
Breaking the gridlock in Mixture-of-Experts:
Consistent and Efficient Algorithms

Ashok Vardhan Makkuva 1 Sewoong Oh 2 Sreeram Kannan 3 Pramod Viswanath 1

Abstract

Mixture-of-Experts (MoE) is a widely popular
model for ensemble learning and is a basic build-
ing block of highly successful modern neural net-
works as well as a component in Gated Recurrent
Units (GRU) and Attention networks. However,
present algorithms for learning MoE, including
the EM algorithm and gradient descent, are known
to get stuck in local optima. From a theoretical
viewpoint, finding an efficient and provably con-
sistent algorithm to learn the parameters remains
a long standing open problem for more than two
decades. In this paper, we introduce the first al-
gorithm that learns the true parameters of a MoE
model for a wide class of non-linearities with
global consistency guarantees. While existing
algorithms jointly or iteratively estimate the ex-
pert parameters and the gating parameters in the
MoE, we propose a novel algorithm that breaks
the deadlock and can directly estimate the expert
parameters by sensing its echo in a carefully de-
signed cross-moment tensor between the inputs
and the output. Once the experts are known, the
recovery of gating parameters still requires an EM
algorithm; however, we show that the EM algo-
rithm for this simplified problem, unlike the joint
EM algorithm, converges to the true parameters.
We empirically validate our algorithm on both
the synthetic and real data sets in a variety of set-
tings, and show superior performance to standard
baselines.

1Department of Electrical and Computer Engineering, Co-
ordinated Science Laboratory, University of Illinois at Urbana-
Champaign, IL, USA 2Allen School of Computer Science & Engi-
neering, University of Washington, Seattle, USA 3Department
of Electrical Engineering, University of Washington, Seat-
tle, USA. Correspondence to: Ashok Vardhan Makkuva
<makkuva2@illinois.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1. Introduction
In this paper, we study a popular gated neural network ar-
chitecture known as Mixture-of-Experts (MoE). MoE is a
basic building block of highly successful modern neural
networks like Gated Recurrent Units (GRU) and Attention
networks. A key interesting feature of MoE is the pres-
ence of a gating mechanism that allows for specialization
of experts in their respective domains. MoE allows for the
underlying expert models to be simple while allowing to
capture complex non-linear relations between the data. Ever
since their inception more than two decades ago (Jacobs
et al., 1991), they have been a subject of great research in-
terest (Tresp, 2001; Collobert et al., 2002; Ng & Deisenroth,
2014; Theis & Bethge, 2015; Le et al., 2016; Gross et al.,
2017; Sun et al., 2017; Wang et al., 2018) across multiple do-
mains such as computer vision, natural language processing,
speech recognition, finance, and forecasting.

The basic MoE model is the following: let x ∈ Rd be the
input feature vector and y ∈ R be the corresponding label.
Then the discriminative model Py|x for the k-mixture of
experts (k-MoE) in the regression setting is:

Py|x =

k∑
i=1

Pi|xPy|x,i

=

k∑
i=1

e〈w
∗
i ,x〉∑

j e
〈w∗j ,x〉

N (y|g(〈a∗i ,x〉), σ2). (1)

Figure 1 details the architecture for k-MoE.

g(〈a∗1 ,x〉)Expert 1 . . . g(〈a∗k,x〉) Expert k

xx

y

Softmax

Gating network

x

Figure 1: Architecture for k-MoE

The interpretation behind (1) is that for each input x, the
gating network chooses an expert based on the outcome

ar
X

iv
:1

80
2.

07
41

7v
3

 [
cs

.L
G

]
 6

 J
un

 2
01

9

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

of a multinomial random variable z ∈ [k], whose prob-
ability depends on x in a parametric way, i.e. z|x ∼
softmax(〈w∗1,x〉, . . . , 〈w∗k,x〉). The chosen expert then
generates the output y from a Gaussian distribution centred
at a non-linear activation of x, i.e. g(〈a∗z,x〉), with vari-
ance σ2. We want to learn the expert parameters a∗i ∈ Rd
(also referred to as the regressors) and the gating parame-
ters w∗i ∈ Rd, assuming we know the non-linear activation
g : R→ R.

This problem of learning MoE has been a long standing
open problem for more than two decades, even though it is a
fundamental building block of several state-of-the-art gated
neural network architectures. Gated neural networks such
as GRUs and Sparsely-gated-MoEs have been widely suc-
cessful in challenging tasks like machine translation (Chung
et al., 2014; Shazeer et al., 2017; Vaswani et al., 2017).
Parameters are typically learnt through (stochastic) gradi-
ent descent on a non-convex loss function. However, these
methods do not possess any theoretical guarantees, even for
the simplest gated neural network, which is the MoE.

On the other hand, existing guarantees for simpler models
without gating units do not extend to MoEs. Consider the
mixture of generalized linear models (M-GLMs) (Sedghi
et al., 2014; Sun et al., 2014; Yi et al., 2016; Zhong et al.,
2016), which is a strict simplification of the k-MoE model
in (1), where w∗i = 0 for all i ∈ {1, . . . , k}. The learning in
M-GLMs is usually done through a combination of spectral
methods and greedy methods such as EM. A major limita-
tion of these methods is that they rely critically on the fact
that the mixing probability is a constant and hence they do
not generalize to MoEs (see Section 2). In addition, the EM
algorithm, which is the workhorse for learning in parametric
mixture models, is prone to bad local minima (Sedghi et al.,
2014; Balakrishnan et al., 2017; Zhong et al., 2016) (we
independently verify this for MoEs in Section 4). These
theoretical shortcomings and practical relevance of the MoE
models lead to the following fundamental question:

Can we find an efficient and a consistent algorithm (with
global initializations) that recovers the true parameters of
the model with theoretical guarantees?

In this paper, we address this question precisely and make
the following contributions:

1) First theoretical guarantees: We provide the first (poly-
time) efficient algorithm that recovers the true parameters
of a MoE model with global initializations (Theorem 1 and
Theorem 2). We allow for a wide class of non-linearities
which includes the popular choices of identity, sigmoid, and
ReLU. To the best of our knowledge, ours is the first work
to give global convergence guarantees for MoE.

2) Algorithmic innovations: Existing algorithms jointly
or iteratively estimate the expert parameters and the gating

paramters in the MoE and can get stuck in local minima.
In this paper, we propose a novel algorithm that breaks the
gridlock and can directly estimate the expert parameters by
sensing its echo in a cross-moment tensor between the inputs
and the output (Algorithm 1 and Algorithm 2). Once the
experts are known, the recovery of gating parameters still
requires an EM algorithm; however, we show that the EM
algorithm for this simplified problem, unlike the joint EM
algorithm, converges to the true parameters. The proofs of
global convergence of EM as well as the design of the cross-
moment tensor are of independent mathematical interest.

3) Novel transformations: In this paper, we introduce the
novel notion of “Cubic and Quadratic Transform (CQT)".
These are polynomial transformations on the output labels
tailored to specific non-linear activation functions and the
noise variance. The key utility of these transforms is to
equip MoEs with a supersymmetric tensor structure in a
principled way (Theorem 1).

Related work. While there is a huge literature on MoEs
((Yuksel et al., 2012; Masoudnia & Ebrahimpour, 2014)
are detailed surveys), there are relatively few works on its
learning guarantees. (Jordan & Xu, 1995) is the first work
to analyze the local convergence of joint-EM for both the
gating and the expert parameters. As noted earlier, however,
EM is prone to bad local minima. In contrast, our algorithms
have global convergence guarantees. It is important to note
that even for the simpler problem of mixtures of Gaussians,
it is known that EM gets stuck in local minima, whenever
number of mixtures, k, is at least 3 (Jin et al., 2016), whereas
we can handle 2k − 1 < d with global convergence.

The simplified versions of MoE, M-GLMs, are widely stud-
ied in the literature. The key techiques for parameter infer-
ence in M-GLMs include EM algorithm, spectral methods,
convex relaxations, and their variants. (Yi et al., 2014;
Balakrishnan et al., 2017) prove convergence of EM for 2-
mixtures of linear regressions; in contrast, we handle k ≥ 2
mixtures for a wide class of non-linearities and provide
global convergence. (Sedghi et al., 2014) construct a 3rd-
order supersymmetric tensor containing the regressors as
its rank-1 components. However, this approach fails to gen-
eralize for MoE. (Zhong et al., 2016) use a similar tensor
construction followed by EM to learn the parameters; how-
ever, they can only handle linear noiseless mixtures and no
gating parameters. In contrast, our algorithms can handle
non-linearities and the gating parameters. (Chen et al., 2014)
use a convex objective to learn the regressors for a special
setting of 2-mixtures of linear regressions. Similar to earlier
approaches, this relaxation too does not generalize to k > 2.

Notation. In this paper, we denote Euclidean vectors by
bold face lowercase letters a, b, etc., and scalars by plain
lowercase letters y, z, etc. We use N (y|µ, σ2) either to
denote the density or the distribution of a Gaussian random

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Tensor
decomposition Regressors {â1, . . . , âk}

EM
algorithm Gating parameters {ŵ1, . . . , ŵk−1}

Cubic & Quadratic
Transform

Score function

Samples

x

Algorithm 1

Algorithm 2

y

Figure 2: Algorithm to learn the MoE parameters. Algorithm 1: First we take non-linear transformations on the samples
(xi, yi) to compute the tensors T2, T3. Spectral decomposition on T2, T3 recovers the regressors. Algorithm 2: EM uses the
learnt regressors and samples to learn the gating parameters with random initializations

variable y with mean µ and variance σ2, depending on the
context. [d] , {1, . . . , d}. Perm[d] denotes the set of all
permutations on [d]. We use ⊗ to denote the tensor outer
product of vectors in Rd. x⊗3 denotes x ⊗ x ⊗ x, where
(x ⊗ x ⊗ x)ijk = xixjxk. sym(x ⊗ y ⊗ z) denotes the
symmetrized version of x ⊗ y ⊗ z, i.e. sym(x ⊗ y ⊗
z)ijk =

∑
σ∈Perm[d] xσ(i)yσ(j)zσ(k). ei, i ∈ [d] denotes

the standard basis vectors for Rd. Through out the paper,
we assume that w∗k = 0, without loss of generality.

2. Algorithms
In this section, we present our algorithms to learn the regres-
sion and gating parameters separately. Figure 2 summarizes
our algorithm. First we take a moment to highlight the
issues of the existing approaches.

For illustration purposes, we suppose that k = 2 in (1). We
assume without loss of generality that w∗k = w∗2 = 0 and
denote w∗1 = w∗. Thus the 2-MoE model is given by Py|x:

e〈w
∗,x〉N (y|g(〈a∗1,x〉), σ2)

1 + e〈w∗,x〉
+
N (y|g(〈a∗2,x〉), σ2)

1 + e〈w∗,x〉
(2)

Issues with traditional tensor methods. In the far sim-
plified setting of the absence of the gating parameter, i.e.
w∗ = 0 ∈ Rd, we see that 2-MoE reduces to 2-uniform
mixture of GLMs. In this case, for x ∼ N (0, Id), the
standard approach is to construct a 3rd-order tensor T
by regressing the output y on the score transformation
S3(x) , x⊗ x⊗ x−

∑
i∈[d] sym (x⊗ ei ⊗ ei), i.e.

T , E[y · S3(x)] =
1

2
E[g′′′(〈a∗1,x〉)] · (a∗1)⊗3

+
1

2
E[g′′′(〈a∗2,x〉)] · (a∗2)⊗3 . (3)

Here the second equality follows from the generalized
Stein’s lemma that E[f(x) · S3(x)] = E[∇(3)

x f(x)] under
some regularity conditions on f : Rd 7→ R (see Lemma 2
in Appendix A). Then the regressors can be learned through
spectral decomposition on T , where the uniqueness of de-
composition follows from (Kruskal, 1977). If we apply a
similar technique for 2-MoE in (2), we obtain that

E[y · S3(x)] =
∑
i=1,2

αi(a
∗
i)
⊗3 + βi sym(a∗i ⊗ a∗i ⊗w∗)

+ γi sym(a∗i ⊗w∗ ⊗w∗) + δ(w∗)⊗3, (4)

where αi, βi, γi, δ are some scalar constants depending on
the parameters a∗1,a

∗
2,w

∗ and g (see Appendix D.1 for the
proof). Thus (4) reveals that traditional spectral methods do
not yield a supersymmetric tensor of the desired parameters
for MoEs. In fact, (4) contains all the 3rd-order rank-1
terms formed by a∗1,a

∗
2 and w∗. Hence we cannot recover

these parameters uniquely. Note that the inherent coupling
between the regressors a∗1,a

∗
2 and the gating parameter w∗

in (2) manifests as a cross tensor in (4). This coupling
serves as a key limitation for the traditional methods which
critically rely on the fact that the mixing probability p = 1

2
in (4) is a constant. In fact, we recover (3) by letting w∗ = 0
in (4).

