Computer Modelling of Close-to-Ground Tornado Wind-Fields for Different Tornado Widths

M. Hossein Kashefizadeh
BELL 4190 University of Arkansas

Fayetteville, AR 72701, USA email: mkashefi@uark.edu

Sumit Verma
BELL 4190 University of Arkansas

Fayetteville, AR 72701, USA
email: sv015@uark.edu
R. Panneer Selvam*

BELL 4190 University of Arkansas
Fayetteville, AR 72701, USA
email: rps@uark.edu

[^0]
Abstract

Tangential velocity $\left(\mathrm{V}_{\mathrm{t}}\right)$ of tornadoes is the major parameter that causes building damage. In-field tornado measurements are less reliable at less than 20 m above ground level (AGL). Laboratory tornado simulators suggest that swirl ratio (S) and radius $\left(\mathrm{r}_{\mathrm{o}}\right)$ are the major tornado parameters that influence the V_{t}. However, due to scaling problems, the laboratory simulators also report the V_{t} at greater than 20 m AGL. Well-refined computational fluid dynamics (CFD) models can evaluate the V_{t} at less than 10m AGL. However, the CFD models are limited to $\mathrm{r}_{\mathrm{o}}=1.0 \mathrm{~km}$, and the effect of r_{0} on the V_{t} is not investigated. The aim of this study is to investigate the maximum V_{t} for different r_{0} close to ground. Simulation results show that increasing r_{o} decreases the maximum V_{t} with respect to $\mathrm{V}_{\text {ro }}$. Moreover, by increasing ro, the corresponding elevation of occurrence of maximum Vt (zmax) will increase. However, for all tornado radii, the zmax is between 20 m to 64 m AGL. In addition, results show that for all r_{o}, the radial V_{t} profile has two peaks at $z<10 \mathrm{~m}$ AGL due to strong shear force close to the ground and at higher elevation the profile transit to Rankine Combined Vortex Model (RCVM).

Keywords: Tornado wind field; CFD, Swirl ratio; tornado simulator; axisymmetric flow

1. Introduction

The tangential velocity (Vt) profile in the field can be obtained from Doppler radar measurements. Doppler radars have been used to collect the data of over 200 individual tornadoes as reported in Wurman et al. (2013). Wurman et al. (2007) asserted that due to the beam limits, the radar measurements are limited to about 20 m above the ground. On the other hand, the engineers are interested at the elevations less than 10 m above ground level (AGL), where the typical buildings are located. Mathematical technique of Ground-Based Velocity Track Display (GBVTD) uses data of the Doppler radar measurements to find the V_{t} close to the ground. Kosiba and Wurman (2010, 2013) and Refan et al. (2017) used this technique to find the tornado features of actual tornadoes. However, they reported the vertical location of the maximum V_{t} (zmax) occurs between 30 m to 200m AGL. In addition, Nolan (2013) claimed that the close to ground V_{t} profile of the GBVTDs is affected by debris and thus close to ground, V_{t} measurements by the GBVTD are biased.

To better understand the tornadic flows, the laboratory simulators or tornado vortex chambers (TVCs) are employed. In these simulators, V_{t} is influenced by the following parameters as reported
by Davies-Jones (1973): Reynolds number (Re), the aspect ratio (AR), and swirl ratio (S), as defined below:
$\mathrm{Re}=\mathrm{V}_{\mathrm{ro}} \mathrm{H}_{\mathrm{o}} / v$
Where, H_{o} is the inlet height of the chamber and the reference length as shown in Figure $1, \mathrm{~V}_{\mathrm{ro}}$ is the radial velocity at H_{0} and v is the kinematic viscosity of air. Using $\mathrm{Re} \geq 4.5 \times 10^{4}$ in the TVC models makes the tornado simulations independent of the R_{e} as reported by Refan et al. (2017). In addition, aspect ratio (AR) is defined as:
$\mathrm{AR}=\mathrm{H}_{0} / \mathrm{r}_{\mathrm{o}}$
Where, r_{o} is the radius of the tornado or tornado simulator and is equal to half of its width. Also,
Swirl Ratio $\mathrm{S}=\mathrm{V}_{\mathrm{to}} /\left(2 * \mathrm{AR}^{*} \mathrm{~V}_{\mathrm{ro}}\right)=\mathrm{V}_{\mathrm{to}} /\left(2 * \mathrm{AR}^{*} \mathrm{~V}_{\mathrm{ro}}\right)$
Here $\mathrm{V}_{\text {to }}$ is the tangential velocity at the inlet height H_{o}. Equation (3) implies that $\mathrm{S}, \mathrm{AR}, \mathrm{V}_{\mathrm{ro}}$ and r_{o} influence the $V_{t o}$. That is:
$\mathrm{V}_{\mathrm{to}}=2 \mathrm{SH}_{0} /\left(\mathrm{r}_{\mathrm{o}} \mathrm{V}_{\mathrm{ro}}\right)$
In our entire write up, variables with a ${ }^{*}$ like $\left(\mathrm{Vt}^{*}\right)$ is the non-dimensionalized variable and without * is dimensionalized variable.

