. For instance, differ‐
ences in the costs of moving upslope and downslope can result in 
asymmetrical distances between populations and potentially dif‐
ferent paths depending on the direction of movement (Etherington, 
2016; Zhan, Menon, & Gao, 1993). Similarly, the cost of angular 
changes in a pathway can also result in higher movement costs (Zhan 
et al., 1993). The topoWeightedDist function can account for both 
types of anisotropic cost structure by weighting topographic dis‐
tances by vertical and horizontal cost fields, based on the equation:

where wij is the weight of the edge between cells i and j, h is their hor‐
izontal (xy) distance, z is their vertical distance (elevation difference), 
Aij is their angular (horizontal) cost modifier and Vij is the vertical cost 
modifier (Zhan et al., 1993). The function generates A and V from stan‐
dard (linear, exponential or quadratic) or user specified equations; A is 
based on changes in aspect, and V is based on the slope between cells.

topoDistance also provides convenient tools for plotting the 
topographic paths resulting from these analyses. The topoPathMap 
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function produces a shaded relief, or hillshade, map with the topo‐
graphic paths and allows users to specify the path colour and width, 
point colour and size, and angle and direction of shading. Finally, 
the topoProfile function can extract the elevation for points along 
a topographic path to provide a topographic cross section, or ele‐
vation profile, of the path. The cross sections can be drawn using 
base r plotting or as an interactive graph through the plotly package 
(Sievert et al., 2019).

To validate the functions contained in topoDistance, I performed 
a series of basic tests on simplified landscapes (Appendix S1). These 
rasters allowed me to compare the paths, distances and topographic 
surfaces returned by each function in the package to manually cal‐
culated values, and in all cases, the results they produced were fully 
accurate (Appendix S1). These tests are fully reproducible using the 
code provided in Appendix S1.

3  | E X AMPLE APPLIC ATIONS

3.1 | Topographic distances and paths

Calculating topographic distances is most important in areas with 
high levels of topographic complexity. To demonstrate how topo‐
graphic distances differ from straight‐line distances, I calculated the 
shortest topographic paths between three known localities for the 
western fence lizard, Sceloporus occidentalis, a small vertebrate with 
moderate vagility (Stebbins & McGinnis, 2012), in Yosemite National 

Park (USA), a landscape known for its dramatic topographic relief. 
These localities included Lost Lake, Mirror Lake and the base of the 
Illilouette Gorge at the eastern end of the Yosemite Valley, and I 
used the topoDist function to calculate topographic distances and 
paths based on a 1/3 arc‐sec (~10 m) DEM raster downloaded from 
the U.S. Geological Survey (USGS) National 3D Elevation Program 
(www.usgs.gov/3dep/). The topographic paths connecting these lo‐
calities, plotted with the topoPathMap function, clearly follow the 
contours of the landscape (Figure 1), following the edge of the valley 
floor from the Illilouette Gorge to Mirror Lake and passing through 
a narrow canyon between Liberty Cap and Mt. Broderick on the 
way to Lost Lake. Those paths are 14.0% and 14.9% longer than the 
straight‐line distances between those points, calculated in the raster 
package (Hijmans et al., 2019), and the topographic path between 
Mirror and Lost Lakes, passing around the steep ridge southwest of 
Half Dome, is 33.7% longer than the straight‐line distance (Figure 1).

3.2 | Topographic LCPs

Resistance‐based distance analysis, including LCP analysis and circuit 
theory analysis, frequently disregard any underlying topography, es‐
sentially assuming that paths can be estimated without topographi‐
cally correcting the distances on a resistance surface. However, 
topography shapes and constrains organismal movement across 
many landscapes (Dickson et al., 2005; Dong et al., 2016; Murphy, 
Evans, et al., 2010; Spear et al., 2005). To illustrate the importance 

F I G U R E  1   Shortest topographic paths (purple) between Mirror Lake, Lost Lake and the Illilouette Gorge in Yosemite National Park, 
identified using the topoDistance package (left), and the topographic path from Illilouette Gorge to Lost Lake plotted on Landsat imagery 
through Google Earth (right). Dashed lines indicate the straight‐line paths between the three locations

