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Abstract

Excessive reuse of test data has become commonplace in today’s machine learning workflows.
Popular benchmarks, competitions, industrial scale tuning, among other applications, all involve
test data reuse beyond guidance by statistical confidence bounds. Nonetheless, recent replication
studies give evidence that popular benchmarks continue to support progress despite years of
extensive reuse. We proffer a new explanation for the apparent longevity of test data: Many
proposed models are similar in their predictions and we prove that this similarity mitigates
overfitting. Specifically, we show empirically that models proposed for the ImageNet ILSVRC
benchmark agree in their predictions well beyond what we can conclude from their accuracy
levels alone. Likewise, models created by large scale hyperparameter search enjoy high levels of
similarity. Motivated by these empirical observations, we give a non-asymptotic generalization
bound that takes similarity into account, leading to meaningful confidence bounds in practical
settings.

1 Introduction

Be it validation sets for model tuning, popular benchmark data, or machine learning competitions,
the holdout method is central to the scientific and industrial activities of the machine learning com-
munity. As compute resources scale, a growing number of practitioners evaluate an unprecedented
number of models against various holdout sets. These practices, collectively, put significant pres-
sure on the statistical guarantees of the holdout method. Theory suggests that for k models chosen
independently of n test data points, the holdout method provides valid risk estimates for each of
these models up to a deviation on the order of

√
log(k)/n. But this bound is the consequence of

an unrealistic assumption. In practice, models incorporate prior information about the available
test data since human analysts choose models in a manner guided by previous results. Adaptive
hyperparameter search algorithms similarly evolve models on the basis of past trials.

Adaptivity significantly complicates the theoretical guarantees of the holdout method. A simple
adaptive strategy, resembling the practice of selectively ensembling k models, can bias the holdout
method by as much as

√
k/n. If this bound were attained in practice, holdout data across the

board would rapidly lose its value over time. Nonetheless, recent replication studies give evidence
that popular benchmarks continue to support progress despite years of extensive reuse [14, 19].

In this work, we contribute a new explanation for why the adaptive bound is not attained in
practice and why even the standard non-adaptive bound is more pessimistic than it needs to be.
Our explanation centers around the phenomenon of model similarity. Practitioners evaluate models
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for the CIFAR-10 dataset. We find that the pairwise model similarities throughout both procedures
remain high. The similarity provides a counterweight to the massive number of model evaluations,
limiting the amount of overfitting we observe.

1.2 Related work

Recht et al. [14] recently created new test sets for ImageNet and CIFAR10, carefully following
the original test set creation processes. Reevaluating all proposed models on the new test sets
showed that while there was generally an absolute performance drop, the effect of overfitting due to
adaptive behavior was limited to non-existent. Indeed, newer and better models on the old test set
also performed better on the new test set, even though they had in principle more time to adapt to
the test set. Also, Yadav and Bottou [19] recently released a new test set for the seminal MNIST
task, on which they observed no overfitting.

Dwork et al. [5] recognized the issue of adaptivity in holdout reuse and provided new holdout
mechanisms based on noise addition that support quadratically more queries than the standard
method in the worse case. There is a rich line of work on adaptive data analysis; Smith [17] offers
a comprehensive survey of the field.

We are not the first to proffer an explanation for the apparent lack of overfitting in machine learning
benchmarks. Blum and Hardt [2] argued that if analysts only check if they improved on the previous
best model, while ignoring models that did not improve, better adaptive generalization bounds are
possible. Zrnic and Hardt [20] offered improved guarantees for adaptive analysts that satisfy natural
assumptions, e.g. the analyst is unable to arbitrarily use information from queries asked far in the
past. More recently, Feldman et al. [6] gave evidence that the number of classes in a classification
problem helps mitigate overfitting in benchmarks. We see these different explanations as playing
together in what is likely the full explanation of the available empirical evidence. In parallel to
our work, Yadav and Bottou [19] discussed the advantages of comparing models on the same test
set; pairing tests can provide tighter confidence bounds for model comparisons in this setting than
individual confidence intervals for each model.

2 Problem setup

Let f : X → Y be a classifier mapping examples from domain X to a label from the set Y. Moreover,
we consider a test set S = {(x1, y1), . . .} of n examples sampled i.i.d. from a data distribution D.
The main quantity we aim to analyze is the gap between the accuracy of the classifier f on the
test set S and the population accuracy of the same classifier under the distribution D. If the gap
between the two accuracies is large, we say f overfit to the test set.