Issues with EM algorithm. EM algorithm is the workhorse
for parameter learning in both the k-MoE and HME models
(Jordan & Jacobs, 1994). However, it is well known that
EM is prone to spurious minima and existing theoretical
results only establish local convergence for the regressors
and the gating parameters. Indeed, our numerical experi-
ments in Section 4.3 verify this fact. Figure 3b and Figure 3c
highlight that joint-EM often gets stuck in bad local minima.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

2.1. The proposed algorithm for learning MoE

In order to tackle these challenges, we take a different route
and propose to estimate the regressors and gating param-
eters separately. To gain intuition about our approach,
let us consider 2-MoE model in (2) with σ = 0 and lin-
ear g. Then we have that y either equals 〈a∗1,x〉 with
probability σ(〈w∗,x〉) or equals 〈a∗2,x〉 with probability
1− σ(〈w∗,x〉), where σ(·) is the sigmoid function. If we
exactly know w∗, we can recover a∗1 and a∗2 by solving a
simple linear regression problem since we can recover the
true latent variable z ∈ {1, 2} with high probability. Sim-
ilarly, if we know a∗1 and a∗2, it is easy to see that we can
recover w∗ by solving a binary linear classification problem.
Thus knowing either the regressors or the gating parameters
makes the estimation of other parameters easier. However,
how do we first obtain one set of parameters without any
knowledge about the other?

Our approach precisely addresses this question and breaks
the grid lock. We show that we can extract the regressors a∗1
and a∗2 without knowing w∗ at all, just using the samples.
Although we explain our approach with two mixtures, all
claims are made precise for general k in Theorems 1 and
2, and the algorithms are written for general k as well in
Algorithms 1 and 2.

STEP 1: ESTIMATION OF REGRESSORS

To learn the regressors, we first pre-process x ∼ N (0, Id)
using the score transformations S3 and S2, i.e.

S3(x) , x⊗ x⊗ x−
∑
i∈[d]

sym (x⊗ ei ⊗ ei) , (5)

S2(x) , x⊗ x− I. (6)

These score functions can be viewed as higher-order feature
extractors from the inputs. As we have seen in (3), these
transformations suffice to learn the parameters in M-GLMs.
However this approach fails in the context of MoE, as high-
lighted in (4). Can we still construct a supersymmetric
tensor for MoE?

To answer this question in a principled way, we introduce
the notion of “Cubic and Quadratic Transform (CQT)" for
the labels, i.e.

P3(y) , y3 + αy2 + βy, P2(y) , y2 + γy.

The coefficients (α, β, γ) in these polynomial transforms
are obtained by solving a linear system of equations (see
Appendix C). For the special case of g =linear, we obtain
P3(y) = y3 − 3(1 + σ2) y and P2(y) = y2. These special
transformations are specific to the choice of non-linearity
g and the noise variance σ. The key intuition behind the
design of these transforms is that we can nullify the cross
moments and obtain supersymmetric tensor in (3) if we

regress P3(y) instead of y, for properly chosen constants α
and β. This is made mathematically precise in Theorem 1.
A similar argument holds for P2(y) too. In addition, the
choice of these polynomials is unique in the sense that any
other polynomial transformations fail to yield the desired
tensor structure. Using these transforms, we construct two
special tensors T̂3 ∈ (Rd)⊗3 and T̂2 ∈ (Rd)⊗2. Later we
use the robust tensor power method (Anandkumar et al.,
2014) on these tensors to learn the regressors. Algorithm 1
details our learning procedure. Theorem 1 establishes the
theoretical justification for our algorithm.

Algorithm 1 Learning the regressors

1: Input: Samples (xi, yi), i ∈ [n]
2: Compute T̂3 = 1

n

∑n
i=1 P3(yi) · S3(xi) and T̂2 =

1
n

∑n
i=1 P2(yi) · S2(xi)

3: â1, . . . , âk = Rank-k tensor decomposition on T̂3 us-
ing T̂2

STEP 2: ESTIMATION OF GATING PARAMETERS

To gain intuition for estimating the gating parameters, let
g = linear in (2) for simplicity. Moreover, assume that we
know both a∗1 and a∗2. Then taking conditional expectation
on y, we obtain from (2) that

E[y|x] = f(〈w∗,x〉) · 〈a∗1,x〉+ (1− f(〈w∗,x〉)) · 〈a∗2,x〉,
= 〈a∗2,x〉+ f(〈w∗,x〉) · 〈a∗1 − a∗2,x〉, (7)

where f is the sigmoid function. Thus,

E
[
y − 〈a∗2,x〉
〈a∗1 − a∗2,x〉

|x
]

=
E[y|x]− 〈a∗2,x〉
〈a∗1 − a∗2,x〉

= f(〈w∗,x〉).

Note that since x is Gaussian, 〈a∗1 − a∗2,x〉 is non-zero
with probability 1. Hence, to recover w∗, in view of Stein’s
lemma, we may write

E
[(

y − 〈a∗2,x〉
〈a∗1 − a∗2,x〉

)
· x
]

7
= E [f(〈w∗,x〉) · x]

= E [f ′(〈w∗,x〉)] ·w∗

= EZ∼N (0,1)f
′(‖w∗‖Z) ·w∗

∝ w∗.

However, it turns out that the above chain of equalities does
not hold. Surprisingly, the first equality, which essentially
is the law of iterated expectations, is not valid in this case
as y−〈a∗2 ,x〉
〈a∗1−a∗2 ,x〉

is not integrable since it is a mixture of two
Cauchy distributions, as proved in Appendix D.4. Thus
the above analysis highlights the difficulty of learning the
gating parameters even in the simplest setting of two linear
mixtures. Can we still learn w∗ using method of moments
(MoM)? In Theorem 3, we precisely address this question

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

and show that we can still provably recover the gating pa-
rameters using MoM, by designing clever transformations
on the data to infer the parameters of a Cauchy mixture
distribution.

While Theorem 3 highlights that gating parameters can be
learnt using the method of moments for 2-MoE, we still
need a principled approach to learn these parameters for a
more generic setting of k-MoE. Recall that the traditional
joint-EM algorithm randomly initializes both the regressors
and the gating parameters and updates them iteratively. Fig-
ure 3b and Figure 3c highlight that this procedure is prone
to spurious minima. Can we still learn the gating parameters
with global initializations? To address this question, we
utilize the regressors learnt from Algorithm 1. In particular,
we use EM algorithm to update only the gating parameters,
while fixing the regressors â1, . . . , âk. We show in Theo-
rem 2 that, with global/random initializations, this variant
of EM algorithm learns the true parameters. To the best of
our knowledge, this is the first global convergence result
for EM for k > 2 mixtures. This motivates the following
algorithm (ε > 0 is some error tolerance):

Algorithm 2 Learning the gating parameter

1: Input: Samples (xi, yi), i ∈ [n] and regressors
â1, . . . , âk from Algorithm 1

2: t← 0
3: Initialize w0 uniformly randomly in its domain Ω
4: while (Estimation error < ε) do
5: Compute the posterior p(i)

wt according to (9) for each
j ∈ [k] and i ∈ [n]

6: Compute Q(w|wt) according to (8) using empirical
expectation

7: Set wt+1 = argmaxw∈ΩQ(w|wt)
8: t← t+ 1
9: Estimation error = ‖wt −wt−1‖

10: end while

3. Theoretical analysis
In this section, we provide the theoretical guarantees for our
algorithms in the population setting. We first formally state
our assumptions and justify the rationale behind them:

1. x follows standard Gaussian distribution, i.e. x ∼
N (0, Id).

2. ‖a∗i ‖2 = 1 for i ∈ [k] and ‖w∗i ‖2 ≤ R for i ∈ [k− 1],
with some R > 0.

3. a∗i , i ∈ [k] are linearly independent and w∗i is orthogo-
nal to span{a∗1, . . . ,a∗k} for i ∈ [k − 1].

4. The non-linearity g : R→ R is (α, β, γ)-valid, which

we define in Appendix C. For example, this class in-
cludes g =linear, sigmoid and ReLU.

Remark. We note that the Gaussianity of the input distri-
bution and norm constraints on the parameters are standard
assumptions in the learning of neural networks literature
(Janzamin et al., 2015; Li & Yuan, 2017; Ge et al., 2017;
Zhong et al., 2017; Du et al., 2017; Safran & Shamir, 2017)
and also that of M-GLMs (Sedghi et al., 2014; Yi et al.,
2016; Zhong et al., 2016; Balakrishnan et al., 2017). An
interpretation behind Assumption 3 is that if we think of x
as a high-dimensional feature vector, distinct sub-features
of x are used to perform the two distinct tasks of classifi-
cation (using w∗i ’s) and regression (using a∗i ’s). We note
that we need the above assumptions only for the technical
analysis. In Section 4.1 and Section 4.2, we empirically
verify that our algorithms work well in practice even under
the relaxation of these assumptions. Thus we believe that
the assumptions are merely technical artifacts.

We are now ready to state our results.

Theorem 1 (Recovery of regression parameters). Let (x, y)
be generated according the true model (1). Under the above
assumptions, we have that

T2 , E[P2(y) · S2(x)] =

k∑
i=1

c′gE[Pi|x] · a∗i ⊗ a∗i ,

T3 , E[P3(y) · S3(x)] =

k∑
i=1

cg,σE[Pi|x] · a∗i ⊗ a∗i ⊗ a∗i ,

where c′g and cg,σ are two non-zero constants depending on
g and σ. Hence the regressors a∗i ’s can be learnt through
tensor decomposition on T2 and T3.

Proof. (Sketch) To highlight the central ideas behind the
proof, first let g =linear. From (1) we get that

E[y|x] =
∑
i∈[k]

p∗i (x)〈a∗i ,x〉,

where p∗i (x) , Pi|x for i ∈ [k]. Taking the cross moment
of y with S3(x) and using Lemma 2 we obtain that

E[y · S3(x)] =
∑
i∈[k]

E[p∗i (x)〈a∗i ,x〉 · S3(x)]

=
∑
i∈[k]

E[∇(3)
x (p∗i (x)〈a∗i ,x〉)].

Notice that had p∗i (x) been a constant in the above equation,
we would obtain a supersymmetric tensor easily as is the
case with M-GLMs. However, E[∇(3)

x (p∗i (x)〈a∗i ,x〉)] now
contains all the third-order rank-1 terms involving the tensor
product of w∗1, . . . ,w

∗
k−1 and a∗i for any fixed i. Our key

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

insight is that this issue can be avoided if we cleverly trans-
form y. In particular, we consider a cubic transformation
P3(y) = y3 − 3y(1 + σ2) and obtain that

E[P3(y)|x] =
∑
i∈[k]

p∗i (x)(〈a∗i ,x〉3 − 3〈a∗i ,x〉)

Now it turns out that after using the orthogonality of w∗i and
a∗i , and the fact E[p(Z)] = E[p′(Z)] = E[p′′(Z)] = 0 for
3rd-Hermite polynomial p(z) = z3 − 3z and Z ∼ N (0, 1),
we can nullify the cross-moments between w∗i ’s and a∗i ’s
to obtain that

E[P3(y) · S3(x)] = 6
∑
i∈[k]

E[p∗i (x)].(a∗i)
⊗3.

Similarly, we can show that E[P2(y) · S2(x)] =
2
∑
i∈[k] E[p∗i (x)].(a∗i)

⊗2. For a general non-linearity g :
R→ R, we can similarly design cubic and quadratic poly-
nomials P3 = y3 + αy2 + βy and P2 = y2 + γy such that
we can still construct supersymmetric tensors involving the
regressors. In order to obtain the unique set of coefficients
(α, β, γ), we need to solve a linear system of equations,
which we describe in Appendix C.

Once we obtain T2 and T3, the recovery gurantees for the
regressors a∗i follow from the standard tensor decomposi-
tion guarantees, for example, Theorem 4.3 and Theorem 5
of (Anandkumar et al., 2014). We assume that the learnt
regressors ai are such that maxi∈[k] ‖ai − a∗i ‖2 = σ2ε for
some ε > 0. Now we present our theoretical results for
global convergence of EM. First we briefly recall the algo-
rithm. Let Ω denote the domain of our gating parameters,
defined as

Ω = {w = (w1, . . . ,wk−1) : ‖wi‖2 ≤ R,∀i ∈ [k − 1]} .

Then the population EM for the mixture of experts consists
of the following two steps:

• E-step: Using the current estimate wt to compute the
function Q(·|wt),

• M-step: wt+1 = argmaxw∈ΩQ(w|wt),

where the function Q(.|wt) is the expected log-likelihood
of the complete data distribution with respect to current
posterior distribution. Mathematically,

Q(w|wt) , E(x,y)EPz|x,y,wt [logPw(x, z, y)]

= E(x,y)EPz|x,y,wt [logP (x)Pw(z|x)P (y|x, z)]
= E(x,y)EPz|x,y,wt [logPw(z|x)] + const.

