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Abstract

This paper presents a high-level framework (vision) for 
utilizing big data analytics to harvest repositories of 
known good designs for the purpose of aiding mechan-

ical product designs. The paper outlines a novel approach for 
applying artificial intelligence (AI) to the training of a 
mechanical design system model, assimilates the definition 
of meta-data for design containers (binders) to that of labels 
for books in a library, and represents customers, require-
ments, components and assemblies in the form of database 
objects with hierarchical structure. Design information can 
be harvested, for the purpose of improving design decision 

fidelity for new designs, by providing such database repre-
sentation of the design content. Further, a retrieval model, 
that operates on the archived design containers, and yields 
results that are likely to satisfy user queries, is presented. This 
model, which is based on latent semantic analysis (LSA), 
predicts the degree of relevance between accessible design 
information and a query, and presents the most relevant 
previous design information to the user. A simple example, 
one involving idea generation for conceptual design, is 
presented, in order to provide insight into the significant 
utility that may be derived from the proposed AI 
design framework.
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Introduction: AI Applied 
to Product Design
This paper presents a high-level framework for applying arti-
ficial intelligence for the purpose of aiding with mechanical 
product design. There presently is significant interest in big 
data analytics, especially within the automotive industry. Large 
amounts of data are collected from fleets of vehicles. The data 
is being uploaded to cloud systems, where it is analyzed using 
big data and machine learning algorithms. Then, information 
of interest can be communicated to drivers for system feedback. 
In addition, some streaming data can be made available to an 
automotive vendor for efficiency and maintenance monitoring, 
or used internally by an original equipment manufacturer 
(OEM) for post-mortem failure analysis.

With utilization of big data within the automotive 
industry on the rise, applications to the process of product 

design have still been limited. In [1], AI was used to improve 
the way that agents (people or machines) design things (i.e., 
to design process improvements).

In this paper, the framework, which relies on archival of 
design information into properly structured databases, on 
information retrieval, and semantic analysis, is presented. The 
proposed framework is more in line with methods employed 
by search engines, such as the one by Google.

The proposed framework is largely motivated by Yi’s 
previous work [2]. In [2], indexing values of social tags in the 
context of an information retrieval (IR) model were assessed 
using a latent semantic indexing (LSI) method. Socially 
tagged resources were classified into ten Dewey Decimal 
Classification (DDC) main classes. Then social tags assigned 
to the resources were used to represent them in LSI. 
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 FIGURE 1  High-level framework for applying AI to 
product design.

©
 S

A
E 

In
te

rn
at

io
na

l

Similarities between resources were measured, and the aggre-
gated similarities, according to the ten DDC main classes, 
were compared [2].

Similarly, this paper presents a high-level conceptual 
framework (vision), listed in Figure 1, for utilizing big data 
analytics to harvest repositories of known good designs for 
the purpose of assisting with product design. While the 
framework is generic, mechanical product design is consid-
ered. The framework assumes that, during the course of 
design projects, design information is captured in structured 
fashion using software (SW) such as the Ecosystem [3]. 
Project binders from past design projects are then archived 
in databases and made available to designers working on 
new design projects. These design containers were referred 
as e-design notebooks [3]. The AI system is trained so that 
the system can provide the best possible guiding informa-
tion, for new product design, and sanitize the design 
decisions made.

The benefits associated with the proposed framework 
are multifold:

	 1.	 By comparing new design content against the 
guiding designs (reference), the fidelity of decisions 
related to the new design can be improved, as 
indicated above.

	 2.	 Through deployment of latent semantic analysis, the 
AI system can process a variety of user queries, 
retrieve the most relevant archived information, and 
present to the user.
-- In this paper, a simple example involving idea 

generation (brainstorming) for Concept Design is 
presented in order to provide insight into the 
significant utility that may be derived from the 
proposed framework.

	 3.	 While a relatively simple example is elected here, to 
convey the concept, more nuanced examples can be 
crafted around the Detailed Design phase.
-- Depending on users’ needs, the AI system can 

query for information related to specific standards, 
regulations, policies, customer information, internal 
requirements, best practices, previous solutions, 
analogies, material properties, common 
components, etc., retrieve information from the 

databases yielding the best match, and present  
to the user.

The System Model
We model mechanical designs in terms of a single-layer 
neural network:
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The input vector, �x, could be considered as design vari-
ables (criteria) or customer requirements. The transformation 
matrix, �A, could be a function of �x and �y. Engineers transfer 
the requirements, �x, into the product, �y, through the trans-
formation. The transformation matrix, �A , may contain 
reasoning and knowledge to make �y (design �y). In this paper, 
it is proposed that �A should consist of customers, require-
ments, systems and assembly. We apply artificial intelligence 
(AI) to train the system model.

