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Abstract

We clarify what fairness guarantees we can and cannot expect to follow from unconstrained
machine learning. Specifically, we characterize when unconstrained learning on its own implies
group calibration, that is, the outcome variable is conditionally independent of group membership
given the score. We show that under reasonable conditions, the deviation from satisfying group
calibration is upper bounded by the excess risk of the learned score relative to the Bayes optimal
score function. A lower bound confirms the optimality of our upper bound. Moreover, we prove
that as the excess risk of the learned score decreases, the more strongly it violates separation
and independence, two other standard fairness criteria.

Our results show that group calibration is the fairness criterion that unconstrained learning
implicitly favors. On the one hand, this means that calibration is often satisfied on its own
without the need for active intervention, albeit at the cost of violating other criteria that are at
odds with calibration. On the other hand, it suggests that we should be satisfied with calibration
as a fairness criterion only if we are at ease with the use of unconstrained machine learning in
a given application.

1 Introduction

Although many fairness-promoting interventions have been proposed in the machine learning lit-
erature, unconstrained learning remains the dominant paradigm among practitioners for learning
risk scores from data. Given a prespecified class of models, unconstrained learning simply seeks
to minimize the average prediction loss over a labeled dataset, without explicitly correcting for
disparity with respect to sensitive attributes, such as race or gender. Many criticize the practice
of unconstrained machine learning for propagating harmful biases [Crawford, 2013, Barocas and
Selbst, 2016, Crawford, 2017]. Others see merit in unconstrained learning for reducing bias in
consequential decisions [Corbett-Davies et al., 2017b,a, Kleinberg et al., 2018].

In this work, we show that defaulting to unconstrained learning does not neglect fairness consid-
erations entirely. Instead, it prioritizes one notion of “fairness” over others: unconstrained learning
achieves calibration with respect to one or more sensitive attributes, as well as a related criterion
called sufficiency [e.g., Barocas et al., 2018], at the cost of violating other widely used fairness
criteria, separation and independence (see Section 1.2 for references therein).

A risk score is calibrated for a group if the risk score obviates the need to solicit group mem-
bership for the purpose of predicting an outcome variable of interest. The concept of calibration
has a venerable history in statistics and machine learning [Cox, 1958, Murphy and Winkler, 1977,
Dawid, 1982, DeGroot and Fienberg, 1983, Platt, 1999, Zadrozny and Elkan, 2001, Niculescu-Mizil
and Caruana, 2005]. The appearance of calibration as a widely adopted and discussed “fairness cri-
terion” largely resulted from a recent debate around fairness in recidivism prediction and pre-trial
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detention. After journalists at ProPublica pointed out that a popular recidivism risk score had
a disparity in false positive rates between white defendants and black defendants [Angwin et al.,
2016], the organization that produced these scores countered that this disparity was a consequence
of the fact that their scores were calibrated by race [Dieterich et al., 2016]. Formal trade-offs
dating back the 1970s confirm the observed tension between calibration and other classification
criteria, including the aforementioned criterion of separation, which is related to the disparity in
false positive rates [Darlington, 1971, Chouldechova, 2017, Kleinberg et al., 2017, Barocas et al.,
2018].

Implicit in this debate is the view that calibration is a constraint that needs to be actively
enforced as a means of promoting fairness. Consequently, recent literature has proposed new
learning algorithms which ensure approximate calibration in different settings [Hebert-Johnson
et al., 2018, Kearns et al., 2017].

The goal of this work is to understand when approximate calibration can in fact be achieved by
unconstrained machine learning alone. We define several relaxations of the exact calibration crite-
rion, and show that approximate group calibration is often a routine consequence of unconstrained
learning. Such guarantees apply even when the sensitive attributes in question are not available to
the learning algorithm. On the other hand, we demonstrate that under similar conditions, uncon-
strained learning strongly violates the separation and independence criteria. We also prove novel
lower bounds which demonstrate that in the worst case, no other algorithm can produce score
functions that are substantially better-calibrated than unconstrained learning. Finally, we verify
our theoretical findings with experiments on two well-known datasets, demonstrating the effective-
ness of unconstrained learning in achieving approximate calibration with respect to multiple group
attributes simultaneously.

1.1 Our results

We begin with a simplified presentation of our results. As is common in supervised learning,
consider a pair of random variables (X,Y ) where X models available features, and Y is a binary
target variable that we try to predict from X. We choose a discrete random variable A in the same
probability space to model group membership. For example, A could represent gender, or race. In
particular, our results do not require that X perfectly encodes the attribute A.

A score function f maps the random variable X to a real number. We say that the score
function f is sufficient with respect to attribute A if we have E[Y | f(X)] = E[Y | f(X), A] almost
surely.1 In words, conditioning on A provides no additional information about Y beyond what was
revealed by f(X). This definition leads to a natural notion of the sufficiency gap:

suff (A) = E[|E[Y | f(X)]− E[Y | f(X), A]|] , (1)

which measures the expected deviation from satisfying sufficiency over a random draw of (X,A).
We say that the score function f is calibrated with respect to group A if we have E[Y | f(X), A] =

f(X). Note that calibration implies sufficiency. We define the calibration gap [see also Pleiss et al.,
2017] as

calf (A) = E [|f(X)− E[Y | f(X), A]|] . (2)

1This notion has also been referred to as “calibration” in previous work [e.g., Chouldechova, 2017]. In this work
we refer to it as “sufficiency”, hence distinguishing it from E[Y | f(X), A] = f(X), which has also been called
“calibration” in previous work [e.g., Pleiss et al., 2017]. These two notions are not identical, but closely related; we
present analagous theoretical results for both.
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Denote by L(f) = E[ℓ(f, Y )] the population risk (risk, for short) of the score function f . Think
of the loss function ℓ as either the square loss or the logistic loss, although our results apply more
generally. Our first result relates the sufficiency and calibration gaps of a score to its risk.

Theorem 1.1 (Informal). For a broad class of loss functions that includes the square loss and
logistic loss, we have

max{suff (A), calf (A)} ≤ O
(√
L(f)− L∗

)
.

Here, L∗ is the calibrated Bayes risk, i.e., the risk of the score function fB(x, a) = E[Y | X =
x,A = a].

The theorem shows that if we manage to find a score function with small excess risk over the
calibrated Bayes risk, then the score function will also be reasonably sufficient and well-calibrated
with respect to the group attribute A. We also provide analogous results for the calibration error
restricted to a particular group A = a.

In particular, the above theorem suggests that computing the unconstrained empirical risk min-
imizer [Vapnik, 1992], or ERM, is a natural strategy for achieving group calibration and sufficiency.
For a given loss ℓ : [0, 1] × {0, 1} → R, finite set of examples Sn := {(Xi, Yi)}i∈[n], and class of
possible scores F , the ERM is the score function

f̂n ∈ argmin
f∈F

1

n

n∑

i=1

ℓ(f(Xi), Yi) . (3)

It is well known that, under very general conditions, L(f̂n)
prob→ minf∈F L(f); that is, the risk of f̂n

converges in probability to the least expected loss of any score function f ∈ F .
In general, the ERM may not achieve small excess risk, L(f)−L∗. Indeed, we have defined the

calibrated Bayes score fB as one that has access to both X and A. In cases where the available
features X do not encode A, but A is relevant to the prediction task, the excess risk may be large.
In other cases, the excess risk may be large simply because the function class over which we can
feasibly optimize provides only poor approximations to the calibrated Bayes score. In example 2.1,
we provide scenarios when the excess risk is indeed small.

The constant in front of the square root in our theorem depends on properties of the loss
function, and is typically small, e.g., bounded by 4 for both the squared loss and the logistic loss.
The more significant question is if the square root is necessary. We answer this question in the
affirmative.

Theorem 1.2 (Informal). There is a triple of random variables (X,A, Y ) such that the empirical
risk minimizer f̂n trained on n samples drawn i.i.d. from (X,Y ) satisfies min{cal

f̂n
(A), suf

f̂n
(A)} ≥

Ω(1/
√
n) and L(f̂n)− L∗ ≤ O(1/n) with probability Ω(1).

In other words, our upper bound sharply characterizes the worst-case relationship between
excess risk, sufficiency and calibration. Moreover, our lower bound applies not only to the empirical
risk minimizer f̂n, but to any score learned from data which is a linear function of the features X.
Although group calibration and sufficiency is a natural consequence of unconstrained learning, it
is in general untrue that they imply a good predictor. For example, predicting the group average,
f = E[Y | A] is a pathological score function that nevertheless satisfies calibration and sufficiency.

Although unconstrained learning leads to well-calibrated scores, it violates other notions of
group fairness. We show that the ERM typically violates independence—the criterion that scores
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are independent of group attribute A—as long as the base rate Pr[Y = 1] differs by group. More-
over, we show that the ERM violates separation, which asks for scores f(X) to be conditionally
independent of the attribute A given the target Y [see Barocas et al., 2018, Chapter 2]. In this
work, we define the separation gap:

sepf (A) := EY,A[|E[f(X) | Y,A]− E[f(X) | Y ]|],

and show that any score with small excess risk must in general have a large separation gap. Sim-
ilarly, we show that unconstrained learning violates indf (A) := EA[|E[f(X) | A] − E[f(X)]|], a
quantitative version of the independence criterion [see Barocas et al., 2018, Chapter 2].

Theorem 1.3 (Informal). For a broad class of loss functions that includes the square loss and
logistic loss, we have

sepf (A) ≥ CfB ·QA −O(
√
L(f)− L∗),

where CfB and QA are problem-specific constants independent of f . CfB represents the inherent
noise level of the prediction task, and QA is the variation in group base rates. Moreover, indf (A) ≥
QA −O(

√
L(f)− L∗) for the same constant QA.

The lower bound for sepf is explained in Section 2.2; the lower bound for indf is deferred to
Appendix F.