As is commonly done in the adaptive data analysis literature [1], we formalize interactions with
the test set via statistical queries q : X × Y → R. In our case, the queries are {0, 1}-valued;
given a classifier f we consider the query qf defined by qf (z) = 1{f(x) 6= y}, where z = (x, y).
Then, we denote the empirical mean of query qf on the test set S (i.e., f ’s test error) by ES [qf ] =
1
n

∑n
i=1 qf (zi). The population mean (population error) is accordingly defined as ED[q] = Ez∼Dq(z).
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When discussing overfitting, we are usually interested in a set of classifiers, e.g., obtained via
a hyperparameter search. Let f1, . . . , fk be such a set of classifiers and q1, . . . , qk be the set of
corresponding queries. To quantify the probability that overfitting occurs (i.e., one of the fi has a
large deviation between test and population accuracy), we would like to upper bound the probability

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
. (1)

A standard way to bound (1) is to invoke the union bound and treat each query separately:

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
≤

k∑

i=1

P (|ES [qi]− ED[qi]| ≥ ε) (2)

We can then utilize standard concentration results to bound the right hand side. However, such an
approach inherently cannot capture dependencies between the queries qi (or classifiers fi). In par-
ticular, we are interested in the similarity between two queries q and q′ measued by P (q(z) = q′(z))
(the probability of agreement between the 0-1 losses of the corresponding two classifiers). The main
goal of this paper is to understand how high similarity can lead to better bounds on (1), both in
theory and in numerical experiments with real data from ImageNet and CIFAR-10.

3 Non-adaptive classification

We begin by analyzing the effect of the classifier similarity when the classifiers to be evaluated are
chosen non-adaptively. For instance, this is the case when the algorithm designer fixes a grid of
hyperparameters to be explored before evaluating any of the classifiers on the test set. To draw
valid gains from the hyperparameter search, it is important that the resulting test accuracies reflect
the true population accuracies, i.e., probability (1) is small.

Bound (2) is sharp when the events {|ES [qi] − ED[qi]| ≥ ε} are almost disjoint, which is not true
when the queries are similar to each other. To address this issue, we modify our use of the union
bound. We consider the left tails Ei = {ES [qi]− ED[qi] ≥ ε}. For any t ≥ 0, we obtain

P

(
k⋃

i=1

Ei
)

≤ P

(
{ES [q1]− ED[q1] ≥ ε− t}

k⋃

i=2

Ei
)

(3)

= P (ES [q1]− ED[q1] ≥ ε− t) + P

(
k⋃

i=2

Ei ∩ {ES [q1]− ED[q1] < ε− t}
)

≤ P (ES [q1]− ED[q1] ≥ ε− t) +

k∑

i=2

P (Ei ∩ {ES [q1]− ED[q1] < ε− t}) .

Intuitively, the terms P (Ei ∩ {ES [q1]− ED[q1] < ε− t}) are small when the queries q1 and qi are
similar: if P(q1(z) = qi(z)) is large, we cannot simultaneously have ES [q1] < ED[q1] + ε − t and
ES [qi] ≥ ED[qi] + ε since the deviations go into opposite directions. In the rest of this section, we
make this intuition precise in and derive an upper bound on (1) in terms of the query similarities.
Before we state our main result, we introduce the following notion of a similarity covering.
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Definition 1. Let F be a set of queries. We say a query set M is a η similarity cover of F if for any
query q ∈ F there exist q′, q′′ ∈ M such that ED[q

′] ≤ ED[q], ED[q
′′] ≥ ED[q], P(q

′(z) = q(z)) ≥ η,
and P(q′′(z) = q(z)) ≥ η ( M does not necessarily have to be a subset of F). Let Nη(F) denote the
size of a minimal η similarity cover of F (when the query set F is clear from context we use the
simpler notation Nη).
Theorem 2. Let F = {q1, q2, . . . , qk} be a collection of queries qi : Z → {0, 1} independent of the
test set {z1, z2, . . . , zn}. Then, for any η ∈ [0, 1] we have

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
≤ 2Nηe

−nε2

2 + 2ke
−nε

4
log

(
1+ ε

4(1−η)

)

. (4)

Then, for all η ≤ 1−max

{
2 log(4k/δ)

n ,

√
log(4Nη/δ)

2n

}
, we have with probability 1− δ

max
1≤i≤k

|ES [qi]− ED[qi]| ≤ max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log (4k/δ)

n

}
. (5)

Moreover, if ε =

√
log((2Nη+1)/δ)

n and η ≥ 1− ε

4
(
e2ε(2k)

4
nε−1

) , we have with probability 1− δ

max
1≤i≤k

|ES [qi]− ED[qi]| ≤ ε. (6)

The proof starts with the refined union bound (3), or a standard triangle inequality, and then
applies the Chernoff concentration bound shown in Lemma 3 for random variables which take
values in {−1, 0, 1}. We defer the proof details of both the lemma and the theorem to Appendix A.
Lemma 3. Suppose Xi are i.i.d. discrete random variables which take values −1, 0, and 1 with
probabilities p−1, p0, and p1 respectively, and hence EXi = p1 − p−1. Then, for any t ≥ 0 such that
p1 − p−1 + t/2 ≥ 0 we have

P

(
1

n

n∑

i=1

Xi > p1 − p−1 + t

)
≤ e

−nt
2

log
(
1+ t

2p1

)

.