= E[
∑

i∈[k−1]

p(i)
wt

(w>i x)− (1 +
∑

i∈[k−1]

ew
>
i x)]

+ const. (8)

where const refers to terms not depending on w,
Pw(z = i|x) = exp(w>i x)/

∑
j exp(w>j x) and p(i)

wt ,
P [z = i|x, y,wt] corresponds to the posterior probability
for the ith expert, given by

p(i)
wt

=
pi,t(x)N (y|g(a>i x), σ2)∑
j∈[k] pj,t(x)N (y|g(a>j x), σ2)

, (9)

pi,t(x) =
e(wt)

>
i x

1 +
∑
j∈[k−1] e

(wt)>j x
.

In (8), the expectation is with respect to the true distribution
of (x, y), given by (1). Thus the EM can be viewed as a
deterministic procedure which maps wt 7→M(wt) where

M(w) = argmaxw′∈ΩQ(w′|w).

When the estimated regressors ai equal the true parame-
ters a∗i , it follows from the self-consistency property of the
EM that the true parameter w∗ is a fixed-point for the EM
operator M , i.e. M(w∗) = w∗ (McLachlan & Krishnan,
2007). However, this does not guarantee that EM converges
to w∗. In the following theorem, we show that even when
the regressors are known approximately, EM algorithm con-
verges to the true gating parameters at a geometric rate upto
an additive error, under global initializations. For the error
metric, we define ‖w −w′‖ , maxi∈[k−1] ‖wi −w′i‖2
for any w,w′ ∈ Ω. We assume that R = 1 for simplicity.
(Our results extend straightforwardly to general R).

Theorem 2. Let ε > 0 be such that maxi ‖ai−a∗i ‖2 = σ2ε.
There exists a constant σ0 > 0 such that whenever 0 < σ <
σ0, for any random initialization w0 ∈ Ω, the population-
level EM updates on the gating parameter {w}t≥0 converge
almost geometrically to the true parameter w∗ upto an
additive error, i.e.

‖wt −w∗‖ ≤ (κσ)
t ‖w0 −w∗‖+ κε

t−1∑
i=0

κiσ,

where κσ, κ are dimension-independent constant depending

on g and σ such that κσ
σ→0−−−→ 0 and κ ≤ (k−1)

√
6(2+σ2)

2
for g =linear, sigmoid and ReLU.

Proof. (Sketch) One can show that the Q(·|wt) defined
in (8) is a strongly concave function. Moreover, if we let
ε = 0 and wt = w∗, we have from the self-consistency
of EM that argmaxQ(·|w∗) = w∗. Thus if we can show
that the functions are Q(·|wt) and Q(·|w∗) “sufficiently
close" whenever wt and w∗ are close, we can use the EM
convergence analysis tools from (Balakrishnan et al., 2017)
to show that their corresponding maximizers also stay close
upto a scaling factor determined by κσ above. Then it
follows that the EM updates converge geometrically.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Remark. In the M-step of the EM algorithm, the next
iterate is chosen so that the function Q(·|wt) is maximized.
Instead we can perform an ascent step in the direction of the
gradient of Q(·|wt) to produce the next iterate, i.e. wt+1 =
ΠΩ(wt + α∇Q(wt|wt)), where ΠΩ(·) is the projection
operator. This variant of EM algorithm is known as Gradient
EM. In Appendix G, we show that Gradient EM also enjoys
similar convergence guarantees.

MoM to learn gating parameters. In Theorem 2, we
proved that EM algorithm provably recovers the true gating
parameters for any k ≥ 2 mixtures. In this section, we show
that for the special case of k = 2, we can learn w∗ (upto
the unit direction) using an alternative procedure involving
MoM. First we define

Ratio(x, y) ,
y − 〈a2,x〉
〈a1 − a2,x〉

(10)

The following theorem establishes that the the CDF of the
random variable Ratio(x, y), when regressed on input x, is
proportional to w∗.
Theorem 3. Suppose that (a1,a2) = (a∗1,a

∗
2). Then we

have that

E[1{Ratio(x, y) ≤ 0.5} · x] = αw∗,

where α ∈ R is a scalar given by α = E[f ′(〈w∗,x〉) ·(
1− 2Φ

(
|〈a1−a2,x〉|

2σ

))
].

Proof. (Sketch) We first show that Ratio(x, y) is a
mixture of Cauchy distributions. Then we show that
E[1{Ratio(x, y) ≤ z}|x] = P [Ratio ≤ z|x] =

f(w>x)Φ
(

(z − 1) |∆x|
σ

)
+ (1 − f(w>x))Φ

(
z |∆x|

σ

)
where ∆x = (a1 − a2)>x. Then our result follows from
taking the first moment of the indicator random variable
with x and Stein’s lemma.

4. Experiments
In this section, we empirically validate our algorithm in var-
ious settings and compare its performance to that of EM on
both synthetic and real world datasets 1. In both the scenar-
ios, we found that our algorithm consistently outperforms
the existing approaches. For the tensor decomposition in
our Algorithm 1, we use the Orth-ALS package by (Sharan
& Valiant, 2017). In all the synthetic experiments, we first
draw the regressors {a∗i }ki=1 i.i.d uniformly from the unit
sphere Sd−1. The input distribution Px and the generation
of w∗i ’s are detailed for each experiment. Then the labels yi
are generated according to the true k-MoE model in (1) for
linear activation. Additional experiments in this setting with
non-linear activations are detailed in Appendix H.1. Experi-
ments with real world data are provided in Section 4.4.

1Codes are available at this repository MoE codes.

4.1. Non-gaussian inputs

In this section we let the input distribution to be mixtures
of Gaussians (GMM). We let k = 2, d = 10 and σ =
0.1. The gating parameter w∗ ∈ R10 is uniformly chosen
from the unit sphere S9. To generate the input features,
we first randomly draw µ1, µ2 ∈ S9, and generate n i.i.d.
samples xi ∼ pN (µ1, Id) + (1− p)N (µ2, Id), where p ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Here n = 2000. Since x is a 2-
GMM, its score functions S3(x),S2(x) are computed using
the densities of Gaussian mixtures (Janzamin et al., 2014).
To gauge the performance of our algorithm, we measure the
correlation of our learned parameters a1,a2 and w with the
ground truth, i.e.

Regressor Fit(a1,a2) = max
π

min
i∈{1,2}

|〈aπ(i),a
∗
i 〉|, (11)

where π : {1, 2} → {1, 2} is a permutation. Similarly, for
the gating parameter, we define

Gating Fit(w) = |〈w,w∗〉|. (12)

Here we assume that all the parameters are unit-normalized.
The closer the values of fit are to 1, the closer the learnt
parameters are to the ground truth. As shown in Table 1, our
algorithms are able to learn the ground truth very accurately
in a variety of settings, as indicated by the measured fit.
This highlights the fact that our algorithms are robust to the
input distributions.

4.2. Non-orthogonal parameters

In this section we verify that our algorithms still work well
in practice even under the relaxation of Assumption 3. For
the experiments, we consider the similar setting as before
with k = 2, d = 10, σ = 0.1 and the gating parameter
w∗ is drawn uniformly from S9 without the orthogonality
restriction. We let xi

i.i.d.∼ N (0, Id). We choose n = 2000.
We use RegressorFit and GatingFit defined in (11) and (12)
respectively, as our performance metrics. From Table 2, we
can see that the performance of our algorithms is almost the
same across both the settings. In both the scenarios, our fit
is consistently greater than 0.9.

In Figure 3a, we plotted GatingFit(wt) vs. the number
of iterations t, as wt is updated according to Algorithm 2,
over 10 independent trials. We observe that the learned
parameters converge to the true parameters in less than 5
iterations.

4.3. Comparison to joint-EM

Here we compare the performance of our algorithm with that
of the joint-EM. We let the number of mixture components
be k = 3 and k = 4. We let x ∼ N (0, Id) and the gating pa-
rameters are drawn uniformly from S9. If A = [a1 . . .ak]

https://github.com/Ashokvardhan/Breaking-the-gridlock-in-MoE-Consistent-and-Efficient-Algorithms

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

(a) Non-orthogonality

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(b) k = 3

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

3

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(c) k = 4

Figure 3: (a): GatingFit for our algorithm under non-orthogonality setting. (b),(c): Estimation error E(A,W) of our
algorithm vs. joint-EM algorithm. Our algorithm is significantly better than the joint-EM under random initializations.

Table 1: Fit of our learned parameters for non-Gaussian inputs

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9
Regressor Fit 0.93± 0.06 0.94± 0.02 0.92± 0.04 0.92± 0.02 0.91± 0.06
Gating Fit 0.9± 0.1 0.97± 0.01 0.93± 0.04 0.96± 0.03 0.97± 0.01

Table 2: Performance of our algorithm under orthogonal and non-orthogonal settings

Regressor Fit Gating Fit
Non-orthogonal 0.9± 0.08 0.96± 0.02

Orthogonal 0.93± 0.03 0.96± 0.03

and W = [w1 . . .wk−1 0] denote the estimated expert
and gating parameters respectively, our evaluation metric
is E , the Frobenious norm of the parameter error account-
ing for the best possible permutation π : [k] → [k], i.e.
E(A,W) = infπ ‖A − A∗π‖F + ‖W −W ∗

π‖F , where
A∗π = [a∗π(1) . . .a

∗
π(k)] denotes the permuted regression

parameter matrix and similarly for W ∗
π. In Figure 3b and

Figure 3c, we compare the performance of our algorithm
with the joint-EM algorithm for n = 8000, d = 10, σ = 0.5.
The plotted estimation error E(A,W) is averaged for 10
trials. It is clear that our algorithm is able to recover the true
parameters thus resulting in much smaller parameter error
than the joint-EM which often gets stuck in local optima.
In addition, our algorithm is able to learn these parameters
in very few iterations, often less than 10 iterations. We
also find that our algorithm consistently outperforms the
joint-EM for different choices of non-linearities, number
of samples, number of mixtures, etc. (details provided in
Appendix H). Note that the above error metric E(A,W) is
close to zero if and only if Regressor Fit and Gating Fit is
close to one.

4.4. Real data

To highlight the generalizability of our algorithm, in Ap-
pendix H.2 of the supplement, we compare the performance

of our algorithm to that of the standard approaches on a va-
riety of real world datasets. Results from these experiments
highlight the fact that in the real world scenario, where the
underlying data is not generated according to a MoE model,
our approach still learns a superior set of parameters as op-
posed to the existing algorithms. This fact is reflected in the
lowest prediction errors obtained by our algorithm.

5. Discussion
In this paper we provided the first provable and globally con-
sistent algorithm that can learn the true parameters of a MoE
model. We believe that ideas from (Sedghi et al., 2014) can
be naturally extended for the finite sample complexity anal-
ysis of the tensor decomposition to learn the regressors and
similarly, techniques from (Balakrishnan et al., 2017) can
be extended to the finite sample EM convergence analysis
for the gating parameters. While we have focused here on
parameter recovery, however, there are no statistical bounds
on output prediction error when the data is not generated
from the model. MoE models are known to be capable of
fitting general functions, and getting statistical guarantees
on learning in such regimes is an interesting direction for
future work.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Acknowledgements
This work is partly supported by NSF grants 1927712
and 1815535, NSF awards CNS-1718270, 1651236,
1703403, and the Army Research Office under grant
W911NF1810332.

References
Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and

Telgarsky, M. Tensor decompositions for learning latent
variable models. J. Mach. Learn. Res., 15(1):2773–2832,
January 2014. ISSN 1532-4435.

Balakrishnan, S., Wainwright, M. J., and Yu, B. Statistical
guarantees for the EM algorithm: From population to
sample-based analysis. The Annals of Statistics, 45(1):
77–120, 2017.

Brooks, T., Pope, D., and Marcolini., A. Airfoil
self-noise and prediction. Technical report, NASA,
1989. URL https://archive.ics.uci.edu/
ml/datasets/Airfoil+Self-Noise.

Chen, Y., Yi, X., and Caramanis, C. A convex formulation
for mixed regression with two components: Minimax
optimal rates. In Conference on Learning Theory, pp.
560–604, 2014.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. abs/1412.3555, 2014.

Collobert, R., Bengio, S., and Bengio, Y. A parallel mixture
of SVMs for very large scale problems. Neural Comput-
ing, 2002.

Du, S. S., Lee, J. D., Tian, Y., Poczos, B., and Singh, A.
Gradient descent learns one-hidden-layer cnn: Don’t
be afraid of spurious local minima. arXiv preprint
arXiv:1712.00779, 2017.

