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Abstract

his paper presents a high-level framework (vision) for

utilizing big data analytics to harvest repositories of

known good designs for the purpose of aiding mechan-
ical product designs. The paper outlines a novel approach for
applying artificial intelligence (AI) to the training of a
mechanical design system model, assimilates the definition
of meta-data for design containers (binders) to that of labels
for books in a library, and represents customers, require-
ments, components and assemblies in the form of database
objects with hierarchical structure. Design information can
be harvested, for the purpose of improving design decision
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Introduction: Al Applied
to Product Design

This paper presents a high-level framework for applying arti-
ficial intelligence for the purpose of aiding with mechanical
product design. There presently is significant interest in big
data analytics, especially within the automotive industry. Large
amounts of data are collected from fleets of vehicles. The data
is being uploaded to cloud systems, where it is analyzed using
big data and machine learning algorithms. Then, information
of interest can be communicated to drivers for system feedback.
In addition, some streaming data can be made available to an
automotive vendor for efficiency and maintenance monitoring,
or used internally by an original equipment manufacturer
(OEM) for post-mortem failure analysis.

With utilization of big data within the automotive
industry on the rise, applications to the process of product
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fidelity for new designs, by providing such database repre-
sentation of the design content. Further, a retrieval model,
that operates on the archived design containers, and yields
results that are likely to satisfy user queries, is presented. This
model, which is based on latent semantic analysis (LSA),
predicts the degree of relevance between accessible design
information and a query, and presents the most relevant
previous design information to the user. A simple example,
one involving idea generation for conceptual design, is
presented, in order to provide insight into the significant
utility that may be derived from the proposed Al
design framework.

design have still been limited. In [1], AI was used to improve
the way that agents (people or machines) design things (i.e.,
to design process improvements).

In this paper, the framework, which relies on archival of
design information into properly structured databases, on
information retrieval, and semantic analysis, is presented. The
proposed framework is more in line with methods employed
by search engines, such as the one by Google.

The proposed framework is largely motivated by Yi’s
previous work [2]. In [2], indexing values of social tags in the
context of an information retrieval (IR) model were assessed
using a latent semantic indexing (LSI) method. Socially
tagged resources were classified into ten Dewey Decimal
Classification (DDC) main classes. Then social tags assigned
to the resources were used to represent them in LSI.
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m High-level framework for applying Al to
product design.

The System Model

System Model for Mechanical Design
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Similarities between resources were measured, and the aggre-
gated similarities, according to the ten DDC main classes,
were compared [2].

Similarly, this paper presents a high-level conceptual
framework (vision), listed in Figure 1, for utilizing big data
analytics to harvest repositories of known good designs for
the purpose of assisting with product design. While the
framework is generic, mechanical product design is consid-
ered. The framework assumes that, during the course of
design projects, design information is captured in structured
fashion using software (SW) such as the Ecosystem [3].
Project binders from past design projects are then archived
in databases and made available to designers working on
new design projects. These design containers were referred
as e-design notebooks [3]. The Al system is trained so that
the system can provide the best possible guiding informa-
tion, for new product design, and sanitize the design
decisions made.

The benefits associated with the proposed framework
are multifold:

1. By comparing new design content against the
guiding designs (reference), the fidelity of decisions
related to the new design can be improved, as
indicated above.

2. Through deployment of latent semantic analysis, the
Al system can process a variety of user queries,
retrieve the most relevant archived information, and
present to the user.

- In this paper, a simple example involving idea
generation (brainstorming) for Concept Design is
presented in order to provide insight into the
significant utility that may be derived from the
proposed framework.

3. While a relatively simple example is elected here, to
convey the concept, more nuanced examples can be
crafted around the Detailed Design phase.

- Depending on users’ needs, the Al system can
query for information related to specific standards,
regulations, policies, customer information, internal
requirements, best practices, previous solutions,
analogies, material properties, common
components, etc., retrieve information from the
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databases yielding the best match, and present
to the user.