Discretization arguments based on coverings are standard in statistical learning theory. Covers
based on the population Hamming distance P(q′(z) 6= q(z)) have been previously studied [4, 11]
(note that for {0, 1}-valued queries the Hamming distance is equal to the L2 and L1 distances). An
important distinction between our result and prior work is that prior work requires η to be greater
than 1 − ε. Theorem 2 can offer an improvement over the standard guarantee

√
log(k)/n even

when η is much smaller than 1 − ε. First of all note that (5) holds for η bounded away from one.

Moreover, since e2ε ≈ 1 + 2ǫ, if (2k)
4
nε ≤ 1 +

√
ε (the choice of 1 +

√
ε is somewhat arbitrary), we

see the requirement on η for (6) is satisfied when η is on the order of 1−√
ε.

4 Adaptive classification

In the previous section, we showed similarity can prevent overfitting when the sequence of queries
is chosen non-adaptively, i.e. when the queries {q1, q2, . . . , qn} are fixed independently of the test
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set S. In the adaptive setting, we assume the query qt can be selected as a function of the pre-
vious queries {q1, q2, . . . , qt−1} and estimates {ES [q1],ES [q2], . . . ,ES [qt−1]}. Even when queries are
chosen adaptively, we show leveraging similarity can provide sharper bounds on the probability of
overfitting, P (max1≤i≤k |ES [qi]− ED[qi]| ≥ ε).

In the adaptive setting, the field of adaptive data analysis offers a rich technical repertoire to
address overfitting [5, 17]. In this framework, analogous to the typical machine learning workflow,
an analyst iteratively selects a classifier and then queries a mechanism to provide an estimate of test-
set performance. In practice, the mechanism often used is the Trivial Mechanism which computes
the empirical mean of the query on the test set and returns the exact value to the analyst. For
simplicity, we study how similarity improves the performance of the trivial mechanism.

The empirical mean of any query can take at most n + 1 values, and thus a deterministic analyst
might ask at most (n+1)k−1 queries in k rounds of interaction with the Trivial Mechanism. Let F
denote the set of (n+ 1)k−1 possible queries. Then, we apply Theorem 2 to F .
Corollary 4. Let F be the set of queries that a fixed analyst A might query the Trivial Mechanism.
We assume that the Trivial Mechanism has access to a test set of size n. Let α ∈ [0, 1],

ε =

√
4(k1−α log(n+ 1) + log(2/δ))

n
,

and η = 1− ε
4(eεkα−1)

. If Nη(F) ≤ (n+ 1)k
1−α

, we have with probability 1− δ

max
1≤i≤k

|ES [qi]− ED[qi]| ≤ ε, (7)

for any queries q1, q2, . . . qk chosen adaptively by A.

Proof. Note that when η = 1− ε
4(eεk

α
−1)

we have log
(
1 + ε

4(1−η)

)
≥ εkα. Then, the result follows

from the first part of Theorem 2.

Corollary 4 always applies with α = 0, in which case the bound matches standard results for
the trivial mechanism with ε = Õ(

√
k/n). However, if F permits Nη(F) ≤ (n + 1)k

1−α
for η =

1 − (ε/4)(eεk
α − 1)−1 and some α > 0, we obtain a super linear improvement in the dependence

on k. For instance, if α = 1/2, then ε = Õ(
√
k1/2/n), and we obtain a quadratic improvement

in the number of queries for a fixed sample size, an improvement similar to that achieved by the
Gaussian mechanism [1, 5]. Moreover, since our technique is essentially tightening a union bound,
this improvement easily extends to other mechanisms that rely on compression-based arguments,
for instance, the Ladder Mechanism [2].

5 Empirical results

So far, we have established theoretically that similarity between classifiers allows us to evaluate a
larger number of classifiers on the test set without overfitting. In this section, we investigate whether
these improvements already occur in the regime of contemporary machine learning. We specifically
focus on ImageNet and CIFAR-10, two widely used machine learning benchmarks that have recently
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been shown to exhibit little to no adaptive overfitting in spite of almost a decade of test set re-use
[14]. For both datasets, we empirically measure two main quantities: (i) The similarity between
a wide range of models, some of them arising from hyperparameter search experiments. (ii) The
resulting increase in the number of models we can evaluate in a non-adaptive setting compared to
a baseline that does not utilize the model similarities.