Ge, R., Lee, J. D., and Ma, T. Learning one-hidden-layer
neural networks with landscape design. arXiv preprint
arXiv:1711.00501, 2017.

Gross, S., Szlam, A., et al. Hard mixtures of experts for
large scale weakly supervised vision. In Computer Vision
and Pattern Recognition (CVPR), 2017 IEEE Conference
on, pp. 5085–5093. IEEE, 2017.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural Computation,
1991.

Janzamin, M., Sedghi, H., and Anandkumar, A. Score
function features for discriminative learning: Matrix and
tensor framework. abs/1412.2863, 2014. URL http:
//arxiv.org/abs/1412.2863.

Janzamin, M., Sedghi, H., and Anandkumar, A. Beat-
ing the perils of non-convexity: Guaranteed training of
neural networks using tensor methods. arXiv preprint
arXiv:1506.08473, 2015.

Jin, C., Zhang, Y., Balakrishnan, S., Wainwright, M. J.,
and Jordan, M. Local maxima in the likelihood of gaus-
sian mixture models: Structural results and algorithmic
consequences. arXiv preprint arXiv:1609.00978, 2016.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the EM algorithm. Neural computation, 6(2):
181–214, 1994.

Jordan, M. I. and Xu, L. Convergence results for the EM
approach to mixtures of experts architectures. Neural
Networks, 8(9):1409–1431, 1995.

Kruskal, J. B. Three-way arrays: rank and uniqueness of
trilinear decompositions, with application to arithmetic
complexity and statistics. Linear algebra and its applica-
tions, 18(2):95–138, 1977.

Le, P., Dymetman, M., and Renders, J.-M. Lstm-based
mixture-of-experts for knowledge-aware dialogues. arXiv
preprint arXiv:1605.01652, 2016.

Li, Y. and Yuan, Y. Convergence analysis of two-layer
neural networks with relu activation. In Advances in
Neural Information Processing Systems, pp. 597–607,
2017.

Liu, Y.-C. and Yeh, I.-C. Using mixture design and neural
networks to build stock selection decision support
systems. Neural Computing and Applications, 28(3):
521–535, 2017. doi: 10.1007/s00521-015-2090-x.
URL https://archive.ics.uci.edu/ml/
datasets/Stock+portfolio+performance.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts: a
literature survey. Artificial Intelligence Review, 42(2):
275, 2014.

McLachlan, G. and Krishnan, T. The EM algorithm and
extensions, volume 382. John Wiley & Sons, 2007.

Ng, J. W. and Deisenroth, M. P. Hierarchical mixture-of-
experts model for large-scale gaussian process regression.
arXiv preprint arXiv:1412.3078, 2014.

Safran, I. and Shamir, O. Spurious local minima are com-
mon in two-layer relu neural networks. arXiv preprint
arXiv:1712.08968, 2017.

Sedghi, H., Janzamin, M., and Anandkumar, A. Provable
tensor methods for learning mixtures of classifiers. arXiv
preprint arXiv:1412.3046, 2014.

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
http://arxiv.org/abs/1412.2863
http://arxiv.org/abs/1412.2863
https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance
https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Sharan, V. and Valiant, G. Orthogonalized ALS: A theo-
retically principled tensor decomposition algorithm for
practical use. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 3095–3104,
06–11 Aug 2017. URL http://proceedings.mlr.
press/v70/sharan17a.html.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Stein, C. A bound for the error in the normal approximation
to the distribution of a sum of dependent random vari-
ables. In Proceedings of the Sixth Berkeley Symposium
on Mathematical Statistics and Probability, volume 2, pp.
583–602. University of California Press, 1972.

Sun, X., Peng, X., Ren, F., and Xue, Y. Human-machine con-
versation based on hybrid neural network. In Computa-
tional Science and Engineering (CSE) and Embedded and
Ubiquitous Computing (EUC), 2017 IEEE International
Conference on, volume 1, pp. 260–266. IEEE, 2017.

Sun, Y., Ioannidis, S., and Montanari, A. Learning mixtures
of linear classifiers. In Proceedings of the 31st Interna-
tional Conference on Machine Learning, volume 32, pp.
721–729, 2014.

Theis, L. and Bethge, M. Generative image modeling using
spatial lstms. In Proceedings of the 28th International
Conference on Neural Information Processing Systems
- Volume 2, NIPS’15, pp. 1927–1935, Cambridge, MA,
USA, 2015. MIT Press.

Tresp, V. Mixtures of gaussian processes. NIPS, 2001.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Wang, X., Yu, F., Wang, R., Ma, Y.-A., Mirhoseini, A.,
Darrell, T., and Gonzalez, J. E. Deep mixture of experts
via shallow embedding. arXiv preprint arXiv:1806.01531,
2018.

Yeh, I.-C. Modeling of strength of high performance con-
crete using artificial neural networks. Cement and Con-
crete Research, 28(12):1797–1808, 1998. URL https:
//archive.ics.uci.edu/ml/datasets/
Concrete+Compressive+Strength.

Yi, X., Caramanis, C., and Sanghavi, S. Alternating min-
imization for mixed linear regression. In International
Conference on Machine Learning, pp. 613–621, 2014.

Yi, X., Caramanis, C., and Sanghavi, S. Solving a mix-
ture of many random linear equations by tensor decom-
position and alternating minimization. arXiv preprint
arXiv:1608.05749, 2016.

Yuksel, S. E., Wilson, J. N., and Gader, P. D. Twenty years
of mixture of experts. IEEE Transactions on Neural
Networks and Learning Systems, 23(8):1177–1193, 2012.

Zhong, K., Jain, P., and Dhillon, I. S. Mixed linear regres-
sion with multiple components. pp. 2190–2198. 2016.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural
networks. arXiv preprint arXiv:1706.03175, 2017.

http://proceedings.mlr.press/v70/sharan17a.html
http://proceedings.mlr.press/v70/sharan17a.html
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Organization. The appendix is organized as follows:

• Appendix A and Appendix B contain the requisite material for method of moments and the convergence analysis of
EM respectively.

• Appendix C details the class of non-linearities for which our results hold.

• Appendix D contains all the proofs of Section 3. Two technical lemmas needed to prove Theorem 2 are relegated to
Appendix E and Appendix F.

• Appendix G provides convergence guarantees for Gradient EM.

• Appendix H contains additional experiments for the comparison of joint-EM and our algorithm for the synthetic data.

A. Toolbox for method of moments
In this section, we introduce the key techniques that are useful in parameter estimation of mixture models via the method of
moments.

Stein’s identity (Stein’s lemma) is a well-known result in probability and statistics and is widely used in estimation and
inference taks. A refined version of the Stein’s lemma (Stein, 1972) for higher-order moments is the key to parameter
estimation in mixture of generalized linear models. We utilize this machinery in proving Theorem 1. We first recall the
Stein’s lemma.

Lemma 1 (Stein’s lemma (Stein, 1972)). Let x ∼ N (0, Id) and g : Rd → R be a function such that both E[∇xg(x)] and
E[g(x) · x] exist and are finite. Then

E[g(x) · x] = E[∇xg(x)].

The following lemma, which can be viewed as an extension of Stein’s lemma for higher-order moments, is the central
technique behind parameter estimation in M-GLMs.

Lemma 2 ((Sedghi et al., 2014)). Let x ∼ N (0, Id) and S3(x) be as defined in (6) and let S2(x) , x⊗ x− Id. Then for
any g : Rd → R satisfying some regularity conditions, we have

E[g(x) · S2(x)] = E[∇(2)
x g(x)], E[g(x) · S3(x)] = E[∇(3)

x g(x)].

B. Toolbox for EM convergence analysis
Recall that the domain of our gating parameters is Ω = {w : ‖w‖ ≤ 1}. Then the population EM for the mixture of experts
consists of the following two steps:

• E-step: Using the current estimate wt to compute the function Q(·|wt).

• M-step: wt+1 = argmax‖w‖≤1Q(w|wt).

Thus the EM can be viewed as a deterministic procedure which maps wt 7→M(wt) where

M(w) = argmaxw′∈ΩQ(w′|w).

Our convergence analysis relies on tools from (Balakrishnan et al., 2017) where they provided local convergence results
on both the EM and gradient EM algorithms. In particular, they showed that if we initialize EM in a sufficiently small
neighborhood around the true parameters, the EM iterates converge geometrically to the true parameters under some
strong-concavity and gradient stability conditions. We now formally state the assumptions in (Balakrishnan et al., 2017)
under which the convergence guarantees hold. We will show in the next section that these conditions hold globally in our
setting.

Assumption 1 (Convexity of the domain). Ω is convex.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Assumption 2 (Strong-concavity). Q(·|w∗) is a λ-strongly concave function over a r-neighborhood of w∗, i.e. B(w∗, r) ,
{w ∈ Ω : ‖w −w∗‖ ≤ r}.
Remark 1. An important point to note is that the true parameter w∗ is a fixed point for the EM algorithm, i.e. M(w∗) = w∗.
This is also known as self-consistency of the EM algorithm. Hence it is reasonable to expect that in a sufficiently small
neighborhood around w∗ there exists a unique maximizer for Q(·|w∗).

Assumption 3 (First-order stability condition). Assume that

‖∇Q(M(w)|w∗)−∇Q(M(w)|w)‖ ≤ γ ‖w −w∗‖ , ∀w ∈ B(w∗, r).

Remark 2. Intuitively, the gradient stability condition enforces the gradient maps ∇Q(·|w) and ∇Q(·|w∗) to be close
whenever w lies in a neighborhood of w∗. This will ensure that the mapped output M(w) stays closer to w∗.

Theorem 4 (Theorem 1, (Balakrishnan et al., 2017)). If the above assumptions are met for some radius r > 0 and
0 ≤ γ < λ, then the map w 7→M(w) is contractive over B(w∗, r), i.e.

‖M(w)−w∗‖ ≤
(γ
λ

)
‖w −w∗‖ , ∀w ∈ B(w∗, r),

and consequently, the EM iterates {wt}t≥0 converge geometrically to w∗, i.e.

‖wt −w∗‖ ≤
(γ
λ

)t
‖w0 −w∗‖ ,

whenever the initialization w0 ∈ B(w∗, r).

C. Class of non-linearities
In this section, we characterize the class of non-linearities for which our theoretical results for the recovery of regressors
hold. Let Z ∼ N (0, 1) and Y |Z ∼ N (g(Z), σ2), where g : R→ R. For (α, β, γ) ∈ R3, define

P3(y) , Y 3 + αY 2 + βY, S3(Z) = E[P3(y)|Z] = g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2) + ασ2,

and

S2(Y) , Y 2 + γY, S2(Z) = E[S2(Y)|Z] = g(Z)2 + γg(Z) + σ2.

Condition 1. E[S ′3(Z)] = E[S ′′3 (Z)] = 0 and E[S ′′′3 (Z)] 6= 0.

Condition 2. E[S ′2(Z)] = 0 and E[S ′′2 (Z)] 6= 0.

We are now ready to define the (α, β, γ)-valid class of non-linearities.

Definition 1. We say that the non-linearity g is (α, β, γ)-valid if there exists (α, β, γ) ∈ R3 such that both Condition 1 and
Condition 2 are satisfied.

We have that

S ′3(Z) = 3g(Z)2g′(Z) + 2αg(Z)g′(Z) + g′(Z)(β + 3σ2)

= 2αg(Z)g′(Z) + βg′(Z) + 3g(Z)2g′(Z) + 3g′(Z)σ2,

S ′′3 (Z) = 2α
(
g′(Z)2 + g(Z)g′′(Z)

)
+ βg′′(Z) + 3g′′(Z)(g(Z)2 + σ2) + 6g(Z)g′(Z)2.

Thus E[S ′3(Z)] = E[S ′′3 (Z)] = 0 implies that[
2E(g(Z)g′(Z)) E(g′(Z))

2E
(
g′(Z)2 + g(Z)g′′(Z)

)
E(g′′(Z))

] [
α
β

]
=

[
−3E(g(Z)2g′(Z) + g′(Z)σ2)

−3E(g′′(Z)(g(Z)2 + σ2) + 2g(Z)g′(Z)2)

]
To ensure Condition 1, we need the pair (α, β) obtained by solving the above linear equation to satisfy E[S ′′′3 (Z)] 6= 0.
Similarly, E[S ′2(Z)] = 0 implies that

γ =
−2E[g(Z)g′(Z)]

E[g′(Z)]
.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Thus Condition 2 stipulates that E[S ′′2 (Z)] 6= 0 with this choice of γ. It turns out that these conditions hold for a wide class
of non-linearities and in particular, when g is either the identity function, or the sigmoid function, or the ReLU. For these
three choices of popular non-linearities, the values of the tuple (α, β, γ) are provided below (which are obtained by solving
the linear equations mentioned above).
Example 1. If g is the identity mapping, then P3(y) = y3 − 3y(1 + σ2) and S2(y) = y2.
Example 2. If g is the sigmoid function, i.e. g(z) = 1

1+e−z , then α and β can be obtained by solving the following linear
equation: [

0.2066 0.2066
0.0624 −0.0001

] [
α
β

]
=

[
−0.1755− 0.6199σ2

−0.0936

]
The second-order transformation is given by S2(y) = y2 − y (since γ = −1 when g is sigmoid).