Figure 1. Schematic of a simulator and its parameters

1.1. Objective of Current Work

The major objective of this paper is to know the tornadic wind field around 10 m from the ground. This will help to design low rise buildings much better and with lower susceptibility to tornadic wind hazard. The relatively small size of the laboratory simulators results in large geometric scaling ratios (Refan et al., 2017) and those simulators cannot evaluate close-to-ground V_{t}. In addition, the scale ratios reported by different researchers are based on either length scale or velocity scale. The length scale is calculated either using core radius r_{c} or location of the maximum tangential velocity $\mathrm{Z}_{\max }$ and the velocity scale is based on the maximum tangential velocity. In this work, none of the scale ratios is introduced. The detailed study conducted by Refan (2014) reports wind speed from 20 m to 80 m from the ground from both field measurements and experimental tornado simulator. Hence, it is difficult to collect wind speed around 10 m from the ground using the existing data.

Well-refined computational fluid dynamics (CFD) models can compute the V_{t} at less than 10 m AGL. Dominguez and Selvam (2017) proposed an axisymmetric CFD model to simulate a tornado chamber of $1.0 \mathrm{~km} \times 2.0 \mathrm{~km}$, where $\mathrm{r}_{0}=1.0 \mathrm{~km}, \mathrm{H}_{0}=1.0 \mathrm{~km}$ and total height $(\mathrm{h})=2 \mathrm{H}_{0}=2.0 \mathrm{~km}$. They used a minimum grid spacing (MGS) of $0.001 \mathrm{H}_{\mathrm{o}}$ in the vertical axis which amounts to 1.0 m from the ground for $H_{0}=1.0 \mathrm{~km}$. They reported the maximum V_{t} occurring at less than 10 m AGL. However, their study was limited to $r_{0}=1.0 \mathrm{~km}$, whereas in actual tornadoes the r_{0} may vary. From observations of different tornadoes by National Weather Service (NWS), it can be inferred that the significant tornadoes have r_{o} in the range of 0.7 km to 2.3 km (Kashefizadeh, 2018). Therefore, the specific objectives of this research are:

1. To vary the r_{o} and study its influence on the maximum V_{t} with respect to $V_{r o}$ and its location. Hangan and Kim (2008) and Refan (2014) showed that V_{t} is dependent on the S parameter and thus in order to investigate the effect of r_{o} on the maximum V_{t}, it is necessary to investigate effect of variation of S on the maximum V_{t}.
2. To investigate effect of r_{o} on less than 10 m -AGL velocity profile. Typical buildings are located at elevation of $\mathrm{z}=3.3 \mathrm{~m}$. Therefore, the maximum V_{t} will be investigated at $\mathrm{z}=3.3 \mathrm{~m}$. Results
centered on these objectives will be highly valuable to develop recommendations for safer design of buildings.

2. Numerical Setup

Governing equations: In this study, non-dimensional Navier-Stokes equation in cylindrical coordinate system is employed using Large Eddy Simulation (LES) for an axisymmetric model. This reduces the 3D problem to 2D problem and thus reduces the computational time. Details of the equations are reported in Kashefizadeh (2018). The governing equations are nondimensionalized using $V_{r o}$ and H_{0} as the reference values. The reference value for H_{o} and $V_{r o}$ are considered to be 1 km and $60 \mathrm{~m} / \mathrm{s}$, respectively. For these reference values, the Re will be greater than 1×10^{8}.

Computational domain: The computational domain in this study is similar to the computational domain of Dominguez and Selvam (2017). Their non-dimensional computational domain is 1×2 $\left(r_{0}=H_{0} \& h=2 H_{0}\right)$. In this study since r_{0} is varied from 0.7 km to 2.3 km , the non-dimensional r_{0} * varies from 0.7 to 2.3. The increment of $r_{0}{ }^{*}$ is 0.1 , which means that $r_{0}{ }^{*}$ will be $0.7,0.8,0.9$ and so on.

Boundary conditions: The boundary conditions of the axisymmetric model are similar to study of Wilson and Rotunno (1986) as shown in Figure 2. For cells close to the ground, law of the wall is used as proposed by Neale et al. (2006).

