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Abstract

It is well known that the problems of stochastic planning and probabilistic infer-
ence are closely related. This paper makes two contributions in this context. The
first is to provide an analysis of the recently developed SOGBOFA heuristic plan-
ning algorithm that was shown to be effective for problems with large factored
state and action spaces. It is shown that SOGBOFA can be seen as a specialized
inference algorithm that computes its solutions through a combination of a sym-
bolic variant of belief propagation and gradient ascent. The second contribution is
a new solver for Marginal MAP (MMAP) inference. We introduce a new reduc-
tion from MMAP to maximum expected utility problems which are suitable for the
symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based
solver (AGS) for MMAP. An experimental evaluation illustrates the potential of
AGS in solving difficult MMAP problems.

1 Introduction

The connection between planning and inference is well known. Over the last decade multiple authors
have introduced explicit reductions showing how stochastic planning can be solved using probabilis-
tic inference (for example, [4, 25, 5, 17, 23, 12, 8, 19, 26, 10, 18]) with applications in robotics,
scheduling and environmental problems. However, heuristic methods and search are still the best
performing approaches for planning in large combinatorial state and action spaces [9, 7, 2].

This paper makes two contributions in this context. We first analyze a recent heuristic planning
algorithm that was shown to be effective in practice. SOGBOFA [2] builds an approximate algebraic
computation graph capturing marginals of state and reward variables under independence assump-
tions. It then uses automatic differentiation [6] and gradient based search to optimize action choice.
Our analysis shows that the value computed by SOGBOFA’s computation graph is identical to the
solution of Belief Propagation (BP) when conditioned on actions. This provides an explicit connec-
tion between heuristic planning algorithms and approximate inference. Inference through algebraic
expressions has been explored before [16] and even applied to planning but both the symbolic rep-
resentation and algorithms are different from the ones in SOGBOFA.

Our second contribution is in showing how planning algorithms can be used to solve inference
problems, making use of the correspondence in the reverse direction from prior work. The original
construction for SOGBOFA can be seen to solve Maximum expected Utility (MEU) problems with
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decision variables as roots of the corresponding graphical model and one leaf node representing the
value which is being optimized. This corresponds to MMAP problems with MAP variables at the
roots and a single evidence node at a leaf. We provide a new reduction from MMAP problems
to MEU whose output satisfies these requirements. When combined with the SOGBOFA solver
this provides a novel inference algorithm, algebraic gradient-based solver (AGS), that can solve
general MMAP problems. AGS effectively uses a symbolic variant of BP with gradient search.
AGS provides an alternative to the mixed-product BP algorithm of [13] and the stochastic local
search algorithm of [20]. An experimental evaluation compares AGS to state of the art algorithms
for MMAP [14] and illustrates its potential in solving hard inference problems.

2 Preliminaries

Belief Propagation in Bayesian Networks: For our results it is convenient to refer to the BP al-
gorithm for directed graphs [21]. A Bayesian Network (BN) is given by a directed acyclic graph
where each node x is associated with a random variable and a corresponding conditional proba-
bility table (CPT) capturing p(x|parents(x)). The joint probability of all variables is given by∏
i p(xi|parents(xi)). In this paper we assume that all random variables are binary.

Assume first that the directed graph is a polytree (no underlying undirected cycles). For node x, BP
calculates an approximation of p(x|e), which we denote by BEL(x), where e is the total evidence
in the graph. Let π(x) ≡ p(x|e+) and λ(x) ≡ p(e−|x), where e+, e− are evidence nodes reachable
from x through its parents and children respectively. We use α to represent a normalization constant
and β to denote some constant. For a polytree, x separates its parents from its children and we have

BEL(x) = απ(x)λ(x) (1)

λ(x) =
∏

j∈children(x)

λzj (x) (2)

π(x) =
∑
w

p(x|w)
∏

k∈parents(x)

πx(wk) (3)

where λ() and π() incorporate evidence through children and parents respectively. In (3) the sum
variable w ranges over all assignments to the parents of x and wk is the induced value to the kth
parent. λzj (x) is the message that a child zj sends to its parent x and πx(wk) is the message that a
parent wk sends to x. The messages are given by