The System Model

We model mechanical designs in terms of a single-layer
neural network:

The input vector, X, could be considered as design vari-
ables (criteria) or customer requirements. The transformation
matrix, A, could be a function of X and ¥. Engineers transfer
the requirements, X, into the product, ¥, through the trans-
formation. The transformation matrix, A, may contain
reasoning and knowledge to make y (design y). In this paper,
it is proposed that A should consist of customers, require-
ments, systems and assembly. We apply artificial intelligence
(AI) to train the system model.

The design criteria, %, could, for example, contain the
desired weight, width, height and length of an automotive
part. The elements of the product vector, ¥, could capture
performance of the finalized part, or even ideas or options
relevant to specific design stages.

For clarification, refer to the example below. It is assumed
that the design organization has practiced structured capture
of past design projects in SW like the Ecosystem [3, 4]. Design
binders from these projects may, for example, have been
archived in an internal database. For simplicity, it is assumed
that input parameters take on values from a continuous range.
It may be recognized that a straight forward application of a
single-layer neural network model may not accommodate all
requirements. To handle binary requirements (simple presence
or absence), or XOR-like conditions, a two-layer neural
network may be necessary [5].

The Design Project
Binders

Design Process Assumed

It is assumed that a classical design process consists of
Requirement Gathering, Concept Design, Detailed Design
and Final Design. Such process is modeled in the Ecosystem
SW [3, 4]. The customers, customer requirements and corre-
sponding engineering requirements are defined, as a part of
the Requirement Gathering, and captured in the Product
Design Specification (PDS). The Concept Design consists of
brainstorming, concept design analysis (scoring) and design
selection. The Detailed Design may capture detailed analysis
of both the overall system and associated subsystems. Final
Design is usually preparation for prototype building or
production, and may include steps such as testing and require-
ment validation [3, 4].
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Archived Project Binders

The archived project binders in Figure 1 consist of past project
binders, and are taken to represent known good designs. The
project binders may contain pointers to pertinent content,
based on designer inputs and available information. The input
format captures and preserves content and associates with the
relevant context. This facilitates storage for future use.
Pertinent third-party data is accessed from databases with
available context provided. The databases may be owned by
the tool (Ecosystem) vendor, a customer or a third party.
Designers ultimately choose to consider the information that
is most relevant for any given design decision. This arrange-
ment allows designers to leverage digital content management
to make more informed design decisions without losing focus
of the primary design challenge.

The information developed for the project binders in
Figure 1 consists of pointers to the PDS and design objects.
The PDS comprises of requirement objects, in programming
context, and the design objects are comprised of component
and assembly objects. Both can have hierarchy imposed. The
design data itself is stored in mass outside the application.

Binders for New Design
Projects

For new designs, designers could extract the design vector, x,
from the new requirements, apply to a trained Al system, and
get the guiding design, y, as an output. The guiding design, y,
could be a reference (starting point) for design of the new
product. Such reference may help improve the fidelity of
design decisions. If design decisions cause the product to
deviate significantly from the reference, y, explanations are
likely necessary.

Practicality

Binders for new design projects are assumed to have the
same structure as the binders from the past design projects
(and to be archived as such). Note that regardless of which
Product Lifecycle Management (PLM) system a design orga-
nization elects to use, the design data needs to be entered
once. The Ecosystem provides capability for exporting
design data into formatted project reports. So the design
data does not need to be entered more than once. Content
from the exported reports can be used in progress reports
or project presentations. As long as design organizations
make sure that each design project gets archived after
completion, data management is expected to require rela-
tively minor effort.

Structure of the Database
Objects

In this study, database objects suitable for mechanical product
design are defined along with their associated attributes. By
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defining the databases based on function, four databases with
seemingly reasonable attributes are proposed. The database
management overhead associated with the proposed archi-
tecture is expected to be minimal.