5.1 Similarities on Imagenet

We utilize the model testbed from Recht et al. [14],1 who collected a dataset of 66 image classi-
fiers that includes a wide range of standard ImageNet models such as AlexNet [10], ResNets [7],
DenseNets [8], VGG [16], Inception [18], and several other models. As a baseline for the observed
similarities between these models, we compare them to classifiers with the same accuracy but oth-
erwise random predictions: given two models f1 and f2 with population error rates µ1 and µ2, we
know that the similarity P(1{f1(x) 6= y} = 1{f2(x) 6= y}) equals µ1µ2 + (1 − µ1)(1 − µ2) if the
random variables 1{f1(x) 6= y} and 1{f2(x) 6= y} are independent. Figure 1a in the introduction
shows these model similarities assuming the models make independent mistakes and also the empir-
ical data for the

(
66
2

)
= 2,145 pairs of models. We see that the empirical similarities are significantly

higher than the random baseline (mean 0.85 vs 0.62).

The corresponding Figure 1b shows two lower bounds on the number of models that can be evaluated
for the empirical ImageNet data. In particular, we use n = 50,000 (the size of the ImageNet
validation set) and a target probability δ = 0.05 for the overfitting event (1) with error ε = 0.01.
We compare two methods for computing the number of non-adaptively testable models: a guarantee
based on the simple union bound (2) and a guarantee based on our more refined union bound derived
from our theoretical analysis in Section 3. Later in this section, we introduce an even stronger bound
that utilizes higher-order interactions between the model similarities and yields significantly larger
improvements under an assumption on the structure among the classifiers.

To obtain meaningful quantities in the regime of ImageNet, all bounds here require significantly
sharper numerical calculations than the standard theoretical tools such as Chernoff bounds. We now
describe these calculations at a high level and defer the details to Appendix B. After introducing
the three methods, we compare them on the ImageNet data.

Standard union bound. Given n, ε, and the population error rate of all models ED[qi], we can
compute the right hand side of (2) exactly.2 It is well known that higher accuracies lead to smaller
probability of error and hence allow for a larger number of test set reuses. We assume all models
have population accuracy 75.6%, the average top-1 accuracy of the 66 Imagenet models. In this
case, the vanilla union bound (2) guarantees that k = 257,397 models can be evaluated on a test
set of size 50,000 so that their empirical accuracies would lie in the confidence interval 0.756± 0.01
with probability at least 95%.

1Available at https://github.com/modestyachts/ImageNetV2.
2After an additional union bound to decouple the left and right tails.
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Similarity Union Bound. While the union bound (2) is easy to use, it does not leverage the
dependencies between the random variables 1{fi(x) 6= y} for i ∈ {1, 2, . . . k}. To exploit this
property, we utilize the refined union bound (3) which is guaranteed to be an improvement over (2)
when the parameter t is optimized. In order to use (3), we must compute the probabilities

P ({ES [q2]− ED[q2] ≤ α2} ∩ {ES [q1]− ED[q1] ≥ α1}) (8)

for given α1, α2, ED[q1], ED[q2], and similarity P(q1(z) = q2(z)). In Appendix B, we show that we
can compute these probabilities efficiently by assigning success probabilities to three independent
Bernoulli random variables X1, X2, and W such that (X1W,X2W ) is equal to (q1(z), q2(z)) in
distribution. Let pw := P(W = 1). Then, given i.i.d. draws X1i, X2i, and Wi, we condition on the
values of Wi to express probability (8) as

P ({ES [q2]− ED[q2] ≤ α2} ∩ {ES [q1]− ED[q1] ≥ α1}) (9)

=

n∑

j=0

(
n

j

)
pjw(1− pw)

n−j
P

(
j∑

i=1

X2i ≤ ⌊n(p2 + α2)⌋
)
P

(
j∑

i=1

X1i ≥ ⌈n(p1 + α1)⌉
)
.

We refer the reader to Appendix B for more details. The two tail probabilities for X1i and X2i can
be computed efficiently with the use of beta functions. Using (9) and (3) with a binary search over
t, we can compute the probability of making an error ε when estimating the population error rates
of k models with given error rates and pairwise similarities. Figure 1b shows the maximum number
of models k that can be evaluated on the same test set so that the probability of making an ε = 0.01
error in estimating all their error rates is at most 0.05 when the models satisfy ED[qi] = 0.244 and
P(qi(z) = qj(z)) ≥ 0.85 for all 1 ≤ i, j ≤ k. The figure shows that our new bound offers a significant
improvement over the guarantee given by the standard union bound (2).

