
Stochastic Planning with Lifted Symbolic Trajectory Optimization

Hao Cui
Tufts University

Hao.Cui@tufts.edu

Thomas Keller
University of Basel, Switzerland

tho.keller@unibas.ch

Roni Khardon
Indiana University, Bloomington

rkhardon@iu.edu

Abstract
This paper investigates online stochastic planning for prob-
lems with large factored state and action spaces. One promis-
ing approach in recent work estimates the quality of applica-
ble actions in the current state through aggregate simulation
from the states they reach. This leads to significant speedup,
compared to search over concrete states and actions, and suf-
fices to guide decision making in cases where the perfor-
mance of a random policy is informative of the quality of
a state. The paper makes two significant improvements to
this approach. The first, taking inspiration from lifted belief
propagation, exploits the structure of the problem to derive
a more compact computation graph for aggregate simulation.
The second improvement replaces the random policy embed-
ded in the computation graph with symbolic variables that
are optimized simultaneously with the search for high quality
actions. This expands the scope of the approach to problems
that require deep search and where information is lost quickly
with random steps. An empirical evaluation shows that these
ideas significantly improve performance, leading to state of
the art performance on hard planning problems.

Introduction
This paper investigates online stochastic planning for prob-
lems with factored state and action spaces. Such problems
arise, for example, when multiple units can operate in par-
allel to achieve a joint objective. These problems are often
modeled using factored Markov decision processes (MDP)
where a state is specified by a set of variables, and similarly
for actions, leading to combinatorially large state and action
spaces. Some of the best recent methods for such problems
are based on real-time heuristic search (Kolobov et al. 2012;
Keller and Helmert 2013).

A related but distinct effort is given by the SOGBOFA al-
gorithm (Cui and Khardon 2016), which extends the well-
known rollout algorithm (Tesauro and Galperin 1996). The
rollout algorithm performs simulations that start with a given
action and are followed by a predefined policy. The quality
of each applicable action is estimated by computing the av-
erage of the cumulative reward of multiple simulations that
start with that action. SOGBOFA builds an explicit compu-
tation graph that allows it to improve over the rollout al-
gorithm in two important ways. First, it replaces multiple

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simulations over concrete states and actions with a single
symbolic aggregate simulation with random rollouts. Sec-
ond, the explicit computation graph allows the usage of au-
tomatic differentiation and therefore gradient search can be
used to select the best action, avoiding the need to enumerate
actions.

This allows SOGBOFA to plan in large scale planning
problems with factored state and action spaces where ac-
tion enumeration is infeasible. This approach shows excel-
lent performance on problems where the aggregate simula-
tion provides a significant speedup over concrete search and
where aggregated information offers good guidance for on-
line planning. On the other hand, although the simulation
is in aggregate, the algorithm still works with a grounded
problem graph and does not take full advantage of problem
structure. In addition, as shown by Cui et al. (2015), in some
domains random rollouts as used by SOGBOFA are not infor-
mative leading to bad planning performance.

We introduce two new ideas that show how these issues
can be addressed while still maintaining the advantage of ag-
gregate simulation. Our first contribution is motivated by the
recent observation (Cui, Marinescu, and Khardon 2018) that
aggregate simulation is closely related to belief propagation
(BP). Using this we propose a lifted version of SOGBOFA,
taking inspiration from lifted BP. The idea in lifted BP is to
restructure the computation to avoid repeated messages in
the algorithm. We show that the same effect is obtained in
SOGBOFA using a simple modification of the construction
of the computation graph. Thus in our case lifting is easy to
implement and has low overhead, allowing us to take advan-
tage of structure when it exists without significant overhead
in the general case.

The second contribution introduces the idea of confor-
mant approximation for aggregate simulation. The quality
of the approximation of SOGBOFA is limited by the fact that
it rolls out a random policy. We propose a conformant ap-
proximation that learns a fixed sequence of aggregate actions
to be used for rollout from the current state. The choice of
these aggregate actions is optimized simultaneously with the
search for the next action to execute, using the same com-
putation graph and gradient computation. This expands the
scope of SOGBOFA to problems that require deep search and
where information is lost quickly with random steps.

In addition to these contributions we generalize SOGBOFA

Erratum: This is an updated version of the paper (updated 5/2019). A script preparing challenge problems in the IPC 2018 (specifically the
script that compiles enum-valued into binary fluents which are used by our system) had an error. This was corrected and the numerical
scores/results in Table 1 were updated. The discussion of the results and the conclusions are not affected by this.

to handle a large set of state and action constraints in a man-
ner that integrates well with the search through aggregate
simulation. This enables the application of SOGBOFA to a
larger benchmark set, including the problems from the re-
cent International Planning Competition (IPC) 2018 that are
used in the empirical evaluation. The results show that Lifted
Conformant SOGBOFA has state-of-the-art performance on
hard planning problems and achieves a higher IPC score
than the planner with the highest score in the competition.

Aggregate Simulation
Stochastic planning can be formalized using MDPs (Puter-
man 1994) in factored state and action spaces. In factored
spaces (Boutilier, Dean, and Hanks 1995) states are com-
plete variable assignments for a set of state variables V , and
actions are complete variable assignments for the set of ac-
tion variables A. In this paper we assume that state and ac-
tion variables are binary. We write S for the set of states, A
for the set of actions and s[v] or a[v] for the value of vari-
able v in state s or action a. We denote actions where exactly
one action variable ai is true with ai. Planning with a finite
horizon H from an initial state sI can be captured using a
dynamic Bayesian network (DBN) where state and action
variables are represented explicitly and the conditional prob-
ability tables (CPT) of state variables and the reward R ∈ R
of applying action a in state s are repeated at each time step.