λx(wi) = β
∑
x

λ(x)
∑

wk:k 6=i

p(x|w)
∏
k 6=i

πx(wk) (4)

πzj (x) = α
∏
k 6=j

λzk(x)π(x) (5)

where in (4) wi is fixed and the the sum is over values to other parents wk. Since the nodes are
binary the messages have two values (i.e., λx(w = 0) and λx(w = 1)). The algorithm is initialized
by forcing π and λ of evidence nodes to agree with the evidence, setting π of root nodes equal to
the prior probability, and setting λ of leaves to (1,1), i.e., an uninformative value. A node can send
a message along an edge if all messages from its other edges have been received. If the graph is a
polytree then two passes of messages on the graph yield BEL(x) = p(x) for all x [21].

The loopy BP algorithm applies the same updates even if the graph is not a polytree. In this case
we initialize all messages to (1,1) and follow the same update rules for messages according to some
schedule. The algorithm is not guaranteed to converge but it often does and it is known to perform
well in many cases. The following property of BP is well known:
Lemma 1. If loopy BP is applied to a BN with no evidence, i.e., λ(x) = (1, 1) for all x at initial-
ization, then for any order of message updates and at any time in the execution of loopy BP, for any
node x, λ(x) ∝ (1, 1) and λx(w) is a constant independent of w for any parent of x. In addition, a
single pass upadting π messages in topological order converges to the final output of BP.

Proof. We prove the claim by induction. Assume that λ(x) = (o, o), for some value o, and consider
the next λ message from x. From Eq (4) we have

λx(wi) = β
∑
x

λ(x)
∑

wk:k 6=i

p(x|w)
∏
k 6=i

πx(wk) = βo
∑

wk:k 6=i

∏
k 6=i

πx(wk)
∑
x

p(x|w) = βo
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where to get the second equality we extract the constant λ(x) = o and reorder the summations. The
last equality is true because

∑
x p(x|w) = 1 and

∑
wk:k 6=i

∏
k 6=i πx(wk) = 1. Therefore, λx(wi) is

a constant independent of wi. Now from Eq 2 we see that λ(wi) = (1, 1) as well, and from Eq 5
and 3 we see that it suffices to update π messages in topological order.

ARollout and SOGBOFA: Stochastic planning is defined using Markov decision processes [22]. A
MDP [22] is specified by {S,A, T,R, γ}, where S is a finite state space, A is a finite action space,
T (s, a, s′) = p(s′|s, a) defines the transition probabilities,R(s, a) is the immediate reward of taking
action a in state s, and γ is the discount factor. A policy π : S → A is a mapping from states to
actions, indicating which action to choose at each state. Given a policy π, the value function V π(s)
is the expected discounted total reward E[

∑
i γ

iR(si, π(si)) | π], where si is the ith state visited by
following π (and s0 = s). The action-value function Qπ : S × A → R is the expected discounted
total reward when taking action a at state s and following π thereafter. In this paper we consider
finite horizon planning where the trajectories are taken to a fixed horizon h and γ = 1, i.e., no
discounting is used.

In factored spaces [1] the state is specified by a set of variables and the number of states is expo-
nential in the number of variables. Similarly in factored action spaces an action is specified by a set
of variables. We assume that all state and action variables are binary. Finite horison planning can
be captured using a dynamic Bayesian network (DBN) where state and action variables at each time
step are represented explicitly and the CPTs of variables are given by the transition probabilities. In
off-line planning the task is to compute a policy that optimizes the long term reward. In contrast, in
on-line planning we are given a fixed limited time t per step and cannot compute a policy in advance.
Instead, given the current state, the algorithm must decide on the next action within time t. Then
the action is performed, a transition and reward are observed and the algorithm is presented with
the next state. This process repeats and the long term performance of the algorithm is evaluated.
On-line planning has been the standard evaluation method in recent planning competitions.