http://www.usgs.gov/3dep/
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of considering topographic relief for LCP analysis, I used the topoLCP 
function to identify topographic least cost paths (TLCPs) between 
three additional localities for S. occidentalis in Yosemite National Park 
(USA): Happy Isles, Tenaya Canyon and the top of Sunrise Creek east 
of Clouds Rest. For the topographic surface, I used the same DEM. 
For the resistance surface, I used a habitat suitability model, a com‐
mon method for parameterizing a resistance surface (Spear et al., 
2010; Wang, Yang, Bridgman, & Lin, 2008). The habitat suitability 
model was constructed with Maxent (Phillips, Anderson, & Schapire, 
2006) through the dismo r package (Hijmans, Phillips, & Elith, 2017) 
using the DEM and 19 bioclimatic data layers, downloaded from the 
WorldClim Database (www.world​clim.org) and rescaled to match 
the resolution of the DEM, as predictor variables. For the occur‐
rence points, I downloaded S. occidentalis records from the VertNet 
Database (www.vertn​et.org) for the Yosemite region and spatially 
rarified them to a set of 85 localities by requiring a 1‐km minimum 
distance between points using the spThin r package (Aiello‐Lammens, 
Boria, Radosavljevic, Vilela, & Anderson, 2019). On the resulting 
habitat suitability raster, cells with higher suitability are considered 
less resistant to movement (Wang et al., 2008). To compare with the 
TLCPs, I also inferred shortest topographic paths using the topoDist 

function and LCPs (without topographic correction) using the gdis-
tance r package.

The following code shows how simple this analysis is in topo-
Distance. It starts with defining the xy coordinates for the localities:

xy <- matrix(ncol = 2, byrow = TRUE, 

c(-119.5566, 37.7247, 

-119.4718, 37.7608, 

-119.5157, 37.7669))

The topographic LCPs can then be calculated using the topoLCP 
function and plotted using the topoPathMap function:

tlcp <- topoLCP(Yosemite$DEM, Yosemite$SDM, xy, 

paths = TRUE) 

topoPathMap(Yosemite$DEM, xy, tlcp, costSurface = 

Yosemite$SDM, 

type = "hillshade", pathColor = "purple")

Finally, the resulting topographic LCPs can be compared to the 
shortest topographic paths by calculating the shortest topographic 
paths using the topoDist function and plotting them using the lines 
function.

F I G U R E  2   Topographic least cost paths (purple lines), least cost paths (dashed blue and grey lines) and shortest topographic paths 
(dashed red and grey lines) between Happy Isles, Sunrise Creek and Tenaya Canyon

http://www.worldclim.org
http://www.vertnet.org
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td <- topoDist(Yosemite$DEM, xy, paths = TRUE) 

lines(td[[2]], lty = 2, lwd = 4, col = "darkred")

The results show that TLCPs can diverge substantially from LCPs 
and shortest topographic paths (Figure 2). For example, the TLCP, 
which accounts for topographic distance and landscape resistance, 
between Happy Isles and Sunrise Creek follows the gently sloping 
Merced River, whereas the LCP, which ignores topography, follows 
some rolling and forested terrain roughly 2 km to the north. In this 
case, the LCP actually passes through some less suitable habitat 
along the John Muir Trail, compared to moderately less resistant 
habitat along the Merced River, because the horizontal distance is 

considerably shorter, suggesting TLCP analysis could uncover more 
realistic dispersal routes. Differences are also clear when comparing 
TLCPs and shortest topographic paths – the shortest topographic 
path between Sunrise Creek and Tenaya Canyon passes through high 
elevation, very low suitability habitat near Clouds Rest, while the 
TLCP tracks mid‐elevation, open forest habitat to the south (Figure 2).

3.3 | Topographic cross sections

Finally, examining the elevation profile of a path can help to char‐
acterize the relative positions of populations or segments along 

F I G U R E  3   Shortest topographic paths (top) and topographic cross sections (bottom) for paths from North Dome to Sunrise creek via the 
shortest topographic path (blue) and weighted topographic path (orange)
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the path, describe where a path encounters ecological transition 
zones, identify areas of terrain with different slopes and compare 
the vertical trajectories of different paths (Giordano, Ridenhour, & 
Storfer, 2007; Greco, Fremier, Larsen, & Plant, 2007; Lowe, Likens, 
McPeek, & Buso, 2006). Using the topoProfile function, I compared 
topographic cross sections for the shortest topographic path and 
a weighted topographic path from North Dome to Sunrise Creek. I 
calculated the shortest topographic path using the topoDist func‐
tion and a weighted topographic path using the topoWeightedDist 
function with a linear function to weight angle of aspect changes 
and an exponential function to weight the slope between cells, 
because the energetic cost of traversing an incline typically scales 
exponentially:

xy <- matrix(ncol = 2, byrow = TRUE,

c(-119.5616, 37.7625, 

-119.4718, 37.7608))

td <- topoDist(Yosemite$DEM, xy, paths = TRUE)

twd <- topoWeightedDist(Yosemite$DEM, xy, hFunction 

= "linear",

vFunction = "exponential",

paths = TRUE)

I, then, combined the two types of paths and used the topoProfile 
function to plot their topographic cross sections:

topopaths <- rbind(td[[2]][1], twd[[2]][1]) 

topoProfile(Yosemite$DEM, topopaths, type = "plotly", 

singlePlot = TRUE)

The resulting topographic profiles demonstrate some of the dif‐
ferences between shortest topographic paths and weighted topo‐
graphic paths (Figure 3). Although the weighted topographic path 
is longer, it minimizes elevation changes and steep ascents. The 
shortest topographic path, in contrast, takes a more direct route but 
rises steeply out of Tenaya Canyon, gaining over 1,400 m in less than 
3.5 km as it passes over Clouds Rest before descending back down 
to Sunrise Creek (Figure 3).