The planning model is given in a high-level description
language from which one can extract the corresponding
DBN. Here we focus on RDDL (Sanner 2010) as in the im-
plementation of SOGBOFA but the ideas work for any such
language. A planning problem is specified via a set of tran-
sition functions T for each state variable v ∈ V condi-
tioned on actions, a set of constraints P , and the reward
R. We note that some models integrate action preconditions
into the transitions functions, but IPC 2018 introduced the
use of action preconditions as a separate component of the
constraints. We give an example with preconditions as con-
straints but the approach handles both formulations in the
same manner.

The transition function tv ∈ T for v ∈ V is translated
into a set of mutually exclusive and exhaustive conditional
effects tv = {c1 B p1, . . . , cn B pn} where pi is P(v=>)
and the ci are conjunctions over the variables in V and A
and possibly next state variables V ′.1 Constraints P include
both action constraints and action preconditions. Each con-
straint p ∈ P is a propositional formula over V and A. An
action a ∈ A is applicable in state s ∈ S iff s, a |= p
for each p ∈ P , and the application of an applicable ac-
tion a in s leads to the successor state s′ where s′[v] is true
with probability tv(s, a), where tv(s, a) is the unique pi for
which s, a |= ci. Correlation among next state variables is
achieved by allowing ci to depend on V ′, where the depen-
dence among V ′ variables is acyclic. Finally, the reward R
is provided as an arithmetic expression over V and A.

1To avoid computational burden, the implementation of SOG-
BOFA skips simplification of tv into a disjoint set of conjunctions
and allows for more complex ci. However, its approximate correct-
ness properties discussed below require this preprocessing.

Example 1. As running example, we use the MDP with V =
{v1, v2, v3}, A = {a1, a2, a3}, T = {tv1 , tv2 , tv3}, P =
{p1, p2, p3} and sI = {v1 → 0, v2 → 1, v3 → 0} with

p1 := a1 =⇒ (v2 ∨ v3),
p2 := a2 =⇒ (v2 ∨ v3),
p3 := a1 + a2 + a3 ≤ 1,

tv1 := {a1 B 1,¬a1 B s[v1]},
tv2 := {a2 B 0.1,¬a2 B 0},
tv3 := {a3 B 0.5,¬a3 B 0},
R := v1 − (6 · a1 · v1).

In the example p1, p2 are action preconditions but p3 is
an action constraint. The objective is to compute a policy π
that maximizes the expected reward V π(sI) over H steps.
In our example, an optimal policy executes noop in all states
s where v1 holds, executes a1 if s |= (v2 ∨ v3)∧¬v1 and a3
otherwise. Solving factored MDPs is computationally hard
and off-line computation of a policy is often intractable in
practice. On-line planning is an alternative approach where
planning for the current state with a fixed time limit t is in-
terleaved with the execution of the taken decision.

The rollout algorithm of Tesauro and Galperin (1996) per-
forms lookahead from the current state s under a given base-
line policy π. For each action that is applicable in s, it gener-
ates a set of trajectories that start with a and follow π after-
wards. The cumulative reward of each trajectory constitutes
a random sample of the action-value function Qπ(s, a). The
algorithm averages the cumulative rewards for each applica-
ble action and executes the action maximizing this value.

Although this idea is simple and effective in many cases, it
has two computational difficulties. First, generating enough
trajectories that provide an accurate estimate of the action-
values can be expensive. Second, enumerating all actions
applicable in the current state is infeasible in large action
spaces. AROLLOUT (Cui et al. 2015), short for Algebraic
Rollout, uses aggregate simulation to address the first issue.

AROLLOUT transforms the transition functions tv =
{c1B p1, . . . , cnB pn} into disjoint sum form

∑n
i=1(ci · pi)

and the Boolean expressions ci into algebraic expressions
using standard transformations from a logical to a numer-
ical representation. Instead of simulating individual trajec-
tories, AROLLOUT approximates the state distributions in a
simulation by computing marginal probabilities over indi-
vidual variables. In each forward step, it calculates an ap-
proximation p̂(v) of the true marginal p(v) for each v ∈ V .
In particular, p̂(v) of state variable v that depends on the
state and action variables x1, . . . , xk (i.e., x1, . . . , xk occur
in tv) is calculated as a function of p̂(x1), . . . , p̂(xk) un-
der the assumption that the xi are independent. For exam-
ple, if the disjoint sum expression for x3 is (x1 ∧ ¬x2) ·
0.5 + ¬x1 · 0.6 + (x1 ∧ x2) · 0.7 we calculate p̂(x3) =
p̂(x1)·(1−p̂(x2))·0.5+(1−p̂(x1))·0.6+p̂(x1)·p̂(x2)·0.7.

The simulation in SOGBOFA (Cui and Khardon 2016)
takes this idea one step further. SOGBOFA exploits the fact
that it is possible to use the expressions to construct an
explicit directed acyclic graph (DAG) that represents ex-
actly the same computation steps. We call this the SOG-
BOFA graph. The SOGBOFA graph represents the action for

the current time step as a symbolic input. Given an instanti-
ation for the action, evaluating the computation graph per-
forms the same calculation as AROLLOUT. If the model
is specified with separate action preconditions, each occur-
rence of action variable ai is replaced with ai ∧ pi where
pi is the conjunction of conditions required by ai. Action
constraints (other than preconditions) are ignored in the con-
struction of the graph and are handled separately. Finally, to
support domains whose conditions include numerical equal-
ity tests as in (Exp == k) with differential functions we
replace such expressions with σ(Exp− k+0.5)− σ(Exp−
k − 0.5) where σ(a) = 1/(1 + e−a) is the well known sig-
moid function.