AROLLOUT and SOGBOFA perform on-line planning by estimating the value of initial actions at
the current state s, Qπ(s, a), where a fixed rollout policy π, typically a random policy, is used in
future steps. The AROLLOUT algorithm [3] introduced the idea of algebraic simulation to esti-
mate values but optimized over actions by enumeration. Then [2] showed how algebraic rollouts
can be computed symbolically and that the optimization can be done using automatic differen-
tiation [6]. We next review these algorithms. Finite horizon planning can be translated from a
high level language (e.g., RDDL [24]) to a dynamic Bayesian network. AROLLOUT transforms
the CPT of a node x into a disjoint sum form. In particular, the CPT for x is represented in the
form if(c11|c12...) then p1 ... if(cn1|cn2...) then pn, where pi is p(x=1) and the cij are
conjunctions of parent values which are are mutually exclusive and exhaustive. In this notation cij
is a set of conjunctions having the same conditional probability p(x=1|c)=pi. The algorithm then
performs a forward pass calculating p̂(x), an approximation of the true marginal p(x), for any node
x in the graph. p̂(x) is calculated as a function of p̂(cij), an estimate of the probability that cij is
true, which assumes the parents are independent. This is done using the following equations where
nodes are processed in the topological order of the graph:

p̂(x) =
∑
ij

p(x|cij)p̂(cij) =
∑
ij

pip̂(cij) (6)

p̂(cij) =
∏

wk∈cij

p̂(wk)
∏

w̄k∈cij

(1− p̂(wk)). (7)

The following example from [2] illustrates AROLLOUT and SOGBOFA . The problem has three state
variables s(1), s(2) and s(3), and three action variables a(1), a(2), a(3) respectively. In addition we
have two intermediate variables cond1 and cond2 which are not part of the state. The transitions and
reward are given by the following RDDL expressions where primed variants of variables represent
the value of the variable after performing the action.

cond1 = Bernoulli(0.7)
cond2 = Bernoulli(0.5)
s’(1) = if (cond1) then ˜a(3) else false
s’(2) = if (s(1)) then a(2) else false
s’(3) = if (cond2) then s(2) else false
reward = s(1) + s(2) + s(3)
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Figure 1: Left: example of SOGBOFA graph construction. Right: Example of reduction from MMAP to MEU.
Original graph (top) and transformed graph (bottom).

AROLLOUT translates the RDDL code into algebraic expressions using standard transformations
from a logical to a numerical representation. In our example this yields:

s’(1) = (1-a(3))*0.7
s’(2) = s(1)*a(2)
s’(3) = s(2) * 0.5
r = s(1) + s(2) + s(3)

These expressions are used to calculate an approximation of marginal distributions over state and
reward variables. The distribution at each time step is approximated using a product distribution
over the state variables. To illustrate, assume that the state is s0 = {s(1)=0, s(2)=1, s(3)=0} which
we take to be a product of marginals. At the first step AROLLOUT uses a concrete action, for
example a0 = {a(1)=1, a(2)=0, a(3)=0}. This gives values for the reward r0 = 0 + 1 + 0 = 1 and
state variables s1 = {s(1)=(1 − 0) ∗ 0.7=0.7, s(2)=0 ∗ 0=0, s(3)=1*0.5 = 0.5}. In future steps it
calculates marginals for the action variables and uses them in a similar manner. For example if a1 =
{a(1)=0.33, a(2)=0.33, a(3)=0.33} we get r1 = 0.7+0+0.5 = 1.2 and s2 = {s(1)=(1−0.33)∗0.7,
s(2)= 0.7 * 0.33, s(3)=0∗0.5}. Summing the rewards from all steps gives an estimate of the Q value
for a0. AROLLOUT randomly enumerates values for a0 and selects the one with the highest estimate.

The main observation in SOGBOFA is that instead of calculating numerical values, as illustrated in
the example, we can use the expressions computing these values to construct an explicit directed
acyclic graph representing the computation steps, where the last node represents the expectation of
the cumulative reward. SOGBOFA uses a symbolic representation for the first action and assumes
that the rollout uses the random policy. In our example if the action variables are mutually exclu-
sive (such constraints are often imposed in high level domain descriptions) this gives marginals of
a1 = {a(1)=0.33, a(2)=0.33, a(3)=0.33} over these variables. The SOGBOFA graph for our exam-
ple expanded to depth 1 is shown In Figure 1. The bottom layer represents the current state and
action variables. Each node at the next level represents the expression that AROLLOUT would have
calculated for that marginal. To expand the planning horizon we simply duplicate the second layer
construction multiple times.

