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Abstract

Excessive reuse of test data has become commonplace in today’s machine learning workflows.
Popular benchmarks, competitions, industrial scale tuning, among other applications, all involve
test data reuse beyond guidance by statistical confidence bounds. Nonetheless, recent replication
studies give evidence that popular benchmarks continue to support progress despite years of
extensive reuse. We proffer a new explanation for the apparent longevity of test data: Many
proposed models are similar in their predictions and we prove that this similarity mitigates
overfitting. Specifically, we show empirically that models proposed for the ImageNet ILSVRC
benchmark agree in their predictions well beyond what we can conclude from their accuracy
levels alone. Likewise, models created by large scale hyperparameter search enjoy high levels of
similarity. Motivated by these empirical observations, we give a non-asymptotic generalization
bound that takes similarity into account, leading to meaningful confidence bounds in practical
settings.

1 Introduction

Be it validation sets for model tuning, popular benchmark data, or machine learning competitions,
the holdout method is central to the scientific and industrial activities of the machine learning com-
munity. As compute resources scale, a growing number of practitioners evaluate an unprecedented
number of models against various holdout sets. These practices, collectively, put significant pres-
sure on the statistical guarantees of the holdout method. Theory suggests that for £ models chosen
independently of n test data points, the holdout method provides valid risk estimates for each of
these models up to a deviation on the order of \/log(k)/n. But this bound is the consequence of
an unrealistic assumption. In practice, models incorporate prior information about the available
test data since human analysts choose models in a manner guided by previous results. Adaptive
hyperparameter search algorithms similarly evolve models on the basis of past trials.

Adaptivity significantly complicates the theoretical guarantees of the holdout method. A simple
adaptive strategy, resembling the practice of selectively ensembling & models, can bias the holdout
method by as much as \/k/n. If this bound were attained in practice, holdout data across the
board would rapidly lose its value over time. Nonetheless, recent replication studies give evidence
that popular benchmarks continue to support progress despite years of extensive reuse [14, 19|.

In this work, we contribute a new explanation for why the adaptive bound is not attained in
practice and why even the standard non-adaptive bound is more pessimistic than it needs to be.
Our explanation centers around the phenomenon of model similarity. Practitioners evaluate models
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Figure 1: (a) shows the empirical pairwise similarity between Imagenet models and the hypothetical similar-
ity between models if they were making mistakes independently. (b) plots the number of testable models on
Imagenet such that the population error rates for all models are estimated up to 1% error with probability
0.95. We compare the guarantee of the standard union bound with that of a union bound which considers
model similarities.

that incorporate common priors, past experiences, and standard practices. As we show empirically,
this results in models that exhibit significant agreement in their predictions, well beyond what
would follow from their accuracy values alone. Complementing our empirical investigation of model
similarity, we provide a new theoretical analysis of the holdout method that takes model similarity
into account, vastly improving over known bounds in the adaptive and non-adaptive cases when
model similarity is high.

1.1 Owur contributions

Our contributions are two-fold. On the empirical side, we demonstrate that a large number of
proposed ImageNet [3, 15] and CIFAR-10 [9] models exhibit a high degree of similarity: Their
predictions agree far more than we would be able to deduce from their accuracy levels alone. Com-
plementing our empirical findings, we give new generalization bounds that incorporate a measure of
similarity. Our generalization bounds help to explain why holdout data has much greater longevity
than prior bounds suggest when models are highly similar, as is the case in practice. Figure 1
summarizes these two complementary developments.

Underlying Figure 1la is a family of representative ImageNet models whose pairwise similarity we
evaluate. The mean level of similarity of these models, together with a refined union bound, offers a
4x improvement over a carefully optimized baseline bound that does not take model similarity into
account. In Figure 1b we compare our guarantee on the number of holdout reuses with the baseline
bound. This illustrates that our bound is not just asymptotic, but concrete—it gives meaningful
values in the practical regime. Moreover, in Section 5 we discuss how an additional assumption on
model predictions can boost the similarity based guarantee by multiple orders of magnitude.

Investigating model similarity in practice further, we evaluate similarity of models encountered
during the course of a large random hyperparamter search and a large neural architecture search



for the CIFAR-10 dataset. We find that the pairwise model similarities throughout both procedures
remain high. The similarity provides a counterweight to the massive number of model evaluations,
limiting the amount of overfitting we observe.

1.2 Related work

Recht et al. [14] recently created new test sets for ImageNet and CIFARI10, carefully following
the original test set creation processes. Reevaluating all proposed models on the new test sets
showed that while there was generally an absolute performance drop, the effect of overfitting due to
adaptive behavior was limited to non-existent. Indeed, newer and better models on the old test set
also performed better on the new test set, even though they had in principle more time to adapt to
the test set. Also, Yadav and Bottou [19] recently released a new test set for the seminal MNIST
task, on which they observed no overfitting.