Figure 1 (left) shows the basic form of the SOG-
BOFA graph with depth 3 for our running example. For vi-
sual clarity Boolean expressions have not been converted to
their algebraic counterparts. The figure illustrates how the
SOGBOFA graph is built from the transition functions for v1,
v2 and v3 and the reward formula (which are marked with
different colors in the first layer of the graph). For instance,
the value of v1 in the second layer is represented by an ad-
dition node with two parents: a conjunction that encodes
(a1 ∧ p1) and a multiplication that encodes ¬(a1 ∧ p1) · v1.
This translates to the disjoint sum form of tv1 . Additional
time steps are added to the SOGBOFA graph under the as-
sumption that the random policy is rolled out, i.e., SOG-
BOFA uses a symbolic representation only for the first ac-
tion and considers constant values for all further action vari-
ables. In our example, precondition p3 can only hold if ac-
tion variables are mutually exclusive, which gives marginals
of a1 = a2 = a3 = 1

3 for rollout actions. All further layers
are copies of layer two, with the exception of the last, where
only nodes relevant for the action-value estimate are created.

The graph as depicted in Figure 1 (left) is meant to il-
lustrate the compilation of the high-level MDP description
into a graph. But this graph is not constructed by the sys-
tem. SOGBOFA actually builds a graph for a specific state s
(whose state variables are binary valued) and simplifies any
immediate computations such as 0∗x = 0, 1∗x = x, 0+x = x
or operations on two constants. Figure 1 (middle) shows the
graph that is actually built by SOGBOFA for the initial state
sI of our running example. Using concrete values for the
state variables in the leaves simplifies the graph, but most of
the size reduction appears close to the leaves. In our running
example, almost all nodes from the first layer are simplified,
but with the exception of the blue node at the top right which
simplifies the multiplication of two constants, the two graphs
are identical beyond the first layer.

The Basic SOGBOFA Algorithm
The main idea in SOGBOFA is to use the computation graph
to search over the action for the first step using gradient
based search. This avoids enumeration of actions and tackles
the second computational difficulty in the rollout algorithm.
The SOGBOFA graph that is built for this purpose represents
Qπ(s, a) as a function of the action variables a1, . . . , an that
encode a. Once the graph is created, SOGBOFA initializes
random values for a1, . . . , an. Then, at a high level, SOG-
BOFA can be seen to iteratively repeat the following steps:

1. propagate values from leaves to root to compute Qπ(s, a)
2. compute gradients for all nodes
3. take a gradient ascent step for a1, . . . , an
and when deliberation time runs out, it picks the action with
the best Q value. We refer the reader to (Cui and Khardon
2016) for complete details on the algorithm. In the follow-
ing, we repeat details necessary to provide sufficient context
for the paper.
Gradient based search: SOGBOFA calculates gradients us-
ing the method of automatic differentiation (Griewank and
Walther 2008) and uses the gradients to update the values
for action variables. In the SOGBOFA graph of our running
example in Figure 1 (middle), the variables that are opti-
mized are depicted in red. We use the reverse accumulation
method that has linear complexity in the size of the DAG
to calculate gradients for all nodes in the graph. The SOG-
BOFA implementation optimizes step size, and combines a
stopping criterion for gradient search with random restarts
to improve this process.
Maintaining action constraints: Gradient updates allow
the values of marginal probabilities to violate the legal [0, 1]
range as well as violate explicit constraints on legal actions.
SOGBOFA supports sum constraints of the form

∑
ai ≤ B,

as illustrated by p3 in our running example. This is typi-
cal, for example, in high level representations that use 1-of-
k representation for actions. For this we use the projected
gradient ascent algorithm (Shalev-Shwartz 2012), where pa-
rameters are projected into the legal region after each update.
Transforming aggregate actions to concrete actions:
Once the search is complete we have a values for a1, . . . , an.
However, these values are numerical marginal probabilities
for each action variable, whereas only a concrete action can
be executed. SOGBOFA selects a concrete action from the
marginal probabilities using a greedy iterative algorithm. In
particular, we first sort action variables by their marginal
probabilities. We then add active action bits as long as their
marginal probability is not lower than marginal probability
of random rollout and the constraints are not violated.
Action Evaluation Step: In addition to the above, we use
action selection to improve quality estimates. In particular
the Qπ(s, a) values computed above are associated with the
aggregate action a, but the aggregate action induces a con-
crete action concrete(a) selected by the greedy algorithm.
Therefore, we associate each aggregate action that is visited
in the gradient search with concrete(a) and record the more
reliable value of Qπ(s, concrete(a)). These scores do not
affect the gradient search, but final action selection is based
on the values of the induced concrete actions.
Dynamic simulation depth: In principle, the creation of the
SOGBOFA graph should be such that the number of graph
layers matches the number of remaining steps to the horizon.
However, if the horizon is large and/or each layer contains
a large number of nodes, the evaluation of Qπ(s, a) and the
gradient computation are expensive so that the number of
actions explored in the search might be too small. SOGBOFA
therefore estimates the required time to calculate gradients
and perform updates for one node. With this, the number

Figure 1: Three layers of the SOGBOFA graph of our running example. Left: basic construction. Middle: simplified graph for
input state {v1→ 0, v2→ 1, v3→ 0} as built by SOGBOFA . Right: lifted graph. Colored nodes are referred to in the text.

of layers in the DAG is selected such that at least 500 up-
dates on action marginals are possible with the time limit
t. This fact is important to understanding the experimental
evaluation in this paper because a compression of the SOG-
BOFA graph can lead to a deeper search or to an increase in
search steps and both can affect planning performance.