Example 3. If g is the ReLU function, i.e. g(z) = max{0, z}, then α = −3
√

2
π , β = 3

(
4
π − σ

2 − 1
)

and γ = −2
√

2
π .

D. Proofs of Section 3
In this section, for the simplicity of the notation we denote the true parameters as wi’s and ai’s dropping the ∗ sign.

D.1. Proof of Theorem 1 for k = 2

Proof. Suppose that g is the linear activation function. For k = 2, (1) implies that

Py|x = f(w>x) · N (y|a>1 x, σ2) + (1− f(w>x)) · N (y|a>2 x, σ2), x ∼ N (0, Id), (13)

where f(·) is the sigmoid function. Using the fact E[Z3] = µ3 + 3µσ2 for any Gaussian random variable Z ∼ N (µ, σ2),
we get

E[y3|x] = f(w>x)((a>1 x)3 + 3(a>1 x)σ2) + (1− f(w>x))((a>1 x)3 + 3(a>1 x)σ2).

Moreover,

E[y|x] = f(w>x)(a>1 x) + (1− f(w>x))(a>2 x).

Thus,

E[y3 − 3y(1 + σ2)|x] = f(w>x)((a>1 x)3 − 3(a>1 x)) + (1− f(w>x))((a>1 x)3 − 3(a>1 x)).

If we define P3(y) , y3 − 3y(1 + σ2), in view of Lemma 2 we get that

T3 = E[P3(y) · S3(x)] = E[(y3 − 3y(1 + σ2)) · S3(x)]

= E
[(
f(w>x)((a>1 x)3 − 3(a>1 x))

)
· S3(x)

]
+ E

[(
1− f(w>x)((a>2 x)3 − 3(a>2 x))

)
· S3(x)

]
= E

[
∇(3)

x

(
f(w>x)((a>1 x)3 − 3(a>1 x))

)]
+ E

[
∇(3)

x

(
1− f(w>x)((a>2 x)3 − 3(a>2 x))

)]
.

(14)

Using the chain rule for multi-derivatives, the first term simplifies to

E
[
∇(3)

x

(
f(w>x)((a>1 x)3 − 3(a>1 x))

)]
= E[f ′′′((a>1 x)3 − 3(a>1 x))] ·w ⊗w ⊗w + E[f ′′(3(a>1 x)2 − 3)]·

(w ⊗w ⊗ a1 + w ⊗ a1 ⊗w + a1 ⊗w ⊗w)+

E[f ′(6(a>1 x))] · (a1 ⊗ a1 ⊗w + a1 ⊗w ⊗ a1 + w ⊗ a1 ⊗ a1) + 6E[f] · a1 ⊗ a1 ⊗ a1. (15)

Since f(z) = 1
1+e−z , f ′(·), f ′′′(·) are even functions whereas f ′′(·) is an odd function. Furthermore, both x 7→ (a>1 x)3 −

3(a>1 x) and x 7→ a>1 x are odd functions whereas x 7→ 3(a>1 x)2 − 3 is an even function. Since x ∼ N (0, Id), −x (d)
= x.

Thus all the expectation terms in (15) equal zero except for the last term since E[f(w>x)] = 1
2 > 0. We have,

E
[
∇(3)

x

(
f(w>x)((a>1 x)3 − 3(a>1 x))

)]
= 3 · a1 ⊗ a1 ⊗ a1.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Similarly,

E
[
∇(3)

x

(
1− f(w>x)((a>2 x)3 − 3(a>2 x))

)]
= 3 · a2 ⊗ a2 ⊗ a2.

Together, we have that

T3 = 3 · a1 ⊗ a1 ⊗ a1 + 3 · a2 ⊗ a2 ⊗ a2.

Now consider an arbitrary link function g belonging to the class of non-linearities described in Appendix C. Then

Py|x = f(w>x) · N (y|g(a>1 x), σ2) + (1− f(w>x)) · N (y|g(a>2 x), σ2), x ∼ N (0, Id),

implies that

E[y3|x] = f(w>x)(g(a>1 x)3 + 3g(a>1 x)σ2) + (1− f(w>x))(g(a>2 x)3 + 3g(a>2 x)σ2),

and

E[y2|x] = f(w>x)(g(a>1 x)2 + σ2) + (1− f(w>x))(g(a>2 x)2 + σ2),

E[y|x] = f(w>x)g(a>1 x) + (1− f(w>x))g(a>2 x).

If we define P3(y) , y3 + αy2 + βy, we have that

T3 = E[P3(y) · S3(x)] = E[E[y3 + αy2 + βy|x] · S3(x)]

= E
[
f(w>x)

(
g(a>1 x)3 + αg(a>1 x)2 + g(a>1 x)(β + 3σ2)

)
· S3(x)

]
+

E
[
(1− f(w>x))

(
g(a>2 x)3 + αg(a>2 x)2 + g(a>2 x)(β + 3σ2)

)
· S3(x)

]
= E

[
∇(3)

x

(
f(w>x)

(
g(a>1 x)3 + αg(a>1 x)2 + g(a>1 x)(β + 3σ2)

))]
+

E
[
∇(3)

x

(
f(w>x)

(
g(a>2 x)3 + αg(a>2 x)2 + g(a>2 x)(β + 3σ2)

))]
(a)
= E[f]E

[
∇(3)

x

(
g(a>1 x)3 + αg(a>1 x)2 + g(a>1 x)(β + 3σ2)

)]
· a1 ⊗ a1 ⊗ a1+

E[1− f]E
[
∇(3)

x

(
g(a>2 x)3 + αg(a>2 x)2 + g(a>2 x)(β + 3σ2)

)]
· a2 ⊗ a2 ⊗ a2

= cg,σ (E[f] · a1 ⊗ a1 ⊗ a1 + E[1− f] · a2 ⊗ a2 ⊗ a2) ,

where (a) follows from the choice of α and β and the fact that w ⊥ {a1,a2}, and cg,σ ,

E
[(
g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2)

)′′′]
where Z ∼ N (0, 1) . The proof for T2 is similar.

D.2. Proof of Theorem 1 for general k

Proof. The proof for general k closely follows that of k = 2, described in Appendix D.1. For the general k, we first prove
the theorem when g is the identity function, i.e.

Py|x =
∑
i∈[k]

Pi|xPy|x,i =
∑
i∈[k]

ew
>
i x∑

i∈[k] e
w>i x

· N (y|a>i x, σ2), x ∼ N (0, Id).

Denoting Pi|x by pi(x), we have that

E[y3|x] =
∑
i∈[k]

pi(x)
(
(a>i x)3 + 3(a>i x)σ2

)
,

E[y|x] =
∑
i∈[k]

pi(x)(a>i x).

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Hence

E[y3 − 3y(1 + σ2)|x] =
∑
i∈[k]

pi(x)
(
(a>i x)3 − 3(a>i x)

)
If we let P3(y) , y3 − 3y(1 + σ2), we get

E[P3(y) · S3(x)] =
∑
i∈[k]

E
[
∇(3)

x

(
pi(x)

(
(a>i x)3 − 3(a>i x)

))]
Since x ∼ N (0, Id) and ai ⊥ span{w1, . . . ,wk−1}, we have that a>i x ⊥ (w>1 x, . . . ,w

>
k−1x). Moreover, E[(a>i x)3 −

3(a>i x)] = E[(a>i x)2 − 1] = E[a>i x] = 0 for each i. Using the chain-rule for multi-derivatives, the above equation thus
simplifies to

E[P3(y) · S3(x)] =
∑
i∈[k]

E[pi(x)] · E
[
∇(3)

x

(
(a>i x)3 − 3(a>i x)

)]
=
∑
i∈[k]

6E[pi(x)] · ai ⊗ ai × ai.

For a generic g : R→ R which is (α, β, γ)−valid, let P3(y) = y3 + αy2 + βy. Then it is easy to see that the same proof
goes through except for a change in the coefficients of rank-1 terms, i.e.

E[P3(y) · S3(x)] =
∑
i∈[k]

αiE[pi(x)] · ai ⊗ ai ⊗ ai,

where αi , E
[(
g(Z)3 + αg(Z)2 + g(Z)(β + 3σ2)

)′′′]
where Z ∼ N (0, 1) and ′′′ denotes the third-derivative with

respect to Z. Note that Condition 2 together with the fact that E[pi(x)] > 0 ensures that αi 6= 0 and thus the coefficients of
the rank-1 terms are non-zero. The proof for T2 is similar.

D.3. Proof of Theorem 2

The following two lemmas are central to the proof of Theorem 2. Let A> = [a1| . . . |ak] ∈ Rd×k denote the matrix
of regressor parameters whereas W> = [w1| . . . |wk−1] ∈ Rd×(k−1) denote the matrix of gating parameters. With a
slight change of notation, when A = A∗, we denote the EM operator M(W) as either M(W ,A∗) or M(w), introduced
in Section 3. For the general case, we simply denote it by M(W ,A). In the following lemmas, we use the norm
‖A‖ = maxi∈[k] ‖A>i ‖2 where A ∈ Rk×d is a matrix of regressors, similarly for any matrix of classifiers W ∈ R(k−1)×d.

Lemma 3 (Contraction of the EM operator). Under the assumptions of Theorem 2, we have that

‖M(W ,A∗)−W ∗‖ ≤ κσ‖W −W ∗‖.

Moreover, W = W ∗ is a fixed point for M(W ,A∗).

Lemma 4 (Robustness of the EM operator). Let the matrix of regressors A be such that maxi∈[k] ‖A>i − (A∗i)
>‖2 = σ2ε1.

Then for any W ∈ Ω, we have that

‖M(W ,A)−M(W ,A∗)‖ ≤ κε1,

where κ is a constant depending on g, k and σ. In particular, κ ≤ (k − 1)

√
6(2+σ2)

2 for g =linear, sigmoid and ReLU.

We are now ready to prove Theorem 2.

Proof. We first note that the EM iterates {W t}t≥1 evolve according to

W t = M(W t−1,A), t ≥ 1

Thus

‖W t −W ∗‖ = ‖M(W t−1,A)−W ∗‖ = ‖M(W t−1,A)−M(W ∗,A∗)‖
≤ ‖M(W t−1,A)−M(W t−1,A

∗)‖+ ‖M(W t−1,A
∗)−W ∗‖

≤ kε1 + κσ ‖W t−1 −W ∗‖ ,

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

where the last inequality follows from Lemma 3 and Lemma 4. Recursively using the above inequality, we obtain that

‖W t −W ∗‖ ≤ (κσ)t ‖W 0 −W ∗‖+ κε1(1 + κσ + . . .+ κt−1
σ) ≤ (κσ)t ‖W 0 −W ∗‖+

κε1

1− κσ
.

D.4. Proof of Theorem 3

Proof. We are given that (a1,a2) = (a∗1,a
∗
2). Denoting w∗ with w, from (13), we have that

E[y|x] = f(w>x) · a>1 x + (1− f(w>x)) · a>2 x, (16)

= a>2 x + f(w>x) · (a1 − a2)>x. (17)

Thus,

E[y|x]− a>2 x

(a1 − a2)>x
= f(w>x).

Notice that in the above equation we have (a1 − a2)>x in the denominator. But this equals zero with zero probability
whenever x is generated from a continuous distribution; in our case x is Gaussian. Thus we may write

E
[(

y − a>2 x

(a1 − a2)>x

)
· x
]

7
= E

[(
E[y|x]− a>2 x

(a1 − a2)>x

)
· x
]

= E
[
f(w>x) · x

]
= E

[
f ′(w>x)

]
·w

= EZ∼N (0,1)f
′(‖w‖Z) ·w

∝ w.

However, it turns out that the above chain of equalities does not hold. Surprisingly, the first equality, which essentially is the
law of iterated expectations, is not valid in this case as y−a>2 x

(a1−a2)>x
is not integrable. To see this, notice that the model in (13)

can also be written as

y
(d)
= Z(a>1 x) + (1− Z)(a>2 x) + σN, Z ∼ Bern(f(w>x)), N ∼ N (0, 1).

Thus,

Ratio ,
y − a>2 x

(a1 − a2)>x

(d)
= Z +

σN

(a1 − a2)>x
.