Now, given concrete marginal for the action variables at the first step, i.e., a0, one can plug in that
value into the computation graph and compute the value of the final Q node. This captures the
same calculation as AROLLOUT. In addition, the explicit graph allows us to compute the gradients
of the Q value with respect to the action variables, using automatic differentiation. We refer the
reader to [6] for details on automatic differentiation; the basic idea is similar to backpropagation of
gradients in neural network learning which can be generalized to arbitrary graphs. In this manner we
can perform gradient search over marginals for action variables in a0 and effectively select values
for the action variables at the first step. SOGBOFA includes several additional heuristics including
dynamic control of simulation depth, dynamic selection of gradient step size, maintaining domain
constraints, and a balance between gradient search and random restarts. Most of this is orthogonal
to the topic of this paper and we omit the details.
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3 AROLLOUT is Equivalent to BP

We first show that the computation of AROLLOUT can be rewritten as a sum over assignments.
Lemma 2. AROLLOUT’s calculation in Eq (6) and (7) is equivalent to (8) where W is the set of
assignment to the parents of x.

p̂(x) =
∑
W

p(x|W )
∏

k∈parents(x)

p̂(wk)wk(1− p̂(wk))1−wk . (8)

Proof. The sum in (8) can be divided into disjoint sets of assignments according to the cij they
satisfy. Consider one fixed cij . Let wl be a parent of x which is not in cij . Let W (cij) be the
assignments to the parents of x which satisfy cij , and W\wl

(cij) be the assignments to the parents
of x except for wl which satisfy cij . Since wl is not in cij , W\wl

(cij) is well defined. We have that∑
W∈W (cij)

p(x|W )
∏
k

p̂(wk)
wk (1− p̂(wk))

1−wk (9)

is equal to
∑

W\wl
(cij)

(
p(x|W,wl = 1)p̂(wl)

∏
k 6=l p̂(wk)

wk (1 − p̂(wk))
1−wk + p(x|W,wl = 0)(1 −

p̂(wl))
∏

k 6=l p̂(wk)
wk (1 − p̂(wk))

1−wk

)
. Now since wl is not in cij the assignment of wl does not

affect the probability of x. So for W ∈ W\wl
(cij) we have p(x|W,wl=1) = p(x|W,wl=0) =

p(x|W ) and therefore the above sum can be simplified to∑
W\wl

(cij)

p(x|W )
∏
k 6=l

p̂(wk)wk(1− p̂(wk))1−wk .

Applying the same reasoning to all individual wl /∈ cij , we get that Eq (9) is equal to∑
W∈wp(cij)

p(x|W )
∏
k∈cij

p̂(wk)wk(1− p̂(wk))1−wk

where wp(cij) is the set of assignments to variables in cij which satisfy cij , that is, we removed all
parents not in cij from the expression. Now, because cij is a conjunction, wp(cij) includes a single
assignment where if wk ∈ cij we have wk = 1 and if w̄k ∈ cij we have wk = 0. In addition, for
this assignment W we have that p(x = 1|W ) = pi. Therefore, the last expression simplifies to

pi
∏

wk∈cij

p̂(wk)
∏

w̄k∈cij

(1− p̂(wk)).

Finally, because the cij are mutually exclusive and exhaustive, the sum over the disjoint sets of
assignments is identical to the sum in (6).

Proposition 3. The marginals calculated by AROLLOUT are identical to the marginals calculated
by BP on the DBN generated by the planning problem, conditioned on the initial state, initial action
and rollout policy, and with no evidence.