Lifted SOGBOFA

Although originally developed as a heuristic, recent work
showed that the approximate value computed by the SOG-
BOFA graph is closely related to belief propagation. To ex-
plain this, we consider a finite-horizon MDP, and the cor-
responding DBN with evidence specifying current state and
action, uniform priors for future actions and no further evi-
dence. The connection is given by:

Proposition 1. (Cui, Marinescu, and Khardon 2018)
The marginals for state and reward variables computed by
AROLLOUT and embedded in the SOGBOFA graph are ex-
actly the same as the messages produced in a forward pass
of belief propagation on the corresponding DBN. Moreover,
because the DBN has no downstream evidence, BP has no
backward messages and it converges in one pass. Therefore,
the result of AROLLOUT is identical to the result of BP.

Cui, Marinescu, and Khardon (2018) used this observa-
tion to show how planning algorithms can be used for solv-
ing marginal MAP inference problems. In this paper, we ex-
ploit the relationship to show how improved versions of BP
can improve planning performance. In particular, we con-
sider Lifted BP which aims to calculate the same solution
as BP but do so more quickly by avoiding identical mes-
sages. The idea was first introduced by Singla and Domingos
(2008) who showed how to extract the equivalence classes
of messages from a structured model, specifically a Markov
logic network. Each type of message is then computed only
once and propagated as a power of the original individual
message, replacing the product of identical messages. Ker-
sting, Ahmadi, and Natarajan (2009) showed how repeated
structure can be extracted from any ground Markov network
by simulating only the process of BP without calculating the

messages. The messages are then grouped and propagated
similarly. Although this was developed for undirected mod-
els, the same ideas apply to directed models.

The crucial aspect in our context is the fact that there are
no backward messages. Thanks to this we can focus on iden-
tical messages in a forward pass of BP for directed models,
or equivalently in the computation path of AROLLOUT. Our
main observation is that the pre-computation of Kersting,
Ahmadi, and Natarajan (2009) can be considerably simpli-
fied in this case. In lifted BP, messages are identical if and
only if their parents are identical and the local CPT structure
is identical. For the computation graph of SOGBOFA this is
easily tested. The computation of marginals for two nodes in
the graph is identical if and only if their parents are identical
and the local expression is identical and this can be tested
dynamically at construction time at the syntax level. This
test is just the standard notion of dynamic programming. The
discussion gives the following observation and algorithm.
Observation 2. One can detect identical BP messages for
the computation of SOGBOFA by implementing the graph
construction using dynamic programming.

Lifted SOGBOFA algorithm:
We run the algorithm in exactly the same manner as SOG-
BOFA except for the construction of the SOGBOFA graph,
which is modified as follows:

1. If an identical node with same parents and same oper-
ation has been constructed before return that node.

2. Replace a node y = x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸
k times

with y = xk for

multiplication and y = k · x for addition.
3. Otherwise, construct the node as in SOGBOFA.

Step (2) in the modified algorithm generates the count-
ing expressions that are at the core of lifted inference algo-
rithms. We emphasize that the lifting construction reorders
and groups the computations but computes exactly the same
function. Similarly, the gradients on the lifted graph w.r.t.
action variables are identical.

For our running example, the differences between SOG-
BOFA and lifted SOGBOFA graphs are highlighted with the
green nodes in the middle and right columns of Figure 1
which encode the same part of the MDP. We observe a sig-
nificant reduction even in this tiny example. Saving is due to
repeated sub-expressions and due to the same constant for
different action variables feeding into similar expressions.
We emphasize that constant nodes with the same value are
not duplicated in the implementation. They are separated in
the figure for visual clarity.

We note three differences between this algorithm and
lifted BP. First, similar to the work of Kersting, Ahmadi, and
Natarajan (2009) and unlike the work of Singla and Domin-
gos (2008), our algorithm must first process the ground net-
work, i.e., its complexity is linear in the size of the original
ground computation graph. It is interesting to explore con-
structions that go directly from the relational planning prob-
lem description to the lifted SOGBOFA graph, but we do not
pursue this here. One might worry that spending linear time
on the construction is too costly if we have only one pass of
messages on the graph. However, because we evaluate and
calculate gradients using the same lifted SOGBOFA graph
many times during optimization, the effect of a compressed
computation graph can be significant. The second difference
is due to the inputs to the two algorithms. SOGBOFA uses
algebraic expressions whereas lifted BP uses tabular CPTs.
SOGBOFA’s computation is potentially more structured than
lifted BP because lifting can occur at sub-CPT level. The
third difference is that because SOGBOFA treats the action
variables as symbols for the purpose of optimization, they
are treated as having a different CPTs from the perspective
of lifting. Summarizing this discussion we have:

Proposition 3. The SOGBOFA graph of Lifted SOGBOFA is
at least as compressed as the message structure in Lifted BP
when run on the DBN generated by the planning problem,
conditioned on the initial state and rollout policy, with no
evidence, and where action variables have distinct CPTs.

Conformant SOGBOFA

The basic rollout algorithm evaluates an action by first ap-
plying it and then estimating the value of the next state by a
rollout of a fixed policy π (and averaging this process over
multiple runs). The success of this approach relies on get-
ting informative values from the rollout simulation using
π. Such informative values need to distinguish high quality
states from low quality states, or at least correctly rank such
pairs of states. This obviously holds if the rollout policy is
an optimal policy. However, failing that, the hope is that any
reasonable policy will give some useful signal to distinguish
the quality of states. SOGBOFA uses a random policy for roll-
out actions and in many domains even this seems to provide
enough information to guide action selection.