Experimental evaluation. We explore the extent to which the result of empirical risk min-
imization satisfies sufficiency, calibration and separation, via comprehensive experiments on the
UCI Adult dataset [Dua and Karra Taniskidou, 2017] and pretrial defendants dataset from Broward
County, Florida [Angwin et al., 2016, Dressel and Farid, 2018]. For various choices of group at-
tributes, including those defined using arbitrary combinations of features, we observe that the
empirical risk minimizing score is fairly close to being calibrated and sufficient. Notably, this holds
even when the score is not a function of the group attribute in question.

1.2 Related work

Calibration was first introduced as a fairness criterion by the education testing literature in the
1960s. It was formalized by the Cleary criterion [Cleary, 1968], which compares the slope of
regression lines between the test score and the outcome in different groups. More recently, machine
learning and data mining communities have rediscovered calibration, and examined the inherent
tradeoffs between calibration and other fairness constraints. Chouldechova [2017] and Kleinberg
et al. [2017] independently demonstrate that exact group calibration is incompatible with separation
(equal true positive and false positive rates), except under highly restrictive situations such as
perfect prediction or equal group base rates. Such impossibility results have been further generalized
by Pleiss et al. [2017].

There are multiple post-processing procedures which achieve calibration, [see e.g. Niculescu-
Mizil and Caruana, 2005, and references therein]. Notably, Platt scaling [Platt, 1999] learns cali-
brated probabilities for a given score function by logistic regression. Recently, Hebert-Johnson et al.
[2018] proposed a polynomial time agnostic learning algorithm that achieves both low prediction
error, and multi-calibration, or simultaneous calibration with respect to all, possibly overlapping,
groups that can be described by a concept class of a given complexity. Complementary to this
finding, our work shows that low prediction error often implies calibration with no additional com-
putational cost, under very general conditions. Unlike Hebert-Johnson et al. [2018], we do not
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aim to guarantee calibration with respect to arbitrarily complex group structure; instead we study
when usual empirical risk minimization already achieves calibration with respect to a given group
attribute A.

A variety of other fairness criteria have been proposed to address concerns of fairness with
respect to a sensitive attribute. These are typically group parity constraints on the score function,
including, among others, demographic parity (also known as independence and statistical parity),
equalized odds (also known as error-rate balance and separation), as well as calibration and suffi-
ciency [see e.g. Feldman et al., 2015, Hardt et al., 2016, Chouldechova, 2017, Kleinberg et al., 2017,
Pleiss et al., 2017, Barocas et al., 2018]. Beyond parity constraints, recent works have also studied
dynamic aspects of fairness, such as the impact of model predictions on future welfare [Liu et al.,
2018] and demographics [Hashimoto et al., 2018].

2 Formal setup and results

We consider the problem of finding a score function f̂ which encodes the probability of a binary
outcome Y ∈ {0, 1}, given access to features X ∈ X . We consider functions f : X → [0, 1] which
lie in a prespecified function class F . We assume that individuals’ features and outcomes (X,Y )
are random variables whose law is governed by a probability measure D over a space Ω, and will
view functions f as maps Ω → [0, 1] via f = f(X). We use PrD[·],Pr[·] to denote the probability
of events under D, and ED[·],E[·] to denote expectation taken with respect to D.

We also consider a D-measurable protected attribute A ∈ A, with respect to which we would
like to ensure sufficiency or calibration, as defined in Section 1.1 above. While assume that
f = f(X) for all f ∈ F , we compare the performance of f to the benchmark that we call the
calibrated Bayes score2

fB(x, a) := E [Y | X = x,A = a] , (4)

which is a function of both the feature x and the attribute a. As a consequence, fB /∈ F , except
possibly whenever Y is conditionally independent of A given X. Nevertheless, fB is well defined
as a map Ω→ [0, 1] and it always satisfies sufficiency and calibration:

Proposition 2.1. fB is sufficient and calibrated, that is E[Y | fB(X)] = E[Y | fB(X), A] and
fB = E[Y | f(X), A], almost surely. Moreover, if Φ : X → X ′ is any map, then the classifier
fΦ(X) := E[Y | Φ(X), A] is sufficient and calibrated.

Proposition 2.1 is a direct consequence of the tower property (proof in Appendix A.1). In
general, there are many challenges to learning perfectly calibrated scores. As mentioned above, fB

depends on information about A which is not necessarily accessible to scores f ∈ F . Moreover,
even in the setting where A = A(X), it may still be the case that F is a restricted class of scores,
and fB /∈ F . Lastly, if f̂ is estimated from data, it may require infinitely many samples to achieve
perfect calibration. To this end, we introduce the following approximate notion of sufficiency and
calibration:

Definition 1. Given a D-measurable attribute A ∈ A and value a ∈ A, we define the sufficiency
gap of f with respect to A for group a as

suff (a;A) := ED [|E[Y | f(X)]− E[Y | f(X), A]| | A = a] . (5)

2Note that this is not the perfect predictor unless Y is deterministic given A and X.
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and the calibration gap for group a as

calf (a;A) := ED [|f − E[Y | f(X), A]| | A = a] . (6)

We shall let suff (A) and calf (A) be as defined above in (1) and (2), respectively.

2.1 Sufficiency and calibration

We now state our main results, which show that the sufficiency and calibration gaps of a function
f can be controlled by its loss, relative to the calibrated Bayes score fB. All proofs are deferred to
the supplementary material. Throughout, we let F denote a class of score functions f : X → [0, 1]
. For a loss function ℓ : [0, 1] × {0, 1} → R and any D-measurable f : Ω → [0, 1], recall the
population risk L(f) := E[ℓ(f, Y )]. Note that for f ∈ F , L(f) = E[ℓ(f(X), Y )], whereas for the
calibrated Bayes score fB, we denote its population risk as L∗ := L(fB) = E[ℓ(fB(X,A), Y )]. We
further assume that our losses satisfy the following regularity condition:

Assumption 1. Given a probability measure D, we assume that ℓ(·, ·) is (a) κ-strongly convex:
ℓ(z, y) ≥ κ(z− y)2, (b) there exists a differentiable map g : R→ R such that ℓ(z, y) = g(z)− g(z)−
g′(z)(z − y) (that is, ℓ is a Bregman Divergence), and (c) the calibrated Bayes score is a critical
point of the population risk, that is

E

[
∂

∂z
ℓ(z, Y )

∣∣
z=fB

]
= 0 .

Assumption 1 is satisfied by common choices for the loss function, such as the square loss
ℓ(z, y) = (z − y)2 with κ = 1, and the logistic loss, as shown by the following lemma, proved in
Appendix A.2.

Lemma 2.2 (Logistic Loss). The logistic loss ℓ(f, Y ) = −(Y log f + (1 − Y ) log(1 − f)) satisfies
Assumption 1 with κ = 2/ log 2.

We are now ready to state our main theorem (proved in Appendix B), which provides a simple
bound on the sufficiency and calibration gaps, suff and calf , in terms of the excess risk L(f)−L∗:
Theorem 2.3 (Sufficiency and Calibration are Upper Bounded by Excess Risk). Suppose the loss
function ℓ(·, ·) satisfies Assumption 1 with parameter κ > 0. Then, for any score f ∈ F and any
attribute A,

max{calf (A), suff (A)} ≤ 4

√
L(f)− L∗

κ
. (7)

Moreover, it holds that for a ∈ A,

max{calf (a;A), suff (a;A)} ≤ 2

√
L(f)− L∗

Pr[A = a] · κ. (8)

Theorem 2.3 applies to any f ∈ F , regardless of how f is obtained. As a consequence of
Theorem 2.3, we immediately conclude the following corollary for the empirical risk minimizer:

Corollary 2.4 (Calibration of the ERM). Let f̂ be the output of any learning algorithm (e.g.
ERM) trained on a sample Sn ∼ Dn, and let L(f) be as in Theorem 2.3. Then, if f̂ satisfies the
guarantee

Pr
Sn∼Dn

[
L(f̂)−min

f∈F
L(f) ≥ ǫ

]
≤ δ,
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and if ℓ satisfies Assumption 1 with parameter κ > 0, then with probability at least 1 − δ over
Sn ∼ Dn, it holds that

max{calf (A), suff (A)} ≤ 4

√
ǫ+minf∈F L(f)− L∗

κ
.

The above corollary states that if there exists a score in the function class F whose population
risk L(f) is close to that of the calibrated Bayes optimal L∗, then empirical risk minimization
succeeds in finding a well-calibrated score.

In order to apply Corollary 2.4, one must know when the gap between the best-in-class risk and
calibrated Bayes risk, minf∈F L(f)−L∗, is small. In the full information setting where A = A(X)
(that is, the group attribute is available to the score function), minf∈F L(f) − L∗ corresponds
to the approximation error for the class F [Bartlett et al., 2006]. When X may not contain all
the information about A, minf∈F L(f) − L∗ depends not only on the class F but also on how
well A can be encoded by X given the class F , and possibly additional regularity conditions. We
now present a guiding example under which one can meaningfully bound the excess risk in the
incomplete information setting. In Appendix B.3, we provide two further examples to guide the
readers’ intuition. For our present example, we introduce as a benchmark the uncalibrated Bayes
optimal score

fU (x) := E[Y |X = x],

which minimizes empirical risk over all X measurable functions, and is necessarily in F . Our first
example gives a decomposition of L(f)− L∗ when ℓ is the square loss.

Example 2.1. Let ℓ(z, y) := (z − y)2 denote the squared loss. Then,

L(f̂)− L∗ =
(
L(f̂)− inf

f∈F
(f)

)

(i)

+

(
inf
f∈F
L(f)− L(fU )

)

(ii)

+ EX

[
VarA

[
fB | X

]]

(iii)

, (9)

where VarA[f
B | X] = E[(fB − EA[f

B | X])2 | X] denotes the conditional variance of fB given X.