The Customer and
Requirement Objects

Figures 2 and 3 present embodiments of customer and require-
ment objects from a database containing the PDS objects.
Through the PDS, the designer builds up a collection of
pointers to pertinent design information objects. It is of key
importance to define proper attributes for the object pointers
in the PDS database, and formulate metadata and leading
indices accordingly. For the PDS database, the object pointers
considered pertinent are listed in Table 1 and Table 2. The
constraints in Table 2 may be binary and can be relatively easy
to verify. The performance requirements typically involve
binary thresholds, and are judged in accordance to design
performance relative to the threshold. The objectives involve
no thresholds, but rather provide optimization considerations
for decisions.

The Al framework is capable of generating, managing,
and presenting content with relevance to the design problem
at hand in the databases available. It is assumed that, during
the course of a design project, the database continues to grow.
If design content is not readily available through a third-party
or in-house, designers are apt to define it.

Figure 2 shows how the PDS object can be built using
pointers to a database, for the purpose of being big data
compatible. The requirements in Figure 2 refer to customer
requirements, whereas in Figure 3 we are referring to
engineering requirements.

TABLE 1 Attributes pertinent to the customer objects in the
PDS database [4].

Attribute Description

Name Organization, Person, Entity
Type Internal, External, Other
Importance Low, Medium, High

Requirement Key to Requirement database:

Requirement[]

TABLE 2 Attributes pertinent to requirement objects in the
PDS database [4].

Attribute Description

Name Descriptive name for the Requirement
object

Owner Key to customer database: Customer[/]

Importance Low, Medium, High

Type Constraint, Performance or Objective

Characteristic Key to characteristics database:

Characteristic[/]
Key to units database: Units[k]
Value for binary assessment

Units
Threshold
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m Example of customer database objects [4].

Customer[1] Customer[2]

Name:
“Customer One”

Name:
“Customer Two”

Type: Type:
External Internal
Importance: Importance:

Medium High

Requirement(s):
“Requirement 2”
“Requirement 4”

Requirement(s):

“Requirement 1”
“Requirement 3”
“Requirement 7”
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TABLE 3 Attributes pertinent to assembly objects in the
design database [4].

Attribute Description

Name Descriptive name for the Assembly object
Requirements Key to the PDS database: Requirement[]
Subordinates Define subassemblies and components

Input Key to database: Flow[] §
Output Key to database: Flow[] €
Process Key to database: Process[] E
Rules Key to Rules database: Rules[] g

TABLE 4 Attributes pertinent to components objects in the
design database [4].

Attribute Description

m Example of a requirement database objects [4]. Name Descriptive name for the Assembly object
Requirements Key to the PDS database: Requirement[]
Requirements[1] Requirements[2] Input Key to database: Flow[]
Name: [ Name: .
“Requirement One” *RucuifaroantTuc® Output Key to database: Flow[]
, Swner. — ‘ Process Key to database: Process[] s
Customer One Customer Two Dimensions Nominal and tolerance, in the form of solid 2
Importance: Importance: model data =
Medi High . , £
— - Material Key to database: Material[] =
Type: Type: . o ) ) <
Constraint Performance Properties Description of miscellaneous properties 2
Characteristic: Characteristic:
|_Dimension - Width Power - Mechanical K]
[ 1 H 9 . . . .
IU”—:S: ‘ k_}”‘—"stﬁt e in Table 3 specify the governing constraints of aggregated
nches lowatts = . . .
e . £ subassemblies and components. It is assumed that the design
reshold: reshoid: b . . .
<12 10 £ database complies with standard relational database (schema)
© formats for big data compatibility.
The Assembly and The Overall Design
Com ponent ObjeCtS Figure 5 shows how the component options and associated
. . requirements, for an overall design (one comprising of
Figure 4 presents an embodiment of the assembly and compo- . :
t obi p ts from the desien database. Th Y blv obi P X multiple subsystems), can be programmed into the database,
nent objects from the design database. The assembly objects . . . .

o) 8 : ¥ ob) based on engineering knowledge gleaned from prior designs.
consist of nested, aggregated subordinate levels, and have This knowledge may, for example, be related to machine
authority to define requirements applicable to the subordi- design text awareness of risks for certain components
nates. The component objects consist of individual parts, or uses
pieces, or obtainable, self-contained assemblies. In case of the '