Dwork et al. [5] recognized the issue of adaptivity in holdout reuse and provided new holdout
mechanisms based on noise addition that support quadratically more queries than the standard
method in the worse case. There is a rich line of work on adaptive data analysis; Smith [17] offers
a comprehensive survey of the field.

We are not the first to proffer an explanation for the apparent lack of overfitting in machine learning
benchmarks. Blum and Hardt [2] argued that if analysts only check if they improved on the previous
best model, while ignoring models that did not improve, better adaptive generalization bounds are
possible. Zrnic and Hardt [20] offered improved guarantees for adaptive analysts that satisfy natural
assumptions, e.g. the analyst is unable to arbitrarily use information from queries asked far in the
past. More recently, Feldman et al. [6] gave evidence that the number of classes in a classification
problem helps mitigate overfitting in benchmarks. We see these different explanations as playing
together in what is likely the full explanation of the available empirical evidence. In parallel to
our work, Yadav and Bottou [19] discussed the advantages of comparing models on the same test
set; pairing tests can provide tighter confidence bounds for model comparisons in this setting than
individual confidence intervals for each model.

2 Problem setup

Let f : X — Y be a classifier mapping examples from domain X to a label from the set )). Moreover,
we consider a test set S = {(z1,y1),...} of n examples sampled i.i.d. from a data distribution D.
The main quantity we aim to analyze is the gap between the accuracy of the classifier f on the
test set S and the population accuracy of the same classifier under the distribution D. If the gap
between the two accuracies is large, we say f overfit to the test set.

As is commonly done in the adaptive data analysis literature [1], we formalize interactions with
the test set via statistical queries q : X x Y — R. In our case, the queries are {0,1}-valued,;
given a classifier f we consider the query ¢y defined by ¢f(z) = 1{f(x) # y}, where z = (z,y).
Then, we denote the empirical mean of query gy on the test set S (i.e., f’s test error) by Eglgs] =
% > i1 qr(z). The population mean (population error) is accordingly defined as Eplq] = E.pq(z).



When discussing overfitting, we are usually interested in a set of classifiers, e.g., obtained via
a hyperparameter search. Let fi,..., fr be such a set of classifiers and ¢qp,...,qr be the set of
corresponding queries. To quantify the probability that overfitting occurs (i.e., one of the f; has a
large deviation between test and population accuracy), we would like to upper bound the probability

P ( uw Bsla] - Blal] > <) )

A standard way to bound (1) is to invoke the union bound and treat each query separately:

k
P (g IBsta] ~Bolal 2 ) < 3P (Bsla] ~ Eolal 2 @)

We can then utilize standard concentration results to bound the right hand side. However, such an
approach inherently cannot capture dependencies between the queries ¢; (or classifiers f;). In par-
ticular, we are interested in the similarity between two queries ¢ and ¢’ measued by P (¢(z) = ¢/(2))
(the probability of agreement between the 0-1 losses of the corresponding two classifiers). The main
goal of this paper is to understand how high similarity can lead to better bounds on (1), both in
theory and in numerical experiments with real data from ImageNet and CIFAR-10.

3 Non-adaptive classification

We begin by analyzing the effect of the classifier similarity when the classifiers to be evaluated are
chosen mon-adaptively. For instance, this is the case when the algorithm designer fixes a grid of
hyperparameters to be explored before evaluating any of the classifiers on the test set. To draw
valid gains from the hyperparameter search, it is important that the resulting test accuracies reflect
the true population accuracies, i.e., probability (1) is small.

Bound (2) is sharp when the events {|Eg[g;] — Eplgi]| > ¢} are almost disjoint, which is not true
when the queries are similar to each other. To address this issue, we modify our use of the union
bound. We consider the left tails & = {Eg[¢;| — Ep|qi] > €}. For any t > 0, we obtain

k k
P (U &') <P <{ES[(J1] —Ep[q] > —t} | 5i) (3)
i=1

=2

k
=P (Es[q] —Ep[g] 2 e - ) +P (U & N{Es[q] — Eplq1] <e— t}>
=2
k
<P (Esla] - Epla] > e — )+ > P(& N {Eslar] - Eplai] <e—t}).
=2

Intuitively, the terms P (& N {Es[q1] — Eplqi] < € —t}) are small when the queries ¢; and ¢; are
similar: if P(q1(2) = ¢i(z)) is large, we cannot simultaneously have Eg[q1] < Eplqi] + ¢ — t and
Eslg:] > Eplg] + € since the deviations go into opposite directions. In the rest of this section, we
make this intuition precise in and derive an upper bound on (1) in terms of the query similarities.
Before we state our main result, we introduce the following notion of a similarity covering.