The decomposition in Example 2.1 follows immediately from the fact that the excess risk of
fU over fB, L(fU ) − L∗, is precisely VarA[f

B | X] when ℓ is the square loss. Examining (9), (i)
represents the excess risk of f̂ over the best score in F , which tends to zero if f̂ is the ERM. Term
(ii) captures the richness of the function class, for as F contains a close approximation to fU . If f̂
is obtained by a consistent non-parametric learning procedure, and fU has small complexity, then
both (i) and (ii) tend to zero in the limit of infinite samples. Lastly, (iii) captures the additional
information about A contained in X. Note that in the full information zero, this term is zero.

2.2 Lower bounds for separation

In this section, we show that empirical risk minimization robustly violates the separation criterion
that scores are conditionally independent of the group A given the outcome Y . For a classifier that
exactly satisfies separation, we have E[f(X) | Y,A] = E[f(X) | Y ] for any group A and outcome
Y . We define the separation gap as the average margin by which this equality is violated:

Definition 2 (Separation gap). The separation gap is

sepf (A) := EY,A[|E[f(X) | Y,A]− E[f(X) | Y ]|].

7



Our first result states that the calibrated Bayes score fB, has a non-trivial separation gap. The
following lower bound is proved in Appendix F:

Proposition 2.5 (Lower bound on separation gap). Denote q := Pr[Y = 1], and qA := Pr[Y = 1|A]
for a group attribute A. Let Var(·) denote variance, and Var(· | X) denote conditional variance
given a random variable X. Then, sepfB (A) ≥ CfB ·QA, where

QA := EA|q − qA| and CfB :=
EDVar[Y | X,A]

Var[Y ]
.

Intuitively, the above bound says that the separation gap of the calibrated Bayes score is lower
bounded by the product of two quantities: QA = EA|qA − q| corresponds to the L1-variation in
base-rates among groups, and CfB corresponds to the intrinsic noise level of the prediction problem.
For example, consider the case where perfect prediction is possible (that is, Y is deterministic given
X,A). Then, the lower bound is vacuous because CBf = 0, and indeed fB has zero separation gap.

Proposition 2.5 readily implies that any score f which has small risk with respect to fB also
necessarily violates the separation criterion:

Corollary 2.6 (Separation of the ERM). Let L be the risk associated with a loss function ℓ(·, ·)
satisfying Assumption 1 with parameter κ > 0. Then, for any score f̂ ∈ F , possibly the ERM, and
any attribute A,

sepf̂ ≥ CfB · EA|qA − q| − 2

√
L(f̂)− L∗

κ
.

In prior work, Kleinberg et al. [2017]’s impossibility result (Theorem 1.1, 1.2), as well as subse-
quent generalizations in Pleiss et al. [2017], states that a score that satisfies both calibration and
separation must be either a perfect predictor or the problem must have equal base rates across
groups, that is, q = qA. In contrast, Proposition 2.5 provides a quantitative lower bound on the
separation gap of a calibrated score, for arbitrary configurations of base rates and closeness to
perfect prediction. This is crucial for approximating the separation gap of the ERM in Corollary
2.6.

2.3 Lower bounds for sufficiency and calibration

We now present two lower bounds which demonstrate that the behavior depicted in Theorem 2.3 is
sharp in the worse case. In Appendix C, we construct a family of distributions {Dθ}θ∈Θ over pairs
(X,Y ) ∈ X ×{0, 1}, and a family of attributes {Aw}w∈W which are measurable functions of X. We
choose the distribution parameter θ and attribute parameter w to be drawn from specified priors
πΘ and πW . We also consider a class of score functions F mapping X → [0, 1], which contains the
calibrated Bayes classifer for any θ ∈ Θ and w ∈ W (this is possible because the attributes are
X-measurable). We choose L to be the risk associated with the square loss, and consider classifiers
trained on a sample Sn = {(Xi, Yi)}ni=1 of n i.i.d draws from Dθ. In this setting, we have the
following:

Theorem 2.7. Let f̂ ∈ F denote the output of any learning algorithm trained on a sample Sn ∼ Dn,
and let f̂n denote the empirical risk minimizer of L trained on Sn. Then, with constant probability
over θ ∼ πΘ, w ∼ πW , and Sn ∼ Dθ, min{cal

f̂
(Aw), suf f̂ (Aw)} ≥ Ω(1/

√
n) and L(f̂n) − L∗ ≤

O(1/n).
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In particular, taking f̂ = f̂n, we see that the for any sample size n, we have that

min{cal
f̂n
(Aw), suf f̂n(Aw)}/

√
L(f̂n)− L∗ = Ω(1).

with constant probability. In addition, Theorem 2.7 shows that in the worst case, the calibration
and sufficiency gaps decay as Ω(1/

√
n) with n samples.

We can further modify the construction to lower bound the per-group sufficency and calibration
gaps in terms of Pr[A = a]. Specifically, for each p ∈ (0, 1/4), we construct in Appendix D a
family of distributions {Dθ;p}θ∈Θ and X-measurable attributes {Aw}w∈W such that, for all (θ, w),
mina∈A Pr(X,Y )∼Dθ;p [Aw(X) = a] = p, for all θ ∈ Θ and w ∈ W. The construction also entails
modifying the class F ; in this setting, our construction is as follows:

Theorem 2.8. Fix p ∈ (0, 1/4). For any score f̂ ∈ F trained on Sn, and the empirical risk
mnimizer f̂n, it holds that min{cal

f̂
(Aw), suf f̂ (Aw)} ≥ Ω(1/

√
pn) and L(f̂n)−L∗ ≤ O(1/n), with

constant probability over θ ∼ πΘ, w ∼ πW , and Sn ∼ Dθ;p.

3 Experiments

In this section, we present numerical experiments on two datasets to corroborate our theoretical
findings. These are the Adult dataset from the UCI Machine Learning Repository [Dua and Karra
Taniskidou, 2017] and a dataset of pretrial defendants from Broward County, Florida [Angwin et al.,
2016, Dressel and Farid, 2018] (henceforth referred to as the Broward dataset).

The Adult dataset contains 14 demographic features for 48842 individuals, for predicting
whether one’s annual income is greater than $50,000. The Broward dataset contains 7 features
of 7214 individuals arrested in Broward County, Florida between 2013 and 2014, with the goal of
predicting recidivism within two years. It is derived by Dressel and Farid [2018] from the original
dataset used by Angwin et al. [2016] to evaluate a widely used criminal risk assessment tool. We
present results for the Adult dataset in the current section, and those for the Broward dataset in
Appendix G.2.

Score functions are obtained by logistic regression on a training set that is 80% of the original
dataset, using all available features, unless otherwise stated.

We first examine the sufficiency of the score with respect to two sensitive attributes, gender
and race in Section 3.1. Then, in Section 3.2 we show that the score obtained from empirical risk
minimization is sufficient and calibrated with respect to multiple sensitive attributes simultaneously.
Section 3.3 explores how sufficiency and separation are affected differently by the amount of training
data, as well as the model class.

We use two descriptions of sufficiency. In Sections 3.1 and 3.2, we present the so-called cal-
ibration plots (e.g., Figure 1), which plots observed positive outcome rates against score deciles
for different groups. The shaded regions indicate 95% confidence intervals for the rate of positive
outcomes under a binomial model. In Section 3.3, we report empirical estimates of the sufficiency
gap, suff (A), using a test set that is 20% of the original dataset. More details on this estimator
can be found in Appendix G.1. In general, models that are more sufficient and calibrated have
smaller suff and their calibration plots show overlapping confidence intervals for different groups.

3.1 Training with group information has modest effects on sufficiency

In this section, we examine the sufficiency of ERM scores, with respect to gender and race. When
all available features were used in the regression, including sensitive attributes, the empirical risk
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Conclusion In summary, our results show that group calibration follows from closeness to the
risk of the calibrated Bayes optimal score function. Consequently, empirical risk minimization
is a simple and efficient recipe for achieving group calibration, provided that (1) the function
class is sufficiently rich, (2) there are enough training samples, and (3) the group attribute can
be approximately predicted from the available features. On the other hand, we show that group
calibration does not and cannot solve fairness concerns that pertain to the Bayes optimal score
function, such as the violation of separation and independence.

More broadly, our findings suggest that group calibration is an appropriate notion of fairness
only when we expect unconstrained machine learning to be fair, given sufficient data. Stated
otherwise, focusing on calibration alone is likely insufficient to mitigate the negative impacts of
unconstrained machine learning.
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A Additional Proofs for Section 2.1

In this section we prove Proposition 2.1, and Lemma 2.2.

A.1 Proof of Proposition 2.1

Recall that fB(X,A) = E [Y | X,A].
By the tower rule for conditional expectation,

Pr
[
Y = 1 | fB(X,A), A

]
= E[Y | fB(X,A), A]
= E

[
E [Y | X,A] | fB(X,A), A

]

= E[fB(X,A) | fB(X,A), A] = fB(X,A) ,

and,

Pr[Y = 1 | fB(X,A)] = E[Y | fB(X,A)]
= E[E[Y | X,A] | fB(X,A)]
= E[fB(X,A) | fB(X,A)] = fB(X,A).

Therefore, the calibrated Bayes score fB(X) is sufficient and calibrated.
More generally, conditional expectations of the form f(X) = E[Y | Φ(X), A] are calibrated,

where Φ : X → X ′ can be any transformation of the features. This follows similarly from the tower
rule.

A.2 Proof of Lemma 2.2

To see that this is true, first note that ℓ(f, y) is a Bregman divergence. We can easily check that
E[∇f ℓ(f(x, a), Y )|fB ] = E[ Y

fB
− 1−Y

1−fB
] = 0. Finally, κ-strong convexity follows from Pinkser’s

inequality for Bernoulli random variables:

(f − f ′)2 ≤ log 2

2

(
f ′ log

f ′

f
+ (1− f ′) log 1− f ′

1− f

)
=

log 2

2
ℓ(f, f ′).