2.1 Mesh of the Computational Domain:

Dominguez and Selvam (2017) used MGS $=0.001 \mathrm{H}_{\mathrm{o}}$ alongside the r - and z - axes. The present study also uses the same MGS along the r - and z -axis in the vicinity of the axisymmetric line (z -axis). Then the grid is exponentially increased by a factor of 1.1 and the maximum spacing is considered to be 0.1 Ho. Figure 3 shows the computational domains for non-dimensional $r_{o} *$ of 0.8 and 2 . The grid sizes ranged from 46×60 to 63×60 in the r and z direction respectively.

Figure 2. Axisymmetric computational domain and the boundary conditions

Figure 3. Computational domains for nondimensional r_{o} of (a) 0.8 ; (b) 2.0

2.2 Radial and Tangential Velocity Components

$\mathrm{V}_{\mathrm{r}} *$ is assumed to vary logarithmically from the ground and the equation for $\mathrm{V}_{\mathrm{r}}{ }^{*}$ is as follows:
$\mathrm{V}_{\mathrm{r}}{ }^{*}\left(\mathrm{z}^{*}\right)=\mathrm{C}_{1} * \ln \left[\left(\mathrm{z}^{*}+\mathrm{zo}^{*}\right) / \mathrm{zo}^{*}\right]=\mathrm{C}_{1} \ln \left(1+\mathrm{z}^{*} / \mathrm{zo}^{*}\right)$
For open country or Exposure C taking $\mathrm{zo}=0.035 \mathrm{~m}$, the non-dimensional zo^{*} will be $0.035 / 1000=3.5 \times 10^{-5}$. Keeping the maximum reference $\mathrm{V}_{\mathrm{ro}} *=1.0$ the corresponding C_{1} becomes:
$\mathrm{C}_{1} *=\mathrm{V}_{\mathrm{ro}} * / \ln \left(1+\mathrm{H}_{0} * / \mathrm{zo}^{*}\right)=0.0975$
Knowing $\mathrm{V}_{\mathrm{r}} *(\mathrm{z}), \mathrm{V}_{\mathrm{t}}{ }^{*}(\mathrm{z})$ is obtained at the inlet by rearranging Equation (3) at height z^{*} as follows:
$\mathrm{Vt}_{\mathrm{t}}{ }^{*}\left(\mathrm{z}^{*}\right)=\left[2 \mathrm{SH}_{0}{ }^{*} \mathrm{Vr}^{*}\left(\mathrm{z}^{*}\right)\right] / \mathrm{r}_{\mathrm{o}}{ }^{*}$
In Equation 6, the $\mathrm{V}_{\mathrm{r}}{ }^{*}\left(\mathrm{z}^{*}\right)$ and $\mathrm{H}_{\mathrm{o}}{ }^{*}$ are constant in this work, and the two parameters S and $\mathrm{r}_{\mathrm{o}}{ }^{*}$ will be varied to determine the $\mathrm{V}_{\mathrm{t}}{ }^{*}\left(\mathrm{z}^{*}\right)$.

2.3 Solution Scheme

The CFD model uses SOLA-Yaqui type algorithm to solve the equations (Hirt et al, 1975). In this method, a staggered grid is used where velocities are stored at the nodes and the pressure at the middle of the cell. In the momentum equation, the diffusion and convection terms are respectively implicit and explicit. All terms other than convection in the NS equations are approximated using second order finite volume method (FVM). The QUICK scheme is used for convection term. At this time, the pressure is solved using SOLA type pressure correction. The advantage of using the Yaqui-type configuration is to avoid the problem of pressure-velocity decoupling (Harlow and Welch, 1965; Selvam, 1992). The computer model is run for 5 or 10 time units with a time step of 0.1 to satisfy the CFL condition.

3. Results and Findings

3.1 Swirl ratios for Tornado Touchdown and Maximum Vt

For each r_{o} in the range of 0.7 km to 2.3 km , various S parameters in the range of 0.2 to 1.5 are used and their tornado wind-fields are investigated to determine the swirl ratio that produces the maximum V_{t}.

The swirl ratios affect the structure of tornadoes. Hangan and Kim (2008) and Tari et al. (2010) showed before the touchdown, S is small and tornado has a single-cell structure as shown in Figures 4 (a) and 6 (a). Then the flow slowly changes from simple jet like flow to touchdown condition. During the touchdown a vortex breakdown occurs aloft as shown in Figures 4(b) and 6 (b), and afterward the maximum V_{t} occurs in transition to a double-cell structure as shown in Figures 4 (c) and 6 (c). To see the flow features for different r_{0}, r_{0} varying from 0.8 km to 2 km are considered. Schematics of these stages are also given in Refan (2014). To see clearly, the three stages of before touchdown, at the touchdown, and double-cell structure, corresponding close up views are also shown in Figures 5 and 7. The same pattern is observed for all other r_{o} but not shown here.