Definition 1. Let F be a set of queries. We say a query set M is a n similarity cover of F if for any
query q € F there exist ¢',q" € M such that Ep[¢'] < Eplq], Ep[¢”] > Eplq], P(¢'(2) = q(2)) > n,
and P(q"(z) = q(z)) > n ( M does not necessarily have to be a subset of F). Let N,(F) denote the
size of a minimal n similarity cover of F (when the query set F is clear from context we use the
simpler notation N, ).

Theorem 2. Let F = {q1,q2,...,q1} be a collection of queries q;: Z — {0,1} independent of the
test set {z1,22,...,2n}. Then, for any n € [0,1] we have

ne? —ne g —c
v <1r2a<xk |Es(gi] — Eplai]| > 5) < 2Nje "5 +2ke 1 &(1 ). (4)

2log(4k/6) log(4Ny,/9)

n ’ 2n

Then, for allm <1 — max{ }, we have with probability 1 —

max |Esq] — Eplqi]| < max{\/

1<i<k

210g(4N,/5) \/32(1 —n) log (4k/9) } '

n n

Moreover, if ¢ = w andn>1— W, we have with probability 1 — &
e2e e —
1 1] < e.
max [Eslgi] — Eplg]| <e (6)

The proof starts with the refined union bound (3), or a standard triangle inequality, and then
applies the Chernoff concentration bound shown in Lemma 3 for random variables which take
values in {—1,0, 1}. We defer the proof details of both the lemma and the theorem to Appendix A.
Lemma 3. Suppose X; are i.i.d. discrete random variables which take values —1, 0, and 1 with
probabilities p_1, po, and p1 respectively, and hence EX; = p1 — p_1. Then, for any t > 0 such that
p1—p_1+1t/2 >0 we have

Pl ; X; ¢ < o Floe(+ )
~Y Xizp—patt)|<e :

=1

Discretization arguments based on coverings are standard in statistical learning theory. Covers
based on the population Hamming distance P(¢’'(z) # ¢(z)) have been previously studied [4, 11]
(note that for {0, 1}-valued queries the Hamming distance is equal to the L? and L distances). An
important distinction between our result and prior work is that prior work requires 7 to be greater
than 1 — e. Theorem 2 can offer an improvement over the standard guarantee +/log(k)/n even
when 7 is much smaller than 1 — . First of all note that (5) holds for n bounded away from one.
Moreover, since €% ~ 1 + 2¢, if (Qk)nis < 1+ /e (the choice of 1+ /¢ is somewhat arbitrary), we
see the requirement on 7 for (6) is satisfied when 7 is on the order of 1 — /.

4 Adaptive classification

In the previous section, we showed similarity can prevent overfitting when the sequence of queries
is chosen non-adaptively, i.e. when the queries {q1,q2,...,q,} are fixed independently of the test



set S. In the adaptive setting, we assume the query ¢; can be selected as a function of the pre-
vious queries {q1, ¢, ...,q—1} and estimates {Eg[q1], Es[q2], ..., Es[g:—1]}. Even when queries are
chosen adaptively, we show leveraging similarity can provide sharper bounds on the probability of
overfitting, P (maxi<;<x |Es[¢;] — Eplai]| > ¢€).

In the adaptive setting, the field of adaptive data analysis offers a rich technical repertoire to
address overfitting [5, 17]. In this framework, analogous to the typical machine learning workflow,
an analyst iteratively selects a classifier and then queries a mechanism to provide an estimate of test-
set performance. In practice, the mechanism often used is the Trivial Mechanism which computes
the empirical mean of the query on the test set and returns the exact value to the analyst. For
simplicity, we study how similarity improves the performance of the trivial mechanism.

The empirical mean of any query can take at most n + 1 values, and thus a deterministic analyst
might ask at most (n -+ 1)*~! queries in k rounds of interaction with the Trivial Mechanism. Let F
denote the set of (n + 1)k_1 possible queries. Then, we apply Theorem 2 to F.

Corollary 4. Let F be the set of queries that a fixed analyst A might query the Trivial Mechanism.
We assume that the Trivial Mechanism has access to a test set of size n. Let o € [0, 1],

_ \/4(1&—& log(n + 1) + log(2/4))

andn=1— m, If Nn(]:) <(n+ 1)k17a, we have with probability 1 —

N . <
max [Es[g] - Epq]| <, (7)

for any queries q1, qo, ...q, chosen adaptively by A.
Proof. Note that when n =1 — m we have log (1 + ﬁ) > ek®. Then, the result follows
from the first part of Theorem 2. O

Corollary 4 always applies with @ = 0, in which case the bound matches standard results for
the trivial mechanism with e = O(y/k/n). However, if F permits N,(F) < (n+ 1)¥" for n =
1 — (¢/4)(e*” — 1)~! and some a > 0, we obtain a super linear improvement in the dependence
on k. For instance, if o = 1/2, then ¢ = O(y/k/2/n), and we obtain a quadratic improvement
in the number of queries for a fixed sample size, an improvement similar to that achieved by the
Gaussian mechanism |1, 5]. Moreover, since our technique is essentially tightening a union bound,
this improvement easily extends to other mechanisms that rely on compression-based arguments,
for instance, the Ladder Mechanism [2].