The design criteria, �x, could, for example, contain the 
desired weight, width, height and length of an automotive 
part. The elements of the product vector, �y, could capture 
performance of the finalized part, or even ideas or options 
relevant to specific design stages.

For clarification, refer to the example below. It is assumed 
that the design organization has practiced structured capture 
of past design projects in SW like the Ecosystem [3, 4]. Design 
binders from these projects may, for example, have been 
archived in an internal database. For simplicity, it is assumed 
that input parameters take on values from a continuous range. 
It may be recognized that a straight forward application of a 
single-layer neural network model may not accommodate all 
requirements. To handle binary requirements (simple presence 
or absence), or XOR-like conditions, a two-layer neural 
network may be necessary [5].

The Design Project 
Binders

Design Process Assumed
It is assumed that a classical design process consists of 
Requirement Gathering, Concept Design, Detailed Design 
and Final Design. Such process is modeled in the Ecosystem 
SW [3, 4]. The customers, customer requirements and corre-
sponding engineering requirements are defined, as a part of 
the Requirement Gathering, and captured in the Product 
Design Specification (PDS). The Concept Design consists of 
brainstorming, concept design analysis (scoring) and design 
selection. The Detailed Design may capture detailed analysis 
of both the overall system and associated subsystems. Final 
Design is usually preparation for prototype building or 
production, and may include steps such as testing and require-
ment validation [3, 4].
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Archived Project Binders
The archived project binders in Figure 1 consist of past project 
binders, and are taken to represent known good designs. The 
project binders may contain pointers to pertinent content, 
based on designer inputs and available information. The input 
format captures and preserves content and associates with the 
relevant context. This facilitates storage for future use. 
Pertinent third-party data is accessed from databases with 
available context provided. The databases may be owned by 
the tool (Ecosystem) vendor, a customer or a third party. 
Designers ultimately choose to consider the information that 
is most relevant for any given design decision. This arrange-
ment allows designers to leverage digital content management 
to make more informed design decisions without losing focus 
of the primary design challenge.

The information developed for the project binders in 
Figure 1 consists of pointers to the PDS and design objects. 
The PDS comprises of requirement objects, in programming 
context, and the design objects are comprised of component 
and assembly objects. Both can have hierarchy imposed. The 
design data itself is stored in mass outside the application.

Binders for New Design 
Projects
For new designs, designers could extract the design vector, x, 
from the new requirements, apply to a trained AI system, and 
get the guiding design, y, as an output. The guiding design, y, 
could be a reference (starting point) for design of the new 
product. Such reference may help improve the fidelity of 
design decisions. If design decisions cause the product to 
deviate significantly from the reference, y, explanations are 
likely necessary.

Practicality
Binders for new design projects are assumed to have the 
same structure as the binders from the past design projects 
(and to be archived as such). Note that regardless of which 
Product Lifecycle Management (PLM) system a design orga-
nization elects to use, the design data needs to be entered 
once. The Ecosystem provides capability for exporting 
design data into formatted project reports. So the design 
data does not need to be entered more than once. Content 
from the exported reports can be used in progress reports 
or project presentations. As long as design organizations 
make sure that each design project gets archived after 
completion, data management is expected to require rela-
tively minor effort.

Structure of the Database 
Objects
In this study, database objects suitable for mechanical product 
design are defined along with their associated attributes. By 

defining the databases based on function, four databases with 
seemingly reasonable attributes are proposed. The database 
management overhead associated with the proposed archi-
tecture is expected to be minimal.

The Customer and 
Requirement Objects
Figures 2 and 3 present embodiments of customer and require-
ment objects from a database containing the PDS objects. 
Through the PDS, the designer builds up a collection of 
pointers to pertinent design information objects. It is of key 
importance to define proper attributes for the object pointers 
in the PDS database, and formulate metadata and leading 
indices accordingly. For the PDS database, the object pointers 
considered pertinent are listed in Table 1 and Table 2. The 
constraints in Table 2 may be binary and can be relatively easy 
to verify. The performance requirements typically involve 
binary thresholds, and are judged in accordance to design 
performance relative to the threshold. The objectives involve 
no thresholds, but rather provide optimization considerations 
for decisions.

The AI framework is capable of generating, managing, 
and presenting content with relevance to the design problem 
at hand in the databases available. It is assumed that, during 
the course of a design project, the database continues to grow. 
If design content is not readily available through a third-party 
or in-house, designers are apt to define it.