Figure 4. Tornado wind field for $\mathrm{r}_{0}=0.8 \mathrm{~km}$ (a) $\mathrm{S}=0.3$, jet-like and single-cell structure, (b) $\mathrm{S}=0.5$, vortex breakdown aloft at touchdown (c) $S=0.6$, beyond touchdown, double-cell structure

Figure 5. Close up view of Figure 4

(a)

(b)

(c)

Figure 6. Tornado wind field for $\mathrm{r}_{\mathrm{o}}=2.0 \mathrm{~km}$ (a) $\mathrm{S}=0.3$, jet-like and single-cell structure, (b) $S=0.75$, vortex breakdown aloft at touchdown and (c) $S=1.3$, beyond touchdown, double-cell structure

Figure 7. Close up view of Figure 6

The S for maximum V_{t} for each r_{o} is determined and plotted with S for touchdown in Figure 8. It can be seen in Figure 8 that the touchdown S increases by increasing r_{o}. The touchdown S is in the range of $0.40 \leq \mathrm{S} \leq 0.9$ for $0.7 \mathrm{~km} \leq \mathrm{r}_{\mathrm{o}} \leq 2.3 \mathrm{~km}$. Similarly, Figure 8 shows that the swirl ratio S of the maximum V_{t} increases by increasing r_{o} and is in the range of $0.50 \leq \mathrm{S} \leq 1.2$. This finding is in agreement with the previous studies where Lewellen et al (1997) suggested that by increase of r_{o}, the S producing maximum V_{t} is likely to increase. Moreover, it can be seen that the S value corresponding to that of the maximum V_{t} is always greater than the S value corresponding to touchdown S , which implies that the maximum V_{t} occurs beyond the touchdown. Therefore, in the investigation, only swirl ratios that produce tornadoes beyond touchdown are considered because these are the ones, which may affect the buildings close to the ground. Therefore, it can be concluded that for all radii, the maximum V_{t} occurs beyond the touchdown stage.

Figure 8. Swirl ratios corresponding to the touchdown and maximum V_{t} for $0.7 \mathrm{~km} \leq \mathrm{r}_{\mathrm{o}} \leq 2.3 \mathrm{~km}$

3.2 Effect of r_{0} on Maximum Vt, Core Radius (r_{c}) and zmax

Figure 9(a) presents the absolute maximum V_{t} for $0.7 \mathrm{~km} \leq \mathrm{r}_{\mathrm{o}} \leq 2.3 \mathrm{~km}$. Here on, we will call absolute maximum V_{t} as $\mathrm{V}_{\text {tmax }}$. It can be seen in this figure that by increasing r_{0} from 0.7 km to 2.3 km , the $\mathrm{V}_{\text {tmax }}$ gradually reduces from $6.5 \mathrm{~V}_{\text {ro }}$ to almost $3.5 \mathrm{~V}_{\text {ro }}$. Likewise, Figure $9(\mathrm{~b})$ shows the maximum V_{t} for various tornado radii at $\mathrm{z}=3.3 \mathrm{~m}$, which is the height of a typical low rise building and the maximum V_{t} gradually reduces from $2.5 \mathrm{~V}_{\mathrm{ro}}$ to almost $0.6 \mathrm{~V}_{\mathrm{ro}}$ for r_{o} from 0.7 km to 2.3 km . Similarly, Figure 9(c) shows that minimum zmax is 21 m AGL for $\mathrm{r}_{0}=0.7 \mathrm{~km}$, and by increasing r_{o}, the zmax will also increase. However, for $\mathrm{r}_{\mathrm{o}} \geq 2.0 \mathrm{~km}$, the zmax is constant at 64 m . These simulations show that the zmax is in the range of 21 m to 64 m , whereas radar measurements report zmax in the range of 30 m to 200 m . Figure $9(\mathrm{~d})$ presents the r_{c} for different r_{o} where r_{c}, is the radial distance of the location of the maximum V_{t} from the tornado center. It can be seen that r_{c} is in the range of $100 \mathrm{~m} \leq \mathrm{r}_{\mathrm{c}} \leq 460 \mathrm{~m}$ for $0.7 \mathrm{~km} \leq \mathrm{r}_{\mathrm{o}} \leq 2.3 \mathrm{~km}$. Table 1 presents a summary of the results.