B Proof of Theorem 2.3

Throughout, we consider a fixed distribution D and attribute A. We shall also use the shorthand
f = f(X) and fB = fB(X,A). We begin by proving the following lemma, which establishes
Theorem 2.3 in the case where f is the squared loss:

Lemma B.1. Let fB be the Bayes classifier, and let f denote any function. Then,

suff ≤ 4
√
EX,A[(f − fB)2], (10)

∀a ∈ A, suff (a;A) ≤ 2

√
EX,A[(f − fB)2]

Pr[A = a]
. (11)

calf ≤
√

EX,A[(f − fB)2], (12)

∀a ∈ A, calf (a;A) ≤ 2

√
EX,A[(f − fB)2]

Pr[A = a]
. (13)
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To conclude the proof of Theorem 2.3, we first show that E[ℓ(f, fB)] = E[ℓ(f, Y )]−E[ℓ(fB, Y )].
Since ℓ is a Bregman divergence and calibrated at fB (Assumption 1), we have

E[ℓ(f, fB)] =E[ℓ(f, Y )]− E[ℓ(fB, Y )] + E[(g′(Y )− g′(fB)) · (f − fB)]
=E[ℓ(f, Y )]− E[ℓ(fB, Y )]− E[E[∇f ℓ(f, Y )|fB | X,A]︸ ︷︷ ︸

=0

·(f − fB)]

=E[ℓ(f, Y )]− E[ℓ(fB, Y )].

Moreover, by strong convexity, we have that L(f) ≥ 1
κE[(f − Y )2]. Thus,

κE[(f − fB)2] ≤ E[ℓ(f, fB)] = E[ℓ(f, Y )]− E[ℓ(fB, Y )] = L(f)− L(fB) .

Applying Lemma B.1 concludes the proof.

B.1 Proof of Lemma B.1 (10) and (11)

First we bound the L2 difference of the conditional expectations. Note that since f = f(X),

E[Y | f,A] = E[E[Y |X,A, f ] | f,A] = E[E[Y |X,A] | f,A] = E[fB | f,A]. (14)

Moreover, by the definition of fB

E[Y | fB, A] = E[E[Y | A,X, fB], fB, A] = E[E[Y | A,X,E[Y | A,X]]

= E[E[Y | A,X], A,X] = E[Y | A,X] = fB, (15)

and thus, by (14) and (15), we have

EX,A[(E[Y | f,A]− E[Y | fB, A])2] = EX,A[(E[f
B | f,A]− fB)2] by (14) and (15)

= EX,A[(E[f
B − f | f,A] + f − fB)2]

≤ 2EX,A[(E[f
B − f | f,A])2 + (f − fB)2]

≤ 2EX,A[E[(f
B − f)2 | f,A] + (f − fB)2] (16)

= 4EX,A[(f − fB)2] , (17)

where (16) follows from Jensen’s inequality. Similarly, one has

EX,A[(E[Y | f ]− E[Y | fB])2] ≤ 4EX,A[(f − fB)2]. (18)

We then find that

∆f = ∆f −∆fB

= EX,A[|E[Y | f ]− E[Y | f,A]| − |E[Y | fB]− E[Y | fB, A]|]
= EX,A[|E[Y | f ]− E[Y | f,A]| − |E[Y | fB]− E[Y | fB, A]|]

= EX,A[
√
(E[Y | f ]− E[Y | f,A]− (E[Y | fB]− E[Y | fB, A]))2]

≤
√

EX,A[(E[Y | f ]− E[Y | f,A]− (E[Y | fB]− E[Y | fB, A]))2] (19)

≤
√
2EX,A[(E[Y | f ]− E[Y | fB])2] + 2EX,A[(E[Y | f,A]− E[Y | fB, A])2]

≤
√
8EX,A[(f − fB)2] + 8EX,A[(f − fB)2] = 4

√
EX,A[(f − fB)2], (20)
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where we’ve applied Jensen’s inequality in (19), and the inequality in (20) uses (17) and (18).
Similarly, for a fixed group A = a, we have

suff (a;A) = EX [|E[Y | f ]− E[Y | f,A]| − |E[Y | fB]− E[Y | fB, A]| | A = a]

≤ 4
√

EX [(f − fB)2 | A = a]

≤ 4

√
1

Pr[A = a]
EX,A[(f − fB)2]

B.2 Proof of Lemma B.1 (12) and (13)

By (14), we have

EX,A[(E[Y | f,A]− f)2] = EX,A[(E[f
B | f,A]− f)2] ≤ EX,A[(f

B − f)2], (21)

where the inequality follows from Jensen’s inequality and the tower property. We then find that,
by Jensen’s inequality,

calf = EX,A[|E[Y | f,A]− f |]
= EX,A[

√
(E[Y | f,A]− f)2]

≤
√
EX,A[(E[Y | f,A]− f)2]

≤
√

EX,A[(fB − f)2].

Similarly, for an fixed group A = a, we have

calf (a;A) = EX,A[|E[Y | f,A]− f | | A = a]

≤
√
EX [(f − fB)2 | A = a]

≤
√

1

Pr[A = a]
EX,A[(f − fB)2].

B.3 Further Examples for Calibration and Sufficiency Bounds

We present two further examples under which one can meaningfully bound the excess risk, and
consequently the sufficiency and calibration gaps, in the incomplete information setting. In the
next example, we examine sufficiency when f̂ is precisely the uncalibrated Bayes score fU . The
following lemma establishes an upper bound on the sufficiency gap of the uncalibrated Bayes score
in terms of the conditional mutual information between Y and A, conditioning on X. It is a simple
consequence of Tao’s inequality.

Example B.1 (Sufficiency for uncalibrated Bayes score). Suppose X and A are discrete D-
measurable random variables, and F is the set of all functions f : X → [0, 1]. Denote f∗ =
argminf∈F L(f). Then, under Assumption 1, f∗ = E[Y | X] and

suff∗(A) ≤
√
2 log 2I(Y ;A | X).
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Proof. For f = E[Y | X], we have the following identity for ∆f (A) by the tower rule:

∆f (A) = E|E[Y | f ]− E[Y | f,A]| = E|E[Y | X]− E[Y | X,A]|

By applying Tao’s inequality [Tao, 2006, Ahlswede, 2007], we have that

E|E[Y | X]− E[Y | X,A]| ≤
√
2 log 2I(Y ;A | X)

Note that I(Y ; (X,A) | X) = I(Y ;A | X) and the result follows.

Lastly, we consider an example when the attribute A is continuous, and there exists a function
g which approximately predicts A from X.

Lemma B.2 (Calibration and sufficiency for continuous group attribute A). Suppose (1) ℓ is the
logistic loss, and (2) there exists g : X → A such that E[|A− g(X)|] ≤ δ1. Let F̃ = {f : X ×A →
[0, 1] s.t. f(x, g(x)) ∈ F}. Denote f∗ = arg inff∈F L(f) and f̃ = arg inff∈F̃ L(f). Further suppose

(3) f̃ is β-Lipschitz in its second argument, that is ∀x, |f̃(x, a) − f̃(x, a′)| ≤ β|a − a′| and (4)
Pr{δ2 < f̃ < δ3} = 1 for some δ2, δ3 ∈ (0, 1). Then,

max{suff∗(A), calf∗(A)} ≤ C
√
min
f∈F̃
L(f)− L(fB) + β

δ1
min{δ2, 1− δ3}

,

where C is a universal constant.

Proof. By computation, we have

L(f∗)− L(fB) = E[ℓ(f∗(X), Y )]− L(fB)
≤ E[ℓ(f̃(X, g(X)), Y )]− L(fB)

≤ E[ℓ(f̃(X,A), Y )]− L(fB) + β
δ1

min{δ2, 1− δ3}

= min
f∈F̃
L(f)− L(fB) + β

δ1
min{δ2, 1− δ3}

.

The last inequality follows from the fact that ∀y, ℓ(·, y) is 1
min{δ2,1−δ3}

-Lipschitz on [δ2, δ3], and

that f̃ is only supported on [δ2, δ3]. Then the conclusion follows from Theorem 2.3.

The above result shows that in the incomplete information setting we may be able to bound
the sufficiency gap of the population risk minimizer of class F by the approximation error for an
auxiliary class F̃ up to an additional error term that accounts for how well g(X) predicts A. In
other words, a score obtained by empirical risk minimization will have low calibration gap with
respect to any group attribute A that is sufficiently encoded in the features that are used by the
score, X, up to the flexibility allowed by the chosen class F . Thus, our theoretical results also
suggest that ERM can achieve simultaneous approximate sufficiency and calibration with respect
to all such group attributes.
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C Supplementary Material for the Average Sufficiency and Cali-
bration Lower Bound

Before stating the precise version of the lower bound Theorem 2.7, we begin by giving an explicit
construction of the hard instance. Let S1 := {u ∈ R

2 : ‖u‖2 = 1} be the circle in R
2. For each

u ∈ R
2, we consider the following affine score functions fu : R2 → R and attributes Aw ∈ {−1, 0, 1}:

fu(X) :=
1

2
+
〈u,X〉

4
and Aw := sign(〈X,u〉).

We note that fu(X) ∈ [14 ,
3
4 ] whenever u,X ∈ S1, and that our attributes are functions of our

features. Lastly, we let F := {fu : u ∈ R
2}, and for ψ ∈ S1, we let Dθ denote the joint distribution

where

Dθ := X
unif∼ S1 and Y | X = Bernoulli(fθ(X)).

Observe that since Aw = Aw(X), we see that the calibrated Bayes score under the distribution Dθ
is just fB(X,A) = EDθ [Y | X,A] = EDθ [Y | X] = fθ(X), and thus fB ∈ F . Lastly, we shall let
suff ;Dθ(Aw) denote the sufficiency gap of f with respect to Dθ, and calf ;Dθ(Aw) the calibration
gap of f with respect to Dθ. We can now state a more precise version of Theorem 1.2:

Theorem C.1 (Precise Lower bound for Sufficiency and Calibration ). Let fw,F , Dθ, Aw, and
suff ;Dθ(Aw) and calf ;Dθ be as above. Then,

(a) For any classifier f̂ ∈ F trained on a sample Sn := {(Xi, Yi)}ni=1, any δ1 ∈ (0, 1),

E
θ,w

unif
∼ S1

Pr
Sn∼Dθ

[
suf

f̂ ;Dθ
(Aw) ≤

1

4π
min

{
1,

√
3 log(1/δ1)

2n

}]
≤ 1− δ1

4
. (22)

Moreover, cal
f̂ ;Dθ

(Aw) ≥ suf
f̂ ;Dθ

(Aw) almost surely.