However, it was already pointed out for ARollout (Cui
et al. 2015) that in some problems rolling out the random
policy masks crucial differences between values of states.
They illustrate this point by the ELEVATORS domain from
IPC 2011 where a reward is given for delivering passengers
to their destination floor, but a large penalty is given if a

passenger is transported in the wrong direction. In this case,
rolling out the random policy (whether aggregate or not) in-
curs a large penalty when a passenger is in the elevator and
states with no passengers in elevators appear better than ones
with passengers. As a result SOGBOFA never chooses to al-
low passengers into elevators. The same phenomenon can be
illustrated with our running example. Here, an optimal pol-
icy aims to make v1 true by executing a1, and then never
executes a1 again. The policy collects a reward of 1 in all
future states. However, if the random policy is rolled out, a1
is simulated with probability 1

3 , and the reward on a layer
where v1 is true is 1− (6 · 13 ·1) = −1 and hence worse than
the reward of 0 for a state where v1 is not true.

To avoid such pitfalls, the natural approach would be to
use an informed rollout policy. Since we deal with domain-
independent planning and do not have such a policy, we aim
to learn the rollout policy during the planning process. How-
ever, this is difficult for several reasons and our prior work
in this direction has not shown empirical success (Cui and
Khardon 2016). In the following, we explain why using a
rollout policy is not useful for aggregate states, and motivate
the conformant solution.

We first note that unless the reward function (or goal) is
put explicitly into the description of the state, an optimal
rollout policy depends on the reward and therefore it is not
transferable across different planning instances.2 This means
that the learned rollout policy will be used for a single prob-
lem instance. On the other hand, the setting of online plan-
ning typically does not allow for sufficient training trials to
learn a full policy. Therefore, this approach is not useful un-
less one solves the same instance multiple times possibly
with different start states. The latter is the typical setting in
reinforcement learning but not in planning.

More importantly, as we argue next, a rollout policy is not
useful with aggregate states. In this case, even if the roll-
out policy is a map from states to actions, it cannot see the
concrete state in the simulation. Therefore, the rollout policy
maps an aggregate state to an action. Moreover, the aggre-
gate state which is observed by the policy is a determinis-
tic function of three arguments: the current state, the rollout
policy and the number of remaining steps. In other words if
the start state is fixed then the policy can be seen to map the
step number to an action, or simply to produce a sequential
plan. We therefore have:

Observation 4. When using simple aggregate simulation
(i.e., if the rollout policy can only observe a product dis-
tribution over state variables) from a single start state, each
optimal non-stationary rollout policy is a linear plan.

This motivates the use of conformant solutions that use a
linear plan for rollout actions. That is, the process of eval-
uating the first action also chooses a linear rollout plan that
best supports that first action.3 This can be supported with

2The work of Khardon (1999) shows how embedding the goal
into the state allows for generalized policies.

3The rollout policy is not used to control the MDP, but only to
improve the search, so this is technically different from conformant
planning. But we borrow the name due to the use of the linear plan.

SOGBOFA with minor modifications. We build the SOG-
BOFA graph exactly as before (either lifted or non-lifted) ex-
cept that trajectory action variables, and the corresponding
nodes in the graph, are treated differently. Instead of assign-
ing these nodes numerical values imposed by the random
policy we retain them as symbolic variables and optimize
them in the same manner as the first action. When using a
sequential rollout plan, trajectory action nodes are leaves of
the SOGBOFA graph and they can be treated in the same man-
ner as actions for the first step. Note that reverse mode auto-
matic differentiation supports calculation of gradients w.r.t.
all nodes with the same time complexity so all that is needed
is to identify the variables that are optimized and there are
no significant changes in the algorithm or run time.

For our running example the SOGBOFA graph for the lifted
conformant construction (not shown) is almost identical to
the lifted graph. The only difference is that one of the nodes
that was unified before is now separated out. Specifically,
this happens because a1∧p1 and a2∧p1 which were identical
when a1 and a2 had the value 0.33 are now distinct.

The use of conformant actions raises another subtle as-
pect. Recall that SOGBOFA searches over aggregate actions
and uses gradients over this space but in the action evalu-
ation step an aggregate action is scored by selecting a con-
crete binary action and computing its value. This was argued
to add robustness to the search, because the actions that are
actually used are binary. This argument does not hold here
– rollout actions are not used for control, but only for evalu-
ating the quality of the first action. In addition, an aggregate
action captures a distribution over actions which is better
suited for a distribution over states represented by the aggre-
gate state. We therefore keep rollout actions in their aggre-
gate form in the evaluation step. In summary, this yields the
following algorithm:

Conformant SOGBOFA algorithm: We run the algorithm
in exactly the same manner as (Lifted) SOGBOFA except
for the following 3 changes:

1. The SOGBOFA graph is constructed as before except
that all action variables are symbolic variables.

2. The gradient step is performed over all action vari-
ables.

3. In the action evaluation step, the aggregate action in
the lowest layer is converted to a concrete action, but
all other actions remain aggregated.