5 Empirical results

So far, we have established theoretically that similarity between classifiers allows us to evaluate a
larger number of classifiers on the test set without overfitting. In this section, we investigate whether
these improvements already occur in the regime of contemporary machine learning. We specifically
focus on ImageNet and CIFAR-10, two widely used machine learning benchmarks that have recently



been shown to exhibit little to no adaptive overfitting in spite of almost a decade of test set re-use
[14]. For both datasets, we empirically measure two main quantities: (i) The similarity between
a wide range of models, some of them arising from hyperparameter search experiments. (ii) The
resulting increase in the number of models we can evaluate in a non-adaptive setting compared to
a baseline that does not utilize the model similarities.

5.1 Similarities on Imagenet

We utilize the model testbed from Recht et al. [14],! who collected a dataset of 66 image classi-
fiers that includes a wide range of standard ImageNet models such as AlexNet [10], ResNets [7],
DenseNets [8], VGG [16], Inception [18], and several other models. As a baseline for the observed
similarities between these models, we compare them to classifiers with the same accuracy but oth-
erwise random predictions: given two models f; and fo with population error rates p; and o, we
know that the similarity P(1{f1(xz) # y} = 1{fo(x) # y}) equals pyps + (1 — p1)(1 — pg) if the
random variables 1{f1(z) # y} and 1{fa(z) # y} are independent. Figure la in the introduction
shows these model similarities assuming the models make independent mistakes and also the empir-
ical data for the (626) = 2,145 pairs of models. We see that the empirical similarities are significantly
higher than the random baseline (mean 0.85 vs 0.62).

The corresponding Figure 1b shows two lower bounds on the number of models that can be evaluated
for the empirical ImageNet data. In particular, we use n = 50,000 (the size of the ImageNet
validation set) and a target probability 6 = 0.05 for the overfitting event (1) with error e = 0.01.
We compare two methods for computing the number of non-adaptively testable models: a guarantee
based on the simple union bound (2) and a guarantee based on our more refined union bound derived
from our theoretical analysis in Section 3. Later in this section, we introduce an even stronger bound
that utilizes higher-order interactions between the model similarities and yields significantly larger
improvements under an assumption on the structure among the classifiers.

To obtain meaningful quantities in the regime of ImageNet, all bounds here require significantly
sharper numerical calculations than the standard theoretical tools such as Chernoff bounds. We now
describe these calculations at a high level and defer the details to Appendix B. After introducing
the three methods, we compare them on the ImageNet data.

Standard union bound. Given n, ¢, and the population error rate of all models Ep[g;], we can
compute the right hand side of (2) exactly.? It is well known that higher accuracies lead to smaller
probability of error and hence allow for a larger number of test set reuses. We assume all models
have population accuracy 75.6%, the average top-1 accuracy of the 66 Imagenet models. In this
case, the vanilla union bound (2) guarantees that k = 257,397 models can be evaluated on a test
set of size 50,000 so that their empirical accuracies would lie in the confidence interval 0.756 + 0.01
with probability at least 95%.

! Available at https://github.com/modestyachts/ImageNetV2.
2 After an additional union bound to decouple the left and right tails.



Similarity Union Bound. While the union bound (2) is easy to use, it does not leverage the
dependencies between the random variables 1{f;(z) # y} for i € {1,2,...k}. To exploit this
property, we utilize the refined union bound (3) which is guaranteed to be an improvement over (2)
when the parameter ¢ is optimized. In order to use (3), we must compute the probabilities

P ({Es(gz] — Eplg] < ag} N{Es[q1] — Ep[g1] = ar}) (8)

for given a1, as, Ep[qi1], Eplge], and similarity P(q1(2) = ¢2(z)). In Appendix B, we show that we
can compute these probabilities efficiently by assigning success probabilities to three independent
Bernoulli random variables X, X5, and W such that (X1W, XoW) is equal to (qi1(2),¢2(2)) in
distribution. Let p,, := P(W = 1). Then, given i.i.d. draws Xi;, Xo;, and W;, we condition on the
values of W; to express probability (8) as