4  | CONCLUSIONS

Landscape topography plays a prominent role in shaping move‐
ment and dispersal for a wide range of terrestrial organisms (Goljani 
et al., 2012; Murphy, Evans, et al., 2010; Wang & Shaffer, 2017). 
Hence, identifying the topographic paths between points and cal‐
culating the distances along them provides estimates of functional 
geographic distances that are potentially valuable for a variety of 
applications (e.g. Cañedo‐Argüelles et al., 2015; Dong et al., 2016; 
Murphy, Evans, et al., 2010; Spear et al., 2005). The topoDistance 
package uses a straightforward, optimal algorithm for identifying 
shortest topographic paths and topographic LCPs that will reliably 
return the shortest or least costly topographic distances for any 
landscape. Topographic distances will often vary considerably from 
straight‐line distances, and estimates of topographic distance can 

change if the resolution of the underlying elevation raster changes. 
So, consideration should be given to choosing an elevation raster 
with proper resolution for the study system and whether to incorpo‐
rate a parameterized resistance surface.

The resolution and size of the elevation raster will affect pro‐
cessing times as well. For a Linux computer with a 3.6  GHz pro‐
cessor, the average time to calculate shortest topographic distances 
between 10 randomly chosen points was 46 s for 1,000 × 1,000 cell 
landscapes, 186 s (3.1 min) for 2,000 × 2,000 cell landscapes and 
438 s (7.3 min) for 3,000 × 3,000 cell landscapes. Calculations on 
very large rasters with more than 1 × 107 cells may be memory lim‐
ited on systems with less than 32 GB of RAM. When mapping the 
shortest topographic paths in addition to calculating their distances, 
the average processing time was 125 s (2.1 min) for 1,000 × 1,000 
cell landscapes, 473 s (7.9 min) for 2,000 × 2,000 cell landscapes and 
1,080 s (18.0 min) for 3,000 × 3,000 cell landscapes. The most time‐
consuming steps are calculating the topographic distance surface, 
which is done once for each locality, and mapping the topographic 
paths, which is done for each pair of localities. So, processing time 
will increase linearly with the numbers of populations when cal‐
culating topographic distances and exponentially when mapping 
topographic paths. Still, even on a landscape with 1 × 107 cells, topo‐
graphic distances among 50 localities can be calculated in <15 min 
without mapping paths or in <6  hr when mapping paths, using a 
computer with a 3.6 GHz processor.

Overall, the calculation of topographic paths and distances in 
the topoDistance package is relatively quick and straightforward. 
By using common r object types, topoDistance output is ready to 
use for an assortment of downstream applications, including spatial 
analyses used in landscape ecology, like multiple matrix regression 
(Wang, 2013) and generalized dissimilarity modelling (Fitzpatrick  
et al., 2011), and a variety of r packages used in landscape genet‐
ics, like BEDASSLE (Bradburd, Ralph, & Coop, 2013), Sunder (Botta, 
Eriksen, & Guillot, 2015), and PopGenReport (Adamack & Gruber, 
2014).
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The topoDistance package is freely available from the CRAN  
repository (https​://CRAN.R-proje​ct.org/packa​ge=topoD​istance) 
and GitHub (https​://github.com/ianjw​ang/topoD​istance). It can 
be installed using the command install.packages("topoDistance") 
or install_github("ianjwang/topoDistance") in R. A package man‐
ual and vignette for getting started are available from CRAN and 
the GitHub repository. The DEM used in the example applications 
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was downloaded from the USGS National 3D Elevation Program 
(https​://www.scien​cebase.gov/catal​og/item/5c89d​259e4​b0938​
8244f​047f). The bioclimatic data layers used to construct the 
habitat suitability model are available from the WorldClim data‐
base (http://biogeo.ucdav​is.edu/data/world​clim/v2.0/tif/base/
wc2.0_30s_bio.zip), and the occurrence records were down‐
loaded from the VertNet database (http://portal.vertn​et.org/searc​
h?q=scelo​porus​+occid​entalis).
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