Figure 2 shows how the PDS object can be built using 
pointers to a database, for the purpose of being big data 
compatible. The requirements in Figure 2 refer to customer 
requirements, whereas in Figure 3 we are referring to 
engineering requirements.

TABLE 1 Attributes pertinent to the customer objects in the 
PDS database [4].

Attribute Description
Name Organization, Person, Entity

Type Internal, External, Other

Importance Low, Medium, High

Requirement Key to Requirement database: 
Requirement[]©
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TABLE 2 Attributes pertinent to requirement objects in the 
PDS database [4].

Attribute Description
Name Descriptive name for the Requirement 

object

Owner Key to customer database: Customer[i]

Importance Low, Medium, High

Type Constraint, Performance or Objective

Characteristic Key to characteristics database: 
Characteristic[j]

Units Key to units database: Units[k]

Threshold Value for binary assessment©
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The Assembly and 
Component Objects
Figure 4 presents an embodiment of the assembly and compo-
nent objects from the design database. The assembly objects 
consist of nested, aggregated subordinate levels, and have 
authority to define requirements applicable to the subordi-
nates. The component objects consist of individual parts, 
pieces, or obtainable, self-contained assemblies. In case of the 
Design database, the pertinent attributes for the assembly and 
component objects are listed in Table 3 and Table 4. The rules 

in Table 3 specify the governing constraints of aggregated 
subassemblies and components. It is assumed that the design 
database complies with standard relational database (schema) 
formats for big data compatibility.

The Overall Design
Figure 5 shows how the component options and associated 
requirements, for an overall design (one comprising of 
multiple subsystems), can be programmed into the database, 
based on engineering knowledge gleaned from prior designs. 
This knowledge may, for example, be related to machine 
design text awareness of risks for certain components 
or uses.

 FIGURE 3  Example of a requirement database objects [4].
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 FIGURE 4  Illustration of a design database with assembly 
and component objects [4].

©
 S

A
E 

In
te

rn
at

io
na

l

TABLE 3 Attributes pertinent to assembly objects in the 
design database [4].

Attribute Description
Name Descriptive name for the Assembly object

Requirements Key to the PDS database: Requirement[]

Subordinates Define subassemblies and components

Input Key to database: Flow[]

Output Key to database: Flow[]

Process Key to database: Process[]

Rules Key to Rules database: Rules[] ©
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TABLE 4 Attributes pertinent to components objects in the 
design database [4].

Attribute Description
Name Descriptive name for the Assembly object

Requirements Key to the PDS database: Requirement[]

Input Key to database: Flow[]

Output Key to database: Flow[]

Process Key to database: Process[]

Dimensions Nominal and tolerance, in the form of solid 
model data

Material Key to database: Material[]

Properties Description of miscellaneous properties ©
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 FIGURE 2  Example of customer database objects [4].
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 FIGURE 5  Illustration of how component options and risks, 
for an overall design can be programmed into databases based 
on existing engineering knowledge (for example, machine 
design text awareness of risks for certain components or 
uses) [4].
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Database Structures 
Supported
Big data analysis capabilities can be applied at organizations 
with design repositories arranged in the form of relational 
databases. The core concept of project binders accessing data 
in databases holding all the design information, and creating 
pointers to the pertinent design content, may be adapted to 
other database structures.

External Databases
As shown in Figure 1, the design content aggregated is multi-
faceted and covers a broad spectrum of inputs. It not only 
consists of the project binders from the designers, but also 
includes existing and previous design projects within an orga-
nization, plus the linked-in design files, the outputs from the 
design tools, material from the industry databases (results 
from context verification), the configuration scripts, examples, 
content of sample databases provided, legacy databases for 
known good designs, search analytics, information on manu-
facturing procedures, material characteristics, material prices, 
and parts that can be obtained from elsewhere, etc. The result 
is a sizable database of useable information available to 
designers and design organizations.

Data Annotation
Our intent is to present a classification system suitable for 
mechanical design. We think of the collection of archived 
project binders (e- design notebooks [3]) as books in a library. 
We assimilate the indexing of the project binders to cataloging 
of books in a library. And we compare the metadata defined 
for the project binders to the index labels placed on the book. 
Similar to the index labels helping with identification of book 
of interest, the metadata facilities rapidly processing and accu-
rately responding to designer queries. We assume the design 
content gets tagged, in a similar fashion as Google tags all 
websites, to facilitate queries reflecting the users’ needs.