Since Z is independent of N and N
(a1−a2)>x

is a Cauchy random variable, it follows that the random variable Ratio is not
integrable. To deal with the non-integrability of Ratio, we look at its conditional cdf, given by

P [Ratio ≤ z|x] = f(w>x)Φ

(
(z − 1)

|∆x|
σ

)
+ (1− f(w>x))Φ

(
z
|∆x|
σ

)
, ∆x = (a1 − a2)>x,

where Φ(·) is the standard Gaussian cdf. Substituting z = 0.5 and using the fact that Φ(z) + Φ(−z) = 1, we obtain

P [Ratio ≤ 0.5|x] = f(w>x)Φ

(
−|∆x|

2σ

)
+ (1− f(w>x))Φ

(
|∆x|
2σ

)
= Φ

(
|(a1 − a2)>x|

2σ

)
+ f(w>x)

(
1− 2Φ

(
|(a1 − a2)>x|

2σ

))
.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Since Φ
(
|(a1−a2)>x|

2σ

)
is a symmetric function in x its first moment with x equals zero. Furthermore, if we assume that w

is orthogonal to a1 and a2, we have

E [1 {Ratio ≤ 0.5} · x] = E [P [Ratio ≤ 0.5|x] · x]

= E
[
f(w>x)

(
1− 2Φ

(
|(a1 − a2)>x|

2σ

))
· x
]

= E[f ′(w>x)] · E
(

1− 2Φ

(
|(a1 − a2)>x|

2σ

))
·w+

E[f(w>x)] · E
[
∇x

(
1− 2Φ

(
|(a1 − a2)>x|

2σ

))]
︸ ︷︷ ︸

=0, since derivative of a even function is odd

= E[f ′(w>x)] · E
(

1− 2Φ

(
|(a1 − a2)>x|

2σ

))
·w

∝ w.

Thus, if ‖w‖ = 1, we have that
E [1 {Ratio ≤ 0.5} · x]

‖E [1 {Ratio ≤ 0.5} · x]‖
= w.

In the finite sample regime, E [1 {Ratio ≤ 0.5} · x] can be estimated from samples using the empirical moments and its
normalized version will be an estimate of w.

E. Proof of Lemma 4
We need the following lemma which establishes the stability of the minimizers for strongly convex functions under Lipschitz
perturbations.

Lemma 5. Suppose Ω ⊆ Rd is a closed convex subset, f : Ω→ R is a λ-strongly convex function for some λ > 0 and B is
an L-Lipschitz continuous function on Ω. Let wf = argminw∈Ω f(w) and wf+B = argminw∈Ω f(w) +B(w). Then

‖wf −wf+B‖ ≤
L

λ
.

Proof. Let w′ ∈ Ω be such that ‖w′ −wf‖ > L
λ . Let wα = αwf + (1− α)w′ for 0 < α < 1. From the fact that wf is

the minimizer of f on Ω and that f is strongly convex, we have that

f(w′) ≥ f(wf) +
λ ‖w′ −wf‖2

2
.

Furthermore, the strong-convexity of f implies that

f(wα) ≤ αf(wf) + (1− α)f(w′)− α(1− α)λ

2
‖w′ −wf‖

2

= f(w′) + α(f(wf)− f(w′))− α(1− α)λ

2
‖w′ −wf‖

2

≤ f(w′)− αλ ‖w
′ −wf‖2

2
− α(1− α)λ

2
‖w′ −wf‖

2

= f(w′)− λα
(

1− α

2

)
‖w′ −wf‖

2 (18)

Since B is L-Lipschitz, we have

B(wα) ≤ B(w′) + Lα ‖w′ −wf‖ . (19)

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Adding (18) and (19), we get

f(wα) +B(wα) ≤ f(w′) +B(w′) + Lα ‖w′ −wf‖ − λα
(

1− α

2

)
‖w′ −wf‖

2

= f(w′) +B(w′) + αλ ‖w′ −wf‖
(
L

λ
−
(

1− α

2

)
‖w′ −wf‖

)
By the assumption that ‖w′ −wf‖ > L

λ , the term L
λ −

(
1− α

2

)
‖w′ −wf‖ will be negative for sufficiently small α. This

in turn implies that f(wα) +B(wα) < f(w′) +B(w′) for such α. Consequently w′ is not a minimizer of f +B for any
w′ such that ‖w′ −wf‖ > L

λ . The conclusion follows.

We are now ready to prove Lemma 4. Fix any W ∈ Ω and let A =

a>1. . .
a>k

 ∈ Rk×d be such that maxi∈[k] ‖ai − a∗i ‖2 =

σ2ε1 for some ε1 > 0. Let

W ′ = M(W ,A), (W ′)∗ = M(W ,A∗),

where,

M(W ,A) = arg max
W ′∈Ω

Q(W ′|W ,A),

and,

Q(W ′|W ,A) = E

 ∑
i∈[k−1]

p(i)(W ,A)((W ′
i)
>x)− log

1 +
∑

i∈[k−1]

e(W ′
i)
>x

 .
Here p(i)(A,W) , pi(x)Ni∑

i∈[k] pi(x)Ni
denotes the posterior probability of choosing the ith expert, where

pi(x) =
ew
>
i x

1 +
∑
k∈[k−1] e

w>j x
, Ni , N (y|g(a>i x), σ2), N∗i = N (y|g((a∗i)

>x), σ2).

Since both Q(·|W ,A) and Q(·|W ,A∗) are strongly concave functions over Ω with some strong-concavity parameter λ,
Lemma 5 implies that

‖M(W ,A)−M(W ,A∗)‖ ≤ L

λ
,

where L is the Lipschitz-constant for the function l(·) , Q(·|W ,A)−Q(·|W ,A∗). We have that

l(W ′) =
∑

i∈[k−1]

E[(p(i)(W ,A)− p(i)(W ,A∗)(W ′
i)
>x)]

Without loss of generality let i = 1. Since l(·) is linear in W ′, it suffices to show for each i that∥∥∥E[(p(1)(W ,A)− p(1)(W ,A∗)x]
∥∥∥ ≤ L,

We show that L = κε1, or equivalently,∥∥∥E[(p(1)(W ,A)− p(1)(W ,A∗)x]
∥∥∥ ≤ κε1,

Let

At = A∗ + t∆, ∆ = A−A∗ ∈ Rk×d.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

By hypothesis, we have that ‖∆i‖2 ≤ σ2ε1 for all i ∈ [k]. Thus in order to show that∥∥∥E[(p(1)(A,W)− p(1)(A∗,W))x]
∥∥∥

2
≤ κε1,

it suffices to show that

〈E[(p(1)(A,W)− p(1)(A∗,W))x], ∆̃〉 ≤ κ
∥∥∆/σ2

∥∥
2
‖∆̃‖2, for all ∆̃ ∈ Rd.

Or equivalently,

E[(p(1)(A,W)− p(1)(A∗,W))〈x, ∆̃〉] ≤ κ
∥∥∆/σ2

∥∥
2
‖∆̃‖2.

We can rewrite the difference of the posteriors as

p(1)(A,W)− p(1)(A∗,W) =

∫ 1

0

d

dt
p(1)(A∗ + t∆,W)dt =

∑
i∈[k]

∫ 1

0

〈∇aip
(1)(At,W),∆i〉dt. (20)

Since Ni = N (y|g(a>i x), σ2) = 1√
2πσ2

e−(y−g(a>1 x))2/2σ2

, we have that

∇aiNi = Ni

(
y − g(a>i x)

σ2

)
g′(a>i x).

Thus,

∇aip
(1)(At,W) = ∇ai

(
p1(x)N1∑
i∈[k] pi(x)Ni

)

=


(
∑
i6=1 pi(x)Ni)p1(x)N1

(
∑
i pi(x)Ni)2

(
y−g(a>1 x)

σ2

)
g′(a>1 x)x, if i = 1

−pi(x)p1(x)NiN1

(
∑
i pi(x)Ni)2

(
y−g(a>i x)

σ2

)
g′(a>i x)x, if i 6= 1

Hence,

E[(p(1)(A,W)− p(1)(A∗,W))〈x, ∆̃〉] =
∑
i∈[k]

∫ 1

0

E[〈∇aip
(1)(At,W),∆i〉〈x, ∆̃〉]dt (21)

=

∫ 1

0

E
[

(
∑
i 6=1 pi(x)Ni)p1(x)N1

(
∑
i pi(x)Ni)2

(
y − g(a>1 x)

σ2

)
g′(a>1 x)〈x,∆1〉〈x, ∆̃〉

]
dt

(22)

+
∑
i 6=1

∫ 1

0

E
[
−pi(x)p1(x)NiN1

(
∑
i pi(x)Ni)2

(
y − g(a>i x)

σ2

)
g′(a>i x)〈x,∆i〉〈x, ∆̃〉

]
dt,

(23)

where we denoted (ai)t by ai in the integrals above(with a slight abuse of notation) for the sake of notational simplicity.
For any i 6= 1, we have that ∣∣∣∣−pi(x)p1(x)NiN1

(
∑
i pi(x)Ni)2

(
y − g(a>i x)

σ2

)
g′(a>i x)〈x,∆i〉〈x, ∆̃〉

∣∣∣∣
≤ pi(x)p1(x)NiN1

(p1(x)N1 + pi(x)Ni)2
|(y − g(a>i x))g′(a>i x)〈x,∆i/σ

2〉〈x, ∆̃〉|

For g =linear, sigmoid and ReLU, we have that |g′(·)| ≤ 1. Moreover, pi(x)p1(x)NiN1

(p1(x)N1+pi(x)Ni)2
≤ 1/4. Thus we have

pi(x)p1(x)NiN1

(p1(x)N1 + pi(x)Ni)2
|(y − g(a>i x))g′(a>i x)〈x,∆i/σ

2〉〈x, ∆̃〉| ≤ 1

4
|y − g(a>i x)||〈x,∆i/σ

2〉〈x, ∆̃〉|.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

We thus get

E
[
−pi(x)p1(x)NiN1

(
∑
i pi(x)Ni)2

(
y − g(a>i x)

σ2

)
g′(a>i x)〈x,∆i〉〈x, ∆̃〉

]
≤ 1

4
E[|y − g(a>i x)||〈x,∆i/σ

2〉〈x, ∆̃〉|] (24)

≤ 1

4

√
E[(y − g(a>i x))2]E[〈x,∆i/σ2〉2〈x, ∆̃〉2]

(25)

≤
√

3

4

√
E[(y − g(a>i x))2]‖∆i/σ

2‖2‖∆̃‖2 (26)

Now it remains to bound
√
E[(y − g(a>i x))2]. Since ‖ai‖2 ≤ 1, one can show that E[g(a>i x)2] ≤ 1 for the given choice

of non-linearities for g. Also, we have that

E[y2] = E[E[y2|x]] = E[
∑
i∈[k]

p∗i (x)g(〈a∗i ,x〉)2 + σ2] = E[
∑
i∈[k]

p∗i (x)]E[g(〈a∗1,x〉)2] + σ2 ≤ 1 + σ2,

where we used the following facts: (i) 〈a∗i ,x〉 is independent of the random variable p∗i (x) for each i ∈ [k], (ii) 〈a∗i ,x〉
(d)
=

〈a∗1,x〉 and (iii) E[g(〈a∗1,x〉)2] ≤ 1. Since E[(y − g(a>i x))2] ≤ 2E[y2] + E[g(a>i x)2], after substituting these bounds in
(26), we get

E
[
−pi(x)p1(x)NiN1

(
∑
i pi(x)Ni)2

(
y − g(a>i x)

σ2

)
g′(a>i x)〈x,∆i〉〈x, ∆̃〉

]
≤
√

6(2 + σ2)

4
‖∆i/σ

2‖2‖∆̃‖2.

Similarly,

E
[
pi(x)Nip1(x)N1

(
∑
i pi(x)Ni)2

(
y − g(a>1 x)

σ2

)
g′(a>1 x)〈x,∆1〉〈x, ∆̃〉

]
≤
√

6(2 + σ2)

4
‖∆/σ2‖2‖∆̃‖2.

Substituting the above two inequalities in (23), we obtain that

E[(p(1)(A,W)− p(1)(A∗,W))〈x, ∆̃〉] ≤ 2(k − 1)

√
6(2 + σ2)

4
‖∆1/σ

2‖2‖∆̃‖2.

Defining κ , (k − 1)

√
6(2+σ2)

2 and using the fact that
∥∥∆/σ2

∥∥
2
≤ ε1, we thus obtain∥∥∥E[(p(1)(A,W)− p(1)(A∗,W))x]

∥∥∥
2
≤ κε1.