P ({Eslg2] — Eplge] < a2} N{Es|q1] — Eplq1] > a1}) (9)
i( > (1 —pw)"” W’(ZX%_ n(p2 + a2) ) <ZX11_ 1—1—041)})
J= i=1

We refer the reader to Appendix B for more details. The two tail probabilities for X1; and Xy; can
be computed efficiently with the use of beta functions. Using (9) and (3) with a binary search over
t, we can compute the probability of making an error ¢ when estimating the population error rates
of k models with given error rates and pairwise similarities. Figure 1b shows the maximum number
of models k that can be evaluated on the same test set so that the probability of making an £ = 0.01
error in estimating all their error rates is at most 0.05 when the models satisfy Ep[g;] = 0.244 and
P(qi(2) = ¢j(2)) > 0.85 for all 1 <i,j < k. The figure shows that our new bound offers a significant
improvement over the guarantee given by the standard union bound (2).

Similarity union bound with a Naive Bayes assumption. While the previous computation
uses the pairwise similarities observed empirically to offer an improved guarantee on the number of
allowed test set reuses, it does not take into account higher order dependencies between the models.
In particular, Figure 4 in Appendix C shows that 27.8% of test images are correctly classified by all
the models, 55.9% of test images are correctly classified by 60 of the 66 models considered, and 4.7%
of test images are incorrectly classified by all the models. We now show how this kind of agreement
between models enables a larger number of test set reuses. Inspired by the coupling used in (9), we
make the following assumption.

Assumption A1l (Naive Bayes). Let q1, g2, ...qx be a collection of queries such that Eplg;| = p
and P(q;i(z) = qj(2)) = n for some p and n, for all 1 < i,5 < k. We say such a collection has a
Naive Bayes structure if there exist pg and py, in [0,1] such that (q1(z),q2(2), ..., qe(2)) is equal
to (XqaW, XoW, ..., Xi;W) in distribution, where W, X1, ... Xy are independent Bernoulli random
variables with P(W = 1) = py and P(X; = 1) = py for all 1 <i < k.

Intuitively, a collection of queries 1{f;(x) # y} has a Naive Bayes structure if the data distribution
D generates easy examples (z,y) with probability p,, such that all the models f; classify correctly,
and if an example is not easy, the models make mistakes independently. As mentioned before,
Figure 4 supports the existence of such an easy set. When a test point in the ImageNet test set is
not an easy example, the models do not make mistakes independently. Therefore, Assumption Al
is not exactly satisfied by existing ImageNet models. However, we know that independent Bernoulli
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Figure 2: Left figure shows the multiplicative gains in the number of testable models, as a function of
model similarity, over the guarantee offered by the standard union plus binomial bound, with & = 0.01 and
0 = 0.05. Right figure shows the same multiplicative gains, but as a function of £, when § = 0.05 and the
pairwise similarity is n = 0.85.

trials saturate the standard union bound (2). This effect can also be observed in Figure 2. As the
similarity between the models decreases, i.e. p,, decreases, the models make mistakes independently
and the guarantee with Assumption A1 converges to the standard union bound guarantee. So while
Assumption Al is not exactly satisfied in practice, the violation among the ImageNet classifiers
likely implies an even better lower bound on the number of testable models.

Assumption Al is computationally advantageous. It allows us to compute the overfitting probability
(1) exactly, as we detail in Appendix B. Figure 2 is an extension of Figure 1b; it shows the relative
improvement of our bounds over the standard union bound in terms of the number of testable
models when ¢ = 0.01 and § = 0.01. Moreover, Figure 2 also shows that the relative improvement
of our bounds increases quickly with . According to Figure 2, Assumption Al implies that we
can evaluate 10® models on the test set in the regime of ImageNet without overfitting. While this
number of models might seem unnecessarily large, in Section 4 we saw that when models are chosen
adaptively we must consider a tree of possible models, which can easily contain 10® models.

5.2 Similarities on CIFAR-10

Practitioners often evaluate many more models than the handful that ultimately appear in pub-
lication. The choice of architecture is the result of a long period of iterative refinement, and the
hyperparameters for any fixed architecture are often chosen by evaluating a large grid of plausible
models. Using data from CIFAR-10, we demonstrate these common practices both generate large
classes of very similar models.

Random hyperparameter search. To understand the similarity between models evaluated in
hyperparameter search, we ran our own random search to choose hyperparameters for a ResNet-
110. The grid included properties of the achitecture (e.g. type of residual block), the optimization
algorithm (e.g. choice of optimizer), and the data distribution (e.g. data augmentation strategies).
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Figure 3: Model similarities and covering numbers for random hyperparameter search on CIFAR10.