Handling Constraints
The SOGBOFA algorithm supports basic sum constraints∑
ai ≤ B that enable simple specification of mutually ex-

clusive actions. The basic scheme, projected gradient ascent,
is to first take a gradient step and then fix the outcome to sat-
isfy the action constraints. We next introduce techniques for
handling a much larger set of constraints in a manner which
agrees with aggregate simulation and the action selection
mechanism described above. This increases the applicability
of the algorithm and specifically enables the experiments on
domains from the International Planning Competition (IPC)

2018. These constraints are read from a high level specifica-
tion in RDDL and parsed into the cases below.

The first type of constraints is an artifact of a change in
the specification language of the IPC. Earlier RDDL mod-
els integrated action preconditions into the transition func-
tion. In this case, if an action is applied when its precondi-
tions are violated it is effectively a no-op. IPC 2018 moved
preconditions to a separate section with constraints of the
form [action ⇒ condition] and as a result when an action
is applied when its preconditions are violated the simula-
tor crashes and the algorithm fails. To support this we treat
preconditions differently during action optimization and ex-
ecution. Consider a ground precondition [ai ⇒ C] where ai
is an action variable andC is a formula. For optimization we
modify the transition model by replacing every occurrence
of ai with (ai ∧ C). This effectively treats actions with vio-
lated preconditions as no-op. This is applied at all levels of
the SOGBOFA graph. During execution, action bits that vio-
late preconditions for first action are fixed at 0 during search
and therefore not selected.

While duplicating the precondition in the transition is ex-
pensive this is necessary for correctness and it is not clear
how to automatically integrate preconditions into an alge-
braic form of the model otherwise. However, note that this
is handled naturally by the lifted algorithm because nodes
for the precondition are generated only once in the compu-
tation graph. The compression of lifting is not restricted to
the use of explicit preconditions. This can be seen, for exam-
ple, in the experimental results for the ELEVATORS domain
whose specification uses the standard encoding.

The second type includes sum constraints
∑
ai ≤ B

which are supported by projection as described above.
The third type are action forcing constraints. These con-

straints include an implication, [condition ⇒ RHS], whose
right hand side is a single action bit aj or a disjunction of
such bits ∨ai, or similarly constraints of the form

∑
ai ≥ 1

and
∑
ai = 1. All these require the selection of (at least

one) action bit to be true. These constraints are handled as
follows. We first evaluate the condition to a value v. In a con-
crete state this evaluates to 0 or 1 and in an aggregate state
it evaluates to (an approximation of) the probability that the
condition holds. Now, for the case with a single forced action
bit, we replace the marginal probability p for for the corre-
sponding aj by p ← max{p, v}. Note that if v = 0 then
p does not change and if v = 1 then p = 1 which means
that action selection mechanism will pick this action vari-
able first, so we comply with the forced action constraint. In
an aggregate state the effect is to increase p to be as high as
the probability v that the condition holds. This implementa-
tion supports the conformant algorithm in the same manner
as the action of the first step so no distinction is needed.

For the case of an implied disjunction of action variables
we first evaluate the condition to a value v. We then pick
the ai with the highest marginal probability p among the
ones in the disjunction and replace it with max{p, v}. As
with forced actions, if the condition is true then we force at
least one of the relevant action variables to be true as well.
With aggregate states we get a correction to the marginal
probabilities on action variables.

The fourth type includes constraints of the form [⇒
RHS], that is, type 3 constraints with an empty condition.
If we use the implementation of the previous paragraph in
aggregate states this will force at least one action variable to
be 1 and if the constraint is

∑
ai = 1 the trajectory actions

in conformant SOGBOFA will always use discrete 0,1 values.
This will hinder the search that uses aggregate actions which
are the main advantage of our method. Instead, for this type
of constraint, we first calculate

∑
pi where pi is the current

marginal probability of ai. If
∑
pi > 1 we use projection

as explained above. If
∑
pi < 1 we add 1 −

∑
pi to the

largest among the pi. In this way the constraint is satisfied
on the fractional values but we do not force any specific ac-
tion variable among trajectory actions to 1 during the search.

Related Work
The paper makes use of the connection between planning
and inference to improve the SOGBOFA algorithm, specifi-
cally introducing lifting and conformant solutions. The con-
nection between planning and inference is not new and is
rooted in work on influence diagrams (e.g., Cooper 1988;
Mauá 2016). In probabilistic planning, Domshlak and Hoff-
mann (2006) showed how the conformant planning problem
can be solved using weighted model counting for CNF, and
Lee, Marinescau, and Dechter (2016) showed how the prob-
lem can be solved using MMAP inference. Our conformant
solution is different because it optimizes over an approxi-
mate aggregate simulation and not the exact inference graph.

A different approach uses variational inference to solve
MDPs. Starting with the work of Dayan and Hinton (1997),
several formulations define a reward weighted posterior dis-
tribution over trajectories, where identifying the MAP over
actions gives an optimal policy. Solutions include the ex-
pectation maximization (EM) or variational EM algorithms
(Toussaint and Storsky 2006; Furmston and Barber 2010;
Neumann 2011; Kober and Peters 2011), policy gradients
(Kober and Peters 2011; van de Meent et al. 2016) and BP
(Liu and Ihler 2012; Cheng et al. 2013). One of the main
differences between these approaches and ours is that they
condition on the reward whereas our approach evaluates the
marginal of the reward given an action and can hence focus
on forward inference. While the representations are equiv-
alent when performing exact inference, the computational
properties of different approximation algorithms on different
Bayesian networks of the same distribution can vary dramat-
ically. The choice of representation is hence important. We
are not aware of approximate inference methods applied to
planning problems of the same scale as done here.

Another major direction developed symbolic versions of
dynamic programming algorithms (Boutilier, Dearden, and
Goldszmidt 1995; Hoey et al. 1999; Raghavan et al. 2012;
2013). It is easy to see that symbolic value iteration cor-
responds to alternating variable elimination where we al-
ternate between eliminating state variables of a time step
and action variables of the same step. The main difficulty
with this approach is the space requirements of representing
value functions or policies. The SOGBOFA solutions avoid
such difficulties by not representing a full policy and by in-
tegrating the approximation into the computation graph.