Semantic Framework for 
Analyzing User Needs
In this paper, a user need is considered to occur as a mix of 
the following four elements: Function, cost, material, and 
energy. The first step in the analysis of project binders (e-design 
notebooks) is the automatic understanding of user needs. The 
tasks with user needs are:

	 1.	 To understand the statements of user need/
requirement.
-- Here we treat a user need as a query.

	 2.	 To retrieve previous design information, or examples, 
that yield a good match to the user need.

By doing so, the information retrieval framework 
proposed can provide design teams (workforces) with design 
information similar to the ones previously reported and 
harvested, for the purpose of enhancing design efficiency and 
efficacy. To deal with these tasks, we propose to adopt an 
indexing and retrieval method from the IR field, one referred 
to as Latent Semantic Analysis.

Latent Semantic Analysis
LSA is an extension of a classic IR model, the Salton’s Vector 
Space model (VSM) [6]. LSA was developed as an information 
retrieval technique that discovers hidden semantic structure 
embedded in documents [7]. In more detail, complex relation-
ships exist between words and surrounding contexts, such as 
phrases, statements or documents, in which the words are 
located. For the discovery of latent semantic relationships, 
LSA begins with the creation of a co-occurrence matrix, where 
the columns represent contexts and the rows represent words 
or terms. An entry (i, j) in the matrix corresponds to the 
weight of the word i appearing in the context j. The matrix is 
then analyzed by applying singular value decomposition 
(SVD) to derive the associated hidden semantic structures 
from the matrix. SVD is a way to factorize a rectangular 
matrix. For an m-by-n matrix, A, with m > n, the singular 
value decomposition of the matrix A is the multiplication of 
three matrices: An m-by-r matrix U, an r-by-r matrix Σ, and 
the inverse of an n-by-r matrix V, in that order. That is,

	 A U V= SS T . 	

Here, VT is the matrix transpose of V, obtained by 
exchanging V’s rows and columns. Then, U and V have ortho-
normal columns and Σ is a diagonal matrix. Such a multiplica-
tion form is referred to as the SVD of A. The diagonal elements 
of Σ are all positive and ordered by decreasing magnitude. 
The original matrix, A, can be approximated with a smaller 
matrix, AK, where AK is obtained by keeping the first k largest 
diagonal elements of Σ. By definition, k is the rank of the 
matrix Σ. By applying SVD factorization to the matrix A, 
context (e.g., a set of statements characterizing user needs) is 
represented in a much smaller dimension, k, rather than the 
original high dimension, m. Note that

	 k n£ , 	

	 n m� . 	

As a result, a context is represented in a lower dimensional 
space, rather than in the full, much higher dimension. k is 
referred to as the dimension of the latent semantic structure 
of A. A comprehensive overview of LSA can be found in [8].

LSA-Based Approach
The goal of the LSA-based approach proposed is to provide 
designers with access to previous design records that are 
relevant to the designers’ need. In the vocabulary of 
Information Retrieving, a designer’s need is equivalent to 
a query.
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LSA is adopted as the framework of retrieving designers’ 
needs in this paper, because the method has been proven to be 
an effective unsupervised algorithm for IR [9]. In fact, we do 
not consider here any statistic supervised algorithm-based 
approach, such as neural networks or deep learning, since such 
an approach requires an enormous amount of previous e-design 
examples, or cases, that presently are unavailable; building a 
corpus of e-design history, including preceding cases or 
examples, is one of the goals for the next stage of this research.

Figure 6 depicts an LSA-based approach of retrieving 
e-design cases that are likely to satisfy a query (i.e., a user 
need). The LSA-based method predicts the degree of relevance 
of e-design examples to the query and presents the most 
relevant previous e-design cases, or examples, to the user.

Application of Big Data 
Analytics
The framework proposed assumes a holistic big data analysis 
and efficient utilization of a broad spectrum of available infor-
mation. Through proper database representation of the design 
content, and references from the design project journals, one 
can categorize the data and run various cross-correlations 
(queries) across projects or within projects. By storing the 
comprehensive design history in a cloud, and harvesting 
repositories of known good designs through database queries, 
one can improve the design decision fidelity for new designs. 
Access to such repositories can also prove invaluable for the 
purpose of post-mortem failure analysis.

The AI network in Figure 1 can be trained, for example, 
using the Delta Rule, which is sometimes referred to as the 
Widrow and Hoff learning rule, or the least mean square 
(LMS) rule [10]:

	
Dw

E

w
aijx

ij
ix= - =e d

d
ed ,

	

where ∆wijx represents the update applied to the weight 
at node (perceptron) between links i and j in a neural network 
[10]. E represents an error function over an entire set of training 
patterns (i.e., over one iteration, or epoch) [10]. ε is a learning 
rate applied to this gradient descent learning [10]. aix denotes 
actual activation for node x in output layer i [10].