Table 1 shows that for $\mathrm{r}_{\mathrm{o}}=1.0 \mathrm{~km}$, the highest peak is $\mathrm{V}_{\mathrm{t}}=4.99 \mathrm{~V}_{\text {ro }}$ at $\mathrm{S}=0.60$ and $\mathrm{zmax}=28.0 \mathrm{~m}$. Wilson and Rotunno (1986) reported the maximum $\mathrm{V}_{\mathrm{t}}=5.0 \mathrm{~V}_{\mathrm{ro}}$ for $\mathrm{r}_{\mathrm{o}}=1.0 \mathrm{~km}$. The reported value is for a single study of $S=0.28$ and $z m a x=1.016 \mathrm{~km}$. Lewellen et al. (1997) reported that for $\mathrm{r}_{\mathrm{o}}=1.0 \mathrm{~km}$ and $\mathrm{S}=0.94$, the maximum V_{t} is $6.6 \mathrm{~V}_{\mathrm{ro}}$ at $\mathrm{zmax}=27 \mathrm{~m}$ AGL. Tari et al (2010) used a laboratory simulator and suggested that for $\mathrm{r}_{\mathrm{o}}=1.0 \mathrm{~km}, \mathrm{~S}=0.68$ produces the maximum V_{t} at a height of 0.34 ro . The difference of the results from the present study to that of Tari et al. (2010) can be due to differences in the geometry of the simulator chamber. The tornado simulator in this work is a based
on Ward type, whereas the Tari et al (2010) simulator is similar to Iowa State University. The difference in the tornado chamber to touch down condition and other issues needs to be investigated further. Likewise, increase in core radius r_{c} with increase in chamber radius r_{o} is in agreement with studies of Ward (1972), Davies-Jones (1973), Jischke and Parang (1974), Church et al (1979), Church and Snow (1993), Baker and Church (1979), Tari et al. (2010), Refan (2014), and Refan et al. (2017).

Figure 9. (a) Absolute maximum $V_{t} / V_{r o}$ for different r_{o}, (b) Maximum $V_{t} / V_{r o}$ for different r_{o} at $\mathrm{z}=3.3 \mathrm{~m}$, (c) zmax of various $\mathrm{r}_{\mathrm{o}}(\mathrm{m})$; and (d) Core radius of different r_{o}.

$\mathrm{r}_{\mathrm{o}}(\mathrm{km})$	Touchdown S	S for $\mathrm{V}_{\text {tmax }}$	$\mathrm{V}_{\text {tmax }}$ $/ \mathrm{V}_{\mathrm{ro}}$	$M_{\text {ax. }} \mathrm{V}_{\mathrm{t}}$ $/ \mathrm{V}_{\text {ro }}$ at $\mathrm{z}=3.3$	$\mathrm{zmax}(\mathrm{m})$	$\mathrm{r}_{\mathrm{c}}(\mathrm{m})$
0.7	0.5	0.5	6.53	2.53	21.4	98.3
0.8	0.5	0.5	5.69	2.02	24.2	109.2
0.9	0.5	0.55	5.35	1.82	24.5	121.1
1	0.5	0.6	4.99	1.62	28	121.1
1.1	0.5	0.6	4.63	1.44	28	134.2
1.2	0.5	0.6	4.43	1.2	31.8	135.2
1.3	0.5	0.6	4.05	1.17	31.8	148.6
1.4	0.53	0.6	3.89	1.07	35.9	148.6
1.5	0.55	0.6	3.83	1.01	40.5	148.6
1.6	0.6	0.65	3.85	1.09	51.1	148.6
1.7	0.65	0.7	3.83	1.02	51.1	134.2
1.8	0.65	0.75	3.87	1.06	57.3	181.9
1.9	0.75	0.8	3.8	1.03	57.3	222.2
2	0.75	0.9	3.46	0.9	64	271
2.1	0.75	1	3.36	0.85	64	330
2.2	0.85	1.1	3.16	0.8	64	443
2.3	0.9	1.2	3.05	0.78	64	460

Table 1. Summary of the findings for different radii

3.3 Effect of variation of the swirl ratio on radial V_{t} profiles

In this section, the effect of changing the swirl ratio on radial V_{t} profile is investigated. Figures 10 through 13 show the radial V_{t} profiles for different r_{o} at heights $\mathrm{z}=4.5 \mathrm{~m}, \mathrm{z}=9.5 \mathrm{~m}, \mathrm{z}=18.5 \mathrm{~m}$ and $\mathrm{z}=51 \mathrm{~m}$. Figure 10 shows the radial V_{t} profiles at $\mathrm{z}=4.5 \mathrm{~m}$ for $\mathrm{r}_{0}=0.8 \mathrm{~km}, 1.5 \mathrm{~km}, 1.7 \mathrm{~km}$, and $\mathrm{r}_{\mathrm{o}}=2.0 \mathrm{~km}$. This figure shows that for all radii at $\mathrm{z}=4.5 \mathrm{~m}$, the radial V_{t} profile has two peaks and does not resemble the Rankine Combined Vortex Model (RCVM) profile. Also, one can see that the double curvature slowly decreases as r_{o} increases. Figure 11 shows the radial V_{t} profiles for $\mathrm{r}_{\mathrm{o}}=0.8 \mathrm{~km}, 1.5 \mathrm{~km}, 1.7 \mathrm{~km}$, and 2.0 km at $\mathrm{z}=9.5 \mathrm{~m}$. Here, for r_{o} greater than 0.8 km , double peaks in the radial profile is distinctly observed. For $\mathrm{r}_{0}=0.8 \mathrm{~km}$, there is a slight kink close to the center. For $\mathrm{z}=18.5 \mathrm{~m}$ and 51 m , radial velocity profiles are also plotted in Figures 12 and 13. In Figure 12, slight kink is observed for higher r_{o} and in Figure 13 there is no double curvature at all for all radius.