Experimental Evaluation
In this section we evaluate the performance of the proposed
algorithms. For uniformity and to compare to state of the art
we use the problems and experimental setup from the IPC
20184. The competition included 8 domains with 20 prob-
lems each. We additionally show results for the ELEVATORS
domain from IPC 2011 which was discussed above. For this
domain we use the 10 instances from the competition and
add 10 larger instances with up to 10 elevators and 43 floors.
We compare our algorithms to PROST 2011 (Keller and Ey-
erich 2012) and PROST 2014 (Keller and Helmert 2013), the
baselines of IPC 2018 that also achieved the highest IPC
scores in the competition.

We run each algorithm 75 times on each problem and
collect average rewards for each problem. As in the com-
petition, each algorithm is given a total time for each in-
stance which is equal to 2.5 seconds times the problem hori-
zon times 75 and it must select actions for all these steps
within that time. To compare algorithms we use the IPC
score which normalizes the average cumulative reward of
each planner based on the score of a minimal policy (the bet-
ter of random and no-op) and best score obtained by all plan-
ners on the same instance. This score is not ideal when (near-
)optimal values are unknown which leads to some variance
in normalized scores. But it has become the standard way
to compare systems because it provides a single normalized
score with the same scale across problems and instances.

Recall that SOGBOFA uses a dynamic scheme to balance
graph size and search depth. Therefore, the effect of lifting
can be a smaller graph and larger number of search steps
or a deeper search with similar number of search steps.
This complicates the evaluation of lifting. Therefore, we
first explore size compression for fixed depth, independently
of planning performance. Figure 2 shows scatter plots with
pairwise comparisons of graph size (at fixed depth) between
different algorithms. As can be seen, lifting leads to com-
pression by a factor of at least 2 on 6 of the 9 domains,
with up to 8x compression in PUSHYOURLUCK, CHRO-
MATICDICE and COOPERATIVERECON. Conformant vari-
ants increase the size because they prevent reusing constant
value nodes for action variables of rollout actions.

We next turn to evaluate planning performance with dy-
namic depth. We first show the planning results for the ELE-
VATORS domain. Figure 3 shows search depth, and the num-
ber of search steps (restarts and gradient steps together) and
normalized planning performance scores. We see that lifting
leads to a deeper search and that (due to this) all 3 variants
decrease the number of updates in this domain. Considering
planning performance, lifting on its own does not improve,
whereas conformant variants do and their performance is
close. Therefore, in this problem the increased depth does
not lead to improved performance and the key to success is
the use of the conformant rollout policy.

We next turn to planning results on IPC 2018 domains. Ta-
ble 1 shows the overall IPC scores for each planner on each
domain, as well as the sum over all domains. Considering
first the comparison among SOGBOFA variants. We see that

4https://ipc2018-probabilistic.bitbucket.io

Figure 2: Pairwise comparisons of graph sizes between algorithms. Diagonal lines correspond to doubling the size.

Figure 3: Results for the ELEVATORS domain: columns represent depth, search steps, and normalized average cumulative
reward. Rewards are normalized as (avg reward(algorithm) − avg reward(SOGBOFA))/ |avg reward(SOGBOFA)|.

lifted and conformant variants improve performance in 5 of
the 8 domains and (except for conformant variants on CO-
OPERATIVERECON) they do not harm performance in other
domains. We also see that SOGBOFA variants perform sig-
nificantly better than PROST variants on 4 of the 8 domains.
Considering the total score over all domains, all SOGBOFA

variants perform equal to or better than the PROST variants
and Lifted Conformant SOGBOFA is ahead by a wide margin.

We next consider performance in individual domains,
starting with a comparison to PROST. For ACADEMIC and
WILDLIFE the differences between SOGBOFA and PROST

variants are relatively small. Many of the test instances
in these domains are hard for all all planners in the ex-
periments and this is reflected in the scores. PROST vari-
ants perform better on EARTHOBSERVATION and PUSHY-
OURLUCK. These are the two domains with the smallest
number of actions and with limited stochasticity. This agrees
with our expectation. PROST uses Monte-Carlo Tree Search
with concrete states and actions which leads to high quality
estimates when the action space is small and stochasticity is
limited. On the other hand SOGBOFA’s strength is in large
action spaces and high stochasticity. SOGBOFA variants per-
form significantly better in the other 4 domains.

Finally note that both lifting and conformant extensions
are important for the performance of the system as a whole.
For the MANUFACTURER domain we see that variants not

using conformant search have a score of zero. The reason
is similar to the one for ELEVATORS. Here random roll-
outs do not show the advantage of makings goods or in-
vesting in factories (in order to sell products in future) and
as a result SOGBOFA decides not to do anything. On the
other hand, the conformant variants are successful. The re-
sults for REDFINNEDBLUEEYE show the advantage of lift-
ing (as well as the potential disadvantage of conformant
which makes the search more expensive). In EARTHOBSER-
VATION, we see that both lifting and conformant improve in-
dividually but that their combination is significantly better.

Conclusions
The SOGBOFA system has been previously shown to have
excellent performance in many domains. However, it works
with a ground computation graph and does not use prob-
lem structure. In addition, the approach fails for problems
where rolling out the random policy does not provide useful
information on the quality of a state. The paper introduces
new techniques to address these deficiencies. The first uses
lifted BP to compress the SOGBOFA graph. The second in-
troduces conformant optimization into the aggregate search
of SOGBOFA. The experiments demonstrate that lifting im-
proves search through size compression and deeper search
and that in some domains conformant search leads to better
decisions. Overall, Lifted Conformant SOGBOFA provides

COOPRECON ACADEMIC EARTH PUSH WILDLIFE RED MANUFACTURER CHROMATIC Total
PROST 2014 6.82 3.7 19.87 15.8 8.71 6.5 2.14 10.17 73.71
PROST 2011 5.3 3.77 17.77 7.61 3.99 5.06 5.1 12.9 61.5
SOGBOFA 14.64 4.83 4.01 5.17 9.25 17.43 0 18.26 73.59
L. SOGBOFA 16.21 4.95 6.69 5.46 8.42 18.64 0 18.52 78.89
C. SOGBOFA 12.96 5.36 7.1 4.37 8.61 16.54 10.24 17.94 83.12
L.C. SOGBOFA 12.53 5.1 11.46 4.78 9.04 17.09 10.04 19.48 89.52

Table 1: IPC scores of the 4 variants of SOGBOFA and the two IPC baselines on the IPC 2018 benchmarks.

state of the art performance.
There are many interesting directions for future work.