(b) Let f̂n denote the ERM under the square loss

f̂n := argmin
f∈F

∑

(Xi,Yi)∈Sn

(f(Xi)− Yi)2.

Then (22) holds even when E
θ,w

unif
∼ S1

is replaced by a supremum supθ,w∈S1. Moreover, for

any δ2 ∈ (0, 1) and θ ∈ S1,

Pr
Sn∼Dθ

[
LDθ(f̂n)− L∗ ≤

8 + 6 log(1/δ2)

n

]
≥ 1− δ2 − 2e

− n
8+4/3 .

where LDθ(f) = E(X,Y )∼Dθ [(f(X) − Y )2] denotes population risk under the square loss, and
where L∗ = LDθ(fθ) denotes the (calibrated) Bayes risk.

The remainder of the section is organized as follows. In Section C.1, we given an overview of the
proof strategy for part (a). In Section C.2, we use standard concentration arguments to establish
part (b) of the theorem. Sections C.3 and C.2 are devoted to proving the major results whose
proofs are omitted in the overview of Section C.1.
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C.1 Proof Strategy for Theorem C.1, Part (a)

In this section, we sketch the proof of Theorem C.1, Part (a). Since f̂ ∈ F , we shall write f̂ = f
θ̂

for some θ̂ ∈ R
2. We begin by given a precise characterization of the calibration error:

Lemma C.2. Let θ, w ∈ S1, and suppose that either θ̂ = 0, or span(θ̂, w) = R
2. Then, for

(X,Y ) ∼ Dθ,

calf
θ̂
,Dθ(Aw) ≥ suff

θ̂
,Dθ(Aw) =

√
Φ(θ̂; θ)

2π
, where Φ(θ̂; θ) =

{
1− 〈θ, θ̂

‖θ̂‖
〉2 θ̂ 6= 0

1 θ̂ = 0
.

At the heart of Lemma C.2 is noting that when θ̂ and w are linearly independent, then f
θ̂
(X)

and Aw(X) = sign(|〈X,w〉|) uniquely determine X ∈ S1. Hence, E[Y |f
θ̂
(X), Aw(X)] = E[Y |X] =

fθ(X). In the proof of Lemma C.2, we show that a similar simplification occurs in the case that

θ̂ = 0. Because the attribute Aw is independent of the distribution Dθ, and because w
unif∼ S1, we

have that, for any θ,

Pr
w,Sn∼Dθ

[{span(w, θ̂) = R
2} ∪ {θ̂ = 0}] = 1, (23)

so that the conditions of Lemma C.2 hold with probability one.
Next, we observe that Φ(θ̂; θ) corresponds to the square norm of the projection of θ onto a

direction perpendicular to θ̂, or equivalently, the square of the sign of the angle between θ̂ and θ.
Note that calibration can occur when the angle between θ̂ and θ is either close to zero, or close
to π-radians; this is in contrast to prediction, where a small loss implies that the angle between θ̂
and θ is necessarily close to zero. Nevertheless, we can still prove an information theoretic lower
bound on the probability that Φ(θ̂; θ) is small by a reduction to binary hypothesis testing. This is
achieved in the next proposition:

Proposition C.3. For any n ≥ 1, δ ∈ (0, 1), and any estimator θ̂,

E
θ
unif
∼ S1

Pr
Sn∼Dθ

[
Φ(θ̂; θ) ≤ min

{
1

2
,
3 log(1/δ)

n

}]
≤ 1− δ

4
.

The first part of Theorem C.1, Equation (22), now follows immediately from combining the
bound in Proposition C.3, (23), and the computation of suff

θ̂
,Dθ(Aw) and calf

θ̂
,Dθ(Aw) in Lemma C.2.

The proof of Lemma C.2 and Proposition C.3 are deferred to Sections C.4 and C.3, respectively.

C.2 Proof of Theorem C.1, Part (b): Analysis of f̂n

We can write f̂n = f
θ̂LS

, where

θ̂LS := argmin
w

∑

(Xi,Yi)∈Sn

(fw(Xi)− Yi)2

We readily see that the distribution of θ̂LS marginalized over θ
unif∼ S1 is radially symmetric. Hence,

the conclusion of (23) holds for any fixed w ∈ S1.
Moreover, since suff

θ̂LS
,Dθ(Aw) =

√
Φ(θ̂LS;θ)
2π , and both the least-squares algorithm and the error

Φ(·, ·) are radially symmetric, we see that for any t, PrSn∼Dθ [suffθ̂LS
,Dθ(Aw) ≤ t] does not depend

on θ ∈ S1 either.
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It now suffices to prove an upper bound for least squares. We have that

L(f̂n)− L∗ = E

[(
f
θ̂LS

(A)(X)− fθ(X)
)2

]

= E[〈X, θ̂LS − θ
4
〉2]

= ‖θ̂LS − θ‖21
16

E[XX]⊤
,

where we let ‖x‖2Σ := x⊤Σx. Now, conditioning on {X1, . . . , Xn}, and let Σ̂ := 1
n

∑n
i=1XiX

⊤
i .

Observe that E[Y | Xi] = 〈θ, Xi4 〉, and Yi − E[Y | Xi] are independent random variables in [0, 2], so
are 1-subgaussian by Hoeffding’s inequality. Hence, Hsu et al. [2011, Proposition 1] with σ2 = 1
and d = 2 implies that

Pr

[
‖θ̂LS − θ̂LS‖21

16
Σ̂
≤ 4 + 3 log(1/δ)

n
| {X1, . . . , Xn}

]

(i)

≥ Pr

[
‖θ̂LS − θ̂LS‖21

16
Σ̂
≤ 2 + 2

√
2 log(1/δ) + 2 log(1/δ)

n
| {X1, . . . , Xn}

]
≥ 1− δ.

where (i) uses the elementary inequality ab ≤ a2+b2

2 . Lastly, we note that E[XX⊤] = 1
2I, so

on the event λmin(Σ̂) ≥ 1
4 , we have

∥∥∥θ̂LS − θ
∥∥∥
2

1
16

E[XX⊤]
≤ 1

2‖θ̂LS − θ‖21
16

Σ̂
. To this end, define

Mi = E[XX⊤] −XiX
⊤
i = 1

2I −XiX
⊤
i . Note that λmax(Mi) ≤ 1

2 and E[M2
i ] =

1
4I. Hence, by the

Matrix Bernstein inequality Tropp [2015, Theorem 6.6.1], we have

Pr

[
λmin(Σ̂) ≤

1

4

]
= Pr

[
λmax(

n∑

i=1

Mi) ≥
n

4

]
≤ 2e

−
t2/2

(n/4)+(t/6)
∣∣
t=
n
4
= 2e

− n
8+4/3 .

Putting pieces together, we conclude that

Pr

[
E

[(
f
θ̂LS

(A)(X)− fθ(X)
)2

]
≤ 8 + 6 log(1/δ)

n

]
≥ 1− δ − 2e

− n
8+4/3 .

C.3 Proof of Information Theoretic Bound, Proposition C.3

Let Rψ : R2 → R
2 denote the linear operator corresponding to rotation by an angle ψ ∈ [0, 2π].

Our strategy will be to show that for any w ∈ S1, for

ǫ(n) =

√
min

{
1

2
,
3 log(1/δ)

n

}
, (24)

and some angle ψ = ψ(n) depending on n, we have

1

2

(
Pr[Φ(θ̂;ψ) ≤ ǫ(n)2] + Pr[Φ(θ̂;Rψψ)] ≤ ǫ(n)2

)
≤ 1− δ

4
(25)

Indeed, if (25) holds, then we may express can express ψ = Rφe1 where e1 = (1, 0) for some

φ ∈ [0, 2π]. Thus, taking an expectation over φ
unif∼ [0, 2π], we observe that

E
φ
unif
∼ [0,2π]

Pr
[
Φ(θ̂;Rφe1) ≤ ǫ(n)2

]
= E

θ
unif
∼ S1

Pr
[
Φ(θ̂; θ) ≤ ǫ(n)2

]
,
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and similarly

E
φ
unif
∼ [0,2π]

Pr
[
Φ(θ̂;RψRφe1) ≤ ǫ(n)

]
= E

φ
unif
∼ [0,2π]

Pr
[
Φ(θ̂;Rφ+ψe1) ≤ ǫ(n)

]

= E
φ̃
unif
∼ [0,2π]

Pr
[
Φ(θ̂;R

φ̃
w) ≤ ǫ(n)2

]
.

Hence,

1− δ

4
≥ 1

2
E
φ
unif
∼ [0,2π]

[
Pr

[
Φ(θ̂;Rφw) ≤ ǫ(n)2

]
+ Pr

[
Φ(θ̂;RψRφe1)

]
≤ ǫ(n)2

]

=
1

2
· 2E

θ
unif
∼ S1

Pr
[
Φ(θ̂; θ) ≤ ǫ(n)2

]
, as needed.

We now turn to proving (25). By rotation invariance argument, it suffices to prove the inequality
for w = e1 = (1, 0). We now fix an ǫ = ǫ(n) as in (24) to be chosen later, and choose ψ =
arccos(1− 2ǫ2). Note that ǫ ∈ (0, 12 ] implies ψ ∈ (0, π/2].