a) $\mathrm{r}_{\mathrm{o}}=0.8 \mathrm{~km}$
b) $\mathrm{r}_{\mathrm{o}}=1.5 \mathrm{~km}$

c) $\mathrm{r}_{\mathrm{o}}=1.7 \mathrm{~km}$
d) $\mathrm{r}_{\mathrm{o}}=2.0 \mathrm{~km}$

Figure 10. Radial V_{t} profile at $\mathrm{z}=4.5 \mathrm{~m}$ AGL for different tornado radii
Refan (2014) also showed the radial V_{t} profile having two peaks close to the ground in some plots. However, Refan (2014) did not make any observation. Also the peaks appeared close to the ground and away from the center in their case. These differences may be due to the way vortex chamber is built and further detailed studies are warranted. Similarly, Church et al. (1979) showed occurrence of two peaks on the velocity profile, but did not report the elevation of occurrence of the double-peak. Church et al. (1979) stated that occurrence of the secondary peak on the profile is due to the strong shear force close to the ground. It is an important observation which implies increased intensity of tornadoes close to ground. Several conclusions are made from this section:

1. For lower elevation, there are double peaks observed close to the ground for all radius ro considered in this work. When the elevation increases, the double peaks slowly disappear from smaller r_{0}. Therefore, wider tornadoes have higher intensity due to strong shear forces.
2. Alternatively, these observations imply that RCVM model applies for higher elevation and lower r_{o}.
3. For all elevations, it is noted that when the r_{o} decreases the maximum V_{t} increases or when r_{0} increases the maximum V_{t} decreases.

a) $\mathrm{r}_{\mathrm{o}}=0.8 \mathrm{~km}$
b) $\mathrm{r}_{\mathrm{o}}=1.5 \mathrm{~km}$

c) $\mathrm{r}_{\mathrm{o}}=1.7 \mathrm{~km} \quad$ d) $\mathrm{r}_{0}=2.0 \mathrm{~km}$

Figure 11. Radial Vt profile at $\mathrm{z}=9.5 \mathrm{~m}$ AGL for different tornado radii

a) $r_{0}=0.8 \mathrm{~km}$
b) $\mathrm{r}_{\mathrm{o}}=1.5 \mathrm{~km}$

c) $r_{0}=1.7 \mathrm{~km}$
d) $\mathrm{r}_{\mathrm{o}}=2.0 \mathrm{~km}$

Figure 12. Radial V_{t} profile at $\mathrm{z}=18.5 \mathrm{~m}$ AGL for different tornado radii

a) $\mathrm{r}_{\mathrm{o}}=0.8 \mathrm{~km}$
c) $\mathrm{r}_{\mathrm{o}}=1.7 \mathrm{~km}$
b) $\mathrm{r}_{\mathrm{o}}=1.5 \mathrm{~km}$

d) $r_{0}=2.0 \mathrm{~km}$

Figure 13. Radial Vt profile at $\mathbf{z}=51 \mathrm{~m}$ AGL for different tornado radii

3.4 Comparison of Vt, $\mathbf{r}_{\mathbf{c}}$ and zmax against the Actual Tornadoes

In this section, the simulation results will be compared against the radar measurements of actual tornadoes. For this purpose, the r_{0} of actual tornadoes, taken from radar measurements, are used in the simulation; the resulting tornado structure, r_{c}, and zmax are then compared to the data collected from actual tornadoes. This comparison is done for 6 tornadoes as shown in Table 2. Comparison of the structure of the tornadoes shows that for all 6 cases, the computational values are in the range with radar measurements. Also, comparison of r_{c} shows that the radar measurements report
a fairly higher value than the simulations. This discrepancy is due to the debris effect in the radar measurements (Kosiba and Wurman, 2010) which causes the radars measure higher values for the r_{c}. The computed r_{c} values have error varying from 9% to 37% with respect to field observation. The error is far more for higher r_{c} compared to lower ones. Comparison of the zmax of the radar measurements to the simulations is possible for three actual tornadoes of Spencer, Manchester, and Goshen Wyoming tornadoes. Table 2 shows that for these three tornadoes, the zmax of simulations comply well with the actual tornadoes. Refan et al. (2017) stated that if two scaling criteria match in comparison of the simulations to the radar measurements, then the simulations are reliable. Therefore, simulation results in the present study are in close range with field measurements.