Proof. By Lemma 1, λ(x) and λx(wi) are ∝ (1, 1) for all nodes. Therefore, backward messages do
not affect the result of BP and we can argue inductively going forward from roots to leaves in the
DBN. By Eq (1) and Lemma 1 we have BEL(x) = απ(x)λ(x) = π(x) where the last equality is
true because π(x) is always normalized. Therefore from Eq (3) we have

BEL(x) =
∑
w

p(x|w)
∏
k

πx(wk). (10)

Now, from Eq (5) and Lemma 1 we have
πx(wk) = π(wk) = BEL(wk) (11)

and substituting (11) into (10) we get

BEL(x) =
∑
w

p(x|w)
∏
k

BEL(wk). (12)

Inductively assuming BEL(wk = 1) =p̂(wk) and BEL(wk = 0)=1− p̂(wk), we can rewrite (12) as
BEL(x = 1) = p̂(x) =

∑
W p(x|W )

∏
k p̂(wk)wk(1− p̂(wk))1−wk , which is identical to (8).
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4 Algebraic Solver for Marginal MAP

Marginal MAP [20, 13, 11, 14] is a complex inference problem seeking a configuration of a subset
of variables that maximizes their marginal probability. Recall that the graph construction in SOG-
BOFA evaluates exactly to the value returned by AROLLOUT . Therefore, the result in the previous
section shows that SOGBOFA can be understood as using gradient search for the best action where
the evaluation criterion is given using BP but calculated symbolically. In this section, we show that
this approach can be used for MMAP yielding a novel solver for these problems.

The input to a MMAP problem is a Bayesian network G where the nodes in the network are divided
into 3 sets E,D, S standing for evidence nodes, MAP (or decision) nodes and sum nodes, with a
specification of values to evidence nodes E = e. The goal is to find argmaxD=d

∑
S=s p(D =

d, S = s, E = e). Anytime algorithms are typically scored using the log of marginal probability;
the score for solution D = d is Q = log

∑
S=s p(D = d, S = s, E = e). Current state of the art

exact algorithms use branch and bound techniques (e.g., [11]). Various approximation algorithms
for MMAP exist including mixed product belief propagation [13], an extension of BP that directly
addresses MMAP and is therefore closely related to the algorithms in this paper.

To make the connection more precise we show that the optimization problem in SOGBOFA is a
maximum expected utility (MEU) problem. In the graphical models literature such problems are
formalized using influence diagrams (ID). An influence diagram is a Bayesian network where two
additional types of nodes are allowed in addition to random variable nodes R. Decision nodes D
represent variables whose values (conditioned on parents) are being optimized, and value nodes V
are leaves. The IDs that arise in this paper (arising from SOGBOFA and later as the output of our
reduction) satisfy additional syntactic constraints: decision nodes do not have parents and there is a
single value node V . We restrict the discussion to such IDs. This avoids subtleties in defining the
optimization problem. In this case, given an ID the goal is to find argmaxD=dER=r(V |D = d) =
argmaxD=d

∑
R=r

∑
V=v v · p(V = v,R = r|D = d).

Consider SOGBOFA with a fixed rollout policy π and w.l.o.g. assume a single binary node V repre-
senting cumulative reward.1 For a start action a we have Q = p(V = 1|a, π) = E(V |a, π). Now
assuming a uniform prior over a we have p(V = 1|a, π) ∝ p(V = 1, a|π) and arg maxa p(V =
1|a, π) = arg maxa p(V = 1, a|π) = arg maxa

∑
S p(V = 1, a, S|π) where S are the state vari-

ables. It is obvious from the last expression that SOGBOFA can be seen to solve MEU for the
restricted class of IDs and that this is the same as a restricted version of MMAP problems, where
the structural constraints on a and V are given above. This implies:

Corollary 4. SOGBOFA can be directly used to solve Marginal MAP problem on graphs with parent-
less MAP nodes and only one evidence node at a leaf.

The question is whether we can use SOGBOFA for general MMAP problems. We next show how
this can be done. Mauá [15] gave a reduction from MMAP to maximum expected utility (MEU)
in influence diagrams (reduction 5.1) which satisfies our syntactic requirements. The reduction
preserves correctness under exact inference. However, with that construction there is no direct
forward path that connects decision nodes, downward evidence nodes, and the value node. Recall
that SOGBOFA uses forward propagation of marginals in the directed graph. If no such path exists
then downward evidence is ignored and the result of forward BP inference is not informative. We
give a new reduction that avoids this issue and in this way introduce a new algorithm for MMAP.