Similarity union bound with a Naive Bayes assumption. While the previous computation
uses the pairwise similarities observed empirically to offer an improved guarantee on the number of
allowed test set reuses, it does not take into account higher order dependencies between the models.
In particular, Figure 4 in Appendix C shows that 27.8% of test images are correctly classified by all
the models, 55.9% of test images are correctly classified by 60 of the 66 models considered, and 4.7%
of test images are incorrectly classified by all the models. We now show how this kind of agreement
between models enables a larger number of test set reuses. Inspired by the coupling used in (9), we
make the following assumption.
Assumption A1 (Naive Bayes). Let q1, q2, . . . qk be a collection of queries such that ED[qi] = p
and P(qi(z) = qj(z)) = η for some p and η, for all 1 ≤ i, j ≤ k. We say such a collection has a
Naive Bayes structure if there exist px and pw in [0, 1] such that (q1(z), q2(z), . . . , qk(z)) is equal
to (X1W,X2W, . . . ,XkW ) in distribution, where W , X1, . . .Xk are independent Bernoulli random
variables with P(W = 1) = pw and P(Xi = 1) = px for all 1 ≤ i ≤ k.

Intuitively, a collection of queries 1{fi(x) 6= y} has a Naive Bayes structure if the data distribution
D generates easy examples (x, y) with probability pw such that all the models fi classify correctly,
and if an example is not easy, the models make mistakes independently. As mentioned before,
Figure 4 supports the existence of such an easy set. When a test point in the ImageNet test set is
not an easy example, the models do not make mistakes independently. Therefore, Assumption A1
is not exactly satisfied by existing ImageNet models. However, we know that independent Bernoulli
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6 Conclusions and future work

We have shown that contemporary image classification models are highly similar, and that this
similarity increases the longevity of the test set both in theory and in experiment. It is worth
noting that model similarity does not preclude progress on the test set: two models that are 85%
similar can differ by as much as 15% in accuracy (for context: the top-5 accuracy improvement from
the seminal AlexNet to the current state of the art on ImageNet is about 17%). In addition, it is well
known that higher model accuracy implies a larger number of test set reuses without overfitting.
So as the machine learning practitioner explores increasingly better performing models that also
become more similar, it can actually become harder to overfit.

There are multiple important avenues for future work. First, one natural question is why the classi-
fication models turn out to be so similar. In addition, it would be insightful to understand whether
the similarity phenomenon is specific to image classification or also arises in other classification
tasks. There may also be further structural dependencies between models that mitigate the amount
of overfitting. Finally, it would be ideal to have a statistical procedure that leverages such model
structure to provide reliable and accurate performance bounds for test set re-use.

Acknowledgements. We thank Vitaly Feldman for helpful discussions. This work is generously
supported in part by ONR awards N00014-17-1-2191, N00014-17-1-2401, and N00014-18-1-2833,
the DARPA Assured Autonomy (FA8750-18-C-0101) and Lagrange (W911NF-16-1-0552) programs,
a Siemens Futuremakers Fellowship, an Amazon AWS AI Research Award, a gift from Microsoft
Research, and the National Science Foundation Graduate Research Fellowship Program under Grant
No. DGE 1752814.

References

[1] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability
for adaptive data analysis. In Symposium on Theory of Computing (STOC), 2016. https:

//arxiv.org/abs/1511.02513.

[2] A. Blum and M. Hardt. The Ladder: A reliable leaderboard for machine learning competitions.
In International Conference on Machine Learning (ICML), 2015. https://arxiv.org/abs/

1502.04585.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierar-
chical image database. In Conference on Computer Vision and Pattern Recognition (CVPR),
2009. http://www.image-net.org/papers/imagenet_cvpr09.pdf.

[4] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition. Springer,
1996. http://www.szit.bme.hu/~gyorfi/pbook.pdf.

[5] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving statistical
validity in adaptive data analysis. In Symposium on Theory of computing (STOC), 2015.
https://arxiv.org/abs/1411.2664.

11



[6] V. Feldman, R. Frostig, and M. Hardt. The advantages of multiple classes for reducing over-
fitting from test set reuse. In International Conference on Machine Learning (ICML), 2019.
https://arxiv.org/abs/1905.10360.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://arxiv.

org/abs/1512.03385.

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https:
//arxiv.org/abs/1608.06993.

[9] A. Krizhevsky. Learning multiple layers of features from tiny images, 2009. https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2012. https://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

[11] J. Langford. Quantitatively Tight Sample Complexity Bounds. PhD thesis, Carnegie Mellon Uni-
versity, 2002. http://hunch.net/~jl/projects/prediction_bounds/thesis/thesis.pdf.