Table 1: Neural Architecture Search Similarities

Models Mean Accuracy | Mean Similarity | Increase in Testable Models
SB NBB

20 Random 96.8% 97.5% 99x  1.6-10%x
20 Highest Scoring | 96.9% 97.6% 12.0x 3.4-10%x

A full specification of the grid is included in Appendix D. We sample and train 320 models, and, for
each model, we select 10 checkpoints evenly spaced throughout training. The best model considered
achieves accuracy of 96.6%, and, after restricting to models with accuracy at least 50%, we are left
with 1,235 model checkpoints. In Figure 3, we show the similarity for each pair of checkpoints and
compute an upper bound on the corresponding similarity covering number N, (F) for each possible
value of 7. As in the case of ImageNet, CIFAR10 models found by random search are significantly
more similar than random chance would suggest.

Neural architecture search. In the random search experiment, all of the models were chosen
non-adaptively—the grid of models is fixed in advance. However, similarity protects against overfit-
ting also in the adaptive setting. To illustrate this, we compute the similarity for models evaluated
by automatic neural architecture search. In particular, we ran the DARTS neural architecture
search pipeline to adaptively evaluate a large number of plausible models in search of promising
configurations [12, 13]|. In Table 1, we report the mean accuracies and pairwise similarities for 20
randomly selected configurations evaluated by DARTS, as well as the top 20 scoring configurations
according to DARTS internal scoring mechanism. Table 1 also shows the multiplicative gains in the
number of testable models offered by our similarity bound (SB) and our naive Bayes bound (NBB)
over the standard union bound are between one and four orders of magnitude. Therefore, even in
a high accuracy regime we can guarantee a significantly higher number of test set reuses without
overfitting when taking into account model similarities.
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6 Conclusions and future work

We have shown that contemporary image classification models are highly similar, and that this
similarity increases the longevity of the test set both in theory and in experiment. It is worth
noting that model similarity does not preclude progress on the test set: two models that are 85%
similar can differ by as much as 15% in accuracy (for context: the top-5 accuracy improvement from
the seminal AlexNet to the current state of the art on ImageNet is about 17%). In addition, it is well
known that higher model accuracy implies a larger number of test set reuses without overfitting.
So as the machine learning practitioner explores increasingly better performing models that also
become more similar, it can actually become harder to overfit.

There are multiple important avenues for future work. First, one natural question is why the classi-
fication models turn out to be so similar. In addition, it would be insightful to understand whether
the similarity phenomenon is specific to image classification or also arises in other classification
tasks. There may also be further structural dependencies between models that mitigate the amount
of overfitting. Finally, it would be ideal to have a statistical procedure that leverages such model
structure to provide reliable and accurate performance bounds for test set re-use.
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A Proofs for Section 3

Lemma 3. Suppose X; are i.i.d. discrete random variables which take values —1, 0, and 1 with
probabilities p_1, po, and p1 respectively, and hence EX; = p1 — p_1. Then, for any t > 0 such that
p1—p-1+1t/2>0 we have

1 & _nt t
P(ZXi >p1p1+t> <e 2 tos (1557 )
i

Proof. We assume p; > 0. The result follows by continuity when p; = 0. We prove the more general
case since the first part of the lemma is a particular case. By standard Chernoff methods we have

1o n
F (n Y Xi>pi—pa+ t) < emmATy (Po +pre’ +p_1€_k> :
=1

for any A € [0,00). Let r > 0 to be chosen later. Now, we would like to choose A to be nonnegative
and as large as possible so that

po+piet +pore < eV (10)

By changing variables to e* = z + 1 for some z > 0 we want to find z as large as possible so that
po(z+ 1) +p1(z+1)> +p1 < (z+ 1)1
Then, by Bernoulli’s inequality it suffices if z satisfies the inequality
po(z+ 1) +pi(z+1)2+p_g <1+ (1+7)z,
which is equivalent to
po+piz+2p <147

Hence, the desired inequality (10) is satisfied if z < p”;%”, which can be satisfied by choosing

z = p”;%“ when p_; — p1 +r > 0. In this case, we would be able to set A = log (1 + %1;7?1“)

and obtain
- p_1-P1t+r
F <1 ZXz‘ >p1r—pa+ t) < e‘"l"g(”T)(terl—p,l—r)_
" =1

Set r = p1 —p_1+1t/2 and by the assumption on ¢ we are guaranteed that r > 0 and p_1 —p;+7 > 0.
The conclusion follows. O
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Theorem 2. Let F = {q1,q2,...,q1} be a collection of queries q;: Z — {0,1} independent of the
test set {z1,22,...,2n}. Then, for any n € [0,1] we have

ne? _ne o _&
v <1r2a<xk‘Es[qz] Eplg]| > 5) < 2N,e "% +2ke 1 &(1+ 7). (4)

Then, for allm <1 — max { 210g(3k/5), 10g(42];7n/5) }, we have with probability 1 — 0