We construct two alternative instances θ(1) = e1, and let θ(2) = e1 cosψ + e2 sinψ. We will
establish a lower bound on the problem of testing between θ = θ(1) and θ = θ(2), and then
translate this into a bound on Φ(θ̂; ·). The first step is a KL-divergence computation established
in Section C.3.1:

Lemma C.4. There exists a constant K > 0 such that, if (Dθ)⊗n denote the distribution of n i.i.d.
samples from Dθ, then

KL((Dθ1)⊗n, (Dθ2)⊗n) ≤
n

12
‖θ1 − θ2‖22.

In our setting, we see that

‖θ1 − θ2‖22 = (1− cosψ)2 + sin2 ψ = 1 + cos2 ψ + sign2ψ − 2 cosψ = 2(1− cosψ) = 4ǫ2.

Hence, we have that KL((Dθ1)⊗n, (Dθ2)⊗n) ≤ n ǫ
2

3 . Therefore, given any estimator î of i, the proof
of [Theorem 2.2.iii in Tsybakov [2008]] reveals that

1

2

∑

i∈{1,2}

Pr
(Dθi )

⊗n

[
{̂i 6= i}

]
≥ 1

4
e−

nǫ2

3 .

In particular, since ǫ = ǫ(n)2 ≤ 3 log(1/δ)
n , as in (24), and considering the complement of {̂i 6= i}, we

have

1

2

∑

i∈{1,2}

Pr
(Dθi )

⊗n

[
{̂i = i}

]
≤ 1− 1

4
e− log(1/δ) = 1− δ

4
(26)

Lastly, we show how a small value of Φ(θ̂; θi) yields an accurate estimator of î. Given an estimator
θ̂, we define the estimator of θi give θ̂i, where î is given by:

î ∈ arg min
i∈{1,2}

Φ(θi; θ̂),

where we arbitrarily choose î = 1 if both values of i attain the same value in the display above.
The following lemma, proved in Section C.3.2, shows that gives a reduction from estimating i to
obtaining a small value of Φ(θi, θ̂):
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Lemma C.5. For ψ ∈ [0, π2 ], Φ(θi, θ̂) < sin2 ψ2 implies that î = i.

Hence, combining Lemma C.5 with (26), we have

1

2

∑

i∈{1,2}

Pr[Φ(θi, θ̂) < sin
ψ

2
] ≤ 1− δ

4

Lastly, we find that as ψ ∈ (0, π2 ), sin
ψ
2 =

√
1−cosψ

2 =
√

2ǫ2

2 = ǫ, thereby concluding the proof.

C.3.1 Proof of Lemma C.4

By the tensorization of the KL-divergence,

KL
(
(Dθ1)⊗n, (Dθ2)⊗n

)
= nKL (Dθ1 ,Dθ2)
= nE

X
unif
∼ S1

KL (Bernoulli(fθ1(X)),Bernoulli(fθ2(X))) ,

Now we use a standard Taylor-expansion upper bound on the KL-divergence between two Bernoulli
random variables (see, e.g. Lemma E.1 in Simchowitz et al. [2016]):

Lemma C.6. Let p, q ∈ (0, 1). Then,

KL (Bernoulli(p),Bernoulli(q)) ≤ (p− q)2
2min{p(1− p), q(1− q)} .

In our setting,

fθi(X) =
1

2
+
〈θi, X〉

4
∈
[
1

4
,
3

4

]
because |〈X, θi〉| ≤

‖θi‖‖x‖
4

=
1

4
.

Hence, since 2minp∈[1/4,3/4] p(1− p) = 2 · 14 · 34 = 3/8,

KL (Bernoulli(fθ1(X)),Bernoulli(fθ2(X))) ≤ 8 ‖fw(X)− fw′(X))‖22
3

Hence,

KL
(
(Dθ1)⊗n, (Dθ2)⊗n

)
≤ n · 8

3
E
X

unif
∼ S1

‖fθ1(X)− fθ2(X))‖22

=
8n

3
E
X

unif
∼ S1

∥∥∥∥
〈
θ1 − θ2

4
, X

〉∥∥∥∥
2

2

=
n

6
(θ1 − θ2)⊤EX∼S1 [XX⊤](θ1 − θ2) =

n

12
‖θ1 − θ2‖22.

C.3.2 Proof of Lemma C.5

By assumption, we have that Φ(θi, θ̂) < sin2 ψ2 for some ψ ∈ [0, π2 ]. Since ψ ≤ π
2 , sin

2 ψ
2 < 1, so

Φ(θi; θ̂) < 1, ruling out the case θ̂ = 0. Thus, we may write can write

θ̂

‖θ̂‖
= e1 cosφ+ e2 sinφ
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for some φ ∈ [−π, π]. Since θ̂ 6= 0, Φ(θi; θ̂) corresponds to the square norm of the projection of θi
onto a direction perpendicular to θ̂. Therefore,

Φ(θ1; θ̂) = sin2 φ and Φ(θ2; θ̂) = sin2(φ− ψ).

We shall show that if Φ(θ1; θ̂) < sin2 ψ2 , then î = 1; proving that Φ(θ2; θ̂) < sin2 ψ2 implies î = 2

is analogous. To this end, suppose that sin2 φ = Φ(θ1; θ̂) < sin2 ψ2 . We consider three cases, and

show that in each case, sin2(φ− ψ) ≥ sin2 ψ2 .

1. Case (a): |φ| < ψ
2 . Then, we have that ψ − φ ∈ (ψ2 ,

3ψ
2 ). Since ψ ≤ π

2 , min
ϕ∈[ψ

2
, 3ψ

2
]
sin2 ϕ =

sin2 ψ2 , whence sin2 ψ2 < sin2(φ− ψ).

2. Case (b.1): φ ∈ (π − ψ
2 , π]. Then, we have that φ − ψ ∈ (π − 3

2ψ, π − ψ]. Now, if φ − ψ ∈
[π2 , π − ψ), we have that sin2(φ − ψ) ∈ [sin2 ψ, 1], so that sin2(φ − ψ) ≥ sin2 ψ2 . On the

other hand, if φ − ψ ∈ [π − 3ψ
2 ,

π
2 ], then since ψ ≤ π

2 , we have sin2(φ − ψ] ∈ [π4 , π/2]. Thus,

sin2(φ− ψ) ≥ sin2 π4 ≥ sin2 ψ2 .

3. Case (b.2): φ ∈ [−π,−π + ψ
2 ). Then, we have that φ− ψ ∈ [−π − ψ, π − ψ

2 ), and the rest is
similar to (b.1).

C.4 Proof of Calibration Error Computation, Lemma C.2

Recall that our goal is to establish that

calf
θ̂
,Dθ(Aw) ≥ suff

θ̂
,Dθ(Aw) =

√
Φ(θ̂; θ)

2π
, where Φ(θ̂; θ) =

{
1− 〈θ, θ̂

‖θ̂‖
〉2 θ̂ 6= 0

1 θ̂ = 0
.

We begin with a more involved calculation to compute suff (A); we shall lower bound calf (A) at
the end of the section.

Bound for suff (A): We shall show that if either span({w, θ̂}) = R
2 or θ̂ = 0, then there is a

unit vector v ∈ S1 for which

suff
θ̂
,Dθ(Aw) =

√
Φ(θ̂; θ)

4
· E

X
unif
∼ S1

[|〈v,X〉|].

This is enough to conclude the proof, since

E
X

unif
∼ S1

[|〈v,X〉|] = 1

2π

∫ 2π

0
| sinψ|dψ =

1

π

∫ π

0
sinψdψ =

2

π
.

First, suppose that θ̂ 6= 0. Choose an orthonormal basis {e1, e2} so that θ̂ = ‖θ̂‖e1. Then, we can
write

X = X1e1 +X2e2 ,

where Xi = 〈Xi, ei〉. Then, letting θ = θ[1]e1 + θ[2]e2, we see that

θ[2] =

√
Φ(θ̂; θ),
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and we have

fθ(X) = 〈θ,X〉+ 1

2
=

1

4
X1θ[1] +

1

4
X2θ[2] +

1

2
.

First, suppose that θ̂ 6= 0. Then, since f
θ̂
(X) = 1

2 + ‖θ̂‖ ·X1 is in bijection with X1, and since

E[X2|X1] = 0 for (X1, X2)
unif∼ S1,

we have

E[fθ(X) | f
θ̂
(X)] = E[fθ(X) | X1] =

1

2
+

1

4
X1θ[1] +

1

4
θ[2]E[X2 | X1] =

1

2
+

1

4
X1θ[1].

Moreover, if w and w = ‖w‖e1 are linearly independent, then since X ∈ S1, Aw = sign(〈w,X〉) and
X1 = 〈e1, X〉 uniquely determine X. Hence,

E[fθ(X) | f
θ̂
, Aw] = E[fθ(X) | X] = fθ(X) =

1

2
+

1

4
X1θ[1] +

1

4
θ[2]X2.

Thus,

E[fθ(X) | fw(X), A]− E[fθ(X) | fw(X)] =
θ[2]X2

4

Hence, we conclude that

suff (A) =
|θ[2]|
4
· E[|X2|] =

√
Φ(θ̂; θ)

4
E[|〈e2, X〉|].

We now address the edge-case θ̂ = 0. Since f
θ̂
(X) = 0 for all X, E[Y | f

θ̂
] = E[Y ] = 1

2 , and
E[Y | f

θ̂
, Aw] = E[Y | Aw]. To compute E[Y | Aw], let e1 = w, and let e2 be such that {e1, e2} form

an orthonormal basis, and write X = X1e1 +X2e2. Then,

E[X | A] = E[X1 | sign(X1)] + E[X2 | sign(X1)]

= E[X1 | sign(X1)] (since X2 ⊥ sign(X1))

= sign(X1)E[sign(X1)X1 | sign(X1)]

= sign(X1)E[|X1| | sign(X1)] = sign(X1)E[|X1|].