[12] L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2019. https://arxiv.org/abs/

1902.07638.

[13] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR), 2019. https://arxiv.org/abs/1806.09055.

[14] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ImageNet classifiers generalize to
ImageNet? In International Conference on Machine Learning (ICML), 2019. https://arxiv.
org/abs/1902.10811.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and F.-F. Li. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 2015. https://arxiv.org/abs/1409.

0575.

[16] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. 2014. https://arxiv.org/abs/1409.1556.

[17] A. Smith. Information, privacy and stability in adaptive data analysis, 2017. https://arxiv.
org/abs/1706.00820.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. https://arxiv.org/abs/1409.4842v1.

[19] C. Yadav and L. Bottou. Cold Case: The Lost MNIST Digits. 2019. https://arxiv.org/

abs/1905.10498.

12



[20] T. Zrnic and M. Hardt. Natural analysts in adaptive data analysis. In International Conference
on Machine Learning (ICML), 2019. https://arxiv.org/abs/1901.11143.

A Proofs for Section 3

Lemma 3. Suppose Xi are i.i.d. discrete random variables which take values −1, 0, and 1 with
probabilities p−1, p0, and p1 respectively, and hence EXi = p1 − p−1. Then, for any t ≥ 0 such that
p1 − p−1 + t/2 ≥ 0 we have

P

(
1

n

n∑

i=1

Xi > p1 − p−1 + t

)
≤ e

−nt
2

log
(
1+ t

2p1

)

.

Proof. We assume p1 > 0. The result follows by continuity when p1 = 0. We prove the more general
case since the first part of the lemma is a particular case. By standard Chernoff methods we have

P

(
1

n

n∑

i=1

Xi > p1 − p−1 + t

)
≤ e−nλ(t+p1−p

−1)
(
p0 + p1e

λ + p−1e
−λ
)n

,

for any λ ∈ [0,∞). Let r > 0 to be chosen later. Now, we would like to choose λ to be nonnegative
and as large as possible so that

p0 + p1e
λ + p−1e

−λ ≤ eλr. (10)

By changing variables to eλ = z + 1 for some z ≥ 0 we want to find z as large as possible so that

p0(z + 1) + p1(z + 1)2 + p−1 ≤ (z + 1)1+r.

Then, by Bernoulli’s inequality it suffices if z satisfies the inequality

p0(z + 1) + p1(z + 1)2 + p−1 ≤ 1 + (1 + r) z,

which is equivalent to

p0 + p1z + 2p1 ≤ 1 + r.

Hence, the desired inequality (10) is satisfied if z ≤ p
−1−p1+r

p1
, which can be satisfied by choosing

z = p
−1−p1+r

p1
when p−1 − p1 + r ≥ 0. In this case, we would be able to set λ = log

(
1 + p

−1−p1+r
p1

)

and obtain

P

(
1

n

n∑

i=1

Xi > p1 − p−1 + t

)
≤ e

−n log
(
1+

p
−1−p1+r

p1

)
(t+p1−p

−1−r)
.

Set r = p1−p−1+t/2 and by the assumption on t we are guaranteed that r ≥ 0 and p−1−p1+r ≥ 0.
The conclusion follows.
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Theorem 2. Let F = {q1, q2, . . . , qk} be a collection of queries qi : Z → {0, 1} independent of the
test set {z1, z2, . . . , zn}. Then, for any η ∈ [0, 1] we have

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
≤ 2Nηe

−nε2

2 + 2ke
−nε

4
log

(
1+ ε

4(1−η)

)

. (4)

Then, for all η ≤ 1−max

{
2 log(4k/δ)

n ,

√
log(4Nη/δ)

2n

}
, we have with probability 1− δ

max
1≤i≤k

|ES [qi]− ED[qi]| ≤ max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log (4k/δ)

n

}
. (5)

Moreover, if ε =

√
log((2Nη+1)/δ)

n and η ≥ 1− ε

4
(
e2ε(2k)

4
nε−1

) , we have with probability 1− δ

max
1≤i≤k

|ES [qi]− ED[qi]| ≤ ε. (6)

Proof. First we prove (4) and we start with the right tails. We have

P

(
k⋃

i=1

{ES [qi]− ED[qi] ≥ ε}
)

≤ P




k⋃

i=1

{ES [qi]− ED[qi] ≥ ε}
⋃

q̃∈M

{ES [q̃]− ED[q̃] ≥ ε}


 ,

where M is a minimal η similarity cover of F . Then, there exists a partition of F into subsets
Rq̃, with q̃ ∈ M , such that for any q ∈ F there exists q̃ such that q ∈ Rq̃, ED[q] ≥ ED[q̃], and
P(q(z) = q̃(z)) ≥ η. Since Rq̃ is a partition of F , we have