2log(4N, /6 32(1 —n)log (4k/§
. [Esla] — Enlall < mxw g(4N,/ >,\/ (1 —n) log (4k/ >}, -
1<i<k n n
M ; — log((2Ny+1)/6) >1— e : ity 1 —
oreover, if € - and n > 4(626(%)%71) , we have with probability 0
max [Eg[qi] — Eplgi]| <e. (6)

1<i<k

Proof. First we prove (4) and we start with the right tails. We have

k k
P (U{Es[qz-] ~Eplg] > s}) <P [ U{Esla] - Epla] > ¢} |J {Esla) — Epl@ > ¢} | .

i=1 i=1 GeM

where M is a minimal 7 similarity cover of F. Then, there exists a partition of F into subsets
Rz, with ¢ € M, such that for any ¢ € F there exists ¢ such that ¢ € Ry, Ep[q] > Ep[q], and
P(q(2) = q(2)) = n. Since Ry is a partition of F, we have } -/ |Rg| = k. Therefore following the
same argument as in (3), we have

<U{ES QZ IE:’D Qz > 5}) < Z (Esa] ED[A-] > )

qeEM

+Y Y P({Es[q] — Eplg] < ¢/2} N{Esq] — Eplg] > ¢})

geM qeRy
< Z (Esfﬂ Eplg] > )
qeEM
+3 Y P(Es[g - Eplq] + /2 < Eslq] — Eplq)) -
geM qeRg

Now, for every ¢ € M and any ¢ € Rz we use a standard Chernoff bound and Lemma 3 to show

2

P (sl - Epld) > 5) < ¢ ™% and P(Es[q] ~ Ep[q] +</2 < Eslg] ~ Elg]) < o~ los(1t i)

To see why we can apply Lemma 3 note that ¢(z)—q(z) takes values in {—1,0, 1} with the probability
of 0 being at least 1, and Ep[g —g] > 0 by the choice of the covering set. Since |M| = N, and since
> gem | Bgl =k, we find

F 2 ne &
P <U{ES[%] —Eplgi] > 6}) < Nye~ 4 k@7710g<1+4(f—n)>_

i=1
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An analogous argument for the left tails yields (4). Now, we turn to showing (5). The goal is to
find e such that

"l52

2Nye” 27 <

and 2ke” T lE(ta0s) < 0 (11)

NGRS
|

2log(4N,,/6)
n

The first inequality is satisfied if ¢ > . To find ¢ that satisfies the second condition

we make use of the inequality log(1l + ¢) > t% for all £ > 0. We search for e that also satisfies
e <4(1 —mn). Then,

n62

" og (1 + < >
1 8 A1—n)) = 320—n)

and we would like the right hand side to be at least log(4k/d). If we choose

-~ max W 2log(AN,/5) {321~ Ttk } |

n n

the condition € < 4(1 —n) is satisfied because of the assumption on 7. In this case, both conditions
(11) are satisfied and (5) is proven. Finally, note that when n > 1 — m we have
e2e e —

n52

_ne e
ke 4 tog (14 11755 ) <e T,

log((2N,+1)/

Then, (6) follows by choosing € = - 9. This completes the proof.

B Tail probability of two dependent binomials

In this section we detail the computations of the two similarity union bounds (with and without
the Naive Bayes assumption).

Similarity Union Bound. We wish to compute the probability

P ({Eslg2] — Eplge] < a2} N {Es|q1] — Eplgi] > an}), (12)

where q1(z) and g2(z) have some joint distribution over {0,1}2. Let use denote p; = Eplq],
p2 = Eplga], and n = P(q1(z) = qa2(2)) respectively. These three quantities fully determine the joint
probability distribution of ¢;(z) and ¢a2(z). Specifically, we have

B(qi() = Lgy(z) = 1) = B2 B(aa(2) = Lgy(2) = 0) = — 22—
14+py—p1 — 14+n—p —
]P’((h(z) = O,qq(z) = 1) = b2 5 b1 n ’ ]P’(q1(2) — O,Qq(Z) _ O) — n 2p1 pQ‘
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We denote these four probabilities by p11, p1o, po1, and pog respectively. We aim to find three
independent Bernoulli random variables X1, X5, and W such that (X3 W, XoW) equals (¢1(2), ¢2(2))
in distribution. It turns out we can achieve this whenever p11 > (p1o + p11)(po1 + p11), a condition
that is always satisfied in the settings we consider, by setting

P(X;=1) = P11 L P(Xp=1) = P11 L OPW=1) = (P10 + p11)(Po1 +p11)'
po1 + P11 P1o + P11 P11

Then, given i.i.d. draws X1;, Xo;, and Wj;, probability (8) equals

({ZX22W< n(p + az) }Q{ZXMW> p1+a1ﬂ}> (13)

Denote p,, = P(W = 1). Then, we condition on the possible values of W; to obtain

P ({Eslg2] — Eplg2] < as} N {Es[q1] — Eplq1] > a1}) (14)
— z”: <?>P{u(1 —pw)"” ip (Z Xoi < [n(p2 + a2) ) P (Z X1 > [n(p1 + 041)1) .
7=0 i—1

The two tail probabilities for X1; and Xs; can be computed efficiently with the use of beta functions.