The paper argued that due to the limitations of aggregate
search the best rollout policy is a sequential plan. Maintain-
ing the advantage of aggregate search but allowing for more
complex rollout policies is an important challenge. Another
interesting direction includes incorporating the SOGBOFA
graph and its Q estimates within traditional search based
planning algorithms. More generally, as demonstrated in this
paper, the synergy between planning and inference has the
potential to improve algorithms in both fields.

Acknowledgments This work was partly supported by
NSF under grant IIS-1616280. Thomas Keller received
funding for this work from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 817639).

References
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning under un-
certainty: Structural assumptions and computational leverage. In
Proc. of the Second European Workshop on Planning, 157–171.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Exploiting
structure in policy construction. In Proc. IJCAI, volume 14, 1104–
1113.
Cheng, Q.; Liu, Q.; Chen, F.; and Ihler, A. T. 2013. Variational
planning for graph-based MDPs. In Proc. NIPS, 2976–2984.
Cooper, G. F. 1988. A method for using belief networks as influ-
ence diagrams. In Proc. UAI, 55–63.
Cui, H., and Khardon, R. 2016. Online symbolic gradient-based
optimization for factored action MDPs. In Proc. IJCAI, 3075–
3081.
Cui, H.; Khardon, R.; Fern, A.; and Tadepalli, P. 2015. Factored
MCTS for large scale stochastic planning. In Proc. AAAI, 3261–
3267.
Cui, H.; Marinescu, R.; and Khardon, R. 2018. From stochastic
planning to marginal MAP. In Proc. NIPS, 3085–3095.
Dayan, P., and Hinton, G. E. 1997. Using expectation-
maximization for reinforcement learning. Neural Computation
9(2):271–278.
Domshlak, C., and Hoffmann, J. 2006. Fast probabilistic planning
through weighted model counting. In Proc. ICAPS, 243–252.
Furmston, T., and Barber, D. 2010. Variational methods for rein-
forcement learning. In Proc. AISTATS, 241–248.
Griewank, A., and Walther, A. 2008. Evaluating derivatives - prin-
ciples and techniques of algorithmic differentiation (2. ed.). SIAM.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic planning using decision diagrams. In Proc. UAI, 279–
288.

Keller, T., and Eyerich, P. 2012. PROST: probabilistic planning
based on UCT. In Proc. ICAPS, 119–127.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree search
for finite horizon MDPs. In Proc. ICAPS, 135–143.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting belief
propagation. In Proc. UAI, 277–284.
Khardon, R. 1999. Learning action strategies for planning do-
mains. Artificial Intelligence 113(1-2):125–148.
Kober, J., and Peters, J. 2011. Policy search for motor primitives
in robotics. Machine Learning 84(1-2):171–203.
Kolobov, A.; Dai, P.; Mausam, M.; and Weld, D. S. 2012. Reverse
iterative deepening for finite-horizon MDPs with large branching
factors. In Proc. ICAPS, 146–154.
Lee, J.; Marinescau, R.; and Dechter, R. 2016. Applying search
based probabilistic inference algorithms to probabilistic confor-
mant planning: Preliminary results. In Proc. ISAIM.
Liu, Q., and Ihler, A. T. 2012. Belief propagation for structured
decision making. In Proc. UAI, 523–532.
Mauá, D. D. 2016. Equivalences between maximum a posteri-
ori inference in bayesian networks and maximum expected utility
computation in influence diagrams. International Journal Approx-
imate Reasoning 68:211–229.
Neumann, G. 2011. Variational inference for policy search in
changing situations. In Proc. ICML, 817–824.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. Wiley.
Raghavan, A.; Joshi, S.; Fern, A.; Tadepalli, P.; and Khardon, R.
2012. Planning in factored action spaces with symbolic dynamic
programming. In Proc. AAAI, 1802–1808.
Raghavan, A.; Khardon, R.; Fern, A.; and Tadepalli, P. 2013. Sym-
bolic opportunistic policy iteration for factored-action MDPs. In
Proc. NIPS, 2499–2507.
Sanner, S. 2010. Relational dynamic influence diagram language
(RDDL): Language description. Unpublished Manuscript. Aus-
tralian National University.
Shalev-Shwartz, S. 2012. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning 4(2):107–
194.
Singla, P., and Domingos, P. M. 2008. Lifted first-order belief
propagation. In Proc. AAAI, 1094–1099.
Tesauro, G., and Galperin, G. 1996. On-line policy improvement
using Monte-Carlo search. In Proc. NIPS, 1068–1074.
Toussaint, M., and Storsky, A. 2006. Probabilistic inference for
solving discrete and continuous state Markov decision processes.
In Proc. ICML, 945–952.
van de Meent, J.; Paige, B.; Tolpin, D.; and Wood, F. 2016. Black-
box policy search with probabilistic programs. In Proc. AISTATS,
1195–1204.