Reduction: Let the input for the MMAP problem be given by E,D, S as above. Without loss of
generality we may assume that each Ei ∈ E does not have any children. If it does we can first
disconnect the edges to its children and substitute the value of the evidence node directly into the
child’s CPT. The reduction performs two modifications on the original graph. (1) Each MAP node
Di ∈ D is replaced by three nodes: Din

i , Dout
i and Deq

i . Din
i has all inputs of Di and the same

CPT. Dout
i has no parents and it connects to all the outputs of Di. Finally both Din

i and Dout
i

are parents of Deq
i and the CPT for Deq

i specifies that Deq
i is true iff Din

i = Dout
i . (2) We add a

new leaf utility node V whose CPT captures a logical conjunction requiring that all evidence nodes
have their observed values and that all nodes Deq

i are true. Although V may have many parents
we can represent its CPT symbolically and this does not adversely affect the complexity of our

1There are standard reductions (see [13]) showing how to translate a general reward to a binary variable
whose expectations are proportional so that the optimization problems are equivalent.
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algorithm. The CPTs for all other nodes are unchanged except that a parent Di is changed to Dout
i .

The influence diagram problem is to find the setting for variables in {Dout
i } which maximize the

expected utility E[V |{Dout
i }] = p(V = 1|{Dout

i }). An example of this construction with one
evidence node E and one MAP node D is shown in Figure 1. We have:
Proposition 5. Let G1 represent the original MMAP problem, G2 the transformation into MEU,
and let E=e be the evidence for the MMAP problem and D=d an assignment to the MAP variables.
Then, pG1

(D=d,E=e) = EG2
[V |Dout=d].

Proof. (sketch) We illustrate how the claim can be proved for the example from Figure 1. In this
case, p(D=d,E=e) =

∑
A

∑
C p(A) p(D=d|A) p(C|D=d) p(E=e|A,D=d,C). Now in G2,

E[V |Dout=d] = p(Deq=1, E=e|Dout=d)

=
∑
A

∑
C

∑
Din

p(Deq=1|Din, Dout=d)p(A) p(Din|A) p(C|Dout=d) p(E=e|A,Dout=d,C).

Now replace the sum over Din ∈ {0, 1} with a sum over the cases Din=Dout=d and Din 6= Dout

and observe that p(Deq=1|Din, Dout=d) is 1 in the first case and 0 in the second. Therefore the last
expression can be simplified to∑

A

∑
C

p(A) p(Din=d|A) p(C|Dout=d) p(E=e|A,Dout=d,C)

which by construction is identical to the value for G1.

The proof for the general case follows along the same steps. The crucial point is to replace the sum
over Din

i into the cases where it is the same vs. not equal to Dout
i . This shows that the irrelevant

terms cancel out and the remaining terms are identical to the original ones.

The reduction allows us to solve general MMAP problems using the SOGBOFA heuristic:

AGS – Algebraic Gradient Based Solver for MMAP:

1. Given a MMAP problem G1 with evidence E = e, decision nodes D and sum nodes S use
the reduction to obtain a MEU problem G2 with utility node V and decision nodes Dout.

2. Generate the SOGBOFA graph GSOG from the MEU problem where decision nodes are
treated as action nodes and V is the Q node of the planning problem.

3. Use the gradient based optimizer in SOGBOFA (gradient ascent with random restarts) to
optimize the marginal probabilities of variables {Dout

i }.
4. Extract a discrete solution from the marginal probabilities by thresholding: Dout

i = 1 iff
p(Dout

i ≥ 0.5).
Corollary 6. AGS can be used to solve general Marginal MAP problems.

5 Experimental Validation

In this section, we explore the potential of AGS in solving complex MMAP problems. Specifically,
we evaluate the anytime performance of AGS and two natural baselines. The first is the Mixed
Product BP (MPBP) algorithm of [13]. MPBP uses belief propagation and is therefore related to
AGS, but in MPBP the search over MAP variables is integrated into the messages of BP and like
BP it can be derived from the corresponding optimization problem. The second algorithm is the
recently developed Alternating best-first with depth-first AND/OR search (AAOBF) [14]. AAOBF
interleaves best-first and depth-first search over an AND/OR search space to compute both anytime
solutions (corresponding to lower bounds) as well as upper bounds on the optimal MMAP value.
AAOBF was shown to have excellent anytime performance and dominate other algorithms.