Design database, the pertinent attributes for the assembly and
component objects are listed in Table 3 and Table 4. The rules
IR iustration of how component options and risks,
) _ _ for an overall design can be programmed into databases based
| FIGURE 4 | IIIust.rat|on of a design database with assembly on existing engineering knowledge (for example, machine
and component objects [4]. design text awareness of risks for certain components or
uses) [4].
Assembly[1] Component[1]
Name: Name:
“Assembly One” “Component One”
Requirements: Requirements: Requirements[1-10]
Requirement[1,2] Requirement(1] 5
AssembISylEs,OBIf?jrt‘:;Bnent[ll Linear Kinetic. Eneray | Assembly[2] “ Component([1] “ Assembly(3] |
S Input: Output: Requirements[2,3] || Requirements[4] H Requirements[5-10]
Chemical Energy Rotational Kinetic Energy E E
Th %'(IDELE Rich P.rofcecss: . 2 | Component([2] | Component(3] I o
e'r’r:loacesrs\:ergy £c g?r::nSigrr:\;:er5|on g Requirements[2] | Requirements[3] g
L Combustion i CAD[1] = Component(..] €
Rules: Materials: w P "
Assembly[2] bolted to Assembly[3,4]... Medium Carbon Steel g Requirements|...] \ g
© ©
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Database Structures
Supported

Big data analysis capabilities can be applied at organizations
with design repositories arranged in the form of relational
databases. The core concept of project binders accessing data
in databases holding all the design information, and creating
pointers to the pertinent design content, may be adapted to
other database structures.

External Databases

As shown in Figure 1, the design content aggregated is multi-
faceted and covers a broad spectrum of inputs. It not only
consists of the project binders from the designers, but also
includes existing and previous design projects within an orga-
nization, plus the linked-in design files, the outputs from the
design tools, material from the industry databases (results
from context verification), the configuration scripts, examples,
content of sample databases provided, legacy databases for
known good designs, search analytics, information on manu-
facturing procedures, material characteristics, material prices,
and parts that can be obtained from elsewhere, etc. The result
is a sizable database of useable information available to
designers and design organizations.

Data Annotation

Our intent is to present a classification system suitable for
mechanical design. We think of the collection of archived
project binders (e- design notebooks [3]) as books in a library.
We assimilate the indexing of the project binders to cataloging
of books in a library. And we compare the metadata defined
for the project binders to the index labels placed on the book.
Similar to the index labels helping with identification of book
of interest, the metadata facilities rapidly processing and accu-
rately responding to designer queries. We assume the design
content gets tagged, in a similar fashion as Google tags all
websites, to facilitate queries reflecting the users’ needs.

Semantic Framework for
Analyzing User Needs

In this paper, a user need is considered to occur as a mix of
the following four elements: Function, cost, material, and
energy. The first step in the analysis of project binders (e-design
notebooks) is the automatic understanding of user needs. The
tasks with user needs are:

1. To understand the statements of user need/
requirement.
- Here we treat a user need as a query.

2. To retrieve previous design information, or examples,
that yield a good match to the user need.

© 2018 SAE International. All Rights Reserved.

By doing so, the information retrieval framework
proposed can provide design teams (workforces) with design
information similar to the ones previously reported and
harvested, for the purpose of enhancing design efficiency and
efficacy. To deal with these tasks, we propose to adopt an
indexing and retrieval method from the IR field, one referred
to as Latent Semantic Analysis.