Hence, E[Y | A] = 1
2 + 1

4〈θ,E[X | A]〉 =
sign(X1)E[|X1|]

4 . Therefore,

suff
θ̂
,Dθ(Aw) = E

∣∣E[fθ(X) | f
θ̂
(X), Aw]− E[fθ(X) | f

θ̂
(X)]

∣∣

= E

∣∣∣∣
1

2
+

sign(X1)E[|X1|]
4

− 1

2

∣∣∣∣ =
1

4
E[|X1|] =

√
Φ(θ̂; θ)

4
E[|〈w,X〉|], (27)

where we recall the convention Φ(θ̂; θ) = 1 if θ̂ = 0.
Bound for cal: First consider a function f = f

θ̂
for some θ̂ ∈ R

2. Suppose first that θ̂ 6= 0.
As established above, E[Y |Aw, fθ̂] = fθ almost surely, so we have we have

calf
θ̂
,Dθ(Aw) = EX∼S1 |f

θ̂
(X)− E[Y |f

θ̂
(X), Aw]|

= EX∼S1 |f
θ̂
(X)− fθ(X)|

= EX∼S1 |1
4
〈θ̂ − θ,X〉|

(i)
=
‖θ̂ − θ‖2

4
EX∼S1 |〈e1, X〉|

(ii)
=

1

2π
‖θ̂ − θ‖2,
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where (i) uses the fact that X has a rotation invariant distribution, and (ii) uses the computation
EX∼S1 |〈e1, X〉| = 2/π performed above. To let (e1, e2) be an orthonormal basis for R

2 for which
θ̂ = ‖θ̂‖e1, and let w∗ = w1,∗e1 + w2,∗e2 as above. Then

‖θ̂ − θ‖2 =
√
(‖w‖2 − w1,∗)2 + w2

2,∗ ≥ w2,∗ =

√
Φ(θ̂, θ),

as needed.
If θ̂ = 0, then as show above E[Y | f

θ̂
, Aw] = E[Y | Aw] = sign(X1)E[|X1|]

4 , and f
θ̂
(X) = 1

2 . Hence,

calf
θ̂
,Dθ(Aw) = EX∼S1 |f

θ̂
(X)− E[Y |f

θ̂
(X), Aw]|

= EX∼S1 |1
2
− sign(X1)E[|X1|]

4
|

=

√
Φ(θ̂; θ)

4
E[|〈w,X〉|] (by (27)),

which is equal to

√
Φ(θ̂;θ)
2π by the computation of E[|〈w,X〉|] above.

D Supplementary Material for the Per-group Sufficiency and Cal-
ibration Lower Bound

This section contains a formal analogue of Theorem 2.8. Again, we begin with a construction of
the joint distribution over features, attributes and labels before stating the precise result.

D.1 Construction:

We construct a “product” of two independent instances of Theorem C.1. We will put “bars” over
quantities related to the product distribution, function class, etc.., and use α and β to denote each
component of the product.

Let D· denote the distribution from the construction in Theorem C.1. We will draw θα, θβ

independently from S1. We let θ = (θα, θβ), and define (X,Y, Z) ∼ Dθ as follows:

1. Let Z ∼ Bernoulli(p).

2. If Z = 1, draw (Xα, Y ) ∼ Dθα , otherwise draw (Xβ , Y ) ∼ Dθβ .

3. Let X = (Xα, 0) ∈ R
4 if Z = 1; otherwise set X = (0, Xβ) ∈ R

4.

Note that Z can be determined from X by looking at which coordinate is 0. Further we define:

1. f̂θ
(X) = 1

2 + 1
4〈θ̂, X〉 for X, θ̂ ∈ R

4, and F := {f̂θ : θ̂ ∈ R
4}.

2. The loss function Lθ(f) = E(X,Y )∼Dθ)
((f(X)− E[Y |X])2 = E(X,Y )∼Dθ)

((f(X)− fθ)2.

3. We let L∗ denote the Bayes loss Lθ(fθ), which we note does not depend on θ.
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Lastly for w = (wα, wβ) ∈ S1 × S1, we define our discrete attribute Aw(X) which takes 4 values.

Aw(X) = (Z, sign(〈w,X〉)) ∈ {0, 1} × {−1, 1}.

Here, we we note that with probability 1, sign(〈w,X〉) = Zsign(〈wα, Xα〉)+(1−Z)sign(〈wβ , Xβ〉) 6=
0. In the statement of the theorem, we mapAw(X)→ {1, . . . , 4} via the bijection (Z, sign(〈w,X〉)) 7→
1+sign(〈w,X〉))

2 + 2(1− Z), which maps the Z = 1 attributes to {1, 2}.
For now, using the {0, 1} × {−1, 1} attributes will be more transparent. Lastly, we see that for

attributes a ∈ {(0,−1), (0, 1)}, and any classifier f̂θ
that

1

2

(
suff̂

θ
;Dθ

((0,−1);Aw) + suff̂
θ
;Dθ

(Aw((0,−1);X)
)

= E[
∣∣∣E[Y |f̂θ]− E[Y |f̂θ, sign(〈w,X〉)

∣∣∣ | Z = 1]

= E[
∣∣∣E[Y |f̂θα ]− E[Y |f̂θα , sign(〈w

α, Xα〉)
∣∣∣ | Z = 1]

= suff̂
θ
α ;Dθα (Awα),

that is, the calibration term from Theorem C.1. Hence, by Lemma C.2 in the proof of Theorem C.1,
we find that

max
a∈{(0,−1),(0,1)}

suff̂
θ
;Dθ

(a;Aw) ≥ suff̂
θ
α ;Dθα (Awα) =

√
Φ(θ̂

α
; θα)

2π
. (28)

A similar argument shows that

max
a∈{(0,−1),(0,1)}

calf̂
θ
;Dθ

(a;Aw) ≥ calf̂
θ
α ;Dθα (Awα) =

√
Φ(θ̂

α
; θα)

2π
. (29)

D.2 Statement of the Exact Theorem

We now state the technical version of Theorem D.1; we remark that the p in the theorem as stated
previously corresponds to p/2 in the following statement:

Theorem D.1. Fix any p ∈ (0, 1/2), and let F , Aw, Dθ be as above, indexed by w, θ ∈ S1 × S1.
Further, write w, θ ∼ S1 × S1 to denote that w and θ are drawn independently from the uniform
distribution on S1 × S1. Then, for any w ∈ S1 × S1, Pr[Aw = 1] = Pr[Aw = 2] = p/2 and

(a) For any classifier f̂ ∈ F trained on a sample Sn := {(Xi, Yi)}ni=1, any δ ∈ (0, 1),

Eθ,w∼S1×S1 Pr
Sn∼Dθ

[
max
a∈{1,2}

min{cal
f̂ ;Dθ

(a;Aw), suf f̂ ;Dθ
(a;Ww)} ≤ c1min

{
1,

√
log(1/δ1)

pn

}]

≤ 1− c0δ. (30)

(b) Let f̂n denote the ERM under the square loss

f̂n := argmin
f∈F

∑

(Xi,Yi)∈Sn

(f(Xi)− Yi)2.
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Then (30) holds even when E
θ,w

unif
∼ S1×S1

is replaced by a supremum supθ,w∈S1×S1. Moreover,

for any δ2 ∈ (0, 1/4) and θ ∈ S1 × S1,

Pr
Sn∼Dθ

[
LDθ(f̂n)− L

∗ ≤ c2
log(1/δ2)

n

]
≥ 1− δ2 − 4e−c3pn,

where LDθ(f) = E(X,Y )∼Dθ
[(f(X) − Y )2] denotes population risk under the square loss, and

where L∗ = LDθ(fθ) denotes the (calibrated) Bayes risk.

D.3 Proof of Theorem D.1

Learning Setup: Let S = {(Xi, Yi, Zi)}ni=1 be a sample drawn i.i.d from Dθ, and define the

subsamples Sα := {(Xα
i , Yi) : Zi = 1} and Sβ = {(Xβ

i , Yi) : Zi = 0}, and sample numbers
nα := |Sα| and nβ := |Sb|. Then conditional on nα (or equivalently, on nβ), Sa has the distribution
of a sample of size nα from Dθα , where Dw is the distribution from the 2-group lower bound,
Theorem C.1, and is independent of Sβ . Lastly, we define the “Chernoff’ ’event

ECher := {nα ≥
1

2
pn and nβ ≥

1

2
(1− p)n}.

And we note that Pr[ECher] ≥ 1 − 2e−Ω(min{pn,(1−pn)}) ≥ 1 − 2e−c1pn for some constant c1 by
combining Chernoff bounds for nα and nβ . We now can prove part 1 and part 2 of the proposition
separately.

Part 1: Information Theoretic Lower Bound: Let’s condition on nα. Note then that
Sβ contains no information about θα, since the prior on θα and θβ are independent. Thus, the
information theoretic lower bound, Proposition C.3, implies we have that for the α-component of

our estimator, θ̂
α
, must satisfy the bound:

E
θα

unif
∼ S1

Pr
Sa∼Dθ

[
Φ(θ̂

α
; θα) ≤ min

{
1

2
,
3 log(1/δ)

nα

}
| nα

]
≤ 1− δ

4
.

Thus, using that Pr[ECher] ≥ 1− 2e−c1pn,

E
θα

unif
∼ S1

Pr
Sa∼Dθ

[
Φ(θ̂

α
; θα) ≤ min

{
1

2
,
3 log(1/δ)

2pn

}]
≤ 1− δ

4
− 2e−c1pn.

By considering the cases δ ≤ c1pn and d > c1pn separately, some algebraic manipulations reveal
that there exists a constant c, c′ such that

E
θα

unif
∼ S1

Pr
Sa∼Dθ

[
Φ(θ̂

α
; θα) ≤ cmin

{
1,

log(1/δ)

pn

}]
≤ 1− c′δ.

Thus, by Equations (29) and (28), we have

Pr

[
max

a∈{(0,−1),(0,1)}
min{suff̂

θ
;Dθ

(a;Aw), calf̂
θ
;Dθ

(a;Aw)} ≤ cmin

{
1,

log(1/δ)

pn

}]
.