4. Conclusions

A numerical tornado simulator was proposed in order to investigate effect of the tornado radius r_{o} on the maximum tangential velocity V_{t} of tornadoes. The following conclusions are made from the simulations:

1. Increasing r_{o} increases the touchdown swirl ratio and the swirl ratio for maximum V_{t} in the range of r_{0} considered for simulation.
2. Increasing r_{o} increases zmax. For $0.7 \mathrm{~km} \leq \mathrm{r}_{\mathrm{o}} \leq 2.3 \mathrm{~km}$, zmax occurs in the range of $20 \mathrm{~m}<\mathrm{zmax}<64 \mathrm{~m}$, whereas the radar measurements reported zmax in the range of $30 \mathrm{~m}<$ zmax $<200 \mathrm{~m}$.
3. Investigating the maximum V_{t} at different elevations above and below 10 m shows that an increase of r_{o} causes the maximum V_{t} to decrease with respect to $V_{r o}$.
4. For all r_{0}, at $z<10 \mathrm{~m}$ AGL, the radial V_{t} profile has two peaks. For higher z, the double peaks in the radial profile occurs for larger r_{0}. In addition, these peaks appear close to the center of the chamber. This radial profile is different from RCVM flow and the detailed CFD study helped to visualize this phenomenon. However, the effect of this on force exerted on buildings is yet to be investigated. Similar double peaks were also observed by Refan (2014) but the double peaks appear away from the center and this may be due to different type of vortex chamber. Church et al. (1979) stated that occurrence of the secondary peak on the profile is due to the strong shear
force close the ground. More detailed study on the effect of different vortex chamber on double peak occurrence needs to be conducted.

5. Acknowledgements

The first author acknowledges the support received from Womble Professorship and the second and third authors acknowledges the support received from National Science Foundation, under award number CMMI-1762999. The authors acknowledge one of the anonymous reviewer comments which helped to improve the paper extensively.

Table 2. Comparison of the vertical structure, r_{c} and zmax of radar measurements to simulations

Tornado	$\begin{gathered} r_{o} \\ (\mathrm{~km}) \end{gathered}$	Technique	Structure	$\mathrm{r}_{\mathrm{c}}(\mathrm{m})$	zmax(m)
Spencer(1998)	0.8	Doppler radar (Wurman and Alexander 2005)	Doublecelled	120	20
		Simulation results	Doublecelled	109	21.4
Manchester(2003)	0.8	Doppler radar (Kuai et al., 2008)	Doublecelled	130	20
		Simulation results	Doublecelled	109	21.4
Goshen, Wyoming (2009)	1.0	Doppler radar (Wurman et al.2013)	Doublecelled	140	30
		Simulation results	Doublecelled	121	27.5
Dimmit,Texas (1999)	1.0	Doppler radar (Wurman and Gill, 2000)	Doublecelled	150	NA
		Simulation results	Doublecelled	121	27.5
El Reno (2013)	2.3	Doppler radar (Bluestein et al, 2015; Wakimoto et al. 2016)	Doublecelled	650	NA
		Simulation results	Doublecelled	500	65
Bridge Creek Moore(1999)	0.8	Doppler radar (Burgess et al., 2002)	Doublecelled	175	NA
		Simulation results	Doublecelled	110	21.4

References

Baker, G.L, Church, C.R. (1979). Measurements of core radii and peak velocities in modelled atmospheric vortices. Journal of Atmospheric Sciences, 36, 2413-2424.
Bluestein, H.B., Snyder, J.C., Houser, J.B. (2015). A Multiscale Overview of the El Reno, Oklahoma, Tornadic Supercell of 31 May 2013. Weather and Forecasting, 30, 525-552, https://doi.org/10.1175/WAF-D-14-00152.1.
Burgess, D.W., Magsig, M.A., Wurman, J., Dowell, D.C., Richardson, Y. (2002) Radar observations of the 3 May 1999 Oklahoma City tornado, Weather and Forecasting, 17, 456471.