∑
q̃∈M |Rq̃| = k. Therefore, following the

same argument as in (3), we have

P

(
k⋃

i=1

{ES [qi]− ED[qi] ≥ ε}
)

≤
∑

q̃∈M

P

(
ES [q̃]− ED[q̃] ≥

ε

2

)

+
∑

q̃∈M

∑

q∈Rq̃

P ({ES [q̃]− ED[q̃] ≤ ε/2} ∩ {ES [q]− ED[q] ≥ ε})

≤
∑

q̃∈M

P

(
ES [q̃]− ED[q̃] ≥

ε

2

)

+
∑

q̃∈M

∑

q∈Rq̃

P (ES [q̃]− ED[q̃] + ε/2 ≤ ES [q]− ED[q]) .

Now, for every q̃ ∈ M and any q ∈ Rq̃ we use a standard Chernoff bound and Lemma 3 to show

P

(
ES [q̃]− ED[q̃] ≥

ε

2

)
≤ e−

nε2

2 and P (ES [q̃]− ED[q̃] + ε/2 ≤ ES [q]− ED[q]) ≤ e
−nε

4
log

(
1+ ε

4(1−η)

)

.

To see why we can apply Lemma 3 note that q(z)−q̃(z) takes values in {−1, 0, 1} with the probability
of 0 being at least η, and ED[q− q̃] ≥ 0 by the choice of the covering set. Since |M | = Nη and since∑

q̃∈M |Rq̃| = k, we find

P

(
k⋃

i=1

{ES [qi]− ED[qi] ≥ ε}
)

≤ Nηe
−nε2

2 + ke
−nε

4
log

(
1+ ε

4(1−η)

)

.
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An analogous argument for the left tails yields (4). Now, we turn to showing (5). The goal is to
find ε such that

2Nηe
−nε2

2 ≤ δ

2
and 2ke

−nε
4

log
(
1+ ε

4(1−η)

)

≤ δ

2
. (11)

The first inequality is satisfied if ε ≥
√

2 log(4Nη/δ)
n . To find ε that satisfies the second condition

we make use of the inequality log(1 + t) ≥ t
t+1 for all t ≥ 0. We search for ε that also satisfies

ε ≤ 4(1− η). Then,

nε

4
log

(
1 +

ε

4(1− η)

)
≥ nε2

32(1− η)
,

and we would like the right hand side to be at least log(4k/δ). If we choose

ε = max

{√
2 log(4Nη/δ)

n
,

√
32(1− η) log(4k/δ)

n

}
,

the condition ε ≤ 4(1− η) is satisfied because of the assumption on η. In this case, both conditions
(11) are satisfied and (5) is proven. Finally, note that when η ≥ 1− ε

4(e2ε(2k)
4
nε−1)

we have

2ke
−nε

4
log

(
1+ ε

4(1−η)

)

≤ e−
nε2

2 .

Then, (6) follows by choosing ε =

√
log((2Nη+1)/δ)

n . This completes the proof.

B Tail probability of two dependent binomials

In this section we detail the computations of the two similarity union bounds (with and without
the Naive Bayes assumption).

Similarity Union Bound. We wish to compute the probability

P ({ES [q2]− ED[q2] ≤ α2} ∩ {ES [q1]− ED[q1] ≥ α1}) , (12)

where q1(z) and q2(z) have some joint distribution over {0, 1}2. Let use denote p1 = ED[q1],
p2 = ED[q2], and η = P(q1(z) = q2(z)) respectively. These three quantities fully determine the joint
probability distribution of q1(z) and q2(z). Specifically, we have

P(q1(z) = 1, qq(z) = 1) =
p1 + p2 + η − 1

2
, P(q1(z) = 1, qq(z) = 0) =

1 + p1 − p2 − η

2

P(q1(z) = 0, qq(z) = 1) =
1 + p2 − p1 − η

2
, P(q1(z) = 0, qq(z) = 0) =

1 + η − p1 − p2
2

.
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We denote these four probabilities by p11, p10, p01, and p00 respectively. We aim to find three
independent Bernoulli random variables X1, X2, and W such that (X1W,X2W ) equals (q1(z), q2(z))
in distribution. It turns out we can achieve this whenever p11 ≥ (p10 + p11)(p01 + p11), a condition
that is always satisfied in the settings we consider, by setting

P(X1 = 1) =
p11

p01 + p11
, P(X2 = 1) =

p11
p10 + p11

, P(W = 1) =
(p10 + p11)(p01 + p11)

p11
.