Latent Semantic Analysis

LSA is an extension of a classic IR model, the Salton’s Vector
Space model (VSM) [6]. LSA was developed as an information
retrieval technique that discovers hidden semantic structure
embedded in documents [7]. In more detail, complex relation-
ships exist between words and surrounding contexts, such as
phrases, statements or documents, in which the words are
located. For the discovery of latent semantic relationships,
LSA begins with the creation of a co-occurrence matrix, where
the columns represent contexts and the rows represent words
or terms. An entry (i, j) in the matrix corresponds to the
weight of the word i appearing in the context j. The matrix is
then analyzed by applying singular value decomposition
(SVD) to derive the associated hidden semantic structures
from the matrix. SVD is a way to factorize a rectangular
matrix. For an m-by-n matrix, A, with m > n, the singular
value decomposition of the matrix A is the multiplication of
three matrices: An m-by-r matrix U, an r-by-r matrix X, and
the inverse of an n-by-r matrix V, in that order. That is,

A=UzVT,

Here, VT is the matrix transpose of V, obtained by
exchanging V’s rows and columns. Then, U and V have ortho-
normal columns and X is a diagonal matrix. Such a multiplica-
tion form is referred to as the SVD of A. The diagonal elements
of X are all positive and ordered by decreasing magnitude.
The original matrix, A, can be approximated with a smaller
matrix, Ay, where Ay is obtained by keeping the first k largest
diagonal elements of X. By definition, k is the rank of the
matrix X. By applying SVD factorization to the matrix A,
context (e.g., a set of statements characterizing user needs) is
represented in a much smaller dimension, k, rather than the
original high dimension, m. Note that

k<n,

n<<m.

Asaresult, a context is represented in a lower dimensional
space, rather than in the full, much higher dimension. k is
referred to as the dimension of the latent semantic structure
of A. A comprehensive overview of LSA can be found in [8].

LSA-Based Approach

The goal of the LSA-based approach proposed is to provide
designers with access to previous design records that are
relevant to the designers’ need. In the vocabulary of
Information Retrieving, a designer’s need is equivalent to
a query.
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m lllustration of the process of retrieving previous
e-design history relevant to a user query.

| Previous e-design cases l

Representation

| Indexed e-design history |

| New user need |

LSA-based
comparison

| Retrieved cases relevant to query |

LSA is adopted as the framework of retrieving designers’
needs in this paper, because the method has been proven to be
an effective unsupervised algorithm for IR [9]. In fact, we do
not consider here any statistic supervised algorithm-based
approach, such as neural networks or deep learning, since such
an approach requires an enormous amount of previous e-design
examples, or cases, that presently are unavailable; building a
corpus of e-design history, including preceding cases or
examples, is one of the goals for the next stage of this research.

Figure 6 depicts an LSA-based approach of retrieving
e-design cases that are likely to satisfy a query (i.e., a user
need). The LSA-based method predicts the degree of relevance
of e-design examples to the query and presents the most
relevant previous e-design cases, or examples, to the user.

Application of Big Data
Analytics

The framework proposed assumes a holistic big data analysis
and efficient utilization of a broad spectrum of available infor-
mation. Through proper database representation of the design
content, and references from the design project journals, one
can categorize the data and run various cross-correlations
(queries) across projects or within projects. By storing the
comprehensive design history in a cloud, and harvesting
repositories of known good designs through database queries,
one can improve the design decision fidelity for new designs.
Access to such repositories can also prove invaluable for the
purpose of post-mortem failure analysis.

The Al network in Figure 1 can be trained, for example,
using the Delta Rule, which is sometimes referred to as the
Widrow and Hoff learning rule, or the least mean square
(LMS) rule [10]:

SE
—&——=¢0ba,,
Wij

Awijx
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where Aw;;, represents the update applied to the weight
at node (perceptron) between links i and j in a neural network
[10]. E represents an error function over an entire set of training
patterns (i.e., over one iteration, or epoch) [10]. € is a learning
rate applied to this gradient descent learning [10]. a;, denotes
actual activation for node x in output layer i [10].

Example

A simple example is presented here to show how Al can help
with idea generation (brainstorming) in the Concept Design
stage of a project involving the design of a reliable, single-
operator Go Kart lift stand. This may be a capstone project,
where the experience of the designers in the area may be
somewhat limited. Therefore, they simply pose the following
as input to the Al system:

“We need a reliable, single-operator stand for kart racers”.