For the evaluation we use several problems from the UAI competition 2008. The original challenge
problems were given for sum inference, specifying the network and evidence nodes. Following
previous work, we use these for MMAP by selecting a subset of the variables as MAP nodes. To
explore the performance of the algorithms we vary the proportion of MAP variables in each instance,
and for each fixed ratio we generate 20 MMAP problems by picking the MAP nodes at random.
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Figure 2: Experimental results on UAI instances. Each row shows results for one instance. The top row shows
results of one run. Other rows show results aggregated over 20 random choices of MAP nodes. The columns
correspond to proportion of MAP variables (0.5, 0.3, 0.2).

For AAOBF we use the implementation of [14] that can process the UAI competition problems di-
rectly. AGS requires CPTs as expressions and our implementation extracts such expressions from
the tabular representation of the UAI problems as a preprocessing step. This is not computation-
ally demanding because the tabular representation is naturally restricted to have a small number of
parents. We use our own implementation of MPBP, and for consistency the MPBP implementation
benefits from the same expression representation of CPTs as AGS. More specifically, we use the join
graph version of MPBP (algorithm 5 of [13]) and run it on the factor graph which is obtained from
the BN. Since the factor graph is not a cluster tree we are running loopy MPBP. The max clusters
of MPBP correspond to individual MAP variables, and sum nodes include both individual sum vari-
ables and factors in the original BN. Factor nodes and sum nodes perform the same computations
as in standard loopy BP. The Max cluster with node i calculates a message to factor j as follows:
first calculate the product of all incoming messages from factors other than j. Then, noting that
we have binary variables and thus only two entries in a message, zero out the smaller entry if it is
strictly smaller. MPBP keeps iterating over updates to nodes until it runs out of time or the maximal
change of the messages becomes smaller than 0.0001. While [13] introduce annealing and restarts
to improve the performance of this algorithm we do not use them here. Note that MPBP can get
into a “contradiction state” when the graph has logical constraints, i.e., messages can become (0,0)
or legal states are ruled out. AGS does not suffer from this problem. However, to enable the com-
parison we modified the UAI instances changing any 0 probability to 0.0001 (and 1 to 0.9999). The
implementation of AAOBF replaces every 0 with 0.000001 for similar reasons. The solutions of all
algorithms are evaluated off line using an exact solver which uses the same code base as AAOBF.

Figure 2 shows the results. Each algorithm is scored using log marginal probability. The plot shows
a relative score ct = at−b

at
where at is the score of algorithm a at time t and b is the best score

found by any of the algorithms for this instance. This guarantees that relative scores are between 0
and 1, where the best value is 0. When an algorithm finds an inconsistent solution (probability 0) or
does not find a solution we replace the score with 1. We show results for 3 problems, where for one
problem (top row) we show results for a single run and for two problems we show results aggregated
over 20 runs. Comprehensive results with individual runs and aggregated runs on more instances are
given in the supplementary material. Each column in Figure 2 corresponds to a different proportion
of MAP variables in the instance (0.5,0.3,0.2 respectively). The results for individual runs show
more clearly transitions between no solution and the first solution for an algorithm whereas this is
averaged in aggregate results. But the trends are consistent across these graphs. We see that AAOBF
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Figure 3: Experimental results on different proportion of MAP variables. Each row corresponds to one problem.
Each column corresponds to different running time, from left to right 1, 5 and 10 seconds.