Church, C.R., Snow, J. T., Baker, G.L., Agee, E.M. (1979). Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation. Journal of Atmospheric Sciences, 36, 1755-1776.
Church, C.R., Snow, J. T. (1993). The tornado: its structure, dynamics, prediction, and hazards, American Geophysical Union, Washington, DC.
Davies-Jones, R.P. (1973). The Dependence of Core Radius on Swirl Ratio in a Tornado Simulator. Journal of Atmospheric Sciences, 30, 1427-1430.
Dominquez, D., and R.P. Selvam (2017), Tornado width for computer modeling from Google Earth data and period of the vortex, Proceedings: AEI Conference 2017, ASCE, Oklahoma City, OK, April 11-13, 470-483.
Hangan, H., Kim, J.D. (2008). Swirl ratio effects on tornado vortices in relation to the Fujita scale. Wind and Structures, 11, 291-302.
Harlow, F.H., Welch, J.E. (1965). Numerical calculation for time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8, 2182-2189.
Hirt C.W., B.D. Nichols, and N.C. Romero, (1975). SOLA-A Numerical Solution Algorithm for Transient Fluid Flows, Los Alamos Scientific Laboratory report LA-5852.
Jischke, M. C., M. Parang, (1979). Properties of simulated tornado-like vortices. Journal of atmospheric sciences, 31, 506-512
Kashefizadeh, M.H. (2018). Computer Modeling of close-to-ground tornado wind-fields for different tornado widths. Master's thesis, Department of Civil Engineering, University of Arkansas, USA.
Karstens, C.D., Gallus, W.A., Lee. B.D. (2013) Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa-Birmingham, Alabama, Tornadoes of 2011. Journal of Applied Meteorology and Climatology, 52, 1049-1068.
Kosiba, K., Wurman, J. (2010). Notes and correspondence, the Three-Dimensional Axisymmetric Wind Field Structure of the Spencer, South Dakota, 1998 Tornado. Journal of Atmospheric Sciences, 67, 3074-3084.
Kosiba, K., J. Wurman (2013). The Three-Dimensional Structure and Evolution of a Tornado Boundary Layer, Journal of Weather and Forecasting. 28, 1552-1561.
Kuai, L., Haan, F.L., Gallus, W.A., Sarkar, P. (2008). CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements. Wind and Structures, 11, 75-96.
Lewellen, W.S., Lewellen, D.C., Sykes, R.I. (1997). Large-eddy simulation of a tornado's interaction with the surface. Journal of the Atmospheric Sciences, 54, 581-605.

Neale, A., Derome, D.,Blocken, B., Carmeliet, J. (2006). CFD calculation of convective heat transfer coefficients and validation-Part 2: Turbulent flow. From the web.
Nolan, D.S. (2013). On the Use of Doppler Radar-Derived Wind Fields to Diagnose the Secondary Circulations of Tornadoes. J. Atmos. Sci., 70, 1160-1171
Refan, M. (2014). Physical Simulation of Tornado-Like Vortices. PhD thesis, Department of Mechanical and Materials Engineering, The University of Western Ontario.
Refan, M., Hangan, H., Wurman, J., Kosiba, K. (2017). Doppler radar-derived wind field of five tornado events with application to engineering simulations, Engineering Structures, 148, 509-521.
Selvam, R.P. (1992), Computation of Pressures on Texas Tech Building, Journal of Wind Engineering and Industrial Aerodynamics, 43, 1619-1627.
Tari, P.H., Gurka, R., Hangan, H. (2010). Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields. Journal of Wind Eng. Ind. Aerodyn. 98, 936-944.
Wakimoto, R.M., N.T. Atkins, K.M. Butler, H.B. Bluestein, K. Thiem, J.C. Synder, J. Houser, K. Kosiba, J. Wurman (2016). Aerial Damage Survey of the 2013 El Reno Tornado Combined with Mobile Radar Data. American Meteorological Society, 144, 1749-1776.
Ward, N.B., (1972). The exploration of certain features of tornado dynamics using a laboratory model. Journal of the Atmospheric Sciences, 29, 1194-1204.
Wilson, T., Rotunno, R. (1986). Numerical simulation of a laminar end-wall vortex and boundary layer. Physics of Fluids, 29, 3993-4005.
Wurman, J., Gill, S. (2000). Finescale Radar Observations of the Dimmitt, Texas (2 June 1995), Tornado. Monthly Weather Review, 128, 2135-2164.
Wurman, J. and Alexander, C.R. (2005), The 30 May 1998 Spencer, South Dakota, storm, Monthly Weather Review, 133, 97-119.
Wurman, J., C. Alexander, P. Robinson, Y. Richardson (2007). Low-Level Winds in Tornadoes and Potential Catastrophic Tornado Impacts in Urban Areas. American Meteorological Society, 89, 87-90.
Wurman, J., Kosiba, K., Robinson, P. (2013). In situ, Doppler radar and video observations of the interior structure of a tornado and the wind-damage relationship. Bulletin of the American Meteorological Society, 94, 835-846.

[^0]: *Corresponding Author