The system responds to the stated need by offering a
number of ideas or options. Based on what can be retrieved
from the databases, or the training data available, the system
may offer the following suggestions:

“l. JEGS Multi-Purpose Lift
KartLift BigFoot
KartLift Winch Lift
Electric Super Lift

Go Kart Stand Lift”.

A

Supplementing the overall process outlined in Figure 7,
Figure 8 lists intermediate steps elucidating how the engine
for latent semantic analysis is able to arrive at this conclusion.

While this example may come across as relatively simple
(many mechanical designers may have a clue as to what type
of lift stands are available), it conveys an application (illus-
trates the purpose) of the AI framework. More nuanced
examples can be crafted, say, around specific standards,
policies, material properties or common components. To our
knowledge, there is presently no systematic search available
for helping designers with brainstorming.

IR 1ustration of the Al framework applied to the
Concept Design stage of a project involving the design of a
single-person Go Kart lift stand.

System Model for Mechanical Design

Y1 a1 Q12 [%1
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Design Projects
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m Latent semantic analysis applied to an example involving idea generation (brainstorming) for the Concept

Design stage.
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for a previous e-design case becomes a
column of the matrix for LSA.

1. JEGS Multi-Purpose Lift

queryterms becomevaluesof
the matrix for LSA.

Retrieved cases relevant to query
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3. KartLift Winch Lift
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Important Questions
Remaining

While this paper presents the high-level conceptual frame-
work for utilizing AT for the purpose of aiding with mechan-
ical product design, a number of important questions remain,
such as:

1. How is the system going to validate the integrity of
the archived data?

- How are we going to prevent situations where low-
fidelity input applied to the AI training produces
low-fidelity output?

- How exactly do we qualify “known good designs”?

2. What type of Al interfaces will the system be able
to support?

- Will the system be able to support both
heterogeneous (distributed) and homogeneous
architectures?

Towards Reasonable
Answers

1. Itis possible that low-quality data gets archived and
that this may impact the decision making. The AI
system should be able to offer good reference designs
(y’s), but may not be able to provide exact answers for
all cases. Yet, most search engines are based on
similar concepts as the AI framework proposed
(information retrieval). There are many ways to
account for imperfectness in the archived data.

© 2018 SAE International. All Rights Reserved.

4. Electric Super Lift
5. Go KartStandLift

2. Similarly, large, distributed databases (enterprise
applications), such as Apache Hadoop or Spark, can
be supported through the API interfaces provided
[11]. Hadoop provides a native Java API to support file
system operations [12]. One can use WebHFDS to
interact with the Apache Hadoop file system
externally through a more user friendly REST API
[13]. WebHDFEFS concept is based on HTTP operations
like GET, PUT, POST and DELETE [13]. Operations
like OPEN, GETFILESTATUS, LISTSTATUS are
using HTTP GET, while others like CREATE,
MKDIRS, RENAME, SETPERMISSIONS are relying
on HTTP PUT [13]. The APPEND operation is based
on HTTP POST, whereas DELETE is using HTTP
DELETE [13]. Authentication can be based on user.
name query parameter (as part of a HTTP query
string). If security has been turned on, then the
authentication relies on Kerberos [14].

Conclusions

This paper presents a high-level conceptual framework for the
utilization of artificial intelligence (big data) for the purpose
of aiding mechanical product design. This broad objective has
been formulated in terms of an AI training problem. It is
shown how a system model for a mechanical design can be
trained, based on archived design projectbinders (so called
known good designs). In addition, the paper illustrates how
a guiding design, y, can be obtained by applying the design
variables corresponding to a new design project, X, to a trained
network. Design decisions for the new design can then be
sanitized through comparison with the reference. It is demon-
strated how a database for product design can be defined,
based on function, and present seemingly reasonable
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http://user.name

- BIG DATA ANALYTICS FOR IMPROVING FIDELITY OF ENGINEERING DESIGN DECISIONS

attributes. While some important questions are yet to be fully
addressed, the proposed Al framework is both practical and
meaningful. By harnessing information retrieval and latent
semantic analysis, the paper illustrates some of the significant
potential of the AI framework, through a simple example
addressing the idea generation (brainstorming) stage of
Concept Design.