Similarity union bound with a Naive Bayes assumption. In this section we wish to compute
directly the overfitting probability

P <m>;€ Eslg] - Eplg]) > ) (15)

when the query vector (qi(z),q2(2),...,qk(z)) is equal in distribution to (X;W, XoW, ..., X; ;W)
for some independent Bernoulli random variables W, X1, ... X;. Recall that we assume that all
queries ¢; have equal error rates Ep[g;]; let us denote it p = ED [gi]. Moreover, for any two queries

¢; and ¢; we have P(g;(2) = ¢;(2)) = n.

Suppose we are given i.i.d. draws W; and i.i.d. draws Xy; for 1 <¢ <nand 1 < /¢ < k. Then, if
pw := P(W = 1), by conditioning on the values of the random variables W; we obtain

P (o, [sla] ~ Eolal 2 <) =3 (")t - ) MP(U Zx&

j=1
The random variables ZLI Xy have the same distribution for all £ and are independent. Then,

PQQ;iXﬁ_Mg):l_p(ﬁiix s
)

i=1
k
(R
Therefore, we have
1
- Z Xlz 2
n

P (1ri1a<xk |Es(ai] — Eplai]| > 5> =) <;L>p1]“(1 —pu)" 1P ( i—1

J=1

k

<5>
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C Empirical distribution of image difficulty in ImageNet

ImageNet Data

Fraction of images
o o o o o =
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0 10 20 30 40 50 60
Maximum number of models misclassifying an image
Figure 4: The empirical “difficulty” distribution of the 50,000 images in the ImageNet validation
set as measured by the classifiers in the testbed from Recht et al. [14]. The plot shows how many
of the images are misclassified by at most a certain number of the models. For instance, about
27.8% of the images are correctly classified by all models, and 55.9% of the images are correctly
classified by 60 of the 66 models. 4.7% of the images are misclassified by all models. The plot shows
that a significant fraction of images is classified correctly by all or almost all of the models. These
empirical findings support the Naive Bayes assumption in Section 5.1.

D CIFAR-10 random hyperparameter grid search

We conducted a large hyperparameter search on a ResNet110. All of our experiments build on
the ResNet implementation and training code provided by https://github.com/hysts/pytorch_
image_classification. In Table 2, we specify the grid used in the experiments. If not explicitly
stated, all other hyperparameters are set to their default settings.
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Table 2: Random grid search hyperparameters.

Parameter

Sampling Distribution

Number of base channels

Residual block type

Remove ReLu before residual units
Add BatchNorm after last convolutions

Preactivation of shortcuts after downsampling

Batch size

Base learning rate

Weight decay
Use weight decay with batch norm
Optimizer

Momentum (SGD with momentum)

B1 (Adam)

ﬂz (Adam)

Learning rate schedule

Learning rate decay point 1 (Fixed Decay)
Learning rate decay point 2 (Fixed Decay)
Use random crops

Random crop padding

Use horizontal flips

Use cutout

Cutout size

Use dual cutout augmentation

Dual cutout «

Use random erasing

Random erasing probability

Use mixup data augmentation

Mixup «

Use label smoothing

Label smoothing €

18

Uniform{4, 8,16, 32}
Uniform{"Basic", "Bottleneck"}
Uniform{True, False}
Uniform{True, False}
Uniform{True, False}
Uniform{32, 64, 128, 256}
Uniform|le-4, 0.5]
1oUniform[-5,—1]
Uniform{True, False}
Uniform{SGD, SGD with Momentum,
Nesterov GD, Adam}
Uniform{0.6, 0.99}
Uniform|0.8, 0.95]
Uniform[0.9, 0.999]
Uniform{Cosine, Fixed Decay}
Uniform{40, 60, 80, 100}
Uniform{120, 140, 160, 180}
Uniform{True, False}
Uniform{2, 4, 8}
Uniform{True, False}
Uniform{True, False}
Uniform{8, 12, 16}
Uniform{True, False}
Uniform|0.05, 0.3]
Uniform{True, False}
Uniform|0.2, 0.8]
Uniform{True, False}
Uniform[0.6, 1.4]
Uniform{True, False}
Uniform|0.01, 0.2]
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