Example
A simple example is presented here to show how AI can help 
with idea generation (brainstorming) in the Concept Design 
stage of a project involving the design of a reliable, single-
operator Go Kart lift stand. This may be a capstone project, 
where the experience of the designers in the area may be 
somewhat limited. Therefore, they simply pose the following 
as input to the AI system:

“We need a reliable, single-operator stand for kart racers”.
The system responds to the stated need by offering a 

number of ideas or options. Based on what can be retrieved 
from the databases, or the training data available, the system 
may offer the following suggestions:

	 “1.	 JEGS Multi-Purpose Lift
	 2.	 KartLift BigFoot
	 3.	 KartLift Winch Lift
	 4.	 Electric Super Lift
	 5.	 Go Kart Stand Lift”.

Supplementing the overall process outlined in Figure 7, 
Figure 8 lists intermediate steps elucidating how the engine 
for latent semantic analysis is able to arrive at this conclusion.

While this example may come across as relatively simple 
(many mechanical designers may have a clue as to what type 
of lift stands are available), it conveys an application (illus-
trates the purpose) of the AI framework. More nuanced 
examples can be crafted, say, around specific standards, 
policies, material properties or common components. To our 
knowledge, there is presently no systematic search available 
for helping designers with brainstorming.

 FIGURE 6  Illustration of the process of retrieving previous 
e-design history relevant to a user query.
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 FIGURE 7  Illustration of the AI framework applied to the 
Concept Design stage of a project involving the design of a 
single-person Go Kart lift stand.
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Important Questions 
Remaining
While this paper presents the high-level conceptual frame-
work for utilizing AI for the purpose of aiding with mechan-
ical product design, a number of important questions remain, 
such as:

	 1.	 How is the system going to validate the integrity of 
the archived data?
-- How are we going to prevent situations where low-

fidelity input applied to the AI training produces 
low-fidelity output?

-- How exactly do we qualify “known good designs”?
	 2.	 What type of AI interfaces will the system be able 

to support?
-- Will the system be able to support both 

heterogeneous (distributed) and homogeneous  
architectures?

Towards Reasonable 
Answers
	 1.	 It is possible that low-quality data gets archived and 

that this may impact the decision making. The AI 
system should be able to offer good reference designs 
(y’s), but may not be able to provide exact answers for 
all cases. Yet, most search engines are based on 
similar concepts as the AI framework proposed 
(information retrieval). There are many ways to 
account for imperfectness in the archived data.

	 2.	 Similarly, large, distributed databases (enterprise 
applications), such as Apache Hadoop or Spark, can 
be supported through the API interfaces provided 
[11]. Hadoop provides a native Java API to support file 
system operations [12]. One can use WebHFDS to 
interact with the Apache Hadoop file system 
externally through a more user friendly REST API 
[13]. WebHDFS concept is based on HTTP operations 
like GET, PUT, POST and DELETE [13]. Operations 
like OPEN, GETFILESTATUS, LISTSTATUS are 
using HTTP GET, while others like CREATE, 
MKDIRS, RENAME, SETPERMISSIONS are relying 
on HTTP PUT [13]. The APPEND operation is based 
on HTTP POST, whereas DELETE is using HTTP 
DELETE [13]. Authentication can be based on user.
name query parameter (as part of a HTTP query 
string). If security has been turned on, then the 
authentication relies on Kerberos [14].

Conclusions
This paper presents a high-level conceptual framework for the 
utilization of artificial intelligence (big data) for the purpose 
of aiding mechanical product design. This broad objective has 
been formulated in terms of an AI training problem. It is 
shown how a system model for a mechanical design can be 
trained, based on archived design projectbinders (so called 
known good designs). In addition, the paper illustrates how 
a guiding design, y, can be obtained by applying the design 
variables corresponding to a new design project, x, to a trained 
network. Design decisions for the new design can then be 
sanitized through comparison with the reference. It is demon-
strated how a database for product design can be defined, 
based on function, and present seemingly reasonable 

 FIGURE 8  Latent semantic analysis applied to an example involving idea generation (brainstorming) for the Concept 
Design stage.
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attributes. While some important questions are yet to be fully 
addressed, the proposed AI framework is both practical and 
meaningful. By harnessing information retrieval and latent 
semantic analysis, the paper illustrates some of the significant 
potential of the AI framework, through a simple example 
addressing the idea generation (brainstorming) stage of 
Concept Design.
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