Part 2: Analysis of Least Squares Estimator As in the proof of Theorem C.1, we see
that the least squares estimator f̂n takes the form f ŵLS

.

Lθ(f ŵLS
)− L∗ = E‖ŵLS − θ‖21

16
E[XX

⊤
]
,

where again let ‖x‖2Σ := x⊤Σx. Let X denote a random variable distributed uniformly on the
sphere. By breaking the least squares estimator into components ŵLS = (θα, θβ), we see that
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1. Since X is either supported on the α component or the β component, θα and θβ are the
least-squares estimates on Sα,Sβ , respectively

2. Computing E[XX
⊤
] =

[
pE[XX⊤] 0

0 (1− p)E[XX⊤]

]
, we see that

Lθ(f ŵLS
)− L∗ = pE‖θα − θα‖21

16
E[XX⊤]

+ (1− p)E‖θβ − θβ‖21
16

E[XX⊤]

With these two points in hand, we can use the analysis of the least squares estimator from Theo-
rem C.1, conditioning on nα and nβ , to find that with probability 1− 2δ− 2 exp(−c3min{nα, nβ})
that

Lθ(f ŵLS
)− L∗ ≤ c2

(
p

nα
+

(1− p)
nβ

)
log(1/δ).

In particular, when ECher holds, we have we have that with probability at least 1−2δ−2 exp(− c3
2 min{pn, (1−

p)n}) =, we have

Lθ(f ŵLS
)− L∗ ≤ c2

(
p

(pn/2)
+

(1− p)
((1− p)n/2)

)
log(1/δ) =

4c2
n

log(1/δ).

Finally, using the Pr[ECher] ≥ 1− 2e−Ω(pn), we conclude that for a new constant c2 ← 4c2, and new
constant c3 that

Lθ(f ŵLS
)− L∗ ≤ c2 log(1/δ)

n
with probability1− 2δ − 4e−c3pn.

E Lower Bounds for Separation gap

Central to the proof is the following lemma, proved in Section E.1 below:

Lemma E.1. Define the quantities

ZA := E[(fB)2 | A], qA := Pr[Y = 1 | A], Z := E[(fB)2], and q := Pr[Y = 1]

Then, the following equalities hold.

E[fB | Y = 1, A] =
ZA
qA
, E[fB | Y = 0, A] =

qA − ZA
1− qA

,

E[fB | Y = 1] =
Z

q
, E[fB | Y = 0] =

q − Z
1− q .

We are now ready to finish the proof. By Lemma E.1 with qA = Pr[Y = 1 | A],

sepfB (A) = EA

(
qA ·

∣∣∣∣
Z

q
− ZA
qA

∣∣∣∣+ (1− qA)
∣∣∣∣
qA − ZA
1− qA

− q − Z
1− q

∣∣∣∣
)

= EA

(∣∣∣∣
ZqA
q
− ZA

∣∣∣∣+
∣∣∣∣qA − ZA −

(
1− qA
1− q

)
(q − Z)

∣∣∣∣
)

≥ EA

∣∣∣∣
ZqA
q
− ZA −

(
qA − ZA −

(
1− qA
1− q

)
(q − Z)

)∣∣∣∣ (Reverse Triangle Inequality)

= EA

∣∣∣∣
ZqA
q

+

(
1− qA
1− q

)
(q − Z)− qA

∣∣∣∣ (Cancelling ZA)

= EA

∣∣∣∣Z
(
qA
q
− 1− qA

1− q

)
+

(
1− qA
1− q

)
q − qA

∣∣∣∣ (Grouping Terms).
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We further unpack

EA

∣∣∣∣Z
(
qA
q
− 1− qA

1− q

)
+

(
1− qA
1− q

)
q − qA

∣∣∣∣

=EA

∣∣∣∣(Z − q)
(
qA
q
− 1− qA

1− q

)∣∣∣∣

=EA

∣∣∣∣(Z − q)
(
qA(1− q)− (1− qA)q

q(1− q)

)∣∣∣∣

=
|Z − q|
q(1− q) · EA|qA − q|,

Lastly, we find that

|Z − q| = |E[(fB)2]− Pr[Y = 1]] = |E[(fB)2]− E[fB]]

= |E[(fB)(fB − 1)]| = E[(fB)(1− fB)] since fB ∈ [0, 1]

= E[(E[Y |X,A])(1− E[Y |X,A])] = E[Var[Y |X,A]].

Moreover, q(1− q) = E[Y ](1− E[Y ]) = Var[Y ]. Thus

sepfB (A) ≥
|Z − q|
q(1− q) · EA|qA − q| ≥

E[Var[Y |X,A]]
Var[Y ]

· EA|qA − q|.

E.1 Proof of Lemma E.1

For ease of notation, we write f = fB. Observe then that by the definition of the Bayes classifer,

Pr[Y = 1 | f(X,A) = τ, A] = τ

First we compute the conditional densities by Bayes rule:

Pr[f(X,A) = τ | Y = 1, A] =
Pr[Y = 1 | f(X,A) = τ, A] Pr(f(X,A) = τ | A)

Pr[Y = 1 | A]

=
τ Pr(f(X,A) = τ | A)

Pr[Y = 1 | A] ,

Pr[f(X,A) = τ | Y = 0, A] =
Pr[Y = 0 | f(X,A) = τ, A] Pr(f(X,A) = τ | A)

Pr[Y = 0 | A]

=
(1− τ) Pr(f(X,A) = τ | A)

Pr[Y = 0 | A] .
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Integrating these to compute the relevant expectations, we have

E[f | Y = 1, A] =

∫
τ Pr[f(X,A) = τ | Y = 1, A]dτ

=

∫
τ2Y

Pr[Y = 1 | A] Pr(f(X,A) = τ | A)dτ

=
E[f2 | A]

Pr[Y = 1 | A] ,

E[f | Y = 0, A] =

∫
τ Pr[f(X,A) = τ | Y = 0, A]dτ

=

∫
τ(1− τ)

Pr[Y = 0 | A] Pr[f(X,A) = τ | A]dτ

=
Pr[Y = 1 | A]− E[f2 | A]

Pr[Y = 0 | A] , since E[fB | A] = Pr[Y = 1 | A].

In summary, we have

E[f | Y = 1, A] =
E[f2 | A]

Pr[Y = 1 | A] =
ZA
qA
.

E[f | Y = 0, A] =
(Pr[Y = 1 | A]− E[f2 | A])

Pr[Y = 0 | A] =
qA − ZA
1− qA

.

Similarly,

E[f | Y = 1] =
E[f2]

Pr[Y = 1]
=
Z

q
.

E[f | Y = 0] =
(Pr[Y = 1]− E[f2])

Pr[Y = 0]
=
q − Z
1− q .

E.2 Proof of Corollary 2.6

By the reverse triangle inequality, the definition of separation, and Jensen’s inequality, we bound

sepf (A) := EY,A[|E[f(X,A) | Y,A]− E[f(X,A) | Y ]|]
≥ EY,A[|E[fB(X) | Y,A]− E[fB(X) | Y ]|]− EY,A[|E[f − fB | Y,A]− E[f − fB(X) | Y ]|]
= sepfB (A)− EY,A[|E[fB(X) | Y,A]− E[fB(X) | Y ]|]− EY,A[|E[f − fB | Y,A]
≥ sepfB (A)− 2EY,A[|f − fB|].

By Proposition 2.5, we have sepfB ≥ CfBE[|q − qA|]. Moreover, we have

EY,A[|f − fB|] ≤
√
EY,A[|f − fB|2] ≤

√
L(f)− L(fB)

κ
,

where the first inequality is Jensen’s inequality, and the second using κ-strong convexity of L as in
the proof of Theorem 2.3.
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F Lower Bound for Independence Gap

We define the independence gap of a score f with respect to a group attribute A as

indf (A) = E[|E[f |A]− E[f ]|] (31)

Note that indf (A) = 0 if and only if f and A are conditionally mean independent, which is implied
by (but does not imply) statistical independence. The following proposition shows that any score
with a small excess risk must have a large independence gap if the base rate Pr[Y = 1] differs by
group.

Proposition F.1 (Independence of Unconstrained Learning). Let L be the risk associated with a
loss function ℓ(·, ·) satisfying Assumption 1 with parameter κ > 0. Denote q := Pr[Y = 1], and
qA := Pr[Y = 1|A] for a group attribute A. Then, for any score f̂ ∈ F ,

indf̂ (A) ≥ E[|qA − q|]− 2

√
L(f̂)− L(fB)

κ

Proof. Observe that for the calibrated Bayes score fB, E[fB|A] = qA := Pr[Y = 1|A], whereas
E[fB] = q = Pr[Y = 1]. Hence

indfB (A) = E[|E[fB|A]− E[fB]|] = E[|qA − q|]. (32)

We now lower bound the indf (A) for arbitrary f . The remainder of the proof follows along the
lines of Corollary 2.6. By the reverse triangle inequality, the definition of separation, and Jensen’s
inequality, we bound

indf (A) := EA[|E[f |A]− E[f ]|]
≥ EA[|E[fB(X) | A]− E[fB(X)]|]− EA[|E[f − fB | A]− E[f − fB(X)]|]
= indfB (A)− EA[|E[f − fB | A]− E[f − fB(X)]|]
≥ indfB (A)− 2EY,A[|f − fB|].

By (32), we have indfB (A) ≥ E[|q − qA|]. Moreover, we have

EY,A[|f − fB|] ≤
√

EY,A[|f − fB|2] ≤
√
L(f)− L(fB)

κ
,

where the first inequality is Jensen’s inequality, and the second using κ-strong convexity of L as in
the proof of Theorem 2.3.

G Addendum to experiments

G.1 Empirical estimate of suf f (A)

We estimate suff from the test set and the scores for this test set, that is {xi, yi, ai, f(xi)}ni=1. We
divide the scores into deciles, that is, B = 10 equally spaced intervals on [0, 1]. For any score value
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