has a larger initial overhead and AGS and MPBP are faster to find the first solutions and that AGS
performs better than MPBP. AAOBF is significantly affected by the complexity of the conditional
sum inference problems (i.e., evaluating the score of a specific MAP assignment). For the problems
with 50% of MAP variables (and only 50% sum variables) the complexity is not too high and the
search successfully finds high quality solutions. For these problems AAOBF dominates both AGS
and MPBP. On the other hand, with 70% and 80% of sum variables the summation problems are
harder and AAOBF is slower to find solutions. In this case AGS dominates as it finds reasonable
solutions fast and improves with time. To further illustrate the impact of summation difficulty we
run the algorithms in the same setup but with a fixed bound on run time varying the proportion of
MAP variables from 0.1 to 0.9. Figure 3 shows results for the same 3 problems averaged over 20
runs, for run time of 1,5,10 seconds in corresponding columns. Here, we clearly see the transition
in relative performance of the algorithms as a function of the proposition of MAP variables. We
also see that with shorter run time AGS dominates for a larger range of problems. To summarise,
given enough time AAOBF will find an optimal solution and can dominate AGS which is limited by
the approximation inherent in BP. However, with a limited time and difficult conditional summation
problems AGS provides a better tradeoff in finding solutions quickly.

6 Conclusions

The paper identifies a connection between a successful heuristic for planning in large factored spaces
and belief propagation. The SOGBOFA heuristic performs its estimation symbolically and through
that performs its search using gradients. This suggests a general scheme for approximate MMAP
algorithms where the MAP value is represented using an explicit computation graph which is op-
timized directly through automatic differentiation. The instantiation of this scheme in AGS shows
that it improves over the anytime performance of state of the art algorithms on problems with hard
summation sub-problems. In addition, while previous work has shown how inference can be used
for planning, this paper shows how ideas from planning can be used for inference. We believe that
these connections can be further explored to yield improvements in both fields.

Acknowledgments

This work was partly supported by NSF under grant IIS-1616280. Some of the experiments in this
paper were performed on the Tufts Linux Research Cluster supported by Tufts Technology Services.

9



References
[1] Craig Boutilier, Thomas Dean, and Steve Hanks. Planning under uncertainty: Structural assumptions and

computational leverage. In Proceedings of the Second European Workshop on Planning, pages 157–171,
1995.

[2] Hao Cui and Roni Khardon. Online symbolic gradient-based optimization for factored action MDPs. In
Proc. of the International Joint Conference on Artificial Intelligence, 2016.

[3] Hao Cui, Roni Khardon, Alan Fern, and Prasad Tadepalli. Factored MCTS for large scale stochastic
planning. In Proc. of the AAAI Conference on Artificial Intelligence, 2015.

[4] Carmel Domshlak and Jörg Hoffmann. Fast probabilistic planning through weighted model counting. In
Proc. of the International Conference on Automated Planning and Scheduling, pages 243–252, 2006.

[5] Thomas Furmston and David Barber. Variational methods for reinforcement learning. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, AISTATS, pages 241–248, 2010.

[6] Andreas Griewank and Andrea Walther. Evaluating derivatives - principles and techniques of algorithmic
differentiation (2. ed.). SIAM, 2008.

[7] Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon MDPs. In Proc. of
the International Conference on Automated Planning and Scheduling, 2013.

[8] Igor Kiselev and Pascal Poupart. A novel single-dbn generative model for optimizing POMDP controllers
by probabilistic inference. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 3112–
3113. AAAI Press, 2014.

[9] Andrey Kolobov, Peng Dai, Mausam Mausam, and Daniel S Weld. Reverse iterative deepening for finite-
horizon MDPs with large branching factors. In Proc. of the International Conference on Automated
Planning and Scheduling, 2012.

[10] Junkyu Lee, Radu Marinescu, and Rina Dechter. Applying search based probabilistic inference algorithms
to probabilistic conformant planning: Preliminary results. In Proceedings of the International Symposium
on Artificial Intelligence and Mathematics (ISAIM), 2016.

[11] Junkyu Lee, Radu Marinescu, Rina Dechter, and Alexander T. Ihler. From exact to anytime solutions
for marginal MAP. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 3255–3262.
AAAI Press, 2016.

[12] Qiang Liu and Alexander T. Ihler. Belief propagation for structured decision making. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence (UAI), pages 523–532, 2012.

[13] Qiang Liu and Alexander T. Ihler. Variational algorithms for marginal MAP. Journal of Machine Learning
Research, 14(1):3165–3200, 2013.

[14] Radu Marinescu, Junkyu Lee, Alexander T. Ihler, and Rina Dechter. Anytime best+depth-first search for
bounding marginal MAP. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
pages 3775–3782, 2017.
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