F. Proof of Lemma 3
F.1. Proof for k = 2

Proof. We first prove the lemma for k = 2. We show that the assumptions in Appendix B hold globally in our setting
yielding a geometric convergence. Here we simply denote M(W ,A∗) as M(w) dropping the explicit dependence on A∗.
Recall that

Q(w|wt) = Epw∗ (x,y)

[
p1(x, y,wt) · (w>x)− log(1 + ew

>x)
]
,

where

p1(x, y,wt) =
f(w>t x)N (y|g(a>1 x), σ2)

f(w>x)N (y|g(a>1 x), σ2) + (1− f(w>x))N (y|g(a>2 x), σ2)
. (27)

For simplicity we drop the subscript in the above expectation with respect to the distribution pw∗(x, y). Now we verify each
of the assumptions.

• Convexity of Ω easily follows from its definition.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

• We have that

Q(w|w∗) = E
[
p1(x, y,w∗) · (w>x)− log(1 + ew

>x)
]
.

Note that the strong-concavity of Q(·|w∗) is equivalent to the strong-convexity of −Q(·|w∗). Denoting the sigmoid
function by f , we have that for all w ∈ Ω,

−∇2Q(w|w∗) = E
[
f ′(w>x) · xx>

]
,

(Stein’s lemma)
= E

[
f ′′′(w>x)

]
·ww> + E[f ′(w>x)] · I

= E[f ′′′(‖w‖Z)] ·ww> + E[f ′(‖w‖Z)] · I, Z ∼ N (0, 1)

(a)

< inf
0≤α≤1

min
{
E[f ′(αZ)],E[f ′(αZ)] + α2E[f ′′′(αZ)]

}
· I

= 0.14︸︷︷︸
λ

·I (28)

where (a) follows from finding the two possible eigenvalues of the positive-definite matrix in the previous step and
considering the minimum among them to ensure strong-convexity. Here the value of λ is found numerically to be
approximately around 0.1442.

• For any w,wt ∈ Ω,

∇Q(w|wt) = E
[
p1(x, y,wt) · x− f(w>x) · x

]
.

Thus,

‖∇Q(M(w)|w∗)−∇Q(M(w)|w)‖ = ‖E [(p1(x, y,wt)− p1(x, y,w∗) · x]‖
(a)

≤ γσ ‖w −w∗‖ ,

where we want to prove in (a) that γσ is smaller than 0.14 for all w ∈ Ω. Intuitively, this means that the posterior
probability in (27) is smooth with respect to the parameter w. We will now show that this can be achieved in the
high-SNR regime when σ is sufficiently small. This will ensure that κσ , γσ

λ < 1. In particular, the value of γσ is
dimension-independent and depends only on the choice of the non-linearity g.

To prove that

‖E [(p1(x, y,w)− p1(x, y,w∗)) · x]‖ ≤ γ ‖w −w∗‖ = γ ‖∆‖ ,

it suffices to show

〈E [(p1(x, y,w)− p1(x, y,w∗)) · x], ∆̃〉 ≤ γ ‖∆‖ ‖∆̃‖, ∀∆̃ ∈ Rd.

Or equivalently,

E
[
(p1(x, y,w)− p1(x, y,w∗)) 〈x, ∆̃〉

]
≤ γ ‖∆‖ ‖∆̃‖.

Let ∆ , w − w∗ and f(u) , p1(x, y,wu) where wu = w∗ + u∆, u ∈ [0, 1]. Thus f(1) = p1(x, y,w) and f(0) =
p1(x, y,w∗). So we get

p1(x, y,w)− p1(x, y,w∗) = f(1)− f(0) =

∫ 1

0

f ′(u)du =

∫ 1

0

〈∇p1(x, y,wu),∆〉du,

where the gradient is evaluated with respect to wu. Differentiating (27) with respect to w, we get that

∇wp1(x, y,w) =
f(w>x)(1− f(w>x))N (y|g(a>1 x), σ2)N (y|g(a>2 x), σ2)

(f(w>x)N (y|g(a>1 x), σ2) + (1− f(w>x))N (y|g(a>2 x), σ2))2
· x

, R(x, y,w, σ) · x.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Thus,

E
[
(p1(x, y,w)− p1(x, y,w∗)) 〈x, ∆̃〉

]
= E

[(∫ 1

0

R(x, y,wu, σ)〈x,∆〉du
)
〈x, ∆̃〉

]
=

∫ 1

0

E
[
R(x, y,wu, σ)〈x,∆〉〈x, ∆̃〉

]
du

≤
(∫ 1

0

√
E[R(x, y,wu, σ)2]du

)√
E
[
〈x,∆〉2〈x, ∆̃〉2

]
≤
√

3

(∫ 1

0

√
E[R(x, y,wu, σ)2]du

)
︸ ︷︷ ︸

γσ

‖∆‖ ‖∆̃‖

= γσ ‖∆‖ ‖∆̃‖,

where the last inequality follows from Lemma 5 of (Balakrishnan et al., 2017). Our goal is to now prove that γσ → 0 as
σ → 0. First observe that

R(x, y,w, σ) =
f(w>x)(1− f(w>x)e−(y−g(a>1 x))/2σ2

e−(y−g(a>1 x))/2σ2

(f(w>x)e−(y−g(a>1 x))/2σ2
+ (1− f(w>x))e−(y−g(a>2 x))/2σ2

)2
≤ 1

4
(since

ab

(a+ b)2
≤ 1/4)

=
f(1− f)e

(y−g(a>1 x))2−(y−g(a>2 x))2

2σ2(
f + (1− f)e

(y−g(a>1 x))2−(y−g(a>2 x))2

2σ2

)2 → 0 as σ → 0,

where the key observation is that irrespective of the sign of (y− g(a>1 x))2 − (y− g(a>2 x))2, the ratio still goes to zero and
hence by dominated convergence theorem E[R(x, y,wu, σ)2]→ 0 for each u ∈ [0, 1]. Now we show that this convergence
is uniform in u and thus γσ → 0. For simplicity, define

∆1 , (y − g(a>1 x))2, ∆2 , (y − g(a>2 x))2 and σ =
1

n
. (29)

Thus,

R(x, y,wu, σ) =
f(1− f)e

n2

2 (∆1−∆2)(
f + (1− f)e

n2

2 (∆1−∆2)
)2 (30)

≤ f(1− f)e
n2

2 (∆1−∆2)(
(1− f)e

n2

2 (∆1−∆2)
)2 =

f

1− f
e−

n2

2 (∆1−∆2). (31)

Similarly,

R(x, y,wu, σ) ≤ 1− f
f

e−
n2

2 (∆2−∆1). (32)

Thus, we get

R(x, y,wu, σ) ≤ max

(
1− f
f

,
f

1− f

)
e−

n2

2 (|∆1−∆2|). (33)

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Hence

γσ√
3

=

∫ 1

0

√
E[Ratio(x, y,wu, σ)2]du (34)

≤
∫ 1

0

√√√√E

[
max

(
1− f
f

,
f

1− f

)2

e−n2|∆1−∆2|

]
du (35)

≤
∫ 1

0

√√√√E

[(
1− f
f

)2

e−n2|∆1−∆2| +

(
f

1− f

)2

e−n2|∆1−∆2|

]
du (36)

=

∫ 1

0

√
2E
[
e2w>u xe−n2|∆1−∆2|

]
du (37)

≤
∫ 1

0

√
2

√
E[e4w>u x]E[e−2n2|∆1−∆2|]du (38)

(a)

≤
√

2e4

√
E[e−2n2|∆1−∆2|], (39)

where (a) follows from the fact ‖wu‖ ≤ 1 and E[e4w>u x] = e8‖wu‖2 ≤ e8, for each u ∈ [0, 1]. Now we analyze the
convergence rate of the last term E[e−2n2|∆1−∆2|] for the case of linear regression, i.e. g(z) = z. Notice that for the
two-mixtures, we have

y
(d)
= Z(a>1 x) + (1− Z)a>2 x + σN = Z(a>1 x) + (1− Z)a>2 x +

N

n
, Z|x ∼ Bern(f(w>∗ x)). (40)

Thus,

∆1 −∆2
(d)
= (y − a>1 x)2 − (y − a>2 x)2 (41)

= (a>1 x− a>2 x)2(1− 2Z) +
2N

n
(a>2 x− a>1 x) (42)

= 〈x,v〉2(1− 2Z) +
2N

n
〈x,v〉, v = a1 − a2. (43)

Since Z can equal either 0 or 1, we have

γσ ≤
√

3
√

2e4
(
E[e−2n2|〈x,v〉2(1−2Z)+ 2N

n 〈x,v〉|]
)1/4

(44)

≤
√

6e4
(
E
[
max

(
e−2n2|〈x,v〉2+ 2N

n 〈x,v〉|, e−2n2|−〈x,v〉2+ 2N
n 〈x,v〉|

)])1/4

(45)

≤
√

6
√

2e4
(
E
[
e−2n2|〈x,v〉2+ 2N

n 〈x,v〉|
])1/4

(46)

=

√
6
√

2e4
(
E
[
e−2n2|Z2+ 2ZN

n |
])1/4

, Z ∼ N (0, ‖a1 − a2‖), N ∼ N (0, 1). (47)

= O

(√
6
√

2e4
(
E[e−2n2Z2

]
)1/4

)
(48)

=

√
6
√

2e4

(√
1

4n2 ‖a1 − a2‖2 + 1

)1/4

(49)

= O

(
1

(n ‖a1 − a2‖)1/4

)
(50)

= O

((
σ

‖a1 − a2‖

)1/4
)
. (51)

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

F.2. Proof for general k

Proof. The proof strategy for general k is similar. First let ε1 = 0. Our task is to show that the assumptions of Appendix B
hold globally in our setting. The domain Ω is clearly convex since

Ω = {w = (w1, . . . ,wk−1) : ‖wi‖ ≤ 1,∀i ∈ [k − 1]} .

Now we verify Assumption 2. The function Q(.|wt) is given by

Q(w|wt) = E

 ∑
i∈[k−1]

p(i)
wt

(w>i x)− log

1 +
∑

i∈[k−1]

ew
>
i x

 ,
where p(i)

wt , P [z = i|x, y,wt] corresponds to the posterior probability for the ith expert, given by

p(i)
wt

=
pi,t(x)N (y|g(a>i x), σ2)∑
j∈[k] pj,t(x)N (y|g(a>j x), σ2)

, pi,t(x) =
e(wt)

>
i x

1 +
∑
j∈[k−1] e

(wt)>j x
.

Throughout we follow the convention that wk = 0. Thus the gradient of Q with respect to the ith gating parameter wi is
given by

∇wi
Q(w|wt) = E

[(
p(i)
wt
− ew

>
i x

1 +
∑
j∈[k−1] e

w>j x

)
· x

]
, i ∈ [k − 1].

Thus the (i, j)th block of the negative Hessian −∇(2)
w Q(w|w∗) ∈ Rd(k−1)×d(k−1) is given by

−∇wi,wjQ(w|w∗) =

{
E[pi(x)(1− pi(x)) · xx>], j = i

E[−pi(x)pj(x) · xx>], j 6= i
, (52)

where pi(x) = ew
>
i x

1+
∑
j∈[k−1]e

w>
j

x
. It is clear from (52) that −∇(2)

w Q(w|w∗) is positive semi-definite. Since we are interested

in the strong convexity of −Q(·|w∗) which is equivalent to positive definiteness of the negative Hessian, it suffices to show
that

λ , inf
w∈Ω

λmin

(
−∇(2)

w Q(w|w∗)
)
> 0.

Since the Hessian is continuous with respect to w and consequently the minimum eigenvalue of it, there exists a w′ ∈ Ω
such that

λ = λmin

(
−∇(2)

w′Q(w′|w∗)
)

= inf
‖a‖=1

a>
(
−∇(2)

w′Q(w′|w∗)
)
a,

where a = (a>1 , . . . ,a
>
k−1)> ∈ Rd(k−1). In view of (52), the above equation can be further simplified to

λ = inf
‖a‖=1

E[a>xMxax], (53)

where ax = (a>1 x, . . . ,a
>
k−1x)> ∈ Rk−1 and Mx is given by

Mx(i, j) =

{
pi(x)(1− pi(x)), i = j

−pi(x)pj(x), i 6= j

Let the infimum in (53) is attained by a∗, i.e. λ = E[(a∗x)>Mxa
∗
x]. For each x, Mx is strictly diagonally dominant since

|Mx(i, i)| = pi(x)(1− pi(x)) = pi(x)
(∑

j 6=i,j∈[k] pj(x)
)
> pi(x)

(∑
j 6=i,j∈[k−1] pj(x)

)
=
∑
j 6=iM(i, j). Thus Mx

is positive-definite and (a∗x)>Mxa
∗
x > 0 whenever a∗x 6= 0. Since x follows a continuous distribution it follows that

a∗x 6= 0 with probability 1 and thus λ = E[(a∗x)>Mxa
∗
x] > 0.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Now it remains to show that Assumption 3 too holds, i.e.