References

1. Brown, D.C,, “Artificial Intelligence for Design Process
Improvement,” . In: Clarkson J., Eckert C., editors. Design
Process Improvement. (London, Springer, 2005), 158-173.

2. Yi, K, “A Study of Evaluating the Value of Social Tags as
Indexing Terms,” . In: Chu S., Ritter W., and Hawamdeh S.,
editors. Managing Knowledge for Global and Collaborative
Innovations. (Hackensack, NJ, World Scientific Publishing.
Conference paper presented at the 6th International
Conference on Knowledge Management, Hong Kong,
December 3, 2009), 221-232.

3. Steingrimsson, B., Jones, R., Etesami, F., and Yi, S.,
“Ecosystem for Engineering Design - A Comparative
Analysis,” International Journal on Engineering Education
33(5):1499-1512, 2017.

4. B. Steingrimsson and S. Yi, “Digital Ecosystem for
Engineering Team Design,” U.S. Utility Patent Application
15,613,183, filed on June 3, 2017.

5. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification
Second Edition (Wiley, 2001).

6. Salton, G., “A Vector Space Model for Automatic Indexing,”
Communications of the ACM 18(11):613-620, 1975.

7. Deerwester, S., Dumais, S.T., Furnas, G.W.,, Landauer, T.K.,
and Harshman, R., “Indexing by latent semantic analysis,”

Journal of the American Society for Information Science
41(6):391, 1990.

8. Dumais, S.T., “Latent Semantic Analysis,” Annual Review of
Information Science and Technology 38(1):188-230, 2004.

9. T.Landauer, D. McNamara, S. Dennis and W. Kintsch,
Handbook of Latent Semantic Analysis, University of
Colorado Institute of Cognitive Science Series, 2007.

10. Widrow, B. and Hoff, M.E., “Adaptive Switching Circuits,” .
In: IRE WESCON Convention Record. Vol. 4. (New York,
1960), 96-104.

11. Spark API, “Spark Developer Documentation,” 2017, https://
sparkplatform. com/docs/overview/api.

12. Big Data Zone, “Hadoop REST API - WebHDES,” 2017,
https://dzone. com/articles/hadoop-rest-api-webhdfs.

13. Hadoop, “WebHDEFS REST API,” 2017, https://hadoop.
apache.org/docs/r1.0.4/webhdfs.html.

14. Wikipedia, “Kerberos (Protocol),” 2017, https://en.wikipedia.
org/wiki/Kerberos (protocol).

Contact Information

Dr. Baldur Steingrimsson
Tel: 763-439-6905

baldur@pdx.edu

Acknowledgments

This research has been supported by the National Science
Foundation Grants 1,447,395 and 1,632,408. The authors also
want to thank Garth Eimers for reviewing early drafts of the
paper and sharing valuable insights related to practicality
and commercialization.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the copyright holder.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the

content of the paper.

ISSN 0148-7191


https://hadoop.apache.org/docs/r1.0.4/webhdfs.html
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Kerberos_(protocol)
baldur@pdx.edu

	10.4271/2018-01-1200: Abstract
	10.4271/2018-01-1200: Keywords
	Introduction: AI Applied to Product Design
	The System Model
	The Design Project Binders
	Design Process Assumed
	Archived Project Binders
	Binders for New Design Projects
	Practicality

	Structure of the Database Objects
	The Customer and Requirement Objects
	The Assembly and Component Objects
	The Overall Design
	Database Structures Supported
	External Databases

	Data Annotation
	Semantic Framework for Analyzing User Needs
	Latent Semantic Analysis
	LSA-Based Approach

	Application of Big Data Analytics
	Example
	Important Questions Remaining
	Towards Reasonable Answers
	Conclusions

	References
	Acknowledgments