Then, given i.i.d. draws X1i, X2i, and Wi, probability (8) equals

P

({
n∑

i=1

X2iWi ≤ ⌊n(p2 + α2)⌋
}
⋂
{

n∑

i=1

X1iWi ≥ ⌈n(p1 + α1)⌉
})

. (13)

Denote pw = P(W = 1). Then, we condition on the possible values of Wi to obtain

P ({ES [q2]− ED[q2] ≤ α2} ∩ {ES [q1]− ED[q1] ≥ α1}) (14)

=
n∑

j=0

(
n

j

)
pjw(1− pw)

n−j
P

(
j∑

i=1

X2i ≤ ⌊n(p2 + α2)⌋
)
P

(
j∑

i=1

X1i ≥ ⌈n(p1 + α1)⌉
)
.

The two tail probabilities for X1i and X2i can be computed efficiently with the use of beta functions.

Similarity union bound with a Naive Bayes assumption. In this section we wish to compute
directly the overfitting probability

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
(15)

when the query vector (q1(z), q2(z), . . . , qk(z)) is equal in distribution to (X1W,X2W, . . . ,XkW )
for some independent Bernoulli random variables W , X1, . . .Xk. Recall that we assume that all
queries qi have equal error rates ED[qi]; let us denote it µ = ED[qi]. Moreover, for any two queries
qi and qj we have P(qi(z) = qj(z)) = η.

Suppose we are given i.i.d. draws Wi and i.i.d. draws Xℓi for 1 ≤ i ≤ n and 1 ≤ ℓ ≤ k. Then, if
pw := P(W = 1), by conditioning on the values of the random variables Wi we obtain

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
=

n∑

j=1

(
n

j

)
pjw(1− pw)

n−j
P

(
k⋃

ℓ=1

∣∣∣∣∣
1

n

j∑

i=1

Xℓi − µ

∣∣∣∣∣ ≥ ε

)
.

The random variables
∑j

i=1Xℓi have the same distribution for all ℓ and are independent. Then,

P

(
k⋃

ℓ=1

∣∣∣∣∣
1

n

j∑

i=1

Xℓi − µ

∣∣∣∣∣ ≥ ε

)
= 1− P

(
k⋂

ℓ=1

∣∣∣∣∣
1

n

j∑

i=1

Xℓi − µ

∣∣∣∣∣ < ε

)

= 1− P

(∣∣∣∣∣
1

n

j∑

i=1

X1i − µ

∣∣∣∣∣ < ε

)k

.

Therefore, we have

P

(
max
1≤i≤k

|ES [qi]− ED[qi]| ≥ ε

)
=

n∑

j=1

(
n

j

)
pjw(1− pw)

n−j


1− P

(∣∣∣∣∣
1

n

j∑

i=1

X1i − µ

∣∣∣∣∣ < ε

)k

 .
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Table 2: Random grid search hyperparameters.

Parameter Sampling Distribution

Number of base channels Uniform{4, 8, 16, 32}
Residual block type Uniform{"Basic", "Bottleneck"}
Remove ReLu before residual units Uniform{True, False}
Add BatchNorm after last convolutions Uniform{True, False}
Preactivation of shortcuts after downsampling Uniform{True, False}
Batch size Uniform{32, 64, 128, 256}
Base learning rate Uniform[1e-4, 0.5]

Weight decay 10Uniform[−5,−1]

Use weight decay with batch norm Uniform{True, False}
Optimizer Uniform{SGD, SGD with Momentum,

Nesterov GD, Adam}

Momentum (SGD with momentum) Uniform{0.6, 0.99}
β1 (Adam) Uniform[0.8, 0.95]
β2 (Adam) Uniform[0.9, 0.999]
Learning rate schedule Uniform{Cosine, Fixed Decay}
Learning rate decay point 1 (Fixed Decay) Uniform{40, 60, 80, 100}
Learning rate decay point 2 (Fixed Decay) Uniform{120, 140, 160, 180}
Use random crops Uniform{True, False}
Random crop padding Uniform{2, 4, 8}
Use horizontal flips Uniform{True, False}
Use cutout Uniform{True, False}
Cutout size Uniform{8, 12, 16}
Use dual cutout augmentation Uniform{True, False}
Dual cutout α Uniform[0.05, 0.3]
Use random erasing Uniform{True, False}
Random erasing probability Uniform[0.2, 0.8]
Use mixup data augmentation Uniform{True, False}
Mixup α Uniform[0.6, 1.4]
Use label smoothing Uniform{True, False}
Label smoothing ǫ Uniform[0.01, 0.2]
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