‖∇Q(M(w)|w∗)−∇Q(M(w)|w)‖ ≤ γ ‖w −w∗‖ .

Note that w = (w>1 , . . . ,w
>
k−1)> ∈ Rd(k−1). We will show that

‖(∇Q(M(w)|w∗))i − (∇Q(M(w)|w))i‖ ≤ γσ ‖w −w∗‖ , i ∈ [k − 1],

where (∇Q(M(w)|w))i ∈ Rd refers to the ith block of the gradient and γσ → 0. Observe that

(∇Q(M(w)|w∗))i − (∇Q(M(w)|w))i = E
[
(p(i)

w − p
(i)
w∗) · x

]
Let ∆ = w −w∗ and correspondingly ∆ = (∆>1 , . . . ,∆

>
k−1)> where ∆i = wi −w∗i . Thus it suffices to show that∥∥∥E[(p(i)

w − p
(i)
w∗) · x]

∥∥∥ ≤ γσ ‖∆‖ .
Or equivalently,

E[(p(i)
w − p

(i)
w∗)〈x, ∆̃〉] ≤ γσ ‖∆‖ ‖∆̃‖, ∀∆̃ ∈ Rd.

We consider the case i = 1. The proof for the other cases is similar. Recall that

p(1)
w =

p1(x)N (y|g(a>1 x), σ2)∑
j∈[k] pj(x)N (y|g(a>j x), σ2)

, pi(x) =
ew
>
i x

1 +
∑
j∈[k−1] e

w>j x
, i ∈ [k − 1].

For simplicity we define Ni = N (y|g(a>1 x), σ2). It is straightforward to verify that

∇wj
pi(x) =

{
pi(x)(1− pi(x)) · x, j = i

−pi(x)pj(x) · x, j 6= i

Thus

∇w1
(p(1)

w) = ∇w1

(
p1(x)N1∑N
i=1 pi(x)Ni

)

=

(∑N
i=1 pi(x)Ni

)
p1(x)(1− p1(x))N1 − p1(x)N1

(
−
∑
j 6=1 pj(x)p1(x)Nj + p1(x)(1− p1(x))N1

)
(∑N

i=1 pi(x)Ni

)2 · x

=
p1(x)N1

(∑
j≥2 pj(x)Nj

)
(∑N

i=1 pi(x)Ni

)2 · x

, R1(x, y,w, σ) · x

Similarly,

∇wi
(p(1)

w) =
p1(x)pi(x)N1Ni(∑N

i=1 pi(x)Ni

)2 · x, i 6= 1,

, Ri(x, y,w, σ) · x.

Let wu , w∗ + u∆, u ∈ [0, 1] and f(u) , p
(1)
wu . Thus

p(1)
w − p

(1)
w∗ = f(1)− f(0) =

∫ 1

0

f ′(u)du

=

∫ 1

0

 ∑
i∈[k−1]

〈∇wi(p
(1)
wu

),∆i〉

 du

=
∑

i∈[k−1]

∫ 1

0

Ri(x, y,w, σ)〈x,∆i〉du.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

So we get

E[(p(1)
w − p

(1)
w∗)〈x, ∆̃〉] =

∑
i∈[k−1]

∫ 1

0

E[Ri(x, y,wu, σ)〈x,∆i〉〈x, ∆̃〉]du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]E[〈x,∆i〉2〈x, ∆̃〉2]du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]

(√
3 ‖∆i‖ ‖∆̃‖

)
du

≤
∑

i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]

(√
3 ‖∆‖ ‖∆̃‖

)
du

=

 ∑
i∈[k−1]

∫ 1

0

√
E[Ri(x, y,wu, σ)2]du


︸ ︷︷ ︸

γ
(1)
σ

(√
3 ‖∆‖ ‖∆̃‖

)

Now our goal is to show that E[Ri(x, y,wu, σ)2]→ 0 as σ → 0. For i = 1, we have

R1(x, y,wu, σ)2 =

∑j≥2 p1(x)pj(x)N1Nj(∑N
i=1 pi(x)Ni

)2


2

≤ k
∑
j≥2

 p1(x)pj(x)N1Nj(∑N
i=1 pi(x)Ni

)2


2

≤ k
∑
j≥2

(
p1(x)pj(x)N1Nj

(p1(x)N1 + pj(x)Nj)2

)2

Similarly,

Ri(x, y,wu, σ)2 ≤
(

p1(x)pi(x)N1Ni
(p1(x)N1 + pi(x)Ni)2

)2

, ∀i 6= 1, i ∈ [k − 1].

For w = wu and i 6= 1, we have that

p1(x)pi(x)N1Ni
(p1(x)N1 + pi(x)Ni)2

=
ew
>
1 xew

>
i xe−

(y−g(a>1 x))2

2σ2 e−
(y−g(a>i x))2

2σ2(
ew
>
1 xe−

(y−g(a>1 x))2

2σ2 + ew
>
i xe−

(y−g(a>
i

x))2

2σ2

)2 ≤
1

4

=
ew
>
1 xew

>
i xe

(y−g(a>1 x))2−(y−g(a>i x))2

2σ2(
ew
>
1 x + ew

>
i xe

(y−g(a>1 x))2−(y−g(a>
i

x))2

2σ2

)2

σ→0−−−→ 0.

Thus, by Dominated Convergence Theorem, E[Ri(x, y,wu, σ)2] → 0 for each u ∈ [0, 1]. To show that∫ 1

0
E[Ri(x, y,wu, σ)2]du → 0, we can now follow the same analysis as in the proof of Theorem 2 from (29) on-wards

(replacing w there with w1 −wi) which ensures that γ(1)
σ in our case converges to zero. Similarly for other i ∈ [k − 1], we

get that γ(i) → 0. Taking γσ = γ
(1)
σ + . . .+ γ

(k−1)
σ and κσ = γσ

λ completes the proof.

G. Gradient EM algorithm
In this section, we provide the convergence guarantees for the gradient EM algorithm. For simplicity, we prove the results for
k = 2 and (a1,a2) = (a∗1,a

∗
2). Thus we want to learn the gating parameter w∗ in this setting. The results for the general

case follow essentially the same proof as that of Theorem 2. In particular, our Theorem 5 can be viewed as a generalization
of Lemma 3. Together with Lemma 4, extension to general k is straightforward.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

Note that in the M-step of the EM algorithm, instead of maximizing Q(·|wt), we can chose an iterate so that it increases
the Q value instead of fully maximizing it, i.e. Q(wt+1|wt) ≥ Q(wt|wt). Such a procedure is termed as generalized EM.
Gradient EM is an example of generalized EM in which we take an ascent step in the direction of the gradient of Q(·|wt) to
produce the next iterate, i.e.

wt+1 = wt + α∇Q(wt|wt),

where α > 0 is a suitably chosen step size and the gradient is with respect to the first argument. To account for the
constrained optimization, we can include a projection step. Mathematically,

wt+1 = G(wt), G(w) = ΠΩ(w + α∇Q(w|)w),

where ΠΩ refers to the projection operator. Our next result establishes that the iterates of the gradient EM algorithm too
converge geometrically for an appropriately chosen step size α.

Theorem 5. Suppose that the domain Ω = {w ∈ Rd : ‖w‖2 ≤ 1} and (a1,a2) = (a∗1,a
∗
2). Then there exist constants

α0 > 0 and σ0 > 0 such that for any step size 0 < α ≤ α0 and noise variance σ < σ0, the gradient EM updates on the
gating parameter {w}t≥0 converge geometrically to the true parameter w∗, i.e.

‖wt −w∗‖ ≤ (ρσ)
t ‖w0 −w∗‖ ,

where ρσ is a dimension-independent constant depending on g and σ.

Remark 3. The condition σ < σ0 ensures that the Lipschitz constant ρσ for the map G is strictly less than 1. The constant
α0 depends only on two universal constants which are nothing but the strong-concavity and the smoothness parameters for
the function Q(·|w∗).

Proof. In addition to the assumptions of Appendix B, if we can ensure that the map −Q(·|w∗) is µ-smooth, then the proof
follows from Theorem 3 of (Balakrishnan et al., 2017) if we choose α0 = 2

µ+λ where λ is the strong-convexity parameter of
−Q(·|w∗). The strong-convexity is already established in Appendix D.3. To find the smoothness parameter, note that

−∇2Q(w|w∗) = E
[
f ′(w>x) · xx>

]
,

= E
[
f ′′′(w>x)

]
·ww> + E[f ′(w>x)] · I

= E[f ′′′(‖w‖Z)] ·ww> + E[f ′(‖w‖Z)] · I, Z ∼ N (0, 1)

� sup
0≤α≤1

min
{
E[f ′(αZ)],E[f ′(αZ)] + α2E[f ′′′(αZ)]

}
· I

= 0.25︸︷︷︸
µ

·I.

The contraction parameter is then given by

ρσ = 1− 2λ+ 2γσ
µ+ λ

.

Since γσ
σ→0−−−→ 0, ρσ < 1 whenever σ < σ0 for a constant σ0.

H. Additional experiments
H.1. Synthetic data

In Figure 4, we varied the number of samples our data set and fixed the other set of parameters to k = 3, d = 5, σ = 0.5.

In Figure 5 we repeated our experiments for the choice of n = 10000, d = 5, k = 3 for two different popular choices of
non-linearities: sigmoid and ReLU. The same conclusion as in the linear setting holds in this case too with our algorithm
outperforming the EM consistently.

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(a)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(b)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(c)

Figure 4: Plot of parameter estimation error with varying number of samples(n): (a) n = 1000 (b) n = 5000. (c) n = 10000.

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(a)

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0

0.5

1

1.5

2

2.5

P
a
ra

m
e
te

r
e
s
ti
m

a
ti
o
n
 e

rr
o
r

Spectral+EM

EM

(b)

Figure 5: Parameter estimation error for the sigmoid and ReLU nonlinearities respectively.

H.2. Real data

For real data experiments, we choose the 3 standard regression data sets from the UCI Machine Learning Repository:
Concrete Compressive Strength Data Set, Stock portfolio performance Data Set, and Airfoil Self-Noise Data Set (Yeh,
1998; Liu & Yeh, 2017; Brooks et al., 1989). In all the three tasks, the goal is to predict the outcome or the response y for
each input x, which typically contains some task specific attributes. For example, in the concrete compressive strength,
the task is to predict the compressive strength of the concrete given its various attributes such as the component of cement,
water, age, etc. For this data, the input x ∈ R8 corresponds to 8 different attributes of the concrete and the output y ∈ R
corresponds to its concrete strength. Similarly, for the stock portfolio data set the input x ∈ R6 contains the weights of
several stock-picking concepts such as weight of the Large S/P concept, weight of the Small systematic Risk concept, etc,.
and the output y is the corresponding excess return. The airfoil data set is obtained from a series of aerodynamic and
acoustic tests of two and three-dimensional airfoil blade sections and the goal is predict the scaled sound pressure level
(in dB) given the frequency, angle of attack, etc,. For all the tasks, we pre-processed the data by whitening the input and
scaling the output to lie in (−1, 1). We randomly allotted 75% of the data samples for training and the rest for testing. Our
evaluation metric is the prediction error on the test set (xi, yi)

n
i=1 defined as

E =
1

n

n∑
i=1

(ŷi − yi)2,

Breaking the gridlock in MoE: Consistent and Efficient Algorithms

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13
P

re
d

ic
ti
o

n
 e

rr
o

r
Spectral+EM

EM

Constant estimator

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.056

0.057

0.058

0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

P
re

d
ic

ti
o

n
 e

rr
o

r

Spectral+EM

EM

Constant estimator

0 10 20 30 40 50 60 70 80 90 100

No. of EM iterations

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
re

d
ic

ti
o

n
 e

rr
o

r

Spectral+EM

EM

Constant estimator

Figure 6: Prediction error for the concrete, stock portfolio and the airfoil data sets respectively.

where ŷi corresponds to the predicted output response using the learned parameters. In other words,

ŷ =
∑
i∈[k]

eŵ
>
i x∑

j∈[k] e
ŵ>j x

· g(â>i x).

We ran the joint-EM algorithm (with 10 different trails) on these tasks with various choices for k ∈ {2, . . . , 10}, σ ∈
{0.1, 0.4, 0.8, 1}, g ∈ {linear, sigmoid,ReLU} and found the best hyper-parameters to be (k = 3, σ = 0.1 and g = linear),
(k = 3, σ = 0.4, g = sigmoid) and (k = 3, σ = 0.1, g = linear) for the three datasets respectively. For this choice of best
hyper-parameters found for joint-EM, we ran our algorithm. Figure 6 highlights the predictive performance of our algorithm
as compared to that of the EM. We also plotted the variance of the test data for reference and to gauge the performance of our
algorithm. In all the settings our algorithm is able to obtain a better set of parameters resulting in smaller